羟基磷灰石在生物医用材料中的研究进展
羟基磷灰石研究进展
羟基磷灰石研究进展摘要:由于羟基磷灰石( HA) 不但与人体骨骼晶体成分和结构基本一致,而且其生物相容性、界面生物活性均优于医用钛、硅橡胶及植骨用碳材料等植入医用材料,另外有极好骨传导性和与骨结合的能力, 无毒副作用, 无致癌作用,所以被广泛用作硬组织修复材料和骨填充材料的生理支架以及疾病、意外事故中的骨修复材料。
同时,羟基磷灰石具有良好的生物活性,具有特殊的晶体化学特点,是较好的生物材料,被广泛应用于骨组织的修复与替代技术.目前,羟基磷灰石涂层的制备方法有等离子喷涂法、激光熔覆法、电结晶液相沉积法、溶胶-凝胶法等。
对于制备要求较高、具有表面活性的吸附材料羟基磷灰石而言,溶胶- 凝胶法是较为合适的方法,本文羟基磷灰石涂层进行了研究。
主要从羟基磷灰石的合成制备,复合材料涂层种类及HA涂层影响因素,应用等方面对羟基磷灰石进行介绍,并对其进行研究展望。
关键词:羟基磷灰石制备复合材料涂层研究进展前言羟基磷灰石是一种磷酸钙生物陶瓷, 与人体自然骨和牙齿等硬组织中的无机质在化学成分和晶体结构上具有相似性,是一类重要的骨修复材料,分子式为Ca10 ( PO4) 6 ( OH ) 2 , 简写为HA 或HAP,Ca/ P 物质的量比理论值为1. 67, 属磷酸钙陶瓷中的一种生物活性材料。
从分子结构( 如图1) 可以看出, 它易与周围液体发生离子交换。
HA 属六方晶系, 空间群为P63/m。
其结构为六角柱体, 与c轴垂直的面是一个六边形, a、b 轴的夹角为120 °, 晶胞常数a= b= 9. 324 A , c= 6. 881A 。
单位晶胞含有10 个[ Ca]2+、6个[ PO4]3-和2个[ OH]-, 这样的结构和组成使得H A 具有较好的稳定性。
磷灰石是自然界广泛分布的磷酸钙盐矿物,根据其结构通道中存在的阴离子的种类,可分为氟-、氯-、羟磷灰石等不同亚种矿物。
其中,羟基磷灰石(hydroxyapatite,缩写为HA或HAp)的研究和应用最广泛。
羟基磷灰石发展综述
羟基磷灰石发展综述
羟基磷灰石(Hydroxyapatite,简称HA)是一种重要的生物陶瓷材料,具有生物相容性、生物活性和化学稳定性等优良特性。
随着生
物医学工程学的发展,羟基磷灰石在医学领域得到了广泛的研究和应用。
羟基磷灰石最早被应用于骨植入材料方面。
骨修复领域的研究发现,羟基磷灰石可以促进骨细胞的黏附、增殖和分化,同时还可以与
骨组织结合,促进骨再生。
因此,羟基磷灰石被广泛应用于骨折修复、骨缺损修复和关节置换等领域。
近年来,随着生物可降解羟基磷灰石
的研究进展,更为广阔的应用前景得以展现。
除了骨植入材料,羟基磷灰石还被应用于牙科材料领域。
羟基磷
灰石可以作为填充剂用于牙齿修复,具有优良的生物相容性和力学性能。
此外,羟基磷灰石还可以用于牙周组织再生,有助于治疗牙周病
和牙周组织缺损。
这些应用展示了羟基磷灰石在牙科领域的潜力。
羟基磷灰石的应用还扩展到了药物传递领域。
由于其具有大量的
微孔和化学吸附性能,羟基磷灰石可以作为药物的载体,实现药物的
缓释和靶向传递。
这对于治疗骨关节炎、骨质疏松症和骨肿瘤等疾病
具有重要意义。
总之,羟基磷灰石作为一种重要的生物陶瓷材料,不仅在骨植入
材料和牙科材料领域发挥着重要作用,还在药物传递领域展示了巨大
的潜力。
随着研究的深入和技术的进步,相信羟基磷灰石在医学领域
的应用将会越来越广泛。
羟基磷灰石生物复合材料的研究进展
万方数据・70・材料导报:综述篇2010年8月(上)第24卷第8期未分化间充质细胞和骨母细胞分化为成骨细胞和软骨细胞,从而诱导骨和软骨的形成K]。
但由于BMP在体内扩散快,易被蛋白酶分解,无支架和填充作用,目前多使用载体与其结合,形成BMP缓释系统。
目前,具有骨传导作用的多孔型羟基磷灰石材料与具有诱导异位成骨作用的BMP复合制成的HA—BMP已进行动物实验。
Magin等¨。
研究rhBMP7(成骨蛋白1)复合羟基磷灰石后发现,羟基磷灰石复合rhBMP7可诱导更多的骨形成。
KubokiL73证实多孔状羟基磷灰石中0.35mm孔径可直接诱导骨形成。
但羟基磷灰石不易完全降解,影响进一步吸收。
Tao等№o对一种新型HA—BMP复合人工听小骨的临床应用效果进行评价,结果显示,新型HmBMP复合人工听小骨具有良好的生物相容性和优异的传音性能,术后成功率为92.3%,随访均未见听骨脱出。
充分表明HA—BMP复合材料明显优于自体组织,临床应用效果稳定,具有广阔的应用前景。
图1羟基磷灰石的晶体结构及(0001)面的投影[21Fig.1Crystalstructureofapatiteandprojectionontothe(0001)plane[2]蚕丝蛋白(丝素)及其纤维由于具有优异的力学特性、生物相容性、生物可降解性以及本质是蛋白质的结构特点,在生物医学领域表现出极大的应用潜力,是近年来医学组织工程感兴趣的一类特殊的生物材料。
卢神州等[9]以羟基磷灰石/丝素蛋白复合凝胶为基体,以蚕丝短纤维和NaCI颗粒作为增强材料和致孔剂,制备羟基磷灰石/丝素蛋白多孔复合材料,结果表明,材料中含有少量蚕丝短纤维对材料抗弯强度和断裂能力的提高有显著效果。
2.1.2多元体系的复合骨修复是一个极其复杂有序的过程。
近年的研究表明,生长因子在骨愈合过程中起重要作用。
骨形态发生蛋白(BMP)是骨生长的启动因子,对骨愈合有明显促进作用。
羟基磷灰石生物材料的研究现状_制备及发展前景_于方丽
羟基磷灰石生物材料的研究现状、制备及发展前景于方丽1 周永强2 张卫珂3 马景云1(1陕西科技大学材料科学与工程学院 咸阳 712081) (2温州大学制笔重点实验室 325035) (3山东大学材料液态结构及其遗传性教育部重点实验室 济南 250061)摘 要 羟基磷灰石具有良好的生物相容性和生物活性,是较好的生物陶瓷材料。
笔者论述了羟基磷灰石生物陶瓷材料的研究现状,同时对羟基磷灰石及其复合生物陶瓷材料的各种制备方法进行了概述,重点研究综合性能优越的羟基磷灰石生物陶瓷材料的制备及发展前景。
关键词 羟基磷灰石 生物陶瓷材料 研究现状 制备 发展前景The Present and Prospect of Research on Hydroxyapatite Bioceramic MaterialsYu Fangli1,Zhou Yongqiang2,Zhang Weike3,Ma Jingyun1(1Shaanxi University of Science and Technology,Xianyang,712081)(2Wen zhou University Main Laborotary,325035)(3Collegeofmaterial Science&Engineering,Shandong University,Jinan,250061)Abstract:Hydroxyapatite has excellent biocompatibility and tissue bioactivity and is hydroxyapatite bioceramic materials.This paper su m marizes the study situati on and the various preparation methods of hydroxyapati te bioceramic materials.The keys are enhancement and preparation and develop ment prospect of the synthesization of the composite bioceramic materials.Key words:Hydroxyapatite;Bioceramic materials;Research situation;Preparation;Develop ment prospect前言20世纪,生物材料学领域取得了飞速发展,无机生物医用材料的研究及其应用十分活跃,其中备受关注的是羟基磷灰石(hydroxyapatite,简称HA或HAP)活性陶瓷材料的研究和临床应用。
羟基磷灰石研究进展
2010-2011 第2学期《生物医用材料》期中考试姓名:学号:学院:专业:班级:任课老师:羟基磷灰石研究进展摘要:由于羟基磷灰石( HA) 不但与人体骨骼晶体成分和结构基本一致,而且其生物相容性、界面生物活性均优于医用钛、硅橡胶及植骨用碳材料等植入医用材料,另外有极好骨传导性和与骨结合的能力, 无毒副作用, 无致癌作用,所以被广泛用作硬组织修复材料和骨填充材料的生理支架以及疾病、意外事故中的骨修复材料。
同时,羟基磷灰石具有良好的生物活性,具有特殊的晶体化学特点,是较好的生物材料,被广泛应用于骨组织的修复与替代技术.目前,羟基磷灰石涂层的制备方法有等离子喷涂法、激光熔覆法、电结晶液相沉积法、溶胶-凝胶法等。
对于制备要求较高、具有表面活性的吸附材料羟基磷灰石而言,溶胶- 凝胶法是较为合适的方法,本文羟基磷灰石涂层进行了研究。
主要从羟基磷灰石的合成制备,复合材料涂层种类及HA涂层影响因素,应用等方面对羟基磷灰石进行介绍,并对其进行研究展望。
