6KV高压变频器的运行维护

6KV高压变频器的运行维护
6KV高压变频器的运行维护

谈6KV高压变频器小室的运行与维护

许震

(国电谏壁发电厂,江苏镇江, 212006)

摘要:本文介绍某厂6KV高压变频器的使用类型并结合现场实际中所出现的问题和故障处理措施,总结了高压变频器的日常维护方法和注意事项。

关键词:高压变频器跳闸处理运行维护

一、高压变频器概述

高压变频器一般由变压器柜、功率柜、控制柜组成,三相高压电经其6KV 高压开关柜进入变压器柜后,经输入降压,移相给功率单元柜内的功率单元供电。

本厂凝泵系统采用:每台机组配置2台100%容量的凝结水泵(变频调节),1台运行,1台备用,都可进入变频调速系统。变频器仅考虑带一台凝结水泵调速运行。我厂采用的凝泵变频器型号为东芝TMdrive-MVG,6kV电源经变频装置输入开关到高压变频器,变频装置输出经两台出线开关分别送至两台凝结水泵电动机,两台开关互相闭锁,任何情况下不能够同时合上。正常运行时,如果凝结水泵A运行在变频调速状态下,供电电源通过“干式变压器”至凝结水泵变频器,然后通过“QF4开关”输出至凝结水泵A电动机,此时凝结水泵B处于备用状态。

TMdrive-MVG全新系列高压变频器。主要结构特征为:变频器采用高压直接输入,高压直接输出的电压源方式。变频装置采用多绕组,多单元串联的完美无谐波方式。6kV输入变压器采用36脉冲,进线变压器为干式变压器,配金属外壳,设置测温元件并有温控功能,温度传感器用于变压器过热报警、延时保护跳变频系统和信号远传。风扇停运信号及控制电源失电报警保护功能均由变频器实现。周围条件要求:温度 0 ~40 ℃;湿度: 5 ~85%,不结露;故现场规定其凝泵变频小室的冷却方式:在凝泵变频运行时,主要靠冷水机组进行冷却,电空调只作为备用,其排风扇及时打开。在凝泵停止变频运行时,要及时停用其排风扇

二、高压变频器的故障及处理:

2013-06-19#13机凝泵变频器重故障跳闸,工频A联动成功,故障显示为:"U2变频单元异常""变频单元保险熔断""变频单元直流电压丢失""联锁关闭",将凝泵变频系统隔离,外观检查变压器柜及变频单元柜正常,但积灰严重,抽出U2变频单元查为其输出直流侧熔丝熔断,交流输入侧A、C相熔丝完好,进一步检查为其内部IGBT模块损坏2只。

为杜绝类似故障再次发生,采取了以下措施:

1、保持变频室内干净,无灰尘,因在有大量灰尘下,不仅其功率单元损坏,也

会牵连到装置的误动作,为了提高设备的连续运行可靠性,减小室外灰尘进入变频小室

2、保持变频小室内空气干燥,不漏水,要加强变频小室的温度控制,特别是变

频器停用后,要注意小室中央空调的停用,防止出现大量凝结水,若出现凝结水并与其内部灰尘结合,会导致绝缘性能下降,引起单元内部回路短路,导致炸裂单元和熔丝熔断。

3、检查室内中央空调及风道情况,保证变频器环境温度在35度以下。防止出现

风道不出风等异常情况发生,曾发生过一侧风道出热风,导致其小室温度达32度的情况,后查为其冷风机皮皮带坏所致,更换后正常。

4、要检查变频室电缆孔洞有无封堵,防止电缆沟内蒸汽或水汽泄漏,影响变频

小室

5、注意检查变频器冷却风扇有无异常声音,出风口有异味。

三、针对实际情况变频小室风扇运行方式的改动

原变频小室内实际情况为排风扇共有4只,是一路电源开关控制二只排风扇(风扇不可单独控制),且出风口无隔离挡板(出风口位于炉侧零米磨煤机处),当开启排风扇后,造成小室内有较大的负压,引起小室外部灰尘大量进入,影响小室环境。

为此将其进行改造:(1)凝泵变频小室排风扇电源回路及出风口改进,凝泵变频小室排风扇电源改为分路控制(一风扇一开关,开关箱安装于风扇所在墙壁),出风口百叶窗改为电动百叶窗。(2)凝泵变频小室南北两侧空调全开,墙上排风扇只开模块侧一台,向外抽风。当室温大于30℃或变压器温度大于45℃,增开模块侧风扇一台,向外抽风,变压侧风扇正常不开且百叶窗关闭。

经过改造后,凝泵变频小室环境有较大改善,温湿度有了较好的控制,保证了机组的安全生产,取得了良好效果。

参考文献:1、《高压变频器TMdrive-MV使用说明书》

2、《罗宾康高压变频器中文用户手册》

2015-08-12 作者简介:

许震(1976-),男,江苏镇江人,国电谏壁发电厂高级技师,从事国电谏壁发电厂百万机组运行维护工作

E-mail:xly030930@https://www.360docs.net/doc/6510030092.html,

高压变频器使用手册——中英文版-第2章

第2章 ChapterⅡ 安装与接线 Installation & Connection 本章简要介绍PowerSmart TM变频器的安装与接线 The chapter introduces installation and connection of PowerSmart TM Drive briefly 2.1产品确认 2.1 Product Confirmation 拿到产品时,请确认下表中所列项目: When you get the product, please confirm the items listed in below table: 表2-1 Tab2-1

