螺栓基本拧紧技术

合集下载

螺栓基本知识

螺栓基本知识

防松紧固件:
异形牙螺母、镶圈螺母、开槽螺母、带齿螺栓 (螺母)
第六部分 螺纹孔深度加工及攻丝注意事项
螺纹孔加工尺寸和深度计算 普通螺纹手动攻丝方法及注意事项
普通丝锥攻螺纹中常出现的问题
案例三
在转角法中,转角已达到设定值,而最终力矩值超小 出了监控范围(70-110 N· m)机器报警???
4.6、加强过程控制
首检
巡检
第五部分 螺纹常见的失效形式与预防措施
常见的失效形式
防止松动的有效措施
5.1 螺纹联接的常见失效形式:
松动 装配拉长
疲劳断裂
延迟断裂
装配断裂
装配脱扣
过载静断
支承面摩擦力 矩TW 轴力
2)螺纹副摩擦力矩TS
T = Ts + Tw 注:轴向力所产生的力矩为 零。
轴力
螺纹副摩擦 力矩TS
2.4、拧紧力矩和紧固轴力的关系
紧固轴力Ff (预紧力)的计算: 弹性区域内 T = K Ff d
紧 固 轴 力 Ff 塑性区
Fmax Kmin Kmax
弹性区
Fmin
连接零件 角螺栓和螺母 凸缘螺栓和螺母
扭矩系数 K
有润滑
0.18 0.23
无润滑
0.26 0.31
4.5.3 零部件质量的影响
零部件的质量对拧紧力矩的也有一定的影 响,如螺纹烂牙、定位尺寸误差、支撑面变形 等。 例:轮胎螺栓与钢圈的定位误差,易造成 “假扭矩”,即力矩达到要求,在地面滚动后, 力矩急剧下降。 连接件表面存在有杂质、磕碰、毛刺、定位误 差、支撑面变形等,使结合面产生非正常连接,螺 纹结合面将产生咬合现象。使得相同的装配扭矩所 产生的轴向预紧力降低、甚至为零。

汽车螺栓拧紧基础知识

汽车螺栓拧紧基础知识
拧紧基础知识培训
案例:1045KR1厢式车后轮螺栓断裂轮胎飞出分析报告
概要
8月4-5日两天,连续接到技术服务部及物流公司反馈信息:
HFC1045KR1厢式车在送车途中出现后轮轮胎螺栓断裂,导致后 轮飞出的重大问题,累积共有 5 台。
序号 底盘号 后桥号
装车 日期
故障 故障 时间 地点
状态
1 56025504 5704330H 05.7.26 05.8.4 长沙 左后轮螺栓全断
22
23
28
32
39
等级性能:
日/韩标准
种类 抗拉强度 Kgf/mm
硬度
4T
≥40
HRB 70~97
7T
≥70
HRC 20~28
对应中国标准
种类
抗拉强度 Kgf/mm
硬度
4.6
HRB 67~95
≥40
4.8
HRB 71~95

9T
≥90
HRC 28~34
9.8
≥90
HRC 28~37
螺栓强度计算:

适用


注:后轮轮胎螺栓扭矩标准要求为:287-346N.m
内螺母 工具的拧紧力矩规格:100-300N.m 工艺标准:287-346N.m 装配时:打不紧。 ■ 打不紧——产生剪切、切断螺栓。
外螺母 工具的拧紧力矩规格300-1370N.m 工艺标准287-346N.m 装配时:打过紧。 ■ 打过紧——拉伤螺栓。
(如硼、锰、铬)
淬火并回火 或合金钢淬火并回火 合金钢淬火并回火
化学成分 %
C
P
S
min max max
max
0.2