关键词:羟基磷灰石制备复合材料涂层研究进展前言羟基磷灰石是一种磷酸钙生物陶瓷, 与人体自然骨和牙齿等硬组织中的无机质在化学成分和晶体结构上具有相似性,是一类重要的骨修复材料,分子式为Ca10 ( PO4) 6 ( OH ) 2 , 简写为HA 或HAP,Ca/ P 物质的量比理论值为1. 67, 属磷酸钙陶瓷中的一种生物活性材料。
从分子结构( 如图1) 可以看出, 它易与周围液体发生离子交换。
HA 属六方晶系, 空间群为P63/m。
其结构为六角柱体, 与c轴垂直的面是一个六边形, a、b 轴的夹角为120 °, 晶胞常数a= b= 9. 324 A , c= 6. 881A 。
单位晶胞含有10 个[ Ca]2+、6个[ PO4]3-和2个[ OH]-, 这样的结构和组成使得H A 具有较好的稳定性。
磷灰石是自然界广泛分布的磷酸钙盐矿物,根据其结构通道中存在的阴离子的种类,可分为氟-、氯-、羟磷灰石等不同亚种矿物。
纳米羟基磷灰石的制备及其在医学领域的应用
漳 州 师 范 学 院 化学与环境科学系
HA的简 的简 介
方法制 备
结论和 展望 在物理 方向上 的单独 应用
测试表 征
在医学 领域的 应用
1、羟基磷灰石简介 、
羟基磷灰石( 羟基磷灰石(Hydroxyapatite,HA)是 , ) 动物和人体骨骼的要无机矿物成分, 动物和人体骨骼的要无机矿物成分,具 有良好的生物活性和生物相容性。 有良好的生物活性和生物相容性。当羟 基磷灰石的尺寸达到纳米级时将现出一 系列的独特性能, 系列的独特性能,如具有较高的降解和 可吸收性。研究表明: 可吸收性。研究表明:超细羟基磷灰石 颗粒对多种癌细胞的生长具有抑制作用, 颗粒对多种癌细胞的生长具有抑制作用, 而对正常细胞无影响。 而对正常细胞无影响。因此纳米羟基磷 灰石的制备方法及应用研究已成为生物 医学领域中一个非常重要的课题, 医学领域中一个非常重要的课题,引起 国内外学者的广泛关注[4]
图5
n-HA粒子的SEM图
由图5可以看出采用冷冻干燥法避免了高温煅 由图 可以看出采用冷冻干燥法避免了高温煅 粉末, 烧,得到了分散性较好的 n-HA 粉末,直径为 20~25 nm,长度 ~80nm,其分散均匀, ~ ,长度75~ ,其分散均匀, 没有严重的团聚现象。 没有严重的团聚现象。
4.1 物理性质方面应用[5]
功效主要体现在: 功效主要体现在:
(1)吸附及抑菌作用。抑制牙菌斑,预防 龋 吸附及抑菌作用。抑制牙菌斑, 吸附及抑菌作用 齿。 (2)双重脱敏作用,有效防止牙本质过敏。 双重脱敏作用, 双重脱敏作用 有效防止牙本质过敏。 (3)再矿化及美白作用,修复受损牙釉质, 再矿化及美白作用, 再矿化及美白作用 修复受损牙釉质, 恢复牙齿自然光泽。 恢复牙齿自然光泽。
羟基磷灰石的制备及应用研究
羟基磷灰石的制备及应用研究羟基磷灰石是目前应用最广泛的生物材料之一。
因其良好的生物相容性和生物活性,在骨科和牙科领域得到了广泛的应用。
本文将就羟基磷灰石的制备及应用进行研究和探讨。
1.羟基磷灰石的制备羟基磷灰石的制备主要有湿法合成和干法合成两种方法。
其中湿法合成又包括共沉淀法、溶胶-凝胶法、水热法等几种方法。
而干法合成主要有高能球磨法等方法。
1.1 湿法合成共沉淀法:羟基磷灰石的共沉淀法制备过程中利用钙、磷两个离子在一定条件下共沉淀作用,形成了羟基磷灰石。
共沉淀法具有制备工艺简单,反应速度快等优点。
但是其产品具有较大的晶体粒径和不稳定等缺陷。
溶胶-凝胶法:在溶胶-凝胶法制备羟基磷灰石过程中,通过到达成熟态的化学缓慢水解发生反应,羟基磷灰石在凝胶中形成。
该方法得到的羟基磷灰石晶体粒度分布小,晶体形态好,内部结构均匀致密等优点。
但是该方法的制备过程复杂,且需要较长时间,成本较高。
水热法:在水热法制备羟基磷灰石过程中,通过水热反应来形成羟基磷灰石。
该方法具有制备工艺简单等优点。
但是制备效率较低且羟基磷灰石的结晶度较低,易形成杂多晶和非晶态。
1.2 干法合成高能球磨法:在高能球磨法制备羟基磷灰石过程中,通过高能钨钢球的强制研磨来形成羟基磷灰石。
该方法具有制备简单,易于大规模生产等优点。
但是制备过程中需要严格控制球的大小,否则会影响羟基磷灰石的晶体粒度和分布。
2.羟基磷灰石的应用2.1 骨科领域羟基磷灰石可作为一种生物陶瓷,应用于骨科领域。
其良好的生物相容性和生物活性使得其能够与人体骨组织相容性良好。
在人工骨替代和组织修复中,羟基磷灰石能够促进骨细胞的生长和分化,提高骨修复的质量。
2.2 牙科领域在牙科领域,磷酸羟基磷灰石可以用于制备牙科修补材料,其生物相容性好,与人体牙齿组织具有相似的化学成分和物理性质。
磷酸羟基磷灰石的应用还可以提高口腔修复质量。
3.羟基磷灰石的未来展望随着骨科和牙科行业的飞快发展,羟基磷灰石的应用范围也在不断扩大。
羟基磷灰石在生物医用材料中的研究进展
《生物医用材料》期末论文学院:材料与化工学院专业:材料科学与工程学生姓名:学号:任课教师:唐敏2010年6月20日羟基磷灰石在生物医用材料中的研究进展材料与化工学院07材料科学与工程卢仁喜摘要:羟基磷灰右是一种优质的医用生物材料,在生物医用材料和医学研究领域有着广泛的应用和研究。
本文在综合了一些文献的基础上,对羟基磷灰石在生物医用材料的研究上做了总结和概括,并且提出了一些自己的看法。
关键字:羟基磷灰石生物医用材料进展1.引言生物材料(biomaterials)是对生物体进行治疗和置换损坏的组织、器官或增进其功能的材料。
随着材料科学、生命科学与生物技术的发展,越来越多的生物材料得到广泛应用,人们开始在分子水平上去认识材料和机体问的相互作用,力求使无生命的材料通过参与生命组织的活动,成为有生命组织的一部分。
其中金属材料、生物陶瓷材料、高分子材料、聚合物及其复合材料是应用最广泛的生物材料。
近年来,常用的骨骼替代品是金属、塑料以及陶瓷等,其中以钛和钛合金为主。
但是由于它们的惰性,它们不能很好的与生物体本身产生相容性,作为硬组织植入材料,它们与骨之间只是一种机械嵌连的骨整合,而非化学骨性结合,致使植入后与骨组织之间结合较差,常引起植入失效。
同时金属的耐磨性和耐腐蚀性较差,腐蚀产牛的离子会对人体组织产生不良影响。
羟基磷灰石(Hydroxyapatite,HA)生物陶瓷材料具有优良的生物活性和生物相容性,被认为是一种最具潜力的人体硬组织替换材料。
但是HA的力学性能较差,抗弯强度和断裂韧性指标均低于人体致密骨,限制了它们单独在人体负重部位的使用。
但是由于它本身的特点,以及自然界再也找不出与它具有类似生物相容性的陶瓷材料,同时他又可以同多种材料进行复合来改变它在某一方面的劣势。
所以,近年来羟基磷灰石及其复合物的研究受到广泛关注。
2.羟基磷灰石及特点羟基磷灰石(Hydroxyapatite,HA)是一种微溶于水的弱碱性磷酸钙盐,它是脊椎动物骨和齿的主要无机成分,在人骨中约占72%,齿骨中则高达97%,其生物相容性及活性良好,对人体无毒副作用,可增强骨愈合作用,能与自然骨产生化学结合,被认为是最有前途的人工齿及人工骨的替代材料。
2024年羟基磷灰石生物陶瓷市场分析现状
2024年羟基磷灰石生物陶瓷市场分析现状引言羟基磷灰石(hydroxyapatite, HA)是一种生物陶瓷材料,具有优良的生物相容性和生物活性,广泛应用于医学领域。
本文旨在分析羟基磷灰石生物陶瓷市场的现状,并探讨其发展趋势。
市场概述羟基磷灰石生物陶瓷市场是医疗器械和医用材料市场的一个重要组成部分。
随着人们对健康的关注增加,医学领域对高性能生物陶瓷需求不断增长。
羟基磷灰石作为一种纯度高、生物相容性好的材料,被广泛应用于骨科、牙科等领域。
市场分析1. 市场规模根据市场研究报告显示,羟基磷灰石生物陶瓷市场从2019年开始进入高速增长阶段。
预计到2025年,市场规模将达到XX亿美元。
市场增长的主要驱动因素包括人口老龄化、骨骼疾病的高发率以及医疗技术的不断进步。
2. 应用领域羟基磷灰石生物陶瓷在医学领域有广泛应用。
主要应用领域包括骨科和牙科。
在骨科领域,羟基磷灰石生物陶瓷可用于骨折修复、植入物替代等。
在牙科领域,羟基磷灰石生物陶瓷主要用于种植牙和修复牙齿。
3. 市场竞争格局羟基磷灰石生物陶瓷市场存在较大的竞争压力。
主要竞争对手包括国内外知名医疗器械和医用材料企业。
这些企业通过不断创新、提高产品质量和降低成本来提升竞争力。
另外,市场上还存在着一些规模较小的企业,它们主要通过价格竞争来获取市场份额。
4. 市场发展趋势随着技术的不断进步和医疗需求的增加,羟基磷灰石生物陶瓷市场将呈现以下发展趋势:•新产品的开发。
随着人们对健康的关注度提高,羟基磷灰石生物陶瓷市场将推出更多适用于特定医疗需求的新产品。
•技术创新。
随着医学技术的不断发展,羟基磷灰石生物陶瓷的制备技术也在不断改进。
未来,制备工艺和产品性能将进一步提高。
•市场竞争加剧。
随着市场规模的扩大,市场竞争将更加激烈。
企业需通过提高产品质量、创新服务模式等方式来提高竞争力。
•市场国际化。
随着全球医疗领域的互通互联,羟基磷灰石生物陶瓷市场将逐渐国际化。
企业需关注海外市场动态,积极开展海外合作。
羟基磷灰石的制备与应用研究
羟基磷灰石的制备与应用研究1.引言羟基磷灰石(HA)是一种广泛应用于医学领域的生物材料,具有与骨骼组织相似的化学成分和结构。
因此,HA材料被广泛应用于骨修复、植入物、药物缓释等领域。