如有不良情况,请与本公司业务部门联系。 If there unfavorable condition, please contact with our corporate business sector. 2.2 安装环境的要求和管理 2.2 Requirements and Management of Installation Environment 2.2.1 安装现场 2.2.1 Installation Field 安装变频器的地点应满足通风散热和操作的要求。变频器背面离墙的距离不小于600mm,正面离墙的距离不小于1.5米。变频器顶部(从风机顶部算起)到屋顶的距离不小于500mm。 The site of installing drive should satisfy the requirements of ventilation, heat dispersion and operation. The distance between back face of drive and wall should not be less than 600mm, the distance between front face of drive and wall should not be less than 1.5m. The distance between top of drive (calculated from the top of fan) and ceiling should not be less than 500mm. 2.2.2环境标准 2.2.2 Environment Standard 变频器安装在电气室内,工作环境温度为0~40o C。由于工作中变频器将散发出大量热量(约电动机每100KW散发出3.5KW热量),电气室要配备通风或空调装置。 Drive is installed in electric room with operation environment temperature 0~40o C. Because the drive will give off much heat (approximately, motor gives off 3.5kw heat per 100KW during) operation, electric room should be equipped with ventilation or air-conditioning device. 环境湿度最高为相对湿度90%,要避免凝露,例如在潮湿季节,特别是当变频器不工作时,不要将室内温度降得太低。

高压变频器的工作原理和常见故障分析 贾瑟

高压变频器的工作原理和常见故障分析贾瑟 摘要:随着现代科学技术的迅速发展,大量的发电企业正在使用着高压变频器。高压变频器在使用过程中具有显著的节能效果,但也存在一定的潜在安全隐患, 可能会对发电企业的生产活动造成严重影响。基于此,本文先对高压变频器工作 原理进行具体的分析,然后对高压变频器在运行中常见的故障及原因进深入的探讨,以供相关的工作人员参考,希望能给我国发电企业的发展带来一定的贡献。 关键词:高压变频器;工作原理;常见故障;分析 采用交流变频器调速技术对交流电机进行调速,具有节电效果好、调速方便、保护功能完善、组态灵活、可靠性强等很多优点。由于交流变频调速技术的众多 优越性,在发电领域也得到了非常广泛的应用,对电厂内的风机、水泵等大功率 耗能设备实现高压变频器调速改造,已成为公认的节能方案。随着变频器应用范 围的扩大,检修维护工作中遇到的问题也越来越多。因此,本文对此进行分析。 1高压变频器工作原理 高压变频器一般采用目前国际流行的功率单元串联多电平技术,系统为高-高 结构。高压电直接输入变频器,经过变频器内部功率系统整流、逆变后,变频器 直接高压输出至电机,不需要升压变压器等部件。每个功率单元都是一台三相输入、单相输出的脉宽调制型低压变频器,技术可靠,结构和性能完全一致,极大 的提高了高压变频器的可靠性与维护性;采用叠波技术,最大限度的消除了高压 变频器输出电压中的谐波含量,电压波形接近于标准的正弦波,大大改善了变频 器的输出性能,是真正的“无谐波”高压变频器。 变频器一般由以下几个部分组成:制动单元、微处理单元、滤波、整流、逆变、检测单元以及驱动单元等等。它能够按照电动机的具体需求为其提供所需的 电源电压,从而实现调速和节能。此外,大部分变频器都具备多种保护功能,如 过载保护、过电压保护以及过电流保护等。 对于不同电压等级的高压变频系统,一般采用每相5~8个功率单元串联方案。通过主电路图,可以更加直观的了解变压器的副边绕组与功率单元以及各功率单 元之间的电路连接方式:具有相同标号的3组副边绕组,分别向同一功率柜(同 一级)内的三个功率单元供电。第一级内每个功率单元的一个输出端连接在一起 形成星型连接点,另一个输出端则与下一级功率单元的输出端相连,依此方式, 将同一相的所有功率单元串联在一起,便形成了一个星型连接的三相高压电源, 驱动电动机运行。当电网电压为6kV时,变压器的副边输出电压即功率单元的输 入电压为690V,每个功率单元的最高输出电压也为690V,同一相的五个单元串 联后,相电压为690V×5=3450V,由于三相连接成星型,那么线电压便等于 1.732×3450V≈6000V,达到电网电压的水平。功率单元串联后得到的是阶梯正弦 的PWM波形,PWM控制,脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要形状和幅值的波形,这种波形正弦度好,du/dt小,可 减少对电机和电缆的绝缘损坏,无需输出滤波器就可以使输出电缆长度很长,电 动机也不需要降额使用,可直接用于旧设备的改造;同时,电机的谐波损耗也大 大减少,消除了由此引起的机械振动,减小了轴承和传动部分的机械应力。 通过本相上的5(8)个功率单元输出的SPWM波相叠加后,可得到正弦波形。这种波形正弦度好,dv/dt小,即使在低速下也能保持很好的波形。电机的谐波

最新高压变频器工作原理

高压变频器工作原理 高压变频器是一种串联叠加性高压变频器,即采用多台单相三电平逆变器串联连接,输出可变频变压的高压交流电。按照电机学的基本原理,电机的转速满足如下的关系式:n= (1 —s)60f/p=no X (1 一 s)(P:电机极对数;f:电机运行频率;s:滑差)从式中看出,电机的同步转速n。正比于电机的运行频率(n。=60fp),由于滑差s—般情况下比较小(0?0. 05),电机的实际转速n约等于电机的同步转速n。,所以调节了电机的供电频率f, 就能改变电机的实际转速。电机的滑差s和负载有关,负载越大则滑差增加,所以电机的实际转速还会随负载的增加而略有下降。 变频器本身由变压器柜、功率柜、控制柜三部分组成。三相高压电经高压开关柜进入,经输入降压、移相给功率单元柜内的功率单元供电,功率单元分为三组,一组为一相,每相的功率单元的输出首尾相串。主控制柜屮的控制单元通过光纤时对功率柜屮的每一功率单元进行整流、逆变控制与检测,这样根据实际需要通过操作界面进行频率的给定,控制单元把控制信息发送到功率单元进行相应得整流、逆变调整,输出满足负荷需求的电压等级。 1移相式变压器