螺纹拧紧技术

螺纹拧紧技术

【超过15年刀具应用经验,不仅仅是专业】 /
实际目标扭矩通常是屈服扭矩的50% to 85% 用在拴紧弹性区域 90%的加载扭矩用于克服摩擦力 Also known as: 扭矩,垂直扭矩
预紧力正确度± 25%
【超过15年刀具应用经验,不仅仅是专业】 /
内部分析
平均加载 (80%屈服)
如我们恰巧看到螺纹与支承面连接表面,我们注意此处压痕 非常高,因为螺栓伸长远端出现屈服以及这些区域出现崩溃 而使夹紧力减少。
二、螺栓拧紧的方法
【超过15年刀具应用经验,不仅仅是专业】 /
拧紧,实际上就是要使两被连接体间具备足够的压紧力,反映到被拧紧的螺 栓上就是它的轴向预紧力(即轴向拉应力)。而不论是两被连接体间的压紧 力还是螺栓上的轴向预紧力,在工作现场均很难检测,也就很难予以直接控 制,因而,人们采取了下述几种方法予以间接控制。 1.扭矩控制法(T): 扭矩控制法是最开始同时也是最简单的控制方法,它是当拧紧扭矩达到某一 设定的控制值Tc时,立即停止拧紧的控制方法。它是基于当螺纹连接时,螺 栓轴向预紧力F与拧紧时所施加的拧紧扭矩T成正比的关系。它们之间的关系 可用: T = K F (2) 来表示。其中K为扭矩系数,其值大小主要由接触面之间、螺纹牙之间的摩擦 阻力Fμ来决定。在实际应用中,K值的大小常用下列公式计算: K=0.161p+0.585μd2+0.25μ(De+Di) (3) 其中: p为螺纹的螺距;μ为综合摩擦系数 ;d2为螺纹的中径; De为支承面的有效外径;Di为支承面的内径 螺栓和工件设计完成后,p、d2、De、Di均为确定值,而μ值随加工情况的不 同而不同。所以,在拧紧时主要影响K值波动的因素是综合摩擦系数μ。 有试验证明,一般情况下,K值大约在0.2-0.4之间,然而,有的甚至可能在 0.1-0.5之间。故摩擦阻力的变化对所获得的螺栓轴向预紧力影响较大,相 同的扭矩拧紧两个不同摩擦阻力的连接时,所获得的螺栓轴向预紧力相差很 大(摩擦系数μ对螺栓轴向预紧力的影响参见图4 )。

螺栓拧紧方法及预紧力控制

螺栓拧紧方法及预紧力控制

化 工 设 备 与 管 道第42卷螺栓拧紧方法及预紧力控制初泰安(扬子石油化工公司芳烃厂,南京 210048)[摘要] 石化、炼油企业装置上的静密封结构以螺栓法兰垫片连接系统为主,检修期间螺栓拧紧方法的选择和预紧力的正确控制对保证装置的安全运行至关重要。

本文介绍了实际生产中常用的扭矩法、螺母转角法和液压拉伸法的基本原理,并给出了各种预紧力的控制方法及其所能达到的精度,对安装和维修有一定的指导意义。

[关键词] 螺栓; 预紧力; 拧紧; 法兰连接 螺栓法兰连接在化工装置中广为应用。

为了保证法兰连接系统紧密不漏、安全可靠地长周期运行,垫片表面必须有足够的密封比压,特别在高温工况下垫片会产生老化、蠕变松弛,法兰和螺栓产生热变形,高温连接系统的密封比常温困难得多,此时螺栓预紧力的施加与控制就显得十分重要,过大或过小的预紧力都会对密封产生不利影响。

螺栓预紧力过大,密封垫片会被压死而失去弹性,甚至会将螺栓拧断;过小的螺栓预紧力又使受压后垫片表面的残余压紧应力达不到工作密封比压,从而导致连接系统泄漏。

因此如何控制螺栓预紧力是生产实际中必须重视的问题。

1 螺栓拧紧方法1.1扭矩拧紧法扭矩拧紧法[1、2]是最常用的螺栓拧紧方法,通过扭矩扳手显示的扭矩值来控制被连接件的预紧力,操作简单、直观。

拧紧螺栓时的拧紧力矩:M=K t Q0d×10-3N m式中:Q0———预紧力,N;K t———计算系数;d———螺栓的公称直径,m m。

Q0=MK t d×10-3N(1)系数K t与螺纹表面及法兰的光洁度、润滑状况、拧紧速度、所用拧紧工具、以及反复拧紧时的温度变化等有关,通常在0.1~0.3之间变化。

K t的变化将导致预紧力Q0也发生较大变化,变化范围大约在40%左右。

所以,如采用扭矩法拧紧螺栓,其计算载荷需要1.3倍最大工作载荷,这必然会造成螺栓直径增大,或数量增加,或提高材质。

这对简化结构、降低成本,减轻其重量都是不利的。

螺丝的种类和拧紧方法

螺丝的种类和拧紧方法

螺丝的拧紧方法1
首先螺丝和拧紧物要干净。有异物不能顺利转动、不能紧密固定。 要观察螺丝有无划伤和毛刺、灰尘等、拧紧用工具是否正确使用?安装用母螺丝側也要同样 确认有无划伤、毛刺和灰尘,如果有的话必须去除,做好准备。 然后开始拧紧,但是尽可能以容易加力的体姿进行作业。只能用小钮距时也一样。不正确的 体态作业也容易扭伤螺丝、每次重新拧紧都会减少螺丝的寿命。另外压力也要注意。一般说 「押:拧=7:3」。 拧紧时,开始时尽可能有手拧,确认螺丝能否顺利转动。如果开始就用拧紧工具的话,即使 有问题也能拧紧。 当然拧紧母螺丝側的有効拧紧尺寸也要注意,螺丝比有効尺寸长的话螺丝就不能活动。