本文旨在介绍羟基磷灰石的制备方法和应用研究。
2.羟基磷灰石的制备2.1 化学合成法化学合成是制备HA材料的一种常用方法。
主要步骤包括磷酸和Ca(OH)2的反应,生成磷酸钙沉淀物,进一步反应形成HA。
其中,磷酸和Ca(OH)2的摩尔比例是重要的,影响着HA的形态和结构。
2.2 热沉淀法热沉淀法是一种常用制备HA材料的方法。
该方法主要步骤包括磷酸和CaCl2混合并调节pH值,然后在高温条件下使其反应生成HA。
这种方法可以制备出具有大量孔隙和高比表面积的HA材料。
2.3 生物制备法生物制备法是利用微生物、植物、动物等生物体通过其生理代谢产生的有机酸或其他物质来制备HA材料。
这种方法制备的HA 材料更具有生物相容性,并且制备成本更低。
3.羟基磷灰石的应用研究3.1 骨科材料由于HA与骨骼结构相似,因此它是一种在骨科领域广泛应用的生物材料。
HA材料可以用于骨修复、骨填充、植入物等领域。
HA材料具有生物相容性高、吸附能力好、力学性能良好等优点,已经成为骨科领域的重要材料。
3.2 药物缓释HA材料具有很好的生物相容性和化学稳定性,可以被用于药物缓释领域。
HA材料的微孔可以吸附药物,然后缓慢释放出来。
这种方法可以使药物在缓慢释放的过程中保持其活性,同时也可以延长药物的作用时间。
3.3 医用传感器HA材料也可以作为医用传感器的基础材料。
许多现代医疗设备和技术都需要传感器来搜集医学数据。
利用HA材料的导电性能特点,可以研制出具有高灵敏度、稳定性和生物相容性的传感器。
4.总结羟基磷灰石是一种具有广泛应用的生物材料,目前已经在医药领域得到了广泛的应用。
本文介绍了HA材料的制备方法和应用研究,展示了它的潜力和前景。
HA材料在医疗领域中将继续发挥重要作用。
羟基磷灰石的制备及应用研究
羟基磷灰石的制备及应用研究羟基磷灰石是一种生物医用材料,具有良好的生物相容性和生物活性。
在牙科、骨科、普外科等领域被广泛应用,特别是在人造骨修复方面发挥着重要作用。
1. 羟基磷灰石的制备方法羟基磷灰石的制备方法有多种,其中包括化学合成、水热法、共沉淀法等。
其中,共沉淀法是目前最为常用的制备方法之一。
共沉淀法是通过将含有Ca2+和PO4^3-的化合物,如CaCl2和Na2HPO4混合在一起,并在水中搅拌,使其形成沉淀。
沉淀经过干燥和高温煅烧,即可得到羟基磷灰石。
通过调节反应条件,如pH值、反应温度和时间等参数,可以得到不同形态和性质的羟基磷灰石。
2. 羟基磷灰石的应用研究羟基磷灰石的应用研究主要集中在生物医用材料领域。
它具有良好的生物相容性和生物活性,可以与组织细胞良好地结合,促进骨组织的生长和再生。
在牙科领域中,羟基磷灰石被广泛应用于牙髓炎和牙根被破坏的治疗中。
在骨科领域中,羟基磷灰石则被用于骨修复和骨再生。
在普外科领域中,羟基磷灰石则被用于人造关节的制作,以及其他重大手术中的骨缺损修复。
不仅如此,羟基磷灰石还可以通过表面修饰、掺杂和复合等方法,来改善其性能和功能,例如提高降解速率、增强力学性能、抗菌、降解药物等。
这些方法均可以扩展羟基磷灰石的应用范围和提高其性能,推动其在生物医用材料领域的进一步发展。
3. 羟基磷灰石的发展前景近年来,随着医疗技术的发展和人们健康意识的提高,生物医用材料的需求量越来越大。
而作为一种重要的生物医用材料,羟基磷灰石将在未来得到进一步的应用和发展。
未来,羟基磷灰石的发展将更加注重材料的智能化、定制化和可持续发展。
通过纳米材料、生物材料等新技术的应用,将实现羟基磷灰石在组织工程、医学影像等领域的广泛应用。
同时,在病理诊断与治疗中更广泛地运用,例如在肿瘤的预防、诊断和治疗中的应用,将会取得更为广泛和重要的应用和发展。
总之,羟基磷灰石是一种生物医用材料,具有广泛的应用前景和发展空间。
羟基磷灰石生物材料的研究现状、制备及发展前景
结论
羟基磷灰石氧化锆生物复合材料的制备方法与性能之间存在密切关系。通过 优化制备工艺和掺杂剂量,可以有效地提高材料的物相纯度、结构致密性和机械 性能,并改善其生物相容性。未来研究方向应包括进一步优化制备工艺,研究新 型掺杂剂及其作用机制,以及探讨材料性能的跨尺度关联等。随着研究的深入, 相信羟基磷灰石氧化锆生物复合材料在生物医学领域的应用前景将更加广阔。
2、掺杂剂量对性能的影响:在制备过程中,常常需要掺入其他元素来优化 材料的性能。例如,掺入硅元素可以提高材料的抗腐蚀性能,掺入钛元素可以增 强材料的生物活性。通过调整掺杂剂量,可以找到最优的配方,从而提高材料的 综合性能。
羟基磷灰石氧化锆生物复合材料性能之间的关系也比较密切。例如,材料的 拉伸强度和硬度通常呈正相关关系,即提高材料的硬度通常会导致拉伸强度的增 加。此外,材料的生物相容性与其化学成分、表面特性等密切相关。通过对材料 进行表面改性处理,可以有效地提高其生物相容性,促进细胞在其表面增殖和分 化。
羟基磷灰石生物材料的研究现 状、制备及发展前景
目录
01 羟基磷灰石生物材料 的研究现状
02
羟基磷灰石生物材料 的制备
03
羟基磷灰石生物材料 的发展前景
04 结论
05 参考内容
羟基磷灰石生物材料是一种重要的生物材料,具有优良的生物相容性和骨传 导性,在生物医学领域得到广泛应用。本次演示将介绍羟基磷灰石生物材料、优化性能:羟基磷灰石生物材料的性能与制备工艺密切相关。未来可以 通过优化制备工艺参数,提高其生物相容性、稳定性和力学性能等方面的表现。
4、复合材料:为了满足更复杂的应用需求,未来可以探索将羟基磷灰石生 物材料与其他材料进行复合,制备出具有更优异性能的复合材料。
总之,羟基磷灰石生物材料作为一种重要的生物材料,具有广泛的应用前景 和未来的发展潜力。通过不断的研究和改进,相信其在未来的生物医学领域中将 发挥更加重要的作用。
羟磷灰石的制备及其应用研究
羟磷灰石的制备及其应用研究羟磷灰石是一种重要的生物无机材料,具有良好的生物相容性、生物活性和生物降解性,是维持骨组织生长和修复的重要成分。
本文将从制备和应用两方面重点阐述羟磷灰石的研究进展。
一、羟磷灰石的制备羟磷灰石是由磷酸盐和氢氧化物共析合成,常见的制备方法是水热法、共析合成法、溶胶-凝胶法和生物模仿法等。
1、水热法水热法制备羟磷灰石的过程是通过水热反应使氢氧化物与磷酸盐溶液反应生成羟磷灰石。
其优点为制备过程简单、反应短时间、成本低廉,但存在反应条件严格、生成晶体大小难以控制等缺陷。
2、共析合成法共析合成法是将磷酸盐和氢氧化物混合,然后在一定的条件下进行共析反应,最终生成羟磷灰石。
该方法简单快捷,且生成的羟磷灰石结晶质量高,但存在缺点是反应物质易发生酸碱反应导致结晶不纯。
3、溶胶-凝胶法溶胶-凝胶法是将溶液中的羟基磷灰石物质分散到溶液中形成凝胶,再经过干燥和热处理等步骤形成羟基磷灰石固体。
该方法成本低廉、结晶质量高,但生成的固体存在微晶杂质的问题。
4、生物模仿法生物模仿法是将天然骨组织中的磷酸盐、氢氧化物、蛋白质等物质与人造体液混合,在一定条件下形成羟基磷灰石。
该方法能生成与天然骨组织类似的材料,但操作难度大、成本高。
二、羟磷灰石的应用羟磷灰石作为生物医用材料,在医学领域有着广泛的应用,包括骨组织修复、牙科领域的修复和种植、生物工程领域的细胞培养和基因工程载体等。
1、骨组织修复羟磷灰石可作为骨髓、骨折修复、植骨和填充骨缺损等方面的生物替代材料,具有良好的生物降解性和生物相容性,可促进骨细胞的增殖和骨修复。
2、牙科领域的修复和种植羟磷灰石可用于根管修复和牙齿移植等领域,具有良好的生物相容性和匹配性,可防止牙齿移植后的异常反应和排异现象。
3、生物工程领域的细胞培养和基因工程载体羟磷灰石可作为细胞培养和基因工程载体等领域的材料,具有良好的生物相容性和细胞黏附性,可促进细胞的生长和增殖,并将基因载体稳定地转移到宿主细胞中。
羟基磷灰石/聚合物可降解生物复合材料的研究进展
羟基磷灰石/聚合物可降解生物复合材料的研究进展羟基磷灰石/聚合物可降解生物复合材料的研究进展/罗平辉等?357?羟基磷灰石/聚合物可降解生物复合材料的研究进展罗平辉,赵玉涛,戴起勋,林东洋,施秋萍(江苏大学材料科学与工程学院,镇江212013)摘要HA/聚合物生物降解复合材料在一定程度上模仿了天然骨,可降解聚合物成分逐渐被机体溶解吸收或新陈代谢排出,HA陶瓷成分在体液的作用下,会发生部分降解,游离出钙和磷,并被人体组织吸收,利用,生长出新的组织;同时可降解聚舍物成分对HA的过快降解具有控制作用,使得HA降解与新生骨组织生成速率匹配总结了羟基磷灰石/聚合物可降解生物复合材料的最新研究进展,并分析了目前该材料在研究和临床应用上存在的问题,讨论了其未来的发展方向.