移相变压器的副边绕组分为三组,构成X脉冲整流方式;这种多极移相叠加的整流方式可以大大改善网侧的电流波形,使负载下的网侧功率因数接近1。另外,由于副边绕组的独立性,使每个功率单元的主回路相对独立,这样大大提高了可靠性。 2智能化功率单元 所有的功率模块均为智能化设计具有强大的自诊断指导能力,一旦有故障发生时,功率模块将故障信息迅速返回到主控单元中,主控单元及时将主要功率元件IGBT关断,保护主电路;同时在中文人机界面上精确定位显示故障位置、类别。在设计时已将一定功率范围内的单元模块进行了标准化考虑,以此保证了单元模块在结构、功能上的一致性。当模块出现故障时,在得到报警器报警通知后,可在几分钟内更换同等功能的备用模块,减少停机时间。 6kV电网电压经过副边多重化的隔离变压器降压后给功率单元供电,功率单元为三相输入,单相输出的交直流PWM电压源型逆变器结构,相邻功率单元的输出端串联起来,形成Y接结构,实现变压变频的高压直接输出,供给高压电动机。6kV电压等级的高压变频器,每相由六个额定电压为600V的功率单元串联而成,输出相电压最高可达3464V,线电压达6000V左右。改变每相

变频器基本结构详解-民熔

变频器基本结构-民熔 整流电路: 整流电路的功能是把交流电源转换成直流电源。整流电路一般都是单独的一块整流模块,但不少整流电路与逆变电路二者合一的模块如民熔变频器系列。 整流模块损坏是变频器常见故障,在静态中通过万用表电阻挡正反向的测量来判断整流模块是否损坏,当然我们还可以用耐压表来测试。有的品牌变频器整流电路,上半桥为可控硅,下半桥为二极管。如大功率的丹佛斯、台达等。判断可控硅好坏的简易方法,可在控制极加

上直流电压(10V左右)看它正向能否导通。这样基本大致能判断出可控硅的好坏。 另外,民熔变频器G9S(P9S)11kw以下的整流模块的特点为该模块集中五种功能。整流,预充电可控硅,制动管,电源开关管,热敏电阻。如CVM40CD120整流模块引脚及功能的名称,供同行参考。

整流:R、S、T、A(+) N-(-) 充电可控硅:A1、P1、G+n(触发) 制动管:DB、N_、G7(触发) DB1 B+是其续流二极管 电源开关管:D8、S8、G8 热敏电阻:Th1 Th2 G9S(P9S)15kw~22kw,整流模块为(VM100BB160)它的功能除整流外还有预充电可控硅。功率在30kw以上的为整流模块单一整流功能。功率75kw以上为多组并联整流模块。 平波电路: 平波电路在整流器、整流后的直流电压中含有电源6倍频率脉动电压,此外逆变器产生的脉动电流也使直流电压变动,为了抑制电压波动采用电感和电容吸收脉动电压(电流),一般通用变频器电源直流部分对主电路构成器件有余量,省去电感而采用简单电容滤波平波电路。 对滤波电容进行容量与耐压的测试,我们还可以观察电容上的安全阀是否爆开。有没有漏液现象来判断的它的好坏。

罗宾康高压变频器介绍

我主要写的是应用场合及功能介绍 罗宾康高压变频器介绍 一、产品介绍 1、罗宾康系列变频调速系统特点 1.1高效率、无污染、高功率因数 第宾康系列高压变频调速系统采用的是功率单元串联的高-高方案,采用了多绕组高压 移相变压器,二次侧绕组中流过的电流,在变压器一次侧叠加时,形成非常逼近正弦波的电流波形。经 过实际测试,50Hz运行时,网侧电流谐波<2 %,电机侧输岀电压谐波 <1.5 % (即使在40Hz时,仍然<2 % ),成套装置的效率>97 %,功率因数>0.96。完全满足了 IEEE519 —1992对电压、电流谐波含量的要求; *通过采用自主开发的专用PWM空制方法,比同类的其它方法可进一步降低输岀电压 谐波1?2% 。1.2先进的故障单元旁路运行(专业核心技术) *为了提高系统的可靠性,整个变频调速系统中考虑了一定的输出电压裕量,并在各功率单元中增加了旁路电路。当某个功率单元岀现故障时,可以自动监测故障并启动旁路电路,使得该单元不再投入运行,同时程序会自动进行运算,调整算法,使得输出的三个线电压仍然完全对称,电机的运行不受任何影响; *以6kV高压变频调速系统为例,每相有6个单元时,预置好参数,当某一相中有2 个功率单元岀现故障时,故障单元将自动旁路,系统仍然可以满负荷运行;即使某一相中所有6个单元 故障,全部被旁路,系统输岀容量仍可高达额定容量的57.7 %。这种控 制方法处于国际先进,国内领先水平,将大大提高系统的可靠性。 .3高性能的控制技术 *罗宾康系列高压变频调速系统率先实现了简易矢量控制技术,可以实现恒转矩快速动态响应,并且具有加、减速自适应功能,即可根据运行工控参数的实际情况,自动调整加、减速时间,在不超过最大允许电流的情况下,快速达到设定频率或转速。同时,系统可以自动识别电机转速,用户可以不考虑电机目前的运行状态,电机不需要停止运行时,可直接实现电机的启动、加速、减速或停止操作; *罗宾康系列高压变频调速系统还可以实现反馈能量自动限制功能。 1.4高可靠性 *控制电源可实现外部220V供电和高压电源辅助供电双路电源自动切换,同时配置了UPS即使两路电 源都岀现故障时,控制系统仍然可以工作足够长的时间,控制整个系统安全停机,发岀报警,并记录故障时的所有状态参数; *高压主电路与低压控制电路采用光纤传输,安全隔离,使得系统抗干扰能力强; ?当单元故障数目超过设定值,系统可自动切换到工频运行(自动旁路柜); ?移相变压器有完善的温度监控功能;