临时固定的基本是、上下都有拧紧螺丝部时,最上→最下→然后其他顺序。关于加固拧 紧按上記方法。 所有螺丝临时固定后,按顺序加固拧紧。另外,加固拧紧按顺序一点一点反复,拧紧到 必要的扭距! 临时拧紧要确认全部的螺丝都放进去,从上面放入螺丝的目的是确保安全。
全部螺丝安装后再加固拧紧
拧紧全部的螺丝前,要确认挿入母螺 丝和公螺丝的组合。 这时必须确认固定物的位置。这是职 业工作的做法。
一般的人都认为拧到不动为止,但不知道与螺丝颈部的结合是什么样状况?
※面接触比点 接触好,会减少 松动。
受到螺丝的转动、蓝色部分和红色像拉网一样互相拉伸螺丝。这样的结构使蓝色部分和红色 部分都顺利紧密合在一起拧紧。
拧紧到什么程度为好? 手机上螺丝是活的(螺丝有时会自然松动・・・・)。 在拧紧的过程中、螺丝向前延伸。用眼看不到、但确实在延伸。这时螺丝正是吃劲的时候。正是 该力量给予了固定力。 如果过于拧紧、就会松弛。固定力会急剧下降。 这时如果再拧的活,就会发生断裂。好容易快要完成的事又失败了,很可惜。 题目是「拧紧到什么程度为好? 」,但是根据螺丝的尺寸和材質、用途等、具体到数値多少合适难 以下定论。后面另外说明一般的拧紧钮距。

轿车底盘螺栓连接拧紧控制的一般方法share

轿车底盘螺栓连接拧紧控制的一般方法share

YES 返工流程 报警
在电动工具系统内 设置控制上下限 作为报警依据 NO
4.3拧紧质量的控制方法--对汇众实施关键扭矩控制方法意见
z z z z z z z
z
有条件的尽量使用过程控制方法。 含有防松胶的和软连接的螺栓不推荐静态扭矩复测法。 过程控制方法的实施,要求电动工具必须有反力夹具或反作用力 臂。 无论哪种方法的实施,必须记录开发过程原始数据(含静态扭矩, 作为扭矩控制备案),开发报告须经客户 ME和SQE批准。 过程控制方法的实施,也必须实施统计过程控制,推荐Xbar-R 图,采样的频率可制定测量计划,报客户 ME和SQE批准。 过程控制方法的实施,也必须定期使用指针扳手巡检,以避免人为 的或系统的错误,巡检计划须报客户 ME和SQE批准。 由供应商编制返工流程,报客户 ME和SQE批准。原则上,在线返 工需更换紧固件,更换紧固件仍然不合格的,下线返修并查找原 因。 统计过程分析中发现Cpk接近1.0时必须分析原因,当Cpk <1.0, 须向客户 ME和SQE报警。重新开发监控范围的,须得到客户 ME 和SQE的批准。
但静态扭矩控制的意义何在?
z
z
2,拧紧过程中的常见问题--紧固件的标识
生产商 第一个数 = 1/100 的最小抗拉 强度 (N/mm2) 100×8 = 800 N/mm2 第二个数 =屈服强度与最小抗拉 强度之间的关系 0.8 = 80% 两数相乘得出屈服应力 800* 0.8 = 640 N/mm2
3,拧紧工具和使用--种类
z
手动工具
可控制最终扭矩,配合转角 器,可实现转角扭矩。最近出现 能直接实现转角控制的手动工 具。
z
气动工具
可控制最终扭矩,拧紧效率 高。
z

拧紧技术简介

拧紧技术简介

装配工艺的确定
采用直接控制预紧力的方式控制联接质量是最有效的,但目前还不太可能 在流水线上通过直接控制预紧力来装配螺栓联接,只能通过控制和预紧力相 关的其它参数(如扭矩, 螺栓头或螺母转角,螺栓伸长量)来间接控制预紧力。目 前主要有以下几种装配工艺方法: 扭矩控制法 扭矩-转角控制法 扭矩-斜率控制法(屈服点控制法) 其它的控制方法
扭矩事后易复检 预紧力离散度大 受摩擦系数偏差影响大 螺栓材料利用率低
富奥紧固件分公司
FAWER
典型装配工艺介绍-扭矩法
VW 01126-1规定了弹性区装配标准扭矩值及预紧力最大值和最小值 。内六角螺钉类产品(小支承面)和法兰面螺栓类产品(大支承面)所给 数值有所差别,理论上该值不会造成螺栓屈服,但当装配条件处于以下恶 劣条件时可能达到螺栓的屈服极限。 1. 扭紧力矩超过了标准值 15 %; 2. 螺栓强度为相应强度等级的下限值Rmmin; 3. 摩擦系数 fG=fK=0.1 4. 舍入表的数值偏离实际计算出的数值+ 10 %。

