《图论》第6章-图的着色

合集下载

图论 7-6 对偶图与着色

图论 7-6 对偶图与着色

(c) v*=5,e*=6,r*=3
(d) v*=7,e*=12,r*=7
2、自对偶图 定义7-6.2 如果图G的对偶图G*同构于G,则称G
是自对偶图。
练习 321页 (4)
证明:若图G是自对偶的,则e=2v-2。
若图G是自对偶的,则v=v*,e=e*,即
r*=v=v*=r,e=e*则由欧拉定理v-e+r=2
证明一个图的色数为n,首 先必须证明用n种颜色可以着色 该图,其次证明用少于n种颜色 不能着色该图。
4、对点着色的鲍威尔方法: 第一步:对每个结点按度数递减次序进行排列(相 同度数的结点次序可随意) 第二步:用第一种颜色对第一个结点着色,并按次
序对与前面着色点不相邻的每一点着同样的颜色。
第三步:用第二种颜色对未着色的点重复第二步,
一、对偶图
1、对偶图 定义7-6.1 对具有面F1 ,F2,..., Fn的连通平面图 G=<V,E>实施下列步骤所得到的图G*称为图G的对 偶图(dual of graph):
如果存在一个图G*=<V*,E*>满足下述条件: (a)在G的每一个面Fi的内部作一个G*的顶点vi* 。 即对图G的任一个面Fi内部有且仅有一个结点vi*∈V*。
边界时,作vi*的一条环与ek相交(且仅交于一处)。
所作的环不与 G*的边相交。 则称图G*为G的对偶图。
v*=r,e*=e, r*=v
例 画出下图的对偶图。
说明:v*=r,e*=e,r*=v。
平面图的对偶图仍满足欧拉定理,且仍是平
面图。
练习 321页(1)
(a) v*=5,e*=8,r*=5
(b) v*=7,e*=13,r*=12
指出肯普的方法 虽不能证明地图着色用四种颜色就

第六章图与网络分析

第六章图与网络分析

e3
v3
若链中所有的顶点也互不相同,这样的链称为路.
e4
v4
起点和终点重合的链称为圈. 起点和终点重合的路称为回路.
若图中的每一对顶点之间至少存在一条链, 称这 样的图为连通图, 否则称该图是不连通的. 第10页
完全图,偶图
任意两点之间均有边相连的简单图, 称为完全图. K n
K2
K3
K4
2 | E | Cn
第20页
6.2树图和图的最小部分树问题 Minimal tree problem 6.2.1树的概念
若图中的每一对顶点之间至少存在一条链, 称这样的图 为连通图. 树图(简称树Tree): 无圈的连通的图,记作T(V, E)
组织机构、家谱、学科分支、因特网络、通讯网络及高压线路 网络等都能表达成一个树图 。
第13页
有向图 G : (V,E),记为 G=(V,E)
G 的点集合: V {v1 , v2 ,...,vn } G 的弧集合: E {eij } 且 eij 是一个有序二元组 (vi , v j ) ,记
为 eij (vi , v j ) 。下图就是一个有向图,简记 G 。 若 eij (vi , v j ) ,则称 eij 从 v i 连向 v j ,点 v i 称为 eij 的尾,v j 称为 eij 的头。 v i 称为 v j 的前继, v j 称为 v i 的后继。 基本图:去掉有向图的每条弧上的方向所得到的无向图。
有向图 G (V , E ) 的关联矩阵:一个 | V | | E | 阶矩阵
B (bik ) ,
1, 当 弧ek以 点i为 尾 其中 bik 1, 当 弧ek以 点i为 头 0, 否 则

图论课件-PPT课件

图论课件-PPT课件

学习方法
目的明确
态度端正 理论和实践相结合
充分利用资源
逐步实现从知识到能力到素质的深化和
升华
课程考核
平时成绩 (30%-40%)
闭卷考试 (60%-70%)
图论模型
为了抽象和简化现实世界,常建立数学模型。图是关 系的数学表示,为了深刻理解事物之间的联系,图 是常用的数学模型。 (1) 化学中的图论模型 19世纪,化学家凯莱用图论研究简单烃——即碳氢 化合物 用点抽象分子式中的碳原子和氢原子,用边抽象原子间 的化学键。
E={w1r1, w1r2, w2r2, w2r3, w2r4, w3r3, w3r5}代表每个仓库和每个 零售店间的关联。则图模型图形为: w1 w2 w3
r1
r2
r3
r4
r5
29
(3) 最短航线问题 用点表示城市,两点连线当且仅当两城市有航线。为了 求出两城市间最短航线,需要在线的旁边注明距离值。 例如:令V={a, b, c, d, e}代表5个城市} E={a b, ad, b c , be, de}代表城市间的直达航线 则航线图的图形为: a 320 500 d 370 b 140 430 e c

图论学科简介 (2)
19世纪末期,图论应用于电网络方程组
和有机化学中的分子结构 20世纪中叶,由于计算机的发展,图论 用来求解生产管理、军事、交通运输、 计算机和网络通信等领域中的离散性问 题 物理学、化学、运筹学、计算机科学、 电子学、信息论、控制论、网络理论、 社会科学、管理科学等领域应用
七桥问题
近代图论的历史可追溯到18世纪的七桥问题:
穿过Kö nigsberg城的七座桥,要求每座桥通过 一次且仅通过一次。

图的色数与着色数的上界

图的色数与着色数的上界

第2 卷 6
第2 期
史小艺等 :图的色数与着色数 的上界
1 7
定理3 设图G 数为, 的阶 l 且围长 至少为2+. k 1则存在某一常 = () c ) l 其中k 数c ci J且! ( = , } 七
为正鎏 使得下式成立: 数,

( ≤[ + 21 2 G c . )雨+ . ) ( +, ]
记为 包

() 文 5 无三圈 ( . )0 的 的着 G . 献【证明了 】 即 , = ) 图G 色数是√/l , ( G ,√ g 倍数. 献【和【 l 0l 文 4 6 】 】
讨论了图的色数与其 ( 2 +) oki 的关系, 七 k 1 bos e , - z 并且证明了下列定理.
l 6
五邑大学学报 (自然科学版 )
21 02钽
图 G的 (k .ok 是指 q 长为 k的圈 (l 2 ) f )bo , 个 C, , C …, 两两相交组成一条长为 t 的路 P,即
( n (J J, J 其中t 为 且0 t七2 图G f) okz是指q 最大值, ) c) ()≠ , = Pf 、k 整数 < 一 . 的(k-ose s ,b i 的
色 上 界 问 . 义石( = a Gl勺 长 g 数 疗, 献2 了 ( ≤ , J2 数 下 的 题定 m) () 围 为 , 为) 文 【证明 【 + , ) 【 6 { 咱 阶 】 ) I 文 [iJ ( =2 V ̄I1当 长g 奇 时, 献【给 色 上 献3 ̄l 玎 Lns/刀 围 为 数 文 1 出 数的 界为刀 + ; 围 l 了 ) ((’I. -l 】 2当
长g 为偶数时, 文献【 证明了色数的上界为0 刀 . 4 】 ( )