高压变频器的工作原理与性能特点

高压变频器的工作原理与性能特点 一、高压变频器的基本构成: 1、高压变频器的构成:内部是由十八个相同的单元模块构成,每六个模块为一组,分别对应高压回路的三相,单元供电由移相切分变压器进行供电。(原理图) 2、功率单元构成:功率单元是一种单相桥式变换器,由输入切分变压器的副边绕组供电。经整流、滤波后由4个IGBT 以PWM方法进行控制,产生设定的频率波形。变频器中所有的功率单元,电路的拓扑结构相同,实行模块化的设计。其控制通过光纤发送。来自主控制器的控制光信号,经光/电转换,送到控制信号处理器,由控制电路处理器接收到相应的指令后,发出相应设的IGBT的驱动信号,驱动电路接到相应的驱动信号后,发出相应的驱动电压送到IGBT控制极,操作IGBT关断和开通,输出相应波形。功率单元中的状态信息将被收集到应答信号电路中进行处理,集中后经电/光转换器变换,以光信号向主控制器发送。 二、高压变频器运行原理:高压变频器的每个功率单元相当于一个三电平的二相输出的低压变频器,通过叠加成为高压三相交流电,变频器中点与电动机中性点不连接,变频器输出实际上为线电压,由A相和B相输出电压产生的UAB输出线电压可达6000V,为25阶梯波。如下图所示,为输出的线电压和相电压的阶梯波形,UAB不仅具有正弦波形而且台阶数也成倍增加,因而谐波成分及dV/dt均较小。 三、多电平单元串联叠加高压变频器在运行后,将输入的工频的三相高压交流电转化为可以进行频率可调节的三相交流电,其电压和频率按照V/F的设定进行相应的调节,保持电机在不同的频率下运行,而定子磁心中的主磁通保持在额定水准,提高电机的转换效率。在变频器输入侧,由于变频器多个副边绕组的均匀位移,如6KV输出时共有+250、+150、+50、-50、-150、-250共6种绕组,变频器原边电流中对应的电流成分也相互均匀位移,构成等效36脉动整流线路,变流转换产生的谐波都相互抵消,湮灭。工作时的功率因数达0.95以上,不需要附加电源滤波器或功率因数补偿装置,也不会与现有的补偿电容装置发生谐振,对同一电网上运行的电气设备没有任何干扰。 四、高压变频器的性能特点: 1、应用范围:调速范转宽,可以从零转速到工频转速的范围内进行平滑调节。在大电机上能实现小电流的软启动,启动时间和启动的方式可以根据现场工况进行调整。频率的调整是根据电机在低频下的压频比系数进行电压和频率的输出,在低转速下,电机不仅是发热量低,而且输入电压低,将使电机绝缘老化速度降低。 2、技术新颖串联多重化叠加技术的应用实现了真正意义的高-高电力变换,无需降压升压变换,降低了装置的损耗,提高了可靠性,解决了高压电力变换的困难。串联多重化叠加技术的应用还为实现纯正弦波、消除电网谐波污染开辟了崭新的途径。 移相变压器 移相变压器是单元串联型多电平高压大功率变频器中的关键部件之一。 用低压电力电子元件做高压变频器通常有两种方法:一是用低压元件直接串联,另一种方法是用独立的 率变频器的主流。 以6kV变频器为例: 它的每相由6个独立的、额定电压为Ve=577V(峰值为816V)的低压功率单元串联而成,输出相电压为3464V线电压可达6000V左右。每个功率单元承受全部输出电流但只提供1/6相电压和1/18的输出功率。每个功率单元分别由变压器的一组二次绕组供电,功率单元之间以及变压器二次绕组之间相互绝缘。 很明显移相变压器在该变频器中起了两个关键的作用:一是电气隔离作用才能使各个变频功率单元相互独立从而实现电压迭加串联,二是移相接法可以有效地消除35次以下的谐波。(理论上可以消除6n-1次以下的谐波, n为单元级数)

GBP-D和GBP-H系列高压变频器使用说明书

GBP-D和GBP-H系列高压变频器使用说明书 焦作市明株自动化工程有限责任公司 2009年11月

目录 第1章安全注意事项 (3) 第2章变频器柜体组成 (4) 第3章变频器安装和存放环境 (5) 第4章变频器接线说明 (6) 第6章变频器故障说明与维护 (13) 第7章变频器常见故障处理 (14) 附录1: GBP-D和GBP-H系列高压变频器型号列表 (16) 附录2: GBP-D和GBP-H系列高压变频器功率单元型号列表 (17) 附录3:干式变压器温控仪设置说明 (18) 附录4:调试内容记录表 (19)

第1章安全注意事项 1.1 在使用高压变频器前,请仔细阅读本使用说明书。 1.2 高压变频器(本章以下简称设备)属高压设备,内有能致人伤亡的高压交流电流,使用时请务必遵循本说明书。 1.3 当设备带电或有残余电压时不要打开任何柜门。 1.4 当设备停电之后,功率单元内仍可能存在危险电压,请等待5分钟之后才能打开柜门,否则可能导致电击或伤害。 1.5 在确认设备已经不发烫和不带电之前,千万不要触摸设备内部的任何部位,否则可能导致电击。 1.6 在接触或测量设备内元器件时,必须十分小心,严防表笔接触到其它端子,导致伤害或故障。 1.7 当主电源切断后,必须等待10分钟后,才能切断控制电源,否则可能导致故障。 1.8 在主电源送电之前,必须先送控制电直到触摸屏不再显示“通信中断”为止,否则可能造成设备故障或损坏。 1.9 当确认变频器有部件损坏之后,不得进行再次通入高压主电源,否则可能造成人身伤害和加深设备损坏器件。 1.10 当设备着火时,不要尝试使用设备,否则可能引起火灾。 1.11 必须由经过认证的人员正确设置参数,如果设置了错误参数,系统可能超限运行损坏设备。1.12 只有有资格的人员以及受过培训的人员可以操作设备,不具有资格或未受过培训的人员操作可能导致人员伤害或设备故障。 1.13 在设备有高压电源供电的情况下,一般不要切断控制电源,否则可能导致人身伤害或设备损坏。 1.14 如果高压输入误送到设备的输出端,这样会严重损坏变频器和引起火灾。 1.15 不要阻塞设备的通风口,否则设备内部的温度将会上升导致故障。 1.16 操作前请熟悉设备上的警告标示,否则可能导致电击或伤害。 1.17 当清理或检查时,必须切断主电源和控制电源。 1.18 不要接触旋转的风机,否则可能导致伤害。 1.19 取出功率单元时要当心,功率单元任何侧受到过大的力都会导致人身伤害或功率单元损坏。1.20 设备在运输或安装过程中,不得靠近水源,否则设备进水之后使用过程中可能导致电击或故障。 1.21 用户不允许更改和搬运设备,可能导致人员伤害或设备损坏。 1.22 安装时,设备不得倾斜超过30°,否则设备可能滑落导致伤害或故障。 1.23 确保设备外壳接地良好,接地电阻不得大于4Ω,否则绝缘能力的下降会导致漏电或电击。1.24 设备在吊装时,必须确认吊车、钢绳、吊钩有足够的吊装能力,起吊工具有足够的强度和安全系数,操作方法必须正确,否则会导致人身伤害或设备故障。 1.25 请严格遵照以上安全规范进行操作,否则将可能导致人身的伤害和设备的故障。