富奥紧固件分公司
FAWER
拧紧工艺的重要性
紧固的三个阶段
设计
+
制造
+
装配
=
整车的正 常运行
-设计是前提 -制造是关键 -装配是最终的保障
富奥紧固件分公司
FAWER
预紧力离散度影响因素
联接副的 摩擦系数
使用的拧 紧工具及它 们的精度
预紧 力离 散
装配 工艺
富奥紧固件分公司
FAWER
拧紧精度分级
FAWER
螺纹紧固件预紧原理
摩擦性能试验机 国外研制此类设备主要公司: 德国Schatz, 德国Reck-Engineering, 美国RS-Technology, 法国Automatic;

基本拧紧技术

基本拧紧技术

标准拧紧曲线
夹紧力
预拧紧
弹性变形 塑性变形 屈服点
贴合点
角度
预拧紧阶段,螺栓头部以及螺纹部分的摩擦力很小,扭矩也非常小,螺栓未被拉 伸
从贴合点开始,随着拧紧角度增加,螺栓被拉伸,相应的夹紧力也同样增加。这 一阶段螺栓的拉伸变形是可逆的,即弹性变形
从屈服点开始,螺栓的拉伸变形超过了螺栓的强度,角度增加,夹紧力不再增加, 螺栓发生不可逆变形,即塑性变形
CP 和 CPK 计算
In capability calculations-we compare the natural variation to the tolerance demands in the application. Capability calculations
Sigma=0.165 (For Cp, 6Xsigma should smaller than 16.2-13.8=2.4X75%=1.8Nm.)
Accuracy calculations: % 3 sigma=3 X sigma/mean value X 100 = +/- % % 6 sigma=6 X sigma/mean value X 100 = %/2=+/- %
(100 =100% of the tolerance interval)
value. Accuracy comes from the specified times of tightening of the specific tool. 2 In capability calculations-we compare the natural variation to the tolerance demands in the application. Cp and Cpk is the process capability indexes of a tool. When calculating Cpk also the target value is considered. When calculating Cpk also the target value is considered.

高强度螺栓基础知识及紧固方法

高强度螺栓基础知识及紧固方法

高强度螺栓基础知识及紧固方法高强度螺栓,英文直译为:高强度摩擦预紧螺栓,英文简称:HSFG。

可见,我们中文施工中所说的高强度螺栓是高强度摩擦预紧螺栓的简称。

在日常沟通中,仅仅是简略了“摩擦”“预紧”两个词,却造成了许多工程技术人员对高强度螺栓基本定义的理解,产生了误区。

误区一:材料等级超过8.8级的螺栓,就是“高强度螺栓”?高强度螺栓和普通螺栓的核心区别并不在于使用材料的强度,而是受力的形式。

本质是是否施加预紧力,并利用静摩擦力抗剪。

实际上在英标规范,美标规范中提到的高强度螺栓(HSFG BOLT)只有8.8级和10.9级两种(BS EN 14399 / ASTM-A325&ASTM-490),而普通螺栓却有包含有4.6,5.6,8.8,10.9,12.9等(BS 3692 11款表2);由此可见,材料强度高低并不是区别高强度螺栓与普通螺栓的关键。

误区二:高强度螺栓的承载能力高于普通螺栓,是为“高强”?由单个螺栓的计算可知,高强度螺栓抗拉和抗剪的设计强度均低于普通螺栓。

其高强实质是:正常工作时,节点不允许发生任何相对滑移,即:弹塑性变形小,节点刚度大。

可见:在给定设计节点荷载的情况下,用高强度螺栓设计的节点并不一定能节省螺栓使用数量,但是其变形小,刚度大,安全储备高。

适合用主梁,等要求节点刚度较大的位置,符合“强节点,弱杆件”的基本抗震设计原理。

高强度螺栓之强,并非在于其本身的承载能力设计值,而是表现于其设计节点的刚度大,安全性能高,抗破坏的能力强。

高强度螺栓规格国内常用的高强度螺栓分为 ASTM 及 JIS 规格。

通常用的ASTM 高强度螺栓有 A325 及 A490 两种,具体使用情况如表一所示。

表一ASTM 高强度螺栓通用情况A325 螺栓主要成分为 TYPE1 及 TYPE3 两种,TYPE1 为一般结构用,如需要时可以热浸镀锌,耐候钢材应配合使用TYPE3螺栓,采用 TYPE3 螺栓时设计图上应特别标明,A325 螺栓的机械性如表二所示。