关键词羟基磷灰石/聚合物复合材料生物可降解研究进展TheResearchPlofBiodegradableHydroxyapatite/PolymerBio-compositeMaterials LUOPinghui,ZHAOYutao,DAIQixun,LINDongyang,SHIQiuping (SchoolofMaterialsScienceandEngineering,JiangsuUniversity,Zhenjiang212013) AbstractBiodegradablehydroxyapatite/polymerbiomaterialsmimicthenaturalbonetOso meextent,andthe degradablepolymerisdissolvedandabsorbedormetabolizedbydegrees,thehydroxyapatite (HA)ceramicdegradespartlyandextricatesCaandP()i—whichareabsorbedandutilizedbyhumantissuestOgeneratefreshtissues.Fur thermore,degradablepolymercancontributetOtoofastdegradationofHAtOmatchtherateb etweendegradationofHAandformationoffreshbonetissues.Inthisarticle.thelatestadvancementinresearchofbio degradableHA/poly—merbiomaterialsaresummarized.Simultaneously,someproblemsofthebiomaterialsinrese archandclinicareanalyzed andsomepossiblefuturedevelopingtrendsarealsodiscussed. Keywordshydroxyapatite/polymercomposites,biodegradable,researchprogressO前言羟基磷灰石(hydroxyapatite,HA),其化学组成为ca10一(P4)s(0H)z,与天然磷灰石矿物相似,具有良好的生物相容性(biocompatibility)和生物活性(bioactivity),是脊椎动物骨和齿的主要无机成分[1].自2O世纪7O年代中期美国和日本的学者研制成功人造多晶羟基磷灰石以来,这种生物材料已广泛用于外科手术中,作为人工骨骨骼和人工牙齿骨的填充,置换与结合材料[2j.然而,单一HA在生理环境下的脆性及低疲劳强度限制了其在负荷下骨修复或骨替代的应用[3].因此,为了适应临床需要,基于HA的复合材料是近年来生物复合材料研究与开发的热点.当前,基于HA的复合材料可分为3类,即HA/金属复合材料,HA/陶瓷复合材料和HA/聚合物复合材料.其中,HA/金属复合材料是目前临床上研究较多的一种,但该复合材料仍存在金属腐蚀,在骨一移植体界面可能形成密集纤维组织问题_4]以及应力屏蔽问题_5].而HA/陶瓷复合材料也存在许多问题,如生物惰性Al.()3和Zb陶瓷的断裂特性比人体骨要差,陶瓷材料弹性模量较高且具有脆性,它们在力学上并不与骨相容等.因此,开发生物活性HA陶瓷与断裂韧性较好的有机聚合物进行复合是一条行之有效的途径,特别是HA/聚合物生物降解复合材料在一定程度上模仿了天然骨,可降解聚合物成分逐渐被机体溶解吸收或新陈代谢排出,HA陶瓷成分在体液的作用下,会发生部分降解,游离出钙和磷,并被人体组织吸收,利用,生长出新的组织;同时可降解聚合物成分对HA的过快降解具有控制作用,使得HA降解与新生骨组织生成速率匹配.生物可降解性植入材料具有以下优点而受到国内外研究者的重视:(1)无需二次手术取出;(2)机械强度逐渐衰减,不抑制骨骼生长,降低了金属装置由于应力屏蔽效应引发骨质疏松症的危险性;(3)无金属腐蚀引发的组织反应.HA/生物可降解复合材料除了具备上述性能外.HA本身的生物活性有可能得以提高.因此,HA/聚合物可降解复合材料的研究与开发对人工骨修复材料在基础理论和临床上应用均具有十分重要的意义.1国内外研究现状目前国内外研究主要在探索与HA复合较理想的聚合物材料以及复合材料的制备技术上.对于材料方面,研究较多的是胶原(collagen,Co1),聚乳酸(poly(1acticacid),PLA)及聚己内酯(polyeaprolactone,PCL)与HA的复合,如ShinHasegawa*江苏省自然科学基金项目资助(BK2OO3O51);江苏省铝基复合材料工程技术研究中心研发项目(BM2Oo3Ol4)罗平辉:男,1980年生,硕士研究生E-mail:******************赵玉涛:联系人,1964年生,博士,教授,博士生导师Tel:0511—8791919E-mail:**************.cn358材料导报2006年11月第2O卷专辑Ⅶ等[]植入HA/PLLA至兔股骨长期研究表明HA/PI.,LA复合材料表现出优异的生物降解性和骨传导性而且植入后长达7年没有明显的无菌反应.C.V.M.Rodrigues等l_7]制备的Col/HA复合材料用于组织工程中支架材料综合了骨胶原的诱导性和HA的生物活性及骨传导性但用于制备Col/HA复合材料的I型胶原由于其成本及商业来源有限,使得其工艺控制变得困难起来.用明胶(gelatin,GEL)~I驱体替代I型胶原也是目前研究的热点.Hae-W(onKin等_日制备的GEI/HA复合材料具有多孔结构,与传统复合材料相比,其表面附着有较高水平的成骨细胞,对于制备技术方面,原位技术主要是改善仿生工艺模拟天然骨矿化过程.非原位技术主要集中在对HA或聚合物材料进行改性.牛丽婷等_g]用聚乙烯醇改性HA,改性后的HA具有较高的纯度,提高了HA的粒度分布,且降低了HA的晶化温度.ZhongkuiHong等_】阳为了改善HA与PIJ.A间的结合强度以提高复合材料的机械性能,用PILA先对HA纳米颗粒表面进行接枝改性.根据复合材料的基体材料同,HA/生物可降解复合材料可大致分为两类:一类是以可降解材料为基体,HA为增强材料的复合材料;另一类是以多孔HA为基体,可降解材料作为增韧的复合材料.对于第一类复合材料,主要是将HA引入可降解材料中,利用HA的高弹性模量增加复合材料的刚性及赋予材料生物活性.对于第二类复合材料,主要是将可降解聚合物引入到多孔HA中,形成多孔HA为支架可降解材料增韧的仿骨结构.通过选择合适的复合组分或结构,改变组分之间的配比,得到的复合材料降解特性和力学性能均可调,并相互匹配以适应临床上实际应用.几类HA/生物可降解复合材料的性能见表1裹1nn/聚合物生物可降解复合材料的力学特性Table1Mechanicalpropertiesofbiodegradablehydroxyapatite/polymercomposites材料抗压强度,MPa弹性模量,GPaHA/C0l[]168.855.87HA/PLLA[12]14010HA/壳聚糖_13]120——目前实验及临床上HA与可降解材料进行复合主要有以下几类:(1)与生物可降解聚合物的复合,生物可降解材料(bio—degradablematerials)包括人工合成的生物可降解聚合物和天然材料提纯的可降解材料,如聚乳酸(poly(1acticacid),PLA),聚酰胺(polyami&,PA),聚乙烯醇(pd:~i.ylalcohol,PVA),聚己内酯(polycaprolactone,PCL),等,这些可降解材料具有良好的组织相容性,并且不需要二次手术取出内植物,已经成为骨科医生和生物材料研究人员关注的热点;(2)与天然生物材料的复合,天然生物材料主要指从动物结缔组织(如骨,肌腱)或皮肤中提取的,经过特殊化学处理的具有某些活性或特殊性能的物质. 如胶原(collagen,C01),明胶(gelatin,GEL)及骨形成蛋白(Bone morpho)geneticprotein.BMP)等;(3)与其它可降解材料的复合,如聚羟基丁酸酯(Poly-hyI|r0xybutyrate,PHB).近年来,以可降解聚合物为基体所形成的复合材料已成为人工骨材料研究和开发的主流.与不可降解体系相比,可降解聚合物在生物体内的降解使得本体骨组织逐渐长人复合材料, 有助于自体骨和移植骨之间形成紧密结合的界面,这无疑提高了HA的骨传导性.与纯HA粉末或粒子相比,以膏状或水泥状存在的HA/可降解聚合物在手术中易于处理,因而在应用中具有更大的优越性.固态的HA/可降解聚合物则可用作承力环境中的骨替代材料.与国外相比,我国的骨修复替代材料产业正处于起步阶段,应用市场主要在传统骨修复材料,综合性能良好的新型生物材料还不能大规模满足购买能力提高,保健意识增强的患者,只能临床使用,7O~8O医用材料要依靠进口.主要原因在于产品技术还处于初级阶段,且产品单一,总体上技术及资金力量不足,产业化方面研发总体投入较少,同类产品基本上属于仿制,自主知识产权较少.面对日益扩大的市场需求和竞争,我国在硬组织修复材料研发与产业化方面需要加大研发力量,加强学科交叉,发展具有自主知识产权的技术与产品;增加开放度,加强国内外合作;加强产一学一研结合.2制备技术进展在HA/生物可降解复合材料的制备过程中,HA的形成方式有两类:一类是制备复合材料前制备HA粉体,该方法中HA 的制备通常与单一HA粉体的制备方法大致相同;另一类是直接在形成HA过程中制备复合材料,即所谓原位技术,此类方法中复合材料的制备应考虑可降材料所能允许的条件,如温度等,整个工艺过程与前一类方法明显有所不同,其目的是从仿生的角度制备出类骨材料,因此,相对于前一类方法,该类方法制备的复合材料组分间结合强度较好,其综合性能也更接近天然骨.从目前研究来看,HA/生物可降解复合材料的主要制备工艺有:①混合法(混炼+模压),②沉淀法,③仿生法,④沥滤法,⑤热致相分离(TIPS)其中,混合法,沥滤法,热致相分离属前一类,仿生法属后一类.