高压变频器原理与应用

高压变频器原理及应用 1、引言电机是工业生产中主要的耗电设备,高压大功率电动机的应用更为突出,而这些设备大部分都存在很大的节能潜力。所以大力发展高压大功率变频调速技术具有时代的必要性和迫切性。 目前,随着现代电力电子技术和微电子技术的迅猛发展,高压大功率变频调速装置不断地成熟起来,原来一直难于解决的高压问题,近年来通过器件串联或单元串联得到了很好的解决。其应用领域和围也越来越为广,这为工矿企业高效、合理地利用能源(尤其是电能)提供了技术先决条件。 2、几种常用高压变频器的主电路分析 (1)单元串联多重化电压源型高压变频器。单元串联多重化电压源型高压变频器利用低压单相变频器串联,弥补功率器件IGBT的耐压能力的不足。所谓多重化,就是每相由几个低压功率单元串联组成,各功率单元由一个多绕组的移相隔离变压器供电,用高速微处理器实现控制和以光导纤维隔离驱动。但其存在以下缺点: a)使用的功率单元及功率器件数量太多,6kV系统要使用150只功率器件(90只二极管,60只IGBT),装置的体积太大,重量大,安装位置和基建投资成问题; b)所需高压电缆太多,系统的阻无形中增大,接线太多,故障点相应的增多; c)一个单元损坏时,单元可旁路,但此时输出电压不平衡中心点的电压是浮动的,造成电压、电流不平衡,从而谐波也相应的增大,勉强运行时终究会导致电动机的损坏; d)输出电压波形在额定负载时尚好,低于25Hz以下畸变突出; e)输出电压波形在额定负载时尚好,低于25Hz以下畸变突出; f)由于系统中存在着变压器,系统效率再提高不容易实现;移相变压器中,6kV三相6绕组×3(10kV时需12绕组×3)延边三角形接法,在三相电压不平衡(实际上三相电压是不可能绝对平衡的)时,产生的部环流,必将引起阻的增加和电流的损耗,也相应的就造成了变压器的铜损增大。此时,再加上变压器的铁芯的固有损耗,变压器的效率就会降低,也就影响了整个高压变频器的效率。这种情况在越低于额定负荷运行时,越是显著。10kV时,变压器有近400个接头、近百根电缆。在额定负荷时效率可达96%,但在轻负荷时,效率低于90%。 (2)中性点钳位三电平PWM变频器。该系列变频器采用传统的电压型变频器结构。中性点钳位三电平PWM变频器的逆变部分采用传统的三电平方式,所以输出波形中会不可避免地

变频器结构及工作原理

变频器结构及工作原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备。如图1所示,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。 1. 整流器 它与单相或三相交流电源相连接,产生脉动的直流电压。 2. 中间电路,有以下三种作用: a. 使脉动的直流电压变得稳定或平滑,供逆变器使用。 b. 通过开关电源为各个控制线路供电。 c. 可以配置滤波或制动装置以提高变频器性能。 3. 逆变器 将固定的直流电压变换成可变电压和频率的交流电压。 4. 控制电路 它将信号传送给整流器、中间电路和逆变器,同时它也接收来自这些部分的信号。其主要组成部分是:输出驱动电路、操作控制电路。主要功能是: a. 利用信号来开关逆变器的半导体器件。 b. 提供操作变频器的各种控制信号。 c. 监视变频器的工作状态,提供保护功能。

现场对变频器以及周边控制装置的进行操作的人员,如果对一些常见的故障情况能作出判断和处理,就能大大提高工作效率,并且避免一些不必要的损失。为此,我们总结了一些变频器的基本故障,供大家作参考。以下检测过程无需打开变频器机壳,仅仅在外部对一些常见现象进行检测和判断。 以下检测过程无需打开变频器机壳,仅仅在外部对一些常见现象进行检测和判断。

利德华福高压变频器

利德华福高压变频器 应用范围 近年来,我国年工业生产总值不断提高,但是能耗比却居高不下,高能耗比已成为制约我国经济发展的瓶颈,为此国家投入大量资金支持节能降耗项目,其中高压变频调速技术已越来越广泛的应用在各行各业,它不仅可以改善工艺,延长设备使用寿命,提高工作效率等,最重要的是它可以“节能降耗”,这一点已被广大用户所认可,且深受关注。 从1998年开始,利德华福人通过一年开发,一年开局试验,一年市场考验,其研发制作的HARSVERT-A系列高压变频调速系统,完全具有自主知识产权,适合国内电网特性,符合国内用户使用习惯。该系列高压变频调速系统自2000年投入国内市场后,在市政供水、电力、冶金、石油、石化、水泥、煤炭等行业陆续投入运行。由于安装便捷、操作简单、运行稳定、安全可靠、维护方便,并在节能、节电、省人、省力、自动控制、远程监控等方面效果显着,以及优异的产品性价比和周到的服务,受到用户的广泛欢迎。 火力发电:引风机、送风机、吸尘风机、压缩机、排污泵、锅炉给水泵等 冶金:引风机、除尘风机、通风机、泥浆泵、除垢泵等 石油、化工:主管道泵、注水泵、循环水泵、锅炉给水泵、电潜泵、卤水泵、引风机、除垢泵等