扭剪型高强螺栓的拧紧方法

扭剪型高强螺栓的拧紧方法

1. 确定拧紧扭矩
扭剪型高强螺栓的拧紧扭矩需要根据螺栓的规格和材料、连接的构件材料、使用环境等因素进行计算。

拧紧扭矩值需要满足设计要求和使用要求,过高或过低都会影响连接的性能。

2. 使用扭剪扳手拧紧
扭剪型高强螺栓必须使用扭剪扳手进行拧紧,扭剪扳手具有设置扭矩值的功能,可以保证螺栓的拧紧力度准确、可控。

拧紧时应垂直于螺栓轴线,并按照检验规定的扭矩进行拧紧,拧紧到预定扭矩时,扳手发出“卡嗒”声表示拧紧完毕。

3. 停止拧紧
当扭剪扳手发出“卡嗒”声时,需要继续用力,将扭剪扳手再次拧动1/4圈左右,让螺栓形变,产生剪断断裂。

然后再松开扳手,完成拧紧过程。

需要注意的是,不要反复拧紧,否则会影响螺栓的拧紧力度和性能。

螺栓拧紧方法及预紧力控制

螺栓拧紧方法及预紧力控制

化 工 设 备 与 管 道第42卷螺栓拧紧方法及预紧力控制初泰安(扬子石油化工公司芳烃厂,南京 210048)[摘要] 石化、炼油企业装置上的静密封结构以螺栓法兰垫片连接系统为主,检修期间螺栓拧紧方法的选择和预紧力的正确控制对保证装置的安全运行至关重要。

本文介绍了实际生产中常用的扭矩法、螺母转角法和液压拉伸法的基本原理,并给出了各种预紧力的控制方法及其所能达到的精度,对安装和维修有一定的指导意义。

[关键词] 螺栓; 预紧力; 拧紧; 法兰连接 螺栓法兰连接在化工装置中广为应用。

为了保证法兰连接系统紧密不漏、安全可靠地长周期运行,垫片表面必须有足够的密封比压,特别在高温工况下垫片会产生老化、蠕变松弛,法兰和螺栓产生热变形,高温连接系统的密封比常温困难得多,此时螺栓预紧力的施加与控制就显得十分重要,过大或过小的预紧力都会对密封产生不利影响。

螺栓预紧力过大,密封垫片会被压死而失去弹性,甚至会将螺栓拧断;过小的螺栓预紧力又使受压后垫片表面的残余压紧应力达不到工作密封比压,从而导致连接系统泄漏。

因此如何控制螺栓预紧力是生产实际中必须重视的问题。

1 螺栓拧紧方法1.1扭矩拧紧法扭矩拧紧法[1、2]是最常用的螺栓拧紧方法,通过扭矩扳手显示的扭矩值来控制被连接件的预紧力,操作简单、直观。

拧紧螺栓时的拧紧力矩:M=K t Q0d×10-3N m式中:Q0———预紧力,N;K t———计算系数;d———螺栓的公称直径,m m。

Q0=MK t d×10-3N(1)系数K t与螺纹表面及法兰的光洁度、润滑状况、拧紧速度、所用拧紧工具、以及反复拧紧时的温度变化等有关,通常在0.1~0.3之间变化。

K t的变化将导致预紧力Q0也发生较大变化,变化范围大约在40%左右。

所以,如采用扭矩法拧紧螺栓,其计算载荷需要1.3倍最大工作载荷,这必然会造成螺栓直径增大,或数量增加,或提高材质。

这对简化结构、降低成本,减轻其重量都是不利的。

螺栓知识培训

螺栓知识培训
• 2、管螺纹,用英寸表示,牙形角为55度
a.非密封管螺纹:G1/4A b.密封管螺纹: R1/4A 也有粗细牙之分,如UNC1/4-20X1“ 和UNF1/4-28X1"
路漫漫其修远兮, 吾将上下而求索
4、螺栓的机械性能
1.性能等级:3.6 4.6 4.8 5.6 5.8 6.8 8.8 9.8 10.9 12.9 共10级.螺 栓性能等级标号有两部分数字组成,分别表示螺栓材料的公称 抗拉强度值和屈强比值。
例如,以8.8级螺栓为例:第一个8表示拉伸应力,每个单位代表 100N/mm2,所以拉伸应力为8×100=800N/mm2;第二个8表示 塑性变形点与拉伸应力的关系,即塑性变形为拉伸变形的80% ,800×0.8=640N/mm2
2.性能等级对应的材料及热处理: 3.6 4.6 4.8 5.6 5.8 6.8级使用低碳钢或中碳钢,不需进行热处理. 其中8.8级及以上螺栓材质为低碳合金钢或中碳钢并经热处理( 淬火、 回火),通称为高强度螺栓,其余通称为普通螺栓 10.9级使用低、中碳合金钢(含硼、锰或铬) 12.9级使用合金钢,淬火并回火.
、振动、变载荷的作用下,螺纹间的摩擦力会在某瞬间消 失,以致螺纹失去自锁能力,联接可能产生自动松脱的现 象。
• 防松的主要类型:
1、摩擦力防松:弹簧垫圈、双螺母等。 2、机械式防松:开口销、制动垫圈、紧定螺钉、头部带孔
穿铁丝。 3、冲点铆接法:螺纹末端冲点,铆接。 4、粘接法:涂胶(螺纹锁固剂)。 5、有效力矩法:在螺纹有效力矩部分增大摩擦力和预紧。
路漫漫其修远兮, 吾将上下而求索
•外螺纹形成
路漫漫其修远兮, 吾将上下而求索
•外螺纹形成
路漫漫其修远兮, 吾将上下而求索
•内螺纹形成