第8节图论应用实例_图着色问题

第8节图论应用实例_图着色问题

第8节图论应用实例_图着色问题预备知识_回溯法回溯法:在实际生活中,有些问题是不能用数学公式去解决的,它需要通过一个过程,此过程要经过若干个步骤才能完成,每一个步骤又分为若干种可能;同时,为了完成任务,还必须遵守一些规则,但这些规则无法用数学公式表示,对于这样一类问题,一般采用搜索的方法来解决,回溯法就是搜索算法(广度优先、深度优先等)中的一种控制策略,它能够解决许多搜索中问题。

回溯法基本思想:试探法,撞了南墙就回头。

(一般采用深度优先搜索策略) 搜索策略:深度优先(不撞南墙不回头)。

在搜索过程中,如果求解失败,则返回搜索步骤中的上一点,去寻找新的路径,以求得答案。

要返回搜索,前进中的某些状态必须保存,才能使得退回到某种状态后能继续向前。

白话搜索:如果用数组存放搜索信息,i表示数组下标(当前状态), ++i表示往前走(下一个状态),--i表示回溯(往回退,返回上一次状态)。

第8节图论应用实例_图着色(graph coloring)问题数学定义:给定一个无向图G=(V, E),其中V为顶点集合,E为边集合,图着色问题即为将V分为k个颜色组(k为颜色数),每个组形成一个独立集,即其中没有相邻的顶点。

其优化版本是希望获得最小的k值。

典型应用:地图的着色、调度问题等。

k-着色判定问题:给定无向连通图G和k种不同的颜色。

用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色,例四色问题。

设有如图1的地图,每个区域代表一个省,区域中的数字表示省的编号,现在要求给每个省涂上红、蓝、黄、白四种颜色之一,同时使相邻的省份以不同的颜色区分。

课外拓展:搜索“四色问题”,了解四色问题相关知识。

5674231图1问题分析:(1)属于图的搜索问题。

将问题简化:将每个省抽象为一个点,省之间的联系看为一条边,可以得到图2。

16751432图2(2)用邻接矩阵表示各省之间的相邻关系,二维数组实现:1 表示省i与省j相邻, ,,ri,j,,0 表示省i与省j不相邻,由图2可以得到如下矩阵:(对称矩阵)1 2 3 4 5 6 71 0 1 0 0 0 0 12 1 0 1 1 1 1 13 0 1 0 1 0 0 04 0 1 1 0 1 0 05 0 1 0 1 0 1 06 0 1 0 0 1 0 17 1 1 0 0 0 1 0 为一对称矩阵。

第6-8章 图论2

第6-8章   图论2

5.设D是有向图,当且仅当D中有一条通过每个 D 结点的通路时,D为( )连通的。 答案:单向 6.设有向图D=<V,E>,V={a,b,c,d}, E={<a,b><a,d><d,c><b,d><c,d>},则D是 ( )连通的,c的可达集为(),d(c,a)=()
6.设有向图D=<V,E>,V={a,b,c,d,}, E={<a,b>,<a,d>,<d,c>,<b,d>,<c,d>}, 则D是( )连通的,c的可达集为( ),d(a,b)=() 答案:单向 {c,d} 7.图6-1的点连通度为(),边连通度为() 答案: 1 1 8.k5的点连通度为(),边连通度为()。 答案: 4 4
7.若无向图中恰有2个度数为奇数的结点,则这两个结 点必连通。( ) 答案:T 8.在有向图中,结点间的可达关系是等价关系。( ) 答案:F 9. 若有向图中有两个奇度结点,则它们中一个可达另 一个或互相可达。( ) 答案:F
10.若图G不连通,则 G 必连通。( ) 答案:T 11.有向图的每个结点恰位于一个单向分图中。( ) 答案:F 12.图6-3为无强分图( ) 答案:F 13.若图G的边e不包含在G的某简 图6-3 单回路中,则e是G的割边。( ) 答案:T
22.设G= <V,E>为连通的简单平面图,若|V|>=3,则 所有结点v,有deg(v)<=5.( ) 答案:F
第7章 树 章
树是图论中最重要的概念之一,它是基尔霍夫在解决 电路理论中求解联立方程时首先提出的。它又是图论 中结构最简单,用途最广泛的一种平面图,在计算机 科学的算法分析、数据结构等方面有着广泛的应用, 本章主要介绍树的基本概念、性质和若干应用。

图论-图的基本概念

图论-图的基本概念
若 i, j 中有奇数,比如 i 是奇数,则路 P 上 v0 到 vi 的一段与边 v0vi 构成一个偶圈; 若 i, j 都是偶数,则路 P 上 vi 到 v j 的一段与边 v0vi 及 v0v j 构成一个偶圈。证毕。 例 1.1.4 设 G 是简单图,若δ (G) ≥ 3 ,则 G 中各个圈长的最大公因数是 1 或 2。 证明:由上例知,G 中有长分别为 i + 1, j + 1和 j − i + 2 的圈。若 i + 1, j + 1, j − i + 2 三 数有公因数 m > 2 ,则 m | ( j − i) ,于是 m | 2 ,这是不可能的。因此 i + 1, j + 1, j − i + 2
证明:按每个顶点的度来计数边,每条边恰数了两次。 推论 1.1.1 任何图中,奇度顶点的个数总是偶数(包括 0)。 4. 子图
子图(subgraph):如果 V (H ) ⊆ V (G) 且 E(H ) ⊆ E(G) ,则称图 H 是 G 的子图,记为 H ⊆G。
生成子图(spanning subgraph): 若 H 是 G 的子图且V (H ) = V (G) ,则称 H 是 G 的生成子图。
这便定义出一个图。
2. 图的图示
通常,图的顶点可用平面上的一个点来表示,边可用平面上的线段来表示(直的或曲的)。 这样画出的平面图形称为图的图示。
例如,例 1.1.1 中图的一个图示为
v1
v2
e1
e6 e5
e2
e4
v5
e7
v3
e3 v4
注:(1)由于表示顶点的平面点的位置的任意性,同一个图可以画出形状迥异的很多图示。