而沉淀法既有原位技术,也有非原位技术.在制备技术方面也有经改进后发展的新技术.在制备具体复合材料中依据所使用的可降解材料的不同特性而采用相应的方法.下面就这些方法进行简要介绍.2.1混合法混合法是制备HA/生物可降解复合材料最简单的工艺,在适当溶剂中混合HA与可降解材料,后洗涤并去除溶剂模压成HA/生物可降解复合材料,一般用于制备块材.李亚军等_l]将纳米HA粉末和聚丙交酯及造孔剂氯化钠混合后加入三氯甲烷和聚乙烯醇溶液,混炼后模压制得的多孔聚乳酸/羟基磷灰石复合材料能够提高高分子的力学性能及骨诱导特性,且对羟基磷灰石的过快降解具有控制作用,保证了骨组织恢复速度与材料降解速度一致.虽然HA/PLA复合材料具有良好的生物相容性和骨结合能力,但这类材料在生理环境下,未等材料完全降解而过早丧失其机械强度,因此有人_1研究HA/PLA复合材料失效的主要原因是HA/PLA界面缺乏有效结合所致.而S.M.Zhang等["]加HA至PLA液相中,挥发掉有机溶剂后热压成HA/P1.A复合材料,其研究表明:用硅烷衍生物对HA表面进行改性后,HA/PLA复合材料的界面强度,膨胀性能及最终的力学性能均有较大改善,最大弯曲强度提高27.8,扫描电镜(图1)实验表明HA颗粒在复合材料中均匀分布,大小在2~15m.且改性的HA/PLA复合材料属韧性断裂.羟基磷灰石/聚合物可降解生物复合材料的研究进展/罗平辉等?359? 围1复合材料的扫描电镜图片Fig.1SEMmicrographofthecomposites全大萍等口将HA与PDLLA混合塑炼后模压成型的HA/PDILA复合材料,其研究也表明HA经偶联剂处理后其表面能也能降低从而提高复合材料界面强度,BiqiongChen等L1.]以不同HA含量与PCI熔混后热压成型出HA/PCL复合材料,研究表明窄分子量范围的PCL及较小颗粒大小的HA复合而成的复合材料具有较好的加工性,力学性能及界面强度.2.2沉淀法沉淀法是目前制备粉体最广泛的方法之一.该方法设备简单,操作方便,还能尽可能不带人杂质离子.ZhongkuiHong等l_19_均匀加入三氯甲烷至纳米HA中,在电磁搅拌和超声处理下形成悬浮液,悬浮液中加入PLLA/三氯甲烷溶液,得到的混合物在过量乙醇中沉淀,干燥得到PLIA/HA复合材料(图2)试验表明:与P1LA材料相比,PLIA/HA纳米复合材料表现出较高的弯曲强度和冲击能,提高HA含量时,复合材料的模量显着提高.圈2PLLA/g-HAP纳米复合材料的制备方法Hg.2MethodforpreparingofthePIA/g-HAPnano-comp~itesWeiJie等口._通过共沉淀法制备的HA/PA66多孔支架材料相分布均匀,晶粒大小10~20nm,且具有很好的生物活性及强的界面反应,力学性能接近天然骨.王迎军等r21]采用沉淀法原位复合技术制备的PV A/HA复合材料HA陶瓷颗粒粒度细,分散性好,复合水凝胶的结晶度和拉伸强度均比PV A试样或物理共混复合水凝胶的有所提高.孙恩杰等[2幻按一定CatP 配制Ca(H2PO4)2?HzO溶液,将GEL溶于蒸馏水得到GEL溶液,一定温度下将Ca(0H)和ca(H2P04)2?H20逐滴滴入明胶溶液中并搅拌至溶胶稳定该均相沉淀法制备的HGEL复合材料呈自组装结构,HA—GEL间产生键连作用,且颗粒分布均匀.2.3仿生法由于天然骨是纳米级HA的晶体互相平行堆积,沉积于骨胶原中而形成的.胶原是多种组织的主要成分和细胞外基质, 约占动物总蛋白的i/3.胶原蛋白在体内以胶原纤维的形式存在,其基本组成单位是原胶原分子,原胶原分子经多级聚合形成胶原纤维,其纤维状结构利于组织培养中的细胞粘附生长繁殖. 故从仿生的角度出发,将纳米级HA与胶原复合制得的HA/胶原复合材料是当今的一个研究热点.N.Roveri等啼0]以Ca(OH)2及含有Col的H3P0{通过原位的方法制备出的纳米HA/Col复合材料中HA与Col界面有很强的化学反应,与天然骨组织非常相似.MasanoriKikuchi等[2]也用同样的原料以仿生工艺(图3)通过自组装机制制备的HA/Col复合材料的相容性较HA陶瓷好,复合材料的骨组织反应表明了破骨细胞再吸收后有新骨形成,与自体骨移植很相似.T田3HAp/Col复合材料合成装置示意圈脚3SchematicdrawingoftheapparatusfortheHAp/Col王振林等_2通过体外模拟天然骨生物矿化和材料自组装机制,制备出HA/col仿生复合材料,其中,纳米羟基磷灰石均匀分布在胶原基质上并择优取向排列,复合材料的成分,微观结构与天然骨类似.MyungChulChang等]通过仿生工艺制备出HA/GEL复合材料,实验表明纳米HA沿着明胶原纤维进行自组装,且HA与GEL间形成了化学键.由于仿生工艺是通过原位复合技术制备出复合材料,因此,HA/可降解复合材料中组分间具有较好的结合强度,与其他方法相比,制备出的复合材料的综合性能更接近天然骨.2.4沥滤法溶剂浇铸/粒子沥滤技术(solventcasting/particulateleac—hing)用于制备高孔隙率,高比表面积的组织工程多孔支架材料,该技术采用氯化钠等不溶于有机溶剂的颗粒作为致孔剂,可用于制备PLLA,PLGA等可溶于有机溶剂的高分子聚合物多孔支架材料.张利等[]通过粒子沥滤法制备的纳米HA/CS多孔材料,当复合材料/致孔剂质量比为1:1时,抗压强度可达17MPa,满足组织工程支架材料的要求,且复合材料呈高度多孔结构,孔壁上富含微孔,能够很好地吸附人体骨形成蛋白等骨生长因子, 使其具有良好的骨再生能力.J.AJansen等口]采用PEG/PBT为嵌段共聚物,制备出polyaetive/HA复合材料,实验表明该复合材料与周围组织有很好的生物相容性.且轻微细胞反应会伴一~一匿360材料导报2006年11月第2O卷专辑Ⅶ随着polyactive生物膜的降解,降解过程主要受PEG/PBT比的影响.2.5热致相分离组织工程材料的特点是具有三维立体结构,制备组织工程材料的关键是组织生长的模板或支架材料的获取.热致相分离(thermallyinducedphaseseparation,TIPS)是通过将高温的聚合物溶液冷冻,由温度改变来驱动以实现相分离的.其典型工艺过程如图4[.所示,它适用于制备热塑性,结晶性高聚物孔径可控多孔材料.….M咖c幽..硒甜图4热致相分离技术流程图Fig.4TheflowclIartofTIPSteelmology程俊秋等口.j通过热致相分离原理采用纳米羟基磷灰石同PLA复合制得多孔纳米羟基磷灰石/聚乳酸复合材料,研究表明纳米HA有利于降低HA粒子的表面能从而提高HA_PLA 两相界面粘结强度,且无明显空隙存在.2.6其它方法随着复合材料制备技术的发展及对材料性能要求的提高,多种制备技术联合使用可弥补单一制备技术的不足.Qiaoling Hu等[3采用原位混杂技术(insituhybridization)制备的Cs/HA纳米复合材料具有层状结构,CS/HA(质量比1oo/5)时弯曲强度高达86MPa,比松质骨高3~4倍.相当于致密骨的1/2. Boix等r3幻研究了HA对BMP吸附的影响因素,外加钙离子提高吸附.而磷酸根却抑制其吸附,pH虽然也有影响,但相对钙离子,磷酸根显得不是很重要,该研究对制备出在移植处释放合适蛋白量的BMP-HA复合材料具有重要意义.然而,其它的影响因素也有待研究,如生理情况.江涛等【3.]采用混合及控制析出法制备了PHB/HA复合材料,其研究表明,用硅烷对HA 进行表面改性后.PHB/HA复合材料的力学性能明显提高.3存在问题及发展趋势HA植入人体后在短期内能与骨骼形成骨性结合并具有诱导成骨作用.它及其生物复合材料作为骨组织修复,替代等骨科临床治疗方面的应用已经取得了可喜的进步.尽管针对临床上实际出现的各种问题,对HA复合材料的研究与开发陆续开展起来.其中,HA/生物可降解复合材料的研究也从各个方面进行了探索,改进,如复合材料中HA采用纳米级以进一步仿生天然骨;HA或聚合物加以改性以提高复合材料的性能;采用仿生工艺制备HA复合材料以期望获得结构类似天然骨的复合材料;采用多元复合弥补二元复合材料的不足之处等等,所制备出复合材料有一定骨修复,替代功能,但其综合性能与天然骨还有一定的距离.究其原因,主要是在材料制备中对骨愈合的复杂过程还未重视起来,没有把骨生长,代谢的生物学机理完全应用到材料制备上.人体是一个最完美的功能自适应系统,从生命意义上讲,骨并不是简单的复合材料,它是一种高度复杂的系统,一种多功能的组织,具有大量的互相联系的生物物理,生物化学的生命过程.Knese(1958)详细地画出了骨的各级结构,将其分为5个层次:纤维与相邻的无机材料,骨板,骨板系统,骨板系统的组合, 最后是密质骨与松质骨的分布[3.而骨组织(包括其它组织)缺陷的修复过程也是非常复杂的,本质上是细胞的生物学过程和应力作用下的生长过程.从骨的细胞学水平看,骨从产生乃至在整个生命期中总是在应力/应变场中建造(modeling)和重建(remodeling)E35_.在骨重建过程中,由破骨细胞引起的"骨吸收"和成骨细胞引起的"骨形成"偶联成不断更新的动态过程,从而完成骨的生长代谢.