拧紧的基本知识

拧紧的基本知识
具由空气压力或离合器控制.
气动工具 - 打滑式, 断气式, 或 离合器工具 电动工具 – 不用于电动工具
扭矩监测
扭矩
装配基础知识
上限 下限
门槛扭矩
时间
装配基础知识
扭矩监测/角度监测
扭矩
角度计量门槛值 扭矩门槛值
转角 0º
转角上限
转角下限Angle Low Limit
扭矩上限 扭矩下限
装配基础知识
装配基础知识
扭矩 作用在物体上的切向力 力和力臂的乘积
装配基础知识
扭矩 = 作用力 X 力臂 螺栓
作用力
力臂
单位: Newton-Meters, Ft. - lbs, Inch-lbs, Kg-meters, Kg-cm
装配基础知识
转角 从一个制定的扭矩值开始紧固件旋转的角度值 典型应用-安装油滤
装配基础知识
扭矩
扭矩上限 扭矩下限
角度计量门槛值
转角上限 转角下限
转角

装配基础知识
影响扭矩和转角的因素
摩擦力 连接类型
摩擦损失
装配基础知识
螺纹副 - 40% 螺栓头和螺帽与接触面之间摩擦力 - 50%
螺栓拉伸 - 10%
装配基础知识
润滑螺纹的影响 减少了螺纹副的摩擦力 减少了其他接触面的摩擦力 结论: 使用扭矩作为夹紧力的标识方法,螺栓拉伸会
的扭矩值,控制箱发出信号,工具停止转动.角度解码器传 输角度信息给控制箱. 控制箱把角度信息和设的角度上下 限比较,显示拧紧的状态.
* 这种拧紧策略目前被广泛采用 * 这种拧紧策略适用于气动和电动工具
转角上限 转角下限
装配基础知识
扭矩控制/角度监测
扭矩上限

六角螺栓紧固

六角螺栓紧固

六角螺栓紧固
螺栓是一种广泛应用于机械工程和结构连接领域的紧固件,而六角螺栓则是其中常见的一种类型。

本文将重点探讨六角螺栓紧固的相关知识和技巧。

六角螺栓的特点
六角螺栓的头部呈六角形,通常配合六角螺母使用。

这种设计可以使得螺栓在紧固时具有较好的力矩传递性能,防止螺栓在紧固时滑丝或损坏螺纹。

紧固原则
1.选择合适的螺栓规格:根据实际工程要求和承受力来选择合适规格
的六角螺栓,不要过度紧固也不要松动。

2.准备工作:确保螺栓孔和螺栓表面清洁,无生锈、油污等影响紧固
效果的污物。

3.采用交叉紧固:在紧固螺栓时,应采用交叉顺序进行,先对角两侧
轮流进行适量旋紧,再按次序进行,确保力均匀分布。

4.使用扭矩扳手:尤其是在专业的工程中,应使用扭矩扳手来控制扭
矩,确保每个螺栓都被正确紧固。

紧固注意事项
•不要过度用力:过度扭紧螺栓会导致材料变形,甚至断裂。

•注意选择紧固材料:根据实际工程需要选择合适的螺母和垫圈,以保证紧固效果。

•定期检查:螺栓松动可能会导致整体结构的不稳定,定期检查螺栓紧固状态是十分重要的。

结语
六角螺栓紧固作为结构连接中重要的环节,对于工程安全和稳定性具有重要意义。

正确选择螺栓规格,合理紧固螺栓,并定期检查维护,都是保证结构安全的关键措施。

希望本文对您有所帮助。

拧紧技术及拧紧机

拧紧技术及拧紧机

螺栓拧紧技术及拧紧机螺栓拧紧在机械制造业中的应用非常广泛,机械制造中零部件的连接与装配,机械整体的装配等等,可以说几乎是都离不开螺栓拧紧。

第一节螺栓拧紧的基本概念及拧紧的方法任何机体均是由多种零件连接(即组装)起来的,而零件的连接有多种,采用螺栓连接就是其中最常用的一种,而欲采用螺栓连接就必须应用拧紧,因而这“拧紧”也就成了装配工作中应用得极为广泛的概念。