《图论》图的着色(课堂PPT)

《图论》图的着色(课堂PPT)
PK3(3) = 6
19
6.2 色数多项式
a
a
a
b
cb
cb
c
a
a
a
b
cb
cb
c
PK3(3)=6
20
6.2 色数多项式
➢ 若干特殊图的 PG(k) 1) 零图: G=(V, E) ,n=|V|,|E|=0,PG(k)=kn 2) 树:根节点在 k 种颜色中任取,非根节点选取 与其父亲节点不同的颜色。 PG(k)=k(k-1)n-1 3) 完全图: PG(k)=k(k-1)(k-2)…(k-n+1) 4) 非连通图:设图G由不连通的G1和G2构成,则 由乘法原理:PG(k)=PG1(k)PG2(k)
6
6.1 色数
[临界图] G=(V, E),若对G的任一真子图H均有
(H)<(G),则称G为一个临界图。
➢ k 色临界图称为 k-临界图。
[性质]
① 任何 k 色图通过对边的反复删减测试最后可以得
到其 k-临界子图。
② 临界图是连通图。
证:设G1、G2为临界图G的两个连通分支,则
(G)=max{(G1), (G2)}。不妨设 (G)=(G1),而
① 在图G中任取一边 e; ② 在图G中去掉 e,得新图G1;
在图G中收缩 e 的两端点,得新图G2,由上述有 PG(k) = PG1(k) - PG2(k)
③ 继续分解G1和G2,直到最后全部为零图。 ④ 利用 n 阶零图的 P(k)=kn 构造图G的色数多项式。
① 若 n=2,则G为 K2,PG(k)=k(k1)=k2k。
② 若 n>2,则G除一个 K2 外其它为孤立点:
PG(k)=k(k1)kn-2=knkn-1。

图论课件第六章平面图

图论课件第六章平面图

A6
A2
A5
A3
A4
7
第7页,本讲稿共35页
例子3:3间房子和3种设施问题
问题:要求把3种公用设施(煤气,水和电)分别用煤气管 道、水管和电线连接到3间房子里,要求任何一根线或管道 不与另外的线或管道相交,能否办到?
上面问题可以模型为如下偶图:
G
W
E
H1
H2
H3
问题转化为,能否把上面偶图画在平面上,使得边与边 之间不会交叉?
1、平面图的次数公式
12
第12页,本讲稿共35页
定理1 设G=(n, m)是平面图,则:
deg(f )2m
f
证明:对G的任意一条边e, 如果e是某面割边,那么由面 的次数定义,该边给G的总次数贡献2次;如果e不是割边, 那么,它必然是两个面的公共边,因此,由面的次数定义 ,它也给总次数贡献2次。于是有:
19
第19页,本讲稿共35页
所以, l (n2)4(62)8
l2
2
而m=9,这样有:
m l (n 2) l 2
所以,由推论2,K3,3是非平面图。
推论3 设G是具有n个点m条边ф个面的简单平面图, 则:
m3n6
20
第20页,本讲稿共35页
证明:情形1,G连通。 因为G是简单图,所以每个面的次数至少为3,即l=3 。于是,由推论2得:
如果把每个景点分别模型为一个点,景点间连线,当且 仅当两景点间要铺设空调管道。那么,上面问题直接对应 的图为:
A1
A6
A2
A5 A3
A4
于是,问题转化为:能否把上图画在平面上,使得边不 会相互交叉?
6
第6页,本讲稿共35页
通过尝试,可以把上图画为:

图论课件第七章图的着色

图论课件第七章图的着色
总结词
平面图的着色问题是一个经典的图论问题,其目标是在满足相邻顶点颜色不同 的条件下,使用最少的颜色对平面图的顶点进行着色。
详细描述
平面图的着色问题可以使用欧拉公式和Kuratowski定理进行判断和求解。此外 ,也可以使用贪心算法、分治策略等算法进行求解。
树图的着色问题
总结词
树图的着色问题是一个经典的图论问 题,其目标是使用最少的颜色对树图 的顶点进行着色,使得任意两个相邻 的顶点颜色不同。
分支限界算法
总结词
分支限界算法是一种在搜索树中通过剪枝和 优先搜索来找到最优解的算法。
详细描述
在图的着色问题中,分支限界算法会构建一 个搜索树,每个节点代表一种可能的着色方 案。算法通过优先搜索那些更有可能产生最 优解的节点来加速搜索过程,同时通过剪枝 来排除那些不可能产生最优解的节点。分支 限界算法可以在较短的时间内找到最优解,
尤其适用于大规模图的着色问题。
03
图的着色问题的复 杂度
计算复杂度
确定图着色问题的计算复杂度为NP-完全,意味着该问题在多项式时间 内无法得到确定解,只能通过近似算法或启发式算法来寻找近似最优解 。
图着色问题具有指数时间复杂度,因为对于n个顶点的图,其可能的颜色 组合数量为n^k,其中k为每个顶点可用的颜色数。
02
图的着色算法
贪心算法
总结词
贪心算法是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选 择,从而希望导致结果是最好或最优的算法。
详细描述
贪心算法在图的着色问题中的应用是通过逐个对顶点进行着色,每次选择当前未 被着色的顶点中颜色数最少的颜色进行着色,直到所有顶点都被着色为止。这种 算法可以保证最小化使用的颜色数量,但并不保证得到最优解。

图论课件-图的顶点着色

图论课件-图的顶点着色

AC
所以, (G) 4
7
1
0.5 n 0
0.5
1 2 1.5 t1 0.5 00
1 0.8
0.6 0.4 x 0.2
注:对图的正常顶点着色,带来的是图的顶点集合的
一种划分方式。所以,对应的实际问题也是分类问题。 属于同一种颜色的顶点集合称为一个色组,它们彼此不 相邻接,所以又称为点独立集。用点色数种颜色对图G 正常着色,称为对图G的最优点着色。
若G1是非正则单图,则由数学归纳,G1是可Δ (G)顶点 正常着色的,从而,G是可Δ (G)正常顶点着色的。
(2) 容易证明:若G是1连通单图,最大度是Δ ,则
(G) (G)
15
1
0.5 n 0
0.5
1 2 1.5 t1 0.5 00
1 0.8
0.6 0.4 x 0.2
(3) Δ (G)≥3
11
1
0.5 n 0
0.5
1 2 1.5 t1 0.5 00
1 0.8
0.6 0.4 x 0.2
(1), (v3 )=3
v1
v6
v5
(2),C(v4)=3,C C(v4) 1, 2, 4,5, k 1
(1), (v4 )=1
v2
(2),C(v5)=1,C C(v5) 2,3, 4,5, k 2
v