市政供水:水泵等 污水处理:污水泵、净化泵、清水泵等 水泥制造:窑炉引风机、压力送风机、冷却器吸尘风机、生料碾磨机、窑炉供气风机、冷却器排风机、 分选器风机、主吸尘风机等 造纸:打浆机等 制药:清洗泵等 采矿行业:矿井的排水泵和排风扇、介质泵等 其他:风洞试验等

系统原理 HARSVERT-A系列高压变频调速系统采用单元串联多电平技术,属高-高电压源型变频器,直接3、6、10KV输入,直接3、6、10KV高压输出。变频器主要由移相变压器、功率模块和控制器组成。 系统结构 功率模块结构 功率模块为基本的交-直-交单相逆变电 路,整流侧为二极管三相全桥,通过对IGBT逆 [功率单元电路结构]变桥进行正弦PWM控制,可得到单相交流输出。 每个功率模块结构及电气性能上完全一 致,可以互换。(备件种类单一) 输入侧结构 输入侧由移相变压器给每个功率模块供电,移相变压器的副边绕组分为三

6kV800kW高压变频器操作说明书

WLdrive系列高压变频器 使用说明书 卧龙电气集团股份有限公司 2012年4月

目录 一、前言 (3) 二、安全操作 (4) 1、安全注意事项 (4) 2、安全操作 (4) 3、安全性规则与警告 (6) 三、验货和产品检查 (8) 1、检查项目 (8) 2、变频器的尺寸 (8) 3、变频器型号说明 (8) 4、产品铭牌 (9) 5、WLdrive-HV系列高压变频器的技术参数 (9) 四、变频器接线 (12) 五、WLdrive系列高压变频器原理 (14) 1、系统结构 (14) 2、多重化输入设计 (15) 4、接口与通讯 (17) 5、控制器 (17) 六、硬件组成及特点 (18) 1、WLdrive-HV高压IGBT变频器硬件配置 (18) 2、旁路柜 (18) 3、变压器柜 (20) 4、功率柜 (21) 5、控制器柜 (22) 七、按钮及面板功能 (23) 1、按钮 (23) 2、触摸屏介绍 (24) 3、画面结构 (25) 4、主控画面 (26) 八、触摸屏操作 (28) 1、数据查询操作步骤 (28) 2、参数设定步骤 (29) 3、系统管理操作步骤 (32) 九、参数设定 (34) 1、参数设定画面介绍 (34) 2、功能参数一览表 (39) 十、系统管理 (41) 1、密码设定 (41) 2、时间设定 (41) 3、PLC时间同步 (42) 4、系统信息 (42) 5、软件版本 (43)

6、数据保护 (43) 7、参数初始化 (44) 8、高级设置 (44) 十一、故障管理 (45) 1、当前故障 (45) 2、故障首出 (45) 3、历史故障 (46) 4、故障记录 (46) 十二、参数的详细说明 (47) 十三、产品标准与性能 (57) 1、特点 (57) 2、符合的相关标准 (57) 3、应用范围 (58) 4、功能 (58) 十四、故障对策 (61) 1、故障报警的处理 (61) 2、故障保护的处理 (61) 3、功率单元过电压 (62) 4、功率单元欠电压 (62) 5、输出过电流 (62) 6、功率单元过热 (62) 7、功率柜风机故障 (63) 8、变压器过热报警与保护 (63) 9、故障后功率单元更换 (63) 十五、保养和维护 (64) 1、变频器的日常维护 (64) 2、保养和维护 (64) 4、绝缘试验 (65) 5、变频器贮存 (66) 6、报废注意事项 (66) 7、保修 (66) 附录A(接线端子功能说明) (67)

高压变频器工作原理

高压变频器工作原理 摘要:近几年来乌鲁木齐市经济快速发展,城市化进程加快,居民住房面积不断增长,随之而来的是供热面积的不断增加。我单位作为本市主要的供暖企业之一,面对不断增长的供热面积,也在不断进行技术改造,提升自身供热能力。现就对我单位高压循环泵电机使用的高压变频器的工作原理做一介绍。 关键词:移相变压器;功率单元;控制器 1.概述 高压变频调速系统,主要应用于风机、泵类等通过调速控制大量节能的场合。具有: (1)高可靠性:采用高—高电压源型变频调速系统,直接高压输入,直接高压输出,无需输出变压器。 (2)高质量的功率输入、输出:输入功率因数高,输入谐波少,无需功率因数补偿/谐波抑制装置。 (3)完善、简易的功能参数设定:完整的通用参数设定功能(频率给定、运行方式设定、控制方式、自动调度等)。 2.工作原理 高压变频器是一种串联叠加性高压变频器,即采用多台单相三电平逆变器串联连接,输出可变频变压的高压交流电。按照电机学的基本原理,电机的转速满足如下的关系式:n=(1一s)60f/p=n。×(1一s)(P:电机极对数;f:电机运行频率;s:滑差)从式中看出,电机的同步转速n。正比于电机的运行频率(n。=60f/p),由于滑差s一般情况下比较小(0~0.05),电机的实际转速n约等于电机的同步转速n。所以调节了电机的供电频率f,就能改变电机的实际转速。电机的滑差s和负载有关,负载越大则滑差增加,所以电机的实际转速还会随负载的增加而略有下降。 变频器本身由变压器柜、功率柜、控制柜三部分组成。三相高压电经高压开关柜进入,经输入降压、移相给功率单元柜内的功率单元供电,功率单元分为三组,一组为一相,每相的功率单元的输出首尾相串。主控制柜中的控制单元通过光纤对功率柜中的每一功率单元进行整流、逆变控制与检测,这样根据实际需要通过操作界面进行频率的给定,控制单元把控制信息发送到功率单元进行相应的整流、逆变调整,输出满足负荷需求的电压等级。 3.构成