零件采用螺栓连接的目的就是要使两被连接体紧密贴合,并为承受一定的动载荷,还需要两被连接体间具备足够的压紧力,以确保被连接零件的可靠连接和正常工作。

这样就要求作为连接用的螺栓,在拧紧后要具有足够的轴向预紧力(即轴向拉应力)。

然而这些力的施加,也都是依靠“拧紧”来实现的。

因而,我们很有必要了解一些有关拧紧的基本概念。

一.螺栓拧紧的基本概念1.拧紧过程中各量的变化在螺栓拧紧时,总体的受力情况是,螺栓受拉,连接件受压;但在拧紧的整个过程中,受力的大小是不同的(见图1),大体上分为下述几个阶段:⑴在开始拧紧时,由于螺栓未靠座,故压紧力F为零;但由于存在摩擦力,故扭矩T保持在一个较小的数值。

⑵当靠座后(Z点),真正的拧紧才开始,压紧力F和拧矩T随转角A 的增加而迅速上升。

图 1⑶达到屈服点,螺栓开始朔性变形,转角增加较大而压紧力和扭矩却增加较小,甚至不变。

⑷再继续拧紧,力矩T 和压紧力F 下降,直至螺栓产生断裂。

2.力矩率力矩率R 所表示的是力矩增量△T 对转角△A 的比值(见图2),即:R =△T /△A (1)硬性连接的R 值高,软性连接的R 值低。

R 值与螺栓的长度、连接中各件之间的摩擦以及连接件垫圈的弹性有关。

摩擦系数的变化,是影响力矩率的主要因素。

此外,再加上垫圈、密封垫片等引起的弹性变化,装配线上同样螺纹连接之间的力矩率变化可能超过百分之百,这样,力矩/转角的曲线就可能落在图3斜线中的任何位置。

3.摩擦与力矩对压紧力的影响 从图4中可见,同一力矩T 值, 而由于摩擦系数μ值的不同,压紧力 F 可能相差很大。

FDS螺栓自动拧紧技术

FDS螺栓自动拧紧技术
fds螺栓自动拧紧技术作为一种先进的 螺栓拧紧技术,具有高精度、高效率 、高可靠性的特点,广泛应用于汽车 、航空、航天等制造业领域。
fds螺栓自动拧紧技术的简介
fds螺栓自动拧紧技术是一种基于预定 的螺栓拧紧程序,通过精确控制拧紧 工具的动力和速度,实现螺栓的自动 拧紧。
fds螺栓自动拧紧技术能够显著提高生 产效率、降低劳动成本、减少人为误 差,为制造业的自动化和智能化发展 提供了有力支持。
拧紧过程的监控与调整
总结词
对拧紧过程进行实时监控和调整是确保 自动拧紧技术实施效果的重要环节。
VS
详细描述
在拧紧过程中,应使用传感器等监控设备 对螺栓的拧紧情况进行实时监测,以确保 达到预定的扭矩值。如果发现扭矩值不符 合要求,应及时进行调整,以避免对螺栓 造成过大的应力或损伤。同时,还需要对 拧紧过程进行记录和分析,以评估自动拧 紧技术的实施效果和改进方向。
fds螺栓自动拧紧技术的特点
高精度
fds螺栓自动拧紧技术能够实现高 精度的螺栓拧紧,有效保证连接
件的紧密性和稳定性。
高效性
该技术能够大幅提高螺栓拧紧的效 率,减少人工操作的时间和劳动强 度。
可追溯性
fds螺栓自动拧紧技术能够记录每个 螺栓拧紧的过程数据,实现可追溯 性管理,方便质量追溯和问题排查。
汽车制造业
在汽车发动机、底盘和电 气系统中广泛应用,提高 装配质量和生产效率。
航空航天业
用于飞机和航天器的关键 部位紧固,确保安全可靠 性和性能稳定性。
风电行业
用于大型风力发电机组的 关键螺栓连接,提高风能 利用率和可靠性。
对未来制造业的影响与贡献
提高生产效率
通过自动拧紧技术,大幅提高 装配速度和生产效率,缩短产
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本拧紧技术
1
2018-06-11
为什么使用螺栓连接
• 装配简单
• 拆卸方便
• 效率高 • 成本低
2018-06-11
装配工作按精度等级分为三类源自安全等级质量等级客户定义等级
4
2018-06-11
螺栓连接的受力
剪切
5
2018-06-11
拉伸
为了拧紧螺栓, 必须施加力以便拧紧螺母/螺丝
6
2018-06-11
14
2018-06-11
The 50-40-10 规则
螺栓头下摩擦力 50%
夹紧力 10%
90% 的扭矩用于克 服摩擦力 螺纹副中 40%
扭矩
100%
15
2018-06-11
夹紧力与摩擦力的关系
通常的情况
螺栓头下摩擦力 50%
在螺栓头下加润滑油 螺栓头下摩擦力 45% 螺纹副中有杂质 螺栓头下摩擦力 50%
A. 硬连接:到达贴合点后,旋转30
以内达到目标扭矩
B. 软连接:到达贴合点后,旋转2
圈以上达到目标扭矩
扭矩的过扭程度受连接件硬度以及 工具转速影响。
目标扭矩
旋转角度
23
2018-06-11
软、硬连接
扭矩
过扭
目标 硬连接 软连接
均值偏差
贴合点
角度
2018-06-11
如何在一个连接件上测量扭矩
动态扭矩:在拧紧螺栓的同时用在线式扭矩传感器测量 静态扭矩:安装后用扭矩扳手测量