G -v
17
1
0.5 n 0
0.5
1 2 1.5 t1 0.5 00
1 0.8
0.6 0.4 x 0.2
由于G本身2连通,所以G-xn的每个仅含有一个割点的块 中均有点与xn邻接。设分属于H1与H2中的点x1与x2,它们与 xn邻接。由于x1与x2分属于不同块,所以x1与x2不邻接。又 因为Δ ≥3,所以G-{x1, x2}连通。

《图论的介绍》课件

《图论的介绍》课件
添加副标题
图论的介绍
汇报人:
目录
PART One
添加目录标题
PART Three
图论的应用领域
PART Two
图论的基本概念
PART Four
图论的基本问题
PART Five
图论的算法和数据 结构
PART Six
图论的扩展知识
单击添加章节标题
图论的基本概念
图论的发展历程
18世纪末,欧拉提出“七桥问题”,开启了图论的先河
匹配问题
匹配问题定义:在图论中,匹配问 题是指在图中找到一组边,使得每 个顶点恰好有一条边。
最小匹配问题:在图中找到一组边, 使得边的数量最少。
添加标题
添加标题
添加标题
添加标题
最大匹配问题:在图中找到一组边, 使得边的数量最多。
完美匹配问题:在图中找到一组边, 使得每个顶点恰好有一条边,并且 边的数量最多。
图论的扩展知识
欧拉路径和欧拉回路
欧拉路径:通过图中所有边且仅通过一次的路径
欧拉回路:通过图中所有边且仅通过一次的回路
欧拉定理:一个无向图存在欧拉回路当且仅当每个顶点的度数都是偶数
应用:欧拉路径和欧拉回路在计算机科学、数学、物理等领域有广泛应用,如电路设计、网络 拓扑、图论算法等
哈密顿路径和哈密顿回路
应用
生物技术:图 论在生物工程、 生物制造和生 物能源等领域
的应用
图论的发展趋势和未来展望
应用领域:图 论在计算机科 学、物理学、 生物学等领域 的应用越来越
广泛
研究方向:图 论在算法设计、 网络优化、数 据挖掘等领域 的研究不断深

技术发展:图 论与机器学习、 深度学习等技 术的结合越来

图论讲义6染色理论

图论讲义6染色理论

第六章 染色理论许多实际问题可以归结为求图的匹配或者独立集。

此外,在许多应用中,人们希望知道:一个给定的图,它的边集至少能划分成多少个边不交的匹配?或它的顶点集至少能划分成多少个点不交的独立集?这便是图的边染色和顶点染色问题。

§6.1 点染色定义6.1.1 设G 是一个无环边的图。

G 的顶点正常k 染色(proper vertex k-colouring)π是指k 种颜色k ,,,L 21对于G 的各顶点的一种分配,使得任二相邻的顶点被染上不同的颜色。

换句话说,G 的顶点正常k 染色π是一个映射},,2,1{)(:k G V L →π,使得)(1i −π是独立集或空集),,2,1(k i L =.注:设π是G 的一个顶点正常k 染色。

令})(|)({)(V 1i x G V x i i =∈==−ππ,(k i ,,2,1L =)。

则π实际上是对顶点集)(G V 的一种划分:),,,(21k V V V L =π,其中φ=j i V V I ,)(1G V Vki i==U ,且每个i V 是独立集或空集),,2,1(k i L =.例:定义6.1.2 若存在G 的一种顶点正常k 染色,则称图G 是点k 色可染的(vertex k-colourable), 有时简称为k 色可染的或可k 染色的。

注:⑴ 每个图G 一定是)(G ν色可染的。

⑵ 若图G 是k 色可染的,则对任何正整数k m ≥,G 也m 色可染。

定义6.1.3 设G 是无环边的图,令G k G |min{)(=χ是k 色可染的},称)(G χ为G 的点色数,有时简称为色数(chromatic number)。

若k G =)(χ,则称G 为k 色图(k-chromatic graph)。

注:(1) 若k G =)(χ(即G 是k 色图),则G 中任何点k 染色),,,(21k V V V L =π中每个i V 都是非空的独立集。

图论第6章-平面图

图论第6章-平面图
n–m+r=( n′+1)–(m′ +1)+r′= n′-m′ +r′ =2。
若G不是树,则G中含有回路。设边e在G的 某个回路上。令G′=G-e(从G中删除边e,而得 到G′),则G′仍然是连通图。设n′,m′和r′分别是 的结点数、边数和面数。则n′=n,m′=m-1=k, r′=r–1 。 于 是 n=n′ , m=m′+1 , r=r′+1 。 因 为 G′ 是连通图且m′=k,所以G′满足归纳假设的条件。 由归纳假设知:n′–m′+r′=2,所以 n–m+r= n′–(m′+1)+(r′+1)= n′-m′+r′=2。
v1
v4
R0 R2 R1 v2
v3 v5
v6
又例:下图为非连通的平面图,有两个连
通分支, deg(R1)=3, deg(R2)=4, R0的 边界由两个初级回路v1 v2 v3v1 和v4 v5 v6 v7 v4围成, deg(R0)=7 。
v1
v4
v7
v2
R1 v3R0 v5
R2
v6
定理:设G=V,E是有限平面图,有r个面,
如下图G1,G2,G3是同胚的。
G1
G2
G3
定理 (库拉斯基定理) 一个图G是非平面的,当 且仅当它包含一个同胚于K3.3或K5的子图。
例 说明彼得森图不是平面图。
解:删去下图(a)皮得森图的结点b,得其子图
(b)H。a 而H胚于Kf 3,3,所以皮c 得森不是平f面图。d
j
f ejg baFra bibliotekd g
6
36
4
54 12
7
8