因此,破骨与成骨过程的平衡是维持正常骨量的关键,而成骨细胞是骨形成的主要功能细胞,负责骨基质的合成,分泌和矿化.虽然人工骨科材料在仿生学方面取得了一定的进展,但对细胞在骨重建过程中的作用还未用到仿生制备中,使得目前仿生制备的骨科材料的性能受到限制,而HA/可降解复合材料的组分与天然骨类似(无机/有机),在发展人工骨科材料方面具有一定的优势,骨组织修复,替换的研究有从宏观向细胞和分子水平发展的趋势.同时骨生长,代谢还受生物力学因素的影响和制约,其重建过程中应力场与微观结构之间存在依赖关系,可以预想.在人工骨科材料制备方面,借助应力场(特别是变应力场),模拟骨重建过程中的复杂环境可能是制备更理想的骨修复,替代材料的途径之一.参考文献1俞耀庭,张兴栋.生物医用材料I-M3.天津:天津大学出版社,2000.132李世普.生物医用材料导论EM3.武汉:武汉工业大学出版社,2000.843ToshiakiKitsugi,TakaoY amamuro,TakashiNakamura,eta1.Fourcalciumphosphateceramicsasbonesubstitutesfornon-weight-bearing[J].Biomaterials,1993,14:2164DucheyneP,QiuQBioactiveceramics:theeffectofsurface reactivityonboneformationandbonecellfunctionEJ3.Bio—materials,1999,20:22875MakarandGJoshi,SureshGAdvani,FreemanMiller,eta1.Analysisofafemoralhipprosthesisdesignedtoreduce stressshielding[刀.JBiomechanics,2000.33:16556ShinHasegawa.ShinsukeIshii,JiroTamura,eta1.A5-7 yearinvivostudyofhigh-strengthhydroxyapatite/poly(L- lactide)compositerodsfortheinternalfixationofbonefrac—tures[J].Biomaterials,(accepted1September2005)7RodriguesCVM.SerricellaP,LinharesABR,eta1. Characterizationofabovinecollagen-hydroxyapatitecorn-,positescaffoldforbonetissueengineering口].Biomaterials, 2003,24:49878Hae-WanKin,Hyoun-EeKim,V ehidSalih.Stimulationof osteoblastresponsestObiomimeticnanocompositesofgelati—n-hydroxyapatitefortissueengineeringscaffolds[刀.Bio—materials,2005,26:52219牛丽婷,刘敬肖,周靖,等.聚乙烯醇该性羟基磷灰石超细粉的制备及表征口].大连轻工业学院,2004,23(4){23910HongZhongkui,ZhangPeibiao,HeChaoliang,eta1.Nano-compositeofpoly(L-lactide)andsurfacegrafted hydroxyapatite:Mechanicalpropertiesandbiocompatibility[J].Biomaterials,2005,26:6296羟基磷灰石/聚合物可降解生物复合材料的研究进展/3平辉等?361? 11林晓艳,温贤涛,李虎,等.共滴定法制备纳米羟基磷灰石/胶原复合材料及其性能EJJ.四川大学,2004,36(4):6712NenadIgnjatovic,DraganUskokovic.Synthesisandappli—cationofhydroxyapatite/polylactidecompositebiomaterialEJ].ApplSurfSci,2004,238:31413张利,李玉宝,魏杰,等.纳米羟基磷灰石/壳聚糖复合骨修复材料的共沉淀法制备及其性能表征[J].功能材料,2005,36(3):44114李亚军,阮建明.聚乳酸/羟基磷灰石复合型多孔状可降解生物材料[J].中南工业大学,2002,33(3);26115V erheyenCCPMRestorablematerialswithbonebondingability,evaluationofhydroxyapatite/poly(L-lactide)com—posites[D].Leiden;UniversityofLeiden,199316ZhangSM,LiuJ,ZhouW,eta1.Interfacialfabrication andpropertyofhydroxyapatite/polylactideresorbablebone fixationcompositesEJ].CurrentApplPhys,2005,5:51617全大萍,李世普,袁润章,等.聚DL-丙交酯/羟基磷灰石(PDLLA/HA)复合材料——Ⅱ:硅烷偶联剂处理羟基磷灰石表面的作用研究[J].复合材料,2000,17(4):11418ChenBiqiong,SunKang.Poly(~一caprolactone)/Hydmxy—apatitecomposites:effectsofparticlesize,molecularweight distributionandirradiationoninterfacialinteractionand properties[J].PolymerTesting,2005,24:6419HongZhongkui,ZhangPeibiao,HeChaoliang.eta1.Nano-compositeofpoly(L-laetide)andsurfacegrafted hydroxyapatite:Mechanicalpropertiesandbiocompatibility EJ].Biomaterials,2005,26:62962OWeiJie,IiYubao.Tissueengineeringscaffoldmaterialofnano-apatitecrystalsandpolyamidecomposite[刀.Eur PolymJ,2004,40:50921王迎军,刘青,郑裕东,等.沉淀法原位复合聚乙烯醇(PV A)/羟基磷灰石(HA)水凝胶的结构与性能研究[J].中国生物医学工程,2005,24(2):15022孙恩杰,杨冬,颜文龙.羟基磷灰石一明胶复合物的制备及表征[J].化学与生物工程,2005,6:4923RoveriN.FaliniG,SidotiMC,eta1.Biologicallyinspired growthofhydroxyapatitenanocrystalsinsideself-assembled ,),(上接第356页)23EddaoudiM.eta1.Systematicdesignofporesizeandfunc—tionalityinisoreticularMOFsandtheirapplicationinmeth—anestorage.JScience.2002.295(5554):46924ChenZhenfeng,ZhangJing.XiongRengen,eta1.Anoveltwo-dimensionalchiralcoordinationpolymer:bis((一)一lac—tate)zinc(1I).JInorganicChemCommu,2000,3:49325JiangChao,WangZY_Synthesis.structureandintercon—versionoftwoCo(II)coordinationpolymersshowingtopoi—ogicalisomerismfrom1Dchainto3Dchiralnetwork.JPol—yhedron,2003,22:295326EzuharaT,EndoK,AoyamaY_Synthesis,spectroscopy, andstructureofafamilyofiridabenzenesgeneratedbythe reactionofvaska-typecomplexeswithanucleophilic3-vinyl- collagenfibers[J].MaterSciEng,2003,23:44124MasanoriKikuchi,ToshiyukiIkoma,SoichiroItoh,eta1. Biomimeticsynthesisofbonelikenanoeompositesusingtheself-organizationmechanismofhydroxyapatiteandcollagen [J].CompSciTechn,2004,64:81925王振林,闫玉华,万涛.羟基磷灰石/胶原类骨仿生复合材料的制备及表征[J].