.
公制螺纹
19
2018-06-11
弹性松弛会影响夹紧力
Time
材料弹性松弛会使夹紧力衰减!
2018-06-11
21
2018-06-11
衰减
牛米
工具断开 衰减
时间
• 60-70%的衰减发生在30毫秒以内
22
2018-06-11
软连接、硬连接
Joint characteristics can also define the tool type required (ISO 5393)
测量拧紧效果
T 我们能够测量的是扭矩T
F
F F
我们想要得到的是夹紧力F
F
7
2018-06-11
扭矩-夹紧力
• 旋转螺母或螺丝使螺杆受力伸长 • 螺杆伸长产生的夹紧力把连接件夹紧
• 我们需要的是连接件中的夹紧力
8
2018-06-11
螺拴与连接件的关系
9
2018-06-11
Joint Diagrams
25
2018-06-11
静态扭矩
T (Nm)
动力工具 输出扭矩
92 94 91 92 94 92 92 扭力扳手 静态扭矩 103 106 103 100 100 103 100 X=102,14 =2,27
(A)工具输出 120 (动态扭矩) 110 100 80 60
(B) 扭力扳手 (静态扭矩)
螺纹副中摩擦力 40%
10%
螺纹副中摩擦力 40%
夹紧力 15%
螺纹副中摩擦力 45%
5%
16
2018-06-11
一定要确保施加的扭矩达到最小需要扭矩
• 夹紧力一定要高于外部载荷 • 安全余量载荷的影响因素: – 振动 – 摩擦力的变化 – 连接件尺寸变化 – 拧紧精度
17
2018-06-11
施加的扭矩不要超过使用极限
均值 标准偏差 (Sigma) 3 Sigma
27
2018-06-11
软连接
装配 (动态) 100.2 100.5 100.7 100.3 100.4 100.8 100.5 100.2 100.2 100.4 100.42 0.21 0.63
手测 (静态) 88 84 92 86 90 88 86 85 84 84 86.7 2.8 8.3
σδ1
δ1
δ2
变形
12
2018-06-11
Joint Diagrams
施加的扭矩并不象夹紧力那么简单
力 (F), 力臂 (L) = 扭矩(M) 螺栓旋转的越多,得到的扭矩越大
但是,
• 90% 的扭矩被摩擦力消耗 • 只有10%的扭矩转化为夹紧力
夹紧力, 10% 螺纹副中的摩 擦了, 40% 螺栓头下表面的 摩擦力, 50%
扭矩
扭矩 = OK 角度 = 过低
扭矩 = OK 角度 = 过高
角度
32
2018-06-11
结论:
螺栓装配质量对产品的最终质量有着直接影响
Clamp force
为了得到质量合格的拧紧连接– • 拧紧扭矩必须精确 • 连接件质量必须得到监控
Friction in threads Friction under nut or head
螺拴和连接的变形
压力
力 拉力
连接件压 缩
螺栓拉伸
压缩量
伸长量
10
2018-06-11
Joint Diagrams
螺栓连接的变形关系

预 紧 力
螺栓伸长δ1
连接件 压缩δ2
变形
11
2018-06-11
Joint Diagrams
轴向工作载荷的影响
力 螺栓受力 增加部分
夹紧力 减少部分
工 作 载 荷
原因:静态摩擦力
40
20 时间
X=92,43
=1,13
26
2018-06-11
硬连接
装配 (动态) 102.6 102.6 101.4 101.2 102.4 100.9 102.1 102.4 101.0 101.8 101.84 0.67 2.01
手测 (静态) 112 110 111 110 113 109 110 111 113 112 111.1 1.4 4.1
均值 标准偏差 (Sigma) 3 Sigma
28
2018-06-11
扭矩和角度 OK
扭矩 = OK 角度 = OK
扭矩
角度
30
2018-06-11
扭矩 OK, 角度过低
扭矩
扭矩 = OK 角度 = 过低
扭矩 = OK 角度 = OK
角度
31
2018-06-11
扭矩 OK, 角度过高
扭矩 = OK 角度 = OK
• 施加的扭矩过大会使螺 栓过度伸长 • 安全余量取决于:
– 拧紧精度 – 材料等级
Torque
Angle of rotation
18
2018-06-11
螺栓标识系统
生产商 第一个数 = 1/100 的最小抗拉 强度 (N/mm2) 100×8 = 800 N/mm2 第二个数 =屈服强度与最小抗拉 强度之间的关系 0.8 = 80% 两数相乘得出屈服应力 800* 0.8 = 640 N/mm2
33
2018-06-11
相关文档
最新文档