图论图着色

图论图着色
源自v2v1v0
v4
v5
(b)去掉v0后结点v1与v3处在 同一个连通分支中,v1 与v3有一通路,其中点的颜色红黄交替出现,它与 v0构成一回路C(同一个连通分支),也就是约当曲线, 这时结点v2处在曲线的内部而结点v5则处在线的外 部,v2与v5的任何连线必与曲线C相交,与平面图的 条件矛盾。因此约当曲线C必然将黑白集中的结点分 成两个连通分支,使v2与v5分别处于两个连通分支中 (也就是v2与v5不连通), v 于是问题回到(a),可将v2 v v (或v5)所在的分支中的黑 v 白色对换,于是与v0邻接 v v 的5个结点也只着了4种颜 色, v0就可着第5种颜色。
独立集特点 (1)图G的每一个结点构成一个独立集。 (2)极大独立集不是唯一的,它的基数不一定 是最大的,但它的元素数目已达到极限, 即不可能再加入其他结点而不破坏它的独 立性。 (3)最大独立集必然也是极大独立集而且元素 数目是最多的。 (4)任一完全图Kn的独立数I(Kn)=1 (5)偶图G只有两个极大独立集,即是它的两 个互补结点子集V1和V2
v1 e1 c1 e3 c3 v3 v0 e2 c2 v2
定理6.4 若G是偶图,则 ψ e (G ) = Δ (最大结点次数) 证:设G的两个互补结点子集为Vl和V2,若|V1|<|V2|,则 在V1中增加一些结点成为V1’使|V1’|=|V2|, 对xi∈V1’及yj∈V2,若G中无边(xi,yj),则增加一条 边(xi,yj),通过以上的增添,图G=(V,E)成为图GΔ= (V’,E1’), GΔ 是 Δ次正则偶图,( 由定理5.4的推论可知)它 有一完美匹配M1,令E2’=E1’一M1,得到图 G Δ-1= (V’,E2’),则 G Δ-1是(Δ一1)次正则偶图,它也有一 完美匹配M2, 如此继续下去可以得到M1,M2,..., MΔ 个完美匹 配,每一个完美匹配可着一种颜色,使得到G的边 着 色,即 ψ e (G ) = Δ

[化学]图论Graph Theory-精品文档

[化学]图论Graph Theory-精品文档

第一章 图形理论图形理论有明确的起始点,由瑞士数学家尤拉(Leonhard Euler, 1707-1783)于1736年发表的论文开始。

其研究的主要论点,乃在于解决当时的热门问题,即有名K önigsgerg 的七桥问题。

1.1 定义与例题定义1.1:令 V 为非空集合,且E V V ⊆⨯. 序对(),V E 称为(V 上)有向图(directedgraph or digraph),其中 V 为顶点(vertex)或节点(node)的集合,E 为边(edge)的集合。

我们记(),G V E =表示此图形。

图1.1为{}, , , , V a b c d e =上有向图的例子,其中()()()(){}, , , , , , , E a a a b a d b c =。

边的方向由边上的有向箭头表示,如图所示对任意边,如(), b c ,我们说此边接合(incident)顶点, b c ;称b 邻接至(adjacent to) c ;或c 邻接自(adjacent from) b 。

此外, b 称为边的原点(origin)或源点(source), c 称为终点(terminus or terminating vertex)。

边(), a a 为一个循环(loop), 且顶点e 不与任何边接合,称为孤立点(isolated)。

若不考虑边的方向,此图称为无向图(undirected)。

定义1.2:令, x y 为无向图(), G V E =的顶点(不一定相异)。

G 中的X Y -路(x y -walk)是指选自G 的顶点及边的有限交错序列。

01122311,,,,,,...,,,,n n n n x x e x e x e e x e x y --==其中由顶点 1x 开始,终止于顶点y ,n 个边{}1,,1i i i e x x i n -=≤≤路的长度(length)是指该条路的边数n 。

图论第6章 平面图

图论第6章 平面图
(4) 平面图在加环或平行边后还是平面图。
例: 立方体是平面图。
凸多面体
平面图的理论与多面体的研究密切相关:事实上,由于 每个凸多面体P可以与一个连通可平面图G对应,G的顶点 和边是P的顶点和棱,那么G的每个顶点的度至少为3.由于 G是一个平面图,则P的面就是G的面,并且G的每一条边落 在两个不同面的边界上. 一个多面体P的顶点,棱和面的数目分别用V,E和F来表 示,而且,这些分别是连通图G的顶点,边和面的数目.故欧 拉公式可写成V-E+F=2,这就是著名的Euler凸多面体公式. 为方便起见,用Vn和Fn分别表示凸多面体P的n度 点和n度面的数目,则n3且 2E nVn nFn
n3 n3
多面体的一些性质定理
定理 每个凸多面体都至少有一个n度面,其中 3n5.
证明:设F3=F4=F5=0,则: 即有F1/3E,又
n 6
2E nFn 6Fn 6 Fn 6F
n 6 n 6
2E nVn 3Fn 3V
n 3 n 3
定理:设H是G容许的,则对H的每一个片B,有
) FG ( B, H
~
~
这里
) { f f F (H ) , F (H )为H 的面集, 且B在f 内可画出} FG ( B, H
~ 是G容许的,则存在G的一个平面表示 证明:若 H ~ ~ ~ ~ 的子图 G, s.t. H G .显然,H的片B所对应的
i 1
定理: 设G是简单平面图,则G的最小度(G)≤5。 证明:设 G有n个结点,m条边。当n≤6,因为G是 简单图,因此, (G)≤(G)≤5。以下证n≥7的情况, 若 (G)≥6 ,即每个结点的度数大于等于 6n, G 中所有结 点度数之和大于等于6n。于是 2m= deg(vi ) i 1 ≥6n,m≥3n>3n–6,即m>3n–6,矛盾。

图论课件--着色的计数与色多项式

图论课件--着色的计数与色多项式

23
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
t
ni n j 1
一方面:
t
h(Hi , x)
t
ni
aij x j
i 1
i1 j 1
该多项式中 xk 旳系数rk为:
rk
a a 1i1 2i2
atit
i1 i2 it k
另一方面:设Mj是Hj中具有ij个分支旳Hj旳理想子图。 当i1+i2+…+it=k时,M1∪ M2 ∪… ∪Mt必是G旳具有k个 分支旳理想子图。
例2 求N4(G), N5(G)。
G 10
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
解:经过观察枚举求Nr(G)
G
1) N4(G):
G
11
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
N4(G)=6
2) N5(G):
例1 求出下面各图旳色多项式。
G1
G2
G3
6
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(1)
G1
Pk (G1) k(k 1)(k 2) k(k 1) k3 2k 2 k
也可由推论: (k 1)Pk (K2 ) k3 2k 2 k
G1