GBP-H-06系列高压变频器使用说明书

GBP-H-06系列高压变频器使用说明书 焦作市明株自动化工程有限责任公司 2009年11月

目录 第1章安全注意事项 (3) 第2章变频器柜体组成 (4) 第3章变频器安装和存放环境 (5) 第4章变频器接线说明 (6) 第6章变频器故障说明与维护 (13) 第7章变频器常见故障处理 (14) 附录1: GBP-D和GBP-H系列高压变频器型号列表 (16) 附录2: GBP-D和GBP-H系列高压变频器功率单元型号列表 (17) 附录3:干式变压器温控仪设置说明 (18) 附录4:调试内容记录表 (19)

第1章安全注意事项 1.1 在使用高压变频器前,请仔细阅读本使用说明书。 1.2 高压变频器(本章以下简称设备)属高压设备,内有能致人伤亡的高压交流电流,使用时请务必遵循本说明书。 1.3 当设备带电或有残余电压时不要打开任何柜门。 1.4 当设备停电之后,功率单元内仍可能存在危险电压,请等待5分钟之后才能打开柜门,否则可能导致电击或伤害。 1.5 在确认设备已经不发烫和不带电之前,千万不要触摸设备内部的任何部位,否则可能导致电击。 1.6 在接触或测量设备内元器件时,必须十分小心,严防表笔接触到其它端子,导致伤害或故障。 1.7 当主电源切断后,必须等待10分钟后,才能切断控制电源,否则可能导致故障。 1.8 在主电源送电之前,必须先送控制电直到触摸屏不再显示“通信中断”为止,否则可能造成设备故障或损坏。 1.9 当确认变频器有部件损坏之后,不得进行再次通入高压主电源,否则可能造成人身伤害和加深设备损坏器件。 1.10 当设备着火时,不要尝试使用设备,否则可能引起火灾。 1.11 必须由经过认证的人员正确设置参数,如果设置了错误参数,系统可能超限运行损坏设备。1.12 只有有资格的人员以及受过培训的人员可以操作设备,不具有资格或未受过培训的人员操作可能导致人员伤害或设备故障。 1.13 在设备有高压电源供电的情况下,一般不要切断控制电源,否则可能导致人身伤害或设备损坏。 1.14 如果高压输入误送到设备的输出端,这样会严重损坏变频器和引起火灾。 1.15 不要阻塞设备的通风口,否则设备内部的温度将会上升导致故障。 1.16 操作前请熟悉设备上的警告标示,否则可能导致电击或伤害。 1.17 当清理或检查时,必须切断主电源和控制电源。 1.18 不要接触旋转的风机,否则可能导致伤害。 1.19 取出功率单元时要当心,功率单元任何侧受到过大的力都会导致人身伤害或功率单元损坏。1.20 设备在运输或安装过程中,不得靠近水源,否则设备进水之后使用过程中可能导致电击或故障。 1.21 用户不允许更改和搬运设备,可能导致人员伤害或设备损坏。 1.22 安装时,设备不得倾斜超过30°,否则设备可能滑落导致伤害或故障。 1.23 确保设备外壳接地良好,接地电阻不得大于4Ω,否则绝缘能力的下降会导致漏电或电击。1.24 设备在吊装时,必须确认吊车、钢绳、吊钩有足够的吊装能力,起吊工具有足够的强度和安全系数,操作方法必须正确,否则会导致人身伤害或设备故障。 1.25 请严格遵照以上安全规范进行操作,否则将可能导致人身的伤害和设备的故障。

高压变频器操作手册

[Shift]键组合汇总表 *进入子菜单光标由 、 控制,进入按cancel/enter,退出按Shift+cancel/enter 液晶显示包含5个动态显示和刷新的字段。分别是模式(MODE)、速度设定值(DEMD)、转速(RPM)、电机电压(VLTS)、总输出电流(ITOT).模式字段固定,剩下的4个字段可由操作者选择修改

高压变频器操作程序: 1. 在送高压电之前,先将变频器的控制电源送上,观察风机是否转动正常,变频器的键盘显示是否正常。 2. 高压电送上之后,观察变频器键盘显示是否正常。

3.变频器的启动有两种方法: ①现场的操作柱操作,当仪表发出4-20ma速度信号后,按启动信号变频器就会根据 所给的速度指令和加速斜波驱动电机,按停止信号,变频器就会根据设定减速的斜波停止电机。 ②另外一种操作方法是在键盘上操作,上下箭头键是用来调节速度指令。 本地模式:所有操作由本地实现按面板上手动启动键,+ 速度用上下键调节。 SOP程序代码:18000104 远程按钮 远程模式:由现场操作实现,速度由仪表4-40mA 信号控制。 速度设定电位器SOP程序程序代码:18000103 仪表4-20mA 信号 SOP程序的选择必须在送高压之前进行,否则选择另外一个SOP时会造成高压开关脱扣 1.故障复位键:[Fault Reset] 清除变频器故障,无论在哪一种操作方式下通过此键都能对变频器的故障进行复位2.自动键:[Automatic] 速度设定值由4-20mA输入及速度曲线参数决定 3.手动停止按钮:[Manual Stop] 切换到停止模式,不管变频器处于什么状态(手动、远程或自动)都能使变频器关断。 4.手动启动键:[Manual Start] 切换到手动控制模式(手动模式包括本地和远程) 5控制柜上有一个红色紧停按钮,无论在哪一种操作方式下通过此按钮都能对变频器进行紧急停车。 一般故障处理 真空断路器脱扣信号有五个条件: 1. 当变频器的变压器温升过高时。 2. 高压变压器发生短路时。 3.高压柜门被打开时。 4.风机故障并且超过30秒时。 5.控制电源丢失时将启动联锁。 当上述五个中的任一个发生时脱扣真空短路器。