复合材料,2005,22(2):8326MyungChulChang,Ching-ChangKo,WilliamH.Doug—las.Preparationofhydroxyapatite~gelatinnanocompositeI-J].Biomaterials,2003,24:285327张利,李玉宝,杨爱萍,等.骨组织工程用纳米羟基磷灰石/ 壳聚糖多孔支架材料的制备及性能表征[J].功能材料, 2005,36(2):31428JansenJA,DeRuijterJE,JanssenPTM,eta1.Histo- logicalevaluationofabiodegradablepolyactive| hydroxyapatitemembrane[J].Biomaterials,1995,16:81929赵忠华,薛平,何亚东,等.用TIPS法成型超高分子量聚乙烯微孔材料的机理分析[J].高分子材料科学与工程, 2003,19(1):243O程俊秋,段可,翁杰,等.多孔纳米羟基磷灰石一聚乳酸复合材料的制备及其界面研究[J].化学研究与应用,2001,13 (5):51731HuQiaoling,LiBaoqiang,WangMang,eta1.Preparation andcharacterizati0nofbiodegradablechitosan/hydroxyapa—titenanocompositerodsviainsituhybridization.apotential materialasinternalfixationofbonefracturerJ].Biomateri—als,2004,25;77932BoixT,Gome~MoralesJ,Torrent-BurguesJ,eta1.Ad—sorptionofrecombinanthumanbonemorphogeneticprotein rhBMP-2montohydroxyapatite口].JInorganicBiochem, 2005,99:104333江涛,胡平.聚羟基丁酸酯/羟基磷灰石复合材料的制备与性能EJ].高分子材料科学与工程,2002,18(4):4534董福慧.骨生物力学回顾[J].中国骨伤,2000,13(6);323 35王远亮,蔡绍皙.生物力学与骨组织工程[J].力学进展, 1999,29(2):232s;,s,anometallicsJChemSoc,1999,121: 327927JouaitiA.HosseiniMW,KyritsakasN,eta1.Non-cen- trosymmetriepackingof卜Dcoordinationnetworksbasedon chirality.JChemCommun,2002,23:189828CuiY,EvansOR.NgoLH,eta1.Interlockedchiral nanotubesassembledfromquintuplehelices.JChemInt, 2002,41:l15929InfordJD,VittalJJ.WuD.eta1.Topoehemicalconver—sionofhydrogenbondingtocovalentthreedimensionalnet—work.ChemInt,l998,37:儿l430RanfordJD.VittalJJ,WuD,eta1.Therrnalconversion ofahelicalcolltoa3-Dchiralframework.ChemInt.1999,38:3498。
羟基磷灰石的制备及其生物医用性能研究
羟基磷灰石的制备及其生物医用性能研究羟基磷灰石(Hydroxyapatite,简称HAp)是一种普遍存在于生物体内的无机骨组织成分,也是一种应用广泛的生物医用材料。
多年以来,人们通过不同的制备方法研究其生物医用性能,以满足临床实践的需求。
一、制备方法羟基磷灰石的制备方法有很多种,常用的有:水热合成法、溶胶-凝胶法、机械合成法、共沉淀法等。
其中,水热合成法是一种非常常用的方法。
水热法的原理是将化学反应在高温高压条件下进行,可以得到极细的高纯度晶体。
该方法制备的HAp粒子具有较高的结晶度和纯度,晶体形态规整,粒径分布较为均匀。
这种方法制备的HAp颗粒易于与骨组织结合,是一种较为理想的羟基磷灰石制备方法之一。
二、生物医用性能研究1. 与骨组织的相容性羟基磷灰石与骨组织具有较高的相容性,这是其在生物医用领域得以广泛应用的主要原因之一。
研究表明,羟基磷灰石可以促进骨组织生长,通过与细胞表面的特定受体结合,激活活性酶,并启动骨细胞体内的信号跨度,从而诱导骨细胞生长和分化。
HAp的生物相容性和间质透气性,让它在植入体内后不会引起排异反应,具有良好的生物相容性和组织相容性。
2. 维持骨微环境羟基磷灰石除了能够促进骨组织生长之外,还能够在体内维持骨微环境的平衡。
HAp可以吸附钙、磷等微量离子,并释放出来,保持周围骨组织和细胞之间物质的平衡。
同时,它还可以通过电荷作用促进骨细胞活性化,并增强骨质的形成和维持。
3. 治疗骨类疾病由于HAp在体内的相容性和生物易降解性,它可以用于治疗各种骨类疾病。
例如,HAp可以被用于骨折修复、脊柱手术、牙科修复等领域,其良好的生物相容性和组织相容性,让它在植入体内后不会引起排异反应,具有良好的治疗效果。
4. 作为生物医用载体由于羟基磷灰石是一种相对稳定的材料,它可以被用作生物医用载体。
通过控制其化学成分、粒径、表面结构等性质,可以实现向载体内导入蛋白质、基因等潜在的药物,并实现药物的缓慢、持久的释放,从而提高药物的疗效和安全性。
羟基磷灰石材料的制备及应用研究
羟基磷灰石材料的制备及应用研究1. 羟基磷灰石的介绍羟基磷灰石是一种常见的生物无机材料,其化学式为Ca10(PO4)6(OH)2,主要存在于牙齿、骨骼、贝壳等生物硬组织中。
其与人体组织的相容性较高,因此具有广泛的医学应用价值。
由于其优良的生物活性和生物可降解性,羟基磷灰石材料可以被用作人工骨、组织工程支架、骨修复材料等医用材料的制备。
2. 羟基磷灰石材料的制备方法2.1 热水法热水法是制备羟基磷灰石的一种简单有效的方法。
首先将氢氧化钙和过量的磷酸一起加入到水中,并在100℃下反应6小时。
所形成的羟基磷灰石可以通过常规的沉淀和离心分离技术得到。
2.2 水热法水热法是利用高温高压条件下的化学反应,制备纳米级羟基磷灰石材料的方法。
其过程简单易行,只需将磷酸和氢氧化钙混合,并加入适量的水,然后在高温高压反应釜中进行反应。
该方法制备的羟基磷灰石颗粒尺寸分布均匀,具有较高的生物可降解性。
2.3 溶胶-凝胶法溶胶-凝胶法是一种有机-无机杂化制备羟基磷灰石的方法。
其过程包括两个步骤:先制备出有机前体,然后通过热处理将其转化为无机材料。
该方法制备的羟基磷灰石材料具有高度的结晶度和生物活性。
3. 羟基磷灰石材料的应用3.1 骨缺损修复羟基磷灰石材料在医学领域中最常见的应用是用于骨缺损修复。
其优良的生物相容性和生物可降解性,使其被广泛地用作人造骨、骨水泥、骨替代物等材料的制备。
研究表明,利用羟基磷灰石材料修复骨缺损可有效促进骨细胞增殖和骨再生,缩短骨愈合时间,使患者更快地恢复正常生活。
3.2 组织工程支架材料随着组织工程技术的发展,羟基磷灰石材料开始被用作组织工程支架材料的制备。
该材料具有延伸性、强度高、生物活性好等优点,可以为修复组织缺损提供支撑和生长环境,促进组织再生。
目前,羟基磷灰石材料被广泛地应用于修复骨、软骨、皮肤和神经等缺损。
3.3 药物缓释材料羟基磷灰石材料的孔隙结构可以用于控制药物的释放速度和量。
因此,该材料也成为了一种常见的药物缓释材料。
羟基磷灰石研究进展
羟基磷灰石研究进展羟基磷灰石(Hydroxyapatite,HA)是一种广泛应用于生物医学领域的无机材料,具有良好的生物相容性和生物活性。
近年来,随着生物医学科学的发展,羟基磷灰石的研究也逐渐深入,涉及材料制备、表征方法、组织工程等多个方面。
本文将对羟基磷灰石研究的进展进行综述,以期对相关领域的研究提供参考和启示。
首先,羟基磷灰石的制备方法是研究的重点之一、目前,常见的制备方法包括溶液法、固相法和凝胶法等。
溶液法是一种常见的制备羟基磷灰石的方法,通过控制反应温度、pH值和配方比例等条件,可以获得具有一定形貌和尺寸的羟基磷灰石颗粒。
固相法主要通过固相反应得到羟基磷灰石,具有高温高压条件和长时间反应的特点,得到的羟基磷灰石晶体质量较高。
凝胶法是一种较为新颖的羟基磷灰石制备方法,通过凝胶的形成和热处理过程,可以获得具有高孔隙率和较大比表面积的羟基磷灰石材料。
此外,还有一些新的制备方法也在不断涌现,如微乳液法、电化学沉积法和水热法等,这些方法可以制备出形貌和结构更加复杂的羟基磷灰石材料。
其次,羟基磷灰石的表征方法也在不断发展。
传统的表征方法主要包括X射线衍射、扫描电子显微镜和傅里叶变换红外光谱等。
X射线衍射可以得到羟基磷灰石的晶体结构信息,如结晶度、晶粒大小和结晶方向等。
扫描电子显微镜可以观察到羟基磷灰石的表面形貌和孔隙结构等。
傅里叶变换红外光谱可以分析羟基磷灰石的化学组成和键合状态等。
然而,这些传统的表征方法对于复杂的羟基磷灰石材料已经显得有些局限。
因此,近年来,一些新的表征方法也开始应用于羟基磷灰石的研究,如透射电子显微镜、原子力显微镜和拉曼光谱等,这些方法可以提供更加全面和细致的羟基磷灰石材料表征信息。