图论

图论
21
• 定义1:设G=<V,E>是一个简单图,它有n个结点V={v1,v2,…vn},
边数,称为该结点的度数(degree),记作deg(v)。
4
1.图的基本概念
• 注:1 每个环在其对应的结点上增加两度。
2 记△(G)=max{deg(v)|v∈V} δ(G)=min{deg(v)|v∈V} △(G)和δ(G)分别称为图G的最大度和最小度 • 定理1:每个图中,结点度数的总和等于边数的两倍。
9
1. 图的基本概念

n2 | V | n,| E | 定理5:设G=<V,E>是简单图, 4
,则G
• • •
中必包含一个三角。 问题:定理5给出的边界是否是紧的? 为便于讨论图算法,给出算法复杂性的几个基本定义 定义13:对于给定的函数g(n),定义如下的函数集合 O(g(n)):={f(n)|存在正常数c和n0,使得对于所有n≥ n0,0≤f(n) ≤cg(n)},称g(n)为O(g(n))中任意函数f(n) 的渐近上界(注:一般要求g(n)和f(n)定义于N)
1 图的基本概念
8. 环(loop):关联于同一结点的边,也称为自回路 9. 有向图、无向图和混合图:本课程只涉及有向图 和无向图
• 定义2:设G=<V,E>是一个图,则|V|称为G的阶
数(order),|E|称为G的规模(size)。
• 定义3:在图G= <V,E>中,与结点v (v ∈ V)关联的
19
2.路与回路
• 定义8:如果图G=<V,E>的结点集合V可划分为两个非空
• • •
集合V1 、 V2的并,使得任意e∈E均连接了分处V1和V2中 的两个结点,则称其两分图(bipartite graph)。 例子 定理8:简单图G=<V,E>是两分图 iff 不包含任何奇圈。 定理9:若无向图G恰有两个奇数度结点,则此两点间必 有一条路 2