西门子高压变频器操作说明

高压变频器操作说明 1.上电前检查: a) 检查变频器周围环境,温度和湿度是否符合变频器运行条件,变频器运行温 度要求在0-40℃范围内,最好能够控制在25℃左右,湿度不超过95%,且无 凝结或水雾; b) 变频器进出电缆是否紧固,检查高低压电缆是否有损伤; c) 清理变频器灰尘。 2.上380V控制电检查: a) 合变频器控制电源开关“CDS1”; b) 按UPS启动按钮; c) 上控制电后,确认变频器面板上是否有故障或报警,该故障或报警是否影响 变频器正常运行,可否复位,如果不能复位,待问题解决后才能进行下一步 操作; d) 检查变频器冷却风机是否运行正常,变频器进风口滤网是否堵塞,如果滤网 堵塞,需清洁滤网或更换备用滤网后方可进行下一步操作。 e) 旁路柜操作: 变频运行:合QS1和QS2,同时确认QS3处于断开状态; 工频运行:合QS3,同时确认QS1和QS2处于断开状态。 注意:1.两台旁路柜不能同时处于变频状态。 2.变频运行时,两台旁路柜都处于带电状态,禁止对刀闸进行操作。3.变频运行: b) 将变频器“就地/远方”选择开关选择在“远方”,则变频器只能从远方操 作; 如果将选择开关选择在“就地”,则变频器只能在操作面板进行操作。 b) 合变频器进线高压开关,此时变频器高压柜内有高压电,禁止打开变频器高 压柜门(包括功率单元柜门和变压器柜门); c) 确认变频器是否有故障或报警,该故障或报警是否影响变频器正常运行,可 否复位,如果不能复位,待问题解决后才能进行下一步操作; d) 若以上步骤均检查无误,可从远方运行变频器。 e) 以上步骤完成后,电机处于变频运行状态。 4.停机步骤: a) 从远方发出停机指令,变频器正常停机,若用“急停”按钮停变频器,变频 器停机的同时将跳高压; b)若要进行以下操作,请先将变频器输入端高压开关断开,然后才允许进行以 下操作; c) 操作刀闸开关; d) 按UPS停止按钮; e) 关变频器控制电源开关“CDS1”; f) 高压停电15分钟后方可打开高压柜门。 注意:

变频器基本结构与原理

变频器基本结构与控制简介 1 变频器简介 1.1 变频器的基本结构 变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。 1.2 变频器的分类 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM 控制变频器和高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 2 变频器中常用的控制方式 2.1 非智能控制方式 在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。 (1) V/f控制 V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2) 转差频率控制 转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速和负载变动有良好的响应特性。 (3) 矢量控制 矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,以达到对电动机在d、q、0坐标轴系中的励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。通过控制各矢量的作用顺序和时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。例如形成开关次数最少的PWM波以减少开关损耗。目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。 基于转差频率的矢量控制方式与转差频率控制方式两者的定常特性一致,但是基于转差频率的矢量控制还要经过坐标变换对电动机定子电流的相位进行控制,使之满足一定的条件,以消除转矩电流过渡过程中的波动。因此,基于转差频率的矢量控制方式比转差频率控制方式在输出特性方面能得到很大的改

高压变频器主电路图分析及其应用

高压变频器主电路图分析及其应用 1.引言 目前,随着现代电力电子技术和微电子技术的迅猛发展,高压大功率变频调速装置不断地成熟起来,原来一直难于解决的高压问题,近年来通过器件串联或单元串联得到了很好的解决。其应用领域和范围也越来越为广范,这为工矿企业高效、合理地利用能源(尤其是电能)提供了技术先决条件。 2.几种常用高压变频器的主电路分析 (1)单元串联多重化电压源型高压变频器 单元串联多重化电压源型高压变频器利用低压单相变频器串联,弥补功率器件IGBT的耐压能力的不足。所谓多重化,就是每相由几个低压功率单元串联组成,各功率单元由一个多绕组的移相隔离变压器供电,用高速微处理器实现控制和以光导纤维隔离驱动。但其存在以下缺点: a) 使用的功率单元及功率器件数量太多,6kV系统要使用150只功率器件(90只二极管,60只IGBT),装置的体积太大,重量大,安装位置和基建投资成问题; b)所需高压电缆太多,系统的内阻无形中增大,接线太多,故障点相应的增多; c) 一个单元损坏时,单元可旁路,但此时输出电压不平衡中心点的电压是浮动的,造成电压、电流不平衡,从而谐波也相应的增大,勉强运行时终究会导致电动机的损坏; d)输出电压波形在额定负载时尚好,低于25Hz以下畸变突出; d)输出电压波形在额定负载时尚好,低于25Hz以下畸变突出; e)由于系统中存在着变压器,系统效率再提高不容易实现;移相变压器中,6kV 三相6绕组×3(10kV时需12绕组×3)延边三角形接法,在三相电压不平衡(实际上三相电压是不可能绝对平衡的)时,产生的内部环流,必将引起内阻的增加和电流的损耗,也相应的就造成了变压器的铜损增大。此时,再加上变压器的铁芯的固有损耗,变压器的效率就会降低,也就影响了整个高压变频器的效率。这种情况在越低于额定负荷运行时,越是显著。10kV 时,变压器有近400个接头、近百根电缆。在额定负荷时效率可达96%,但在轻负荷时,效率低于90%。 (2)中性点钳位三电平PWM变频器 该系列变频器采用传统的电压型变频器结构。中性点钳位三电平PWM变频器的逆变部分采用传统的三电平方式,所以输出波形中会不可避免地产生比较大的谐波分量,这是三电平逆变方式所固有的。因此在变频器的输出侧必须配置输出LC滤波器才能用于普通的鼠笼型电机。同样由于谐波的原因,电动机的功率因数和效率、甚至寿命都会受到一定的影响,只有在额定工况点才能达到最佳的工作状态,但随着转速的下降,功率因数和效率都会相应降低。 多电平+多重化高压变频器。多电平+多重化高压变频器的本意是想解决高压IGBT的耐压有限的问题,但此种方式,不仅增加了系统的复杂性,而且降低了多重化冗余性能好和三电平结构简单的优点。因此此类变频器实际上并不可取。 此类型变频器的性能价格优势并不大,与其同时采用多电平和多重化两种技术,还不如采用前面提到的高压IGBT的多重化变频器或者三电平变频器。 (3)电流源型高压变频器

相关文档
最新文档