广义Peterson图的着色问题研究

广义Peterson图的着色问题研究

广义Peterson图的着色问题研究张桂芝;安永红;敖特根【摘要】图的着色问题是图论的重要研究内容之一,利用广义的Pólya定理和结合一些代数方法研究了广义Peterson图在不同约束条件下的着色问题,并给出了四种不同约束条件下的色多项式.【期刊名称】《大学数学》【年(卷),期】2018(034)001【总页数】5页(P13-17)【关键词】广义Peterson图;色多项式;SC-图【作者】张桂芝;安永红;敖特根【作者单位】呼伦贝尔学院初等教育学院,内蒙古海拉尔 021008;呼伦贝尔学院数学与统计学院,内蒙古海拉尔 021008;呼伦贝尔学院科学技术处,内蒙古海拉尔021008【正文语种】中文【中图分类】O1571 引言先介绍广义Peterson图的定义.图1-1 广义Peterson图GP(8,2)定义1[1] 设三正则图G的顶点集是V={ui,vi∶0≤i≤n-1},边集是E={vivi+1,uivi,uiui+t∶0≤i≤n-1},其中下标取模n且n≥5,0<t<n,则称图G为广义Peterson图,记为GP(n,t). Peterson图就是GP(5,2).广义Peterson图GP(8,2)如图1-1所示.从定义容易得出以下结论:(i) GP(n,t)与GP(n,n-t)同构,即GP(n,t)≅GP(n,n-t);(ii) (n,t)=d,则U={u0,u1,…,un-1}的导出子图G(U)是d个不相交的阶圈,称之为内圈;t≤n-12t≤n-12,(iii) 顶点集 V={v0,v1,…,vn-1}的导出子图 G(V)是一个n阶圈,称之为外圈.由(i)可知,只需研究的情形,在以后的讨论中都认为且下标均取模n.本文中主要考虑图GP(n,2)在不同约束条件下的着色方法数.定义2[2] 两个简单图G和H同构是指存在一一映射ψ∶V(G)→V(H),且vu∈E(G)当且仅当ψ(v)ψ(u)∈E(H).从定义可知两个同构图的结构是一样的,只是顶点的标号不同而已.为了下面的结果更清楚,用以下记法.Cn,Cn′分别表示广义Peterson图GP(n,2)的外圈与内圈的n阶标号圈图,Cn的置换由两部分构成,n个旋转和n个反射构成.设(12…n),则的元素记为其中e是的单位元.同理,设则的元素记为其中e′是的单位元.广义Peterson图GP(n,2)的点置换有2类:Cn的置换记为n个旋转和n个反射的置换记为n个旋转和n个反射所以广义Peterson图GP(n,t)的点置换:下面再介绍关于色轨道多项式的相关定义与定理.定义3[3] (i) 用Sn表示集合Nn上的对称群,即Sn是Nn上的所有置换的集合,e是Sn的单位元,且In={e}是Sn的单位子群;(ii) 若P是Sn的一个子群,则P作用在Gn上时,对任意的π∈P和g∈Gn,都有π(g)∈Gn,其边集是π(E(g))={(π(i),π(j))∶(i,j)∈E(g)};(iii) 当π(g)=g,即π(E(g))=E(g)时,称π是g的自同构群,g的全体自同构可构成一个群,记为A(g);(iv) 对于任一置换π∈Sn,用C(π)表示置换π循环分解的个数,若一个置换的每个圈的长度都相等,则称此置换是正则的.定义4[3] 设P是Sn的一个子群,n阶P-置换图G或简称P-图G是指P作用在Gn上产生的一个轨道,当g∈G时,称G是g的一个P-图且g为G的一个标号图.(i) 一个Sn-图被称为是一个n阶无标号图;(ii) 一个In图被简单地看作是一个标号图;(iii) 当P=A(h),g∈G时,其中h∈Gn,称标号图h和g分别是P-图G的结构图和约束图,由标号图h和g所确定的P-图G称为是SC-图;(iv) 当P⊆A(g)时,P-图就被称为图g的一个自同构P-图,或简称为A-图.定义5[2] 设g∈Gn,称映射σ∶V(g)→{1,2,…,k}为图g的一个正常k着色是指对任意相邻点vi和vj均满足,σ(vi)≠σ(vj).图g的一个正常k着色的最小k值称为g的色数,记为(g).对于任意的正整数k,令(g,k)表示图g的正常k着色数. 我们知道(g,k)是一个整系数的n阶多项式.从上面的定义易知引理1[3] 设g是一个标号图,π∈Sn,k是非负整数,则(i) 若π的循环节中含g的相邻顶点时,(g,π,k)=0,对所有的k≥1成立;(ii) π的循环节中均不含g的相邻顶点时,(g,π,k)(g/π,k),其中(g/π,k)是商图g/π的色多项式.引理2[3](广义的Pólya定理) 设P是Sn的一个子群,G是g的P-图,则引理3[4] 一些特殊图的色多项式(i) (On,k)=kn;(ii) (Kn,k)=k(k-1)…(k-n+1);(iii) (Tn,k)=k(k-1)n-1;(iv) (Cn,k)=(k-1)n+(-1)n(k-1),其中Cn是长度为n的圈.更多关于图的染色问题的基本概念及研究结果请参见[1,2,5,6].2 广义Peterson图在不同约束条件下的着色问题定理1 设h,g∈G2n,h≅GP(n,2),g≅K2n,令G是构造图为h,约束图为g 的SC-图,则证因为g≅K2n,所以A(g)=S2n,因此P∩A(g)=P且|P|=2n. 又因为P中除e外其余任何置换的循环节均含g的相邻顶点,所以,当π≠e时(g,π,k)=0,因此可得定理2 h,g∈G2n,h≅GP(n,2),g≅O2n,令G是构造图为h,约束图为g的SC-图,则(i) 当n是偶数时,(ii) 当n是奇数时,证因为g≅O2n,所以A(g)=S2n,因此P∩A(g)=P且|P|=2n. 下面分情况讨论情况1 若设π0=(12…n),π1=(1′2′…n′),则所以存设(m,n)=d,1≤d≤n时,与的阶为所以因此这时g/π=O2d,所以(g,π,k)(O2d,k)=k2d.情况2 若记π=π′+π″,(a) 当n是偶数时,π中无循环节含g的相邻顶点,且个π使得g/π≅On,所以(g,π,k)(On,k)=kn,另外个π,使得g/π≅On+2,所以(g,π,k)(On+2,k)=kn+2;(b) 当n是奇数时,n个π使得g/π≅On+1,(g,π,k)(On+1,k)=kn+1.综上可得①当n是偶数时② 当n是奇数时定理3 设h,g∈G2n, h≅GP(n,2), g≅nK2,E(g)={(11′),(22′),…,(nn′)},令G是构造图为h,约束图为g的SC-图,则(i) 当n是偶数时,(ii) 当n是奇数时,证因为P=A(h)⊆A(g),所以P∩A(g)=P且|P|=2n,下面分情况讨论情况1 若设π0=(12…n),π1=(1′2′…n′),则所以存在m∈+,使得设(m,n)=d,1≤d≤n时,与的阶为所以因此这时(g,π,k)(dK2,k)=kd(k-1)d,所以当1≤d≤n时,(g,π,k)(dK2,k)=kd(k-1)d.情况2 若记π=π′+π″,(a) 当n是偶数时,π中无循环节含g的相邻顶点,且个π使得g/π≅所以另外个π使得所以(b) 当n是奇数时,π中无循环节含g的相邻顶点,且n个π使得g/π≅综上可得① 当n是偶数时② 当n是奇数时定理4 设h,g∈G2n,h≅GP(n,2),g≅Cn∪Cn′,即E(g)={{i,i+1}∶i∈Nn}∪{{i′,(i+2)′}∶i∈Nn},令G是构造图为h,约束图为g的SC-图,则(i) 当(m,n)=d,2<d≤n, d是偶数时(ii) 当(m,n)=d,2<d≤n, d是奇数时证因为P=A(h)⊆A(g),因此P∩A(g)=P且|P|=2n,下面分情况讨论情况1 若设π0=(12…n),π1=(1′2′…n′),则所以存在m∈+,使得当(m,n)=1时,c(π)与中均含g的相邻顶点,这时(g,π,k)=0;当(m,n)=d,2≤d≤n时,与的阶为所以因此图g/π的结构与d的奇偶性有关,所以对d进行讨论(a) 当(m,n)=d,2<d≤n且d是偶数时,g/π≅所以当d=2时,中含g的相邻顶点,这时(g,π,k)=0;(b) 当(m,n)=d,2<d≤n且d是奇数时,g/π≅2Cd,所以(g,π,k)(2Cd,k)=[(k-1)d+(-1)d(k-1)]2.情况2 若记π=π′+π″,当n是偶数时,有个π的π′中含g的相邻顶点,所以(g,π,k)=0.另外个π的π″中含g的相邻顶点,所以(g,π,k)=0.当n是奇数时,n 个π中均含g的相邻顶点,所以(g,π,k)=0.所以无论n是偶数还是奇数,都有n个π使得(g,π,k)=0.综上可得① 当(m,n)=d,2<d≤n,d是偶数时② 当(m,n)=d,2<d≤n,d是奇数时3 结论本文主要应用广义的Pólya定理和一些代数方法,对G是构造图为h,约束图为g的SC-图在以下四种不同约束条件下进行了着色方法数计算,其中h,g∈G2n,h≅GP(n,2)(Peterson图GP(n,2)),(i) g≅O2n;(ii) g≅K2n;(iii) g≅nK2,E(g)={(11′),(22′),…,(nn′)};(iv) g≅Cn∪Cn′,E(g)={{i,i+1}∶i∈Nn}∪{{i′,(i+2)′}∶i∈Nn}.这些结果不仅拓展了图论中着色领域的理论结果,而且具有一定的实践应用价值.本课题研究还可进一步研究其他不同约束条件下的着色问题,其他图类的不同约束条件下的着色方法数.[参考文献]【相关文献】[1] Chris G,Gordon R. Algebraic Graph Theory[M]. New York:Springer-Verlag, 2001:112-126.[2] Bondy J A, Murty U S R. Graph Theory with Applications[M].London:The Macmillan,Press Ltd,1976: 56-66.[3] Du Q Y. Pòlya′s Formula and Chromatic Oribt Polynomials[J]. Ne i Mongolia Da Xue Xue Bao, 2000,31(16): 551-561.[4] Biggs N L. Algebraic graph theory[M]. 2nd ed. Cambridge: Cambridge University Press, 1993: 47-48.[5] 强会英,晁福刚,等.关于扇和完全等二部图联图的点可区别边染色[J].大学数学,2009,25(4):49-55.[6] 郝自军,张玉栋,张忠辅.关于扇和完全等二部图联图的均匀全色数[J].大学数学,2009,25(1):35-39.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 图的着色
➢ 图的着色包括对边、顶点和平面区域的着色。本 章主要讨论简单图的顶点着色。
[例] 6种化学制品,某些不能 放在同一仓库。用矩阵表 示,例如(a , b)=1表示a和b 不能放在同一仓库。 问:最少需要几个仓库?
a 0 1 0 1 0 1
b
0 1 1 1 0
c
0 1 0 1
d
0 1 1
e
0 1
f
0
abcd e f
1
第六章 图的着色
a 0 1 0 1 0 1
b
0 1 1 1 0
c
0 1 0 1
d
0
1
1
e
0 1
f
0
abcd e f
a
f
b
ecຫໍສະໝຸດ d[解]以该矩阵为邻接矩阵构造图如上所示。给图的顶
点染色使得相邻点具有不同颜色,最少需要3种颜 色。
2
6.1 色数
[着色] 图 G=(V,E) 的一个 k 顶点着色指用 k 种颜色对G 的各顶点的一种分配方案。若着色使得相邻顶点 的颜色都不同,则称该着色正常,或称G存在一个 正常的 k 顶点着色(或称一个 k 着色)。此时称G 为 k-可着色的。
13
6.1 色数
① 若v1~ v5 的着色数 4,则 v0 最多邻接4
种颜色的顶点,给 v0 着以第5 种颜色得 到G 的一种5-着色方案。
② 否则 v1~ v5 分别被着以颜色 c1~c5 ,则
v5
v0
v1
V-{v0}按着色可被划分成V13(着色c1或 v4 c3的顶点) 、V24 (着色c2或c4的顶点) 和V5 (着色c5的顶点)。设G13和G24分
[证明] 设 (G)=k,由推论1,有vV,使得 deg(v) k-1
又: deg(v) 故: k-1 或 (G)-1 即: (G) +1 ➢ 推论2给出了色数的一个上限,但很不精确。 [例] 二部图可二染色,但是可以相当大。
10
6.1 色数
[Hajós猜想] 若G是 k 色图, 则G包含 Kk 的一个同胚图。 (1961)
12
6.1 色数
[五色定理] (1890, Heaword) 任何简单平面图都是 5-可着色的。 [证明]设简单平面图G=(V, E),对 n=|V| 作归纳。
n 5时容易讨论结论成立。 设 n = k1时,结论成立。 当 n = k 时,由[定理5-1-8]简单平面图G至少有一个顶点 的度小于6。故可设 v0V,deg(v0) 5。设G=Gv0,由归 纳假设,G是5-可着色的。给G固定一种5-着色方案,再将 v0 加回G得到G,在此情况下讨论 v0 的着色。 (1) 若deg(v0) 4,则 v0 最多邻接4种颜色的顶点,给 v0 着以第 5 种颜色得到G 的一种5-着色方案。 (2) 否则deg(v0) = 5,设 v0 的邻接点按逆时针排列为v1, v2, v3, v4, v5, 如图所示。
6
6.1 色数
[临界图] G=(V, E),若对G的任一真子图H均有
(H)<(G),则称G为一个临界图。
➢ k 色临界图称为 k-临界图。
[性质]
① 任何 k 色图通过对边的反复删减测试最后可以得
到其 k-临界子图。
② 临界图是连通图。
证:设G1、G2为临界图G的两个连通分支,则
(G)=max{(G1), (G2)}。不妨设 (G)=(G1),而
8
6.1 色数
[推论1] k 色图至少有 k 个度不小于 k-1 的顶点。 [证明] 设 k 色图G的 k-临界子图为G,由定理G 的最
小度 k-1,故G的最小度 k-1,即G的
任何顶点的度不小于 k-1。又G为 k 色图,其中至 少有 k 个顶点。
9
6.1 色数
[推论2] 对G=(V, E), =max{deg(vi)|viV},则 (G) +1。
6.1 色数
⑤ (G)=2的充要条件是: (a) |E|1;(b) G中不存在边数为奇 数的回路。(此时G为二部图)
[证明] 必要性显然。充分性: 由 (a) |E|1知 (G)2。 对G中的某一连通分支,找到其一棵生成树,对顶点做二 染色。加上任意一条余树枝,得到对应的唯一回路。由 (b) 知该回路长度为偶数, 该余树枝两个端点染的是不同颜色, 添加该余树枝后仍然可以保持原来的二染色。加上所有余 树枝,得到图G,二染色仍得到保持,即(G)=2。
[四色猜想] 任何平面图都是 4-可着色的。 ➢ 由于存在着不可3-着色的平面图K4,4色问题若可
证明,将是平面图色数问题的最佳结果。
11
6.1 色数
[定理6-1-2] 如果平面图G有Hamilton回路,则G的域是 4-可着色的。
[证明] 平面图G的一条Hamilton回路将G的域分割成两 部分:被封闭的H-回路包围部分和在H-回路之外 部分。每一部分中只能出现两域相邻的情况,否 则同一部分内三个域的交点将不在H-回路上,引 起矛盾。将两部分的域分别以2着色,得到G的一 种4着色方案。
G1为G的真子图,与临界图的定义矛盾。
7
6.1 色数
[定理6-1-1] k-临界图G=(V, E), =min{deg(vi)|viV}, 则 k-1。
[证明]反证法:设G是一个 k-临界图且 <k-1。又设 v0V,deg(v0)= 。由 k-临界图的定义,Gv0 是
(k1)可着色的,在一种 k1着色方案下,Gv0 的 顶点可按照颜色划分成 V1,V2, …, Vk-1 共 k1块, 块Vi中的顶点被涂以颜色 ci。由于deg(v0)< k1,v0 至少与其中一块Vj不邻接即与Vj中的任何顶点不邻 接。此时可将 v0 涂以颜色 cj,从而获得对G的一种 k1着色方案,与G的色数是 k 矛盾。
[色数] 使 G=(V, E) k-可着色的最小 k 值称为G的色数, 记为 (G)。若 (G)=k,称G为 k 色图。
3
6.1 色数
[例] 三色图
4
6.1 色数
[特殊图的色数] ① 零图:(G)=1 ② 完全图 Kn:(G)=n ③ G是一条回路:(G)=2 若|V|是偶数 (G)=3 若|V|是奇数 ④ G是一棵非平凡树: (G)=2 ⑤ (G)=2的充要条件是: (a) |E|1;(b) G中不存在边数为奇 数的回路。(此时G为二部图) ⑥ 若G1、G2为G的两个连通分支,则 (G)=max{(G1), (G2)} 5
相关文档
最新文档