最后,羟基磷灰石在组织工程领域的应用也备受关注。
羟基磷灰石具有与骨组织相似的化学成分和结构,因此可以作为骨缺损修复的理想替代材料。
目前,常见的羟基磷灰石在组织工程方面的应用包括骨组织工程支架、骨修复材料和骨转移负载等。
羟基磷灰石纳米材料的制备及其在生物医学中的应用
羟基磷灰石纳米材料的制备及其在生物医学中的应用羟基磷灰石是一种常用的生物材料,由于其良好的生物相容性和生物活性而被广泛应用于医学领域。
近年来,随着纳米技术的发展,羟基磷灰石纳米材料的制备和应用也得到了越来越多的关注。
一、羟基磷灰石纳米材料的制备方法在制备羟基磷灰石纳米材料时,常采用的方法有溶胶-凝胶法、共沉淀法、水热法等。
溶胶-凝胶法是一种常用的制备方法。
首先,将合适比例的三乙酸钾和tripropylphosphate混合,并加入适量的去离子水。
随后,在搅拌情况下加入氢氧化铵并加热,反应后生成了羟基磷灰石纳米材料,通过分离、干燥等步骤后,最终得到了羟基磷灰石纳米材料。
共沉淀法是另一种常用的制备方法。
首先,根据所需比例,将适量的钙盐和磷酸盐混合,并加入氢氧化铵。
随后,在搅拌情况下加热,使溶液中的反应物反应生成羟基磷灰石纳米材料。
经过分离、洗涤、干燥等步骤,最终得到羟基磷灰石纳米材料。
水热法是一种比较简单的制备方法。
将适量的磷酸盐和钙盐混合并加入去离子水中,搅拌后,在高压条件下加热,反应生成羟基磷灰石纳米材料。
经过分离、洗涤、干燥等步骤,最终得到羟基磷灰石纳米材料。
二、羟基磷灰石纳米材料在生物医学中的应用1.修复骨组织由于羟基磷灰石具有生物相容性和生物活性,因此被广泛用于修复骨组织。
羟基磷灰石纳米材料由于其更小的粒径和更高的比表面积,在骨组织修复方面表现出更好的效果。
羟基磷灰石纳米材料可以提高骨细胞的生长速度和骨细胞的代谢活力,促进骨细胞的增殖和分化,有利于骨细胞的再生和修复。
2.治疗骨质疏松羟基磷灰石纳米材料还可以用于治疗骨质疏松。
在动物实验中,用羟基磷灰石纳米材料注射到小鼠体内,可以明显增加骨密度和强度。
3.制备生物降解材料羟基磷灰石纳米材料可应用于制备生物降解材料,如制备骨修复膜等。
羟基磷灰石纳米材料在生物修复膜中可以提高骨细胞的生长和骨组织的附着,促进骨组织的再生和修复。
4.制备生物传感器羟基磷灰石纳米材料还可以用于制备生物传感器,如pH传感器等。
羟基磷灰石医用材料
羟基磷灰石医用材料
摘要:
一、羟基磷灰石医用材料的背景和定义
二、羟基磷灰石的医用特性
三、羟基磷灰石在医疗领域的应用
四、羟基磷灰石医用材料的发展前景
正文:
羟基磷灰石医用材料是一种广泛应用于医疗领域的无机非金属材料,具有良好的生物相容性和生物活性。
它主要由钙、磷、氢氧根离子等组成,能够与人体组织实现化学键性结合,对缺损组织具有修复和再生作用。
羟基磷灰石的医用特性主要表现在以下几个方面:
1.良好的生物相容性:羟基磷灰石与人体组织接触后,不会引起明显的组织反应,可以安全地用于人体内部。
2.生物活性:羟基磷灰石可以与人体骨骼中的羟基磷灰石晶体相互溶解,促进骨组织的修复和再生。
3.降解性:羟基磷灰石在体内具有一定的溶解度,可以随着时间逐渐降解,对人体无害。
羟基磷灰石在医疗领域有广泛的应用,主要包括以下几个方面:
1.骨科应用:羟基磷灰石可以用于骨缺损、骨折、骨肿瘤等骨病治疗的修复和再生,促进骨组织愈合。
2.口腔科应用:羟基磷灰石具有良好的生物相容性和生物活性,可以用于
制作人工骨、牙科种植体等口腔修复材料。
3.整形外科应用:羟基磷灰石微球可以用于填充和修复皮肤、软组织缺损,改善皮肤外观。
4.药物载体:羟基磷灰石可以作为药物载体,提高药物的稳定性和生物利用度。
随着科技的发展,羟基磷灰石医用材料在医疗领域的应用将越来越广泛。
未来,研究人员将继续优化羟基磷灰石材料的制备工艺,提高其性能,拓展其在医疗领域的应用范围。
羟基磷灰石材料的制备及其生物应用
羟基磷灰石材料的制备及其生物应用羟基磷灰石(hydroxyapatite)是一种天然矿物质,其化学式为Ca10(PO4)6(OH)2。
它是骨组织的主要成分,具有优良的生物相容性、生物活性和生物重构性,因此广泛应用于生物医学领域。
本文将介绍羟基磷灰石材料的制备及其生物应用。
一、羟基磷灰石材料的制备1. 生物法制备羟基磷灰石生物法制备羟基磷灰石的方法是在一定条件下,利用微生物或生物高分子来控制羟基磷灰石的形态和尺寸。
这种制备方法具有简单、绿色环保、组织相容性好等优点。
2. 溶液法制备羟基磷灰石溶液法制备羟基磷灰石的方法是将磷酸钙和氢氧化钙混合到一定比例的水溶液中,通过加热、分散、沉淀等步骤制备出羟基磷灰石。
这种制备方法的优点在于简单易行,但缺点是易出现掺杂物。
3. 离子交换法制备羟基磷灰石离子交换法制备羟基磷灰石的方法是利用化学反应在羟基磷灰石表面产生离子交换反应,从而获得一定形态和尺寸的羟基磷灰石颗粒。
这种制备方法的优点是高度可控,但需较厚的膜以保证细胞生长。
二、羟基磷灰石材料的生物应用1. 骨组织再生由于羟基磷灰石具有与人体骨组织相似的成分和组织结构,因此在骨组织再生领域得到广泛应用。
羟基磷灰石可用作骨缺损修复、骨植入物和骨填充材料,可促进骨细胞增殖、骨基质生成和骨愈合。
2. 纳米药物载体羟基磷灰石作为一种具有生物相容性的无机物材料,其表面具有一定的亲水性和负电性。
因此,它可以作为药物的载体,促进药物的吸附和释放,提高药物的生物利用度和稳定性。
3. 细胞培养基质羟基磷灰石材料的生物相容性与人体骨组织相似,使其成为一种理想的细胞培养基质。
研究人员可以利用羟基磷灰石材料制备不同形态和尺寸的细胞培养材料,为细胞培养提供生物支架和环境。
总之,羟基磷灰石材料的制备及其生物应用具有重要的意义。
未来,随着医学技术的不断发展,羟基磷灰石材料在生物医学领域的应用将会越来越广泛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《生物医用材料》期末论文学院:材料与化工学院专业:材料科学与工程学生姓名:学号:任课教师:唐敏2010年6月20日羟基磷灰石在生物医用材料中的研究进展材料与化工学院 07材料科学与工程卢仁喜摘要:羟基磷灰右是一种优质的医用生物材料,在生物医用材料和医学研究领域有着广泛的应用和研究。
本文在综合了一些文献的基础上,对羟基磷灰石在生物医用材料的研究上做了总结和概括,并且提出了一些自己的看法。
关键字:羟基磷灰石生物医用材料进展1.引言生物材料(biomaterials)是对生物体进行治疗和置换损坏的组织、器官或增进其功能的材料。
随着材料科学、生命科学与生物技术的发展,越来越多的生物材料得到广泛应用,人们开始在分子水平上去认识材料和机体问的相互作用,力求使无生命的材料通过参与生命组织的活动,成为有生命组织的一部分。
其中金属材料、生物陶瓷材料、高分子材料、聚合物及其复合材料是应用最广泛的生物材料。
近年来,常用的骨骼替代品是金属、塑料以及陶瓷等,其中以钛和钛合金为主。
但是由于它们的惰性,它们不能很好的与生物体本身产生相容性,作为硬组织植入材料,它们与骨之间只是一种机械嵌连的骨整合,而非化学骨性结合,致使植入后与骨组织之间结合较差,常引起植入失效。
同时金属的耐磨性和耐腐蚀性较差,腐蚀产牛的离子会对人体组织产生不良影响。
羟基磷灰石(Hydroxyapatite,HA)生物陶瓷材料具有优良的生物活性和生物相容性,被认为是一种最具潜力的人体硬组织替换材料。
但是HA的力学性能较差,抗弯强度和断裂韧性指标均低于人体致密骨,限制了它们单独在人体负重部位的使用。
但是由于它本身的特点,以及自然界再也找不出与它具有类似生物相容性的陶瓷材料,同时他又可以同多种材料进行复合来改变它在某一方面的劣势。
所以,近年来羟基磷灰石及其复合物的研究受到广泛关注。
2.羟基磷灰石及特点羟基磷灰石(Hydroxyapatite,HA)是一种微溶于水的弱碱性磷酸钙盐,它是脊椎动物骨和齿的主要无机成分,在人骨中约占72%,齿骨中则高达97%,其生物相容性及活性良好,对人体无毒副作用,可增强骨愈合作用,能与自然骨产生化学结合,被认为是最有前途的人工齿及人工骨的替代材料。
目前有关羟基磷灰石的研究已经取得了很大的进展,人工合成HA的方法主要有沉淀法、水热反应法和溶胶一凝胶法。
然而,羟基磷灰石的烧结性能差,力学性能特别是冲击韧性不足以作为骨替代的理想材料,因此必须通过与其它材料复合来提高有关性能,使之得以在临床上推广应用。
所以,基于羟基磷灰石在力学上的性质,它在生物医用材料上一般是以复合材料的应用来实现的。
目前,羟基磷灰石聚合物材料研究的比较多,有羟基磷灰石/聚乳酸复合支架材料、羟基磷灰石/聚乙烯醇复合材料忙、纳米羟基磷灰石/聚酰胺66复合材料等。
3.羟基磷灰石材料研究进展3.1 钛合金表面涂覆HA生物陶瓷涂层研究进展由于现代医学和材料制备技术的飞速发展,人造骨骼等医用材料的市场不断扩大。
由于医用材料应用环境的特殊性,对生物医用材料的生物活性、材料力学性能等都有比较苛刻的要求。
钛合金因为具有良好的力学性能和加工性能而被广泛应用于人体硬组织修复或植入材料,但是因为钛合金的生物相相容性差,假如直接单一的用它来替代骨骼的话,可能人体会产生排斥反应,同时由于钛合金的腐蚀也会对人体进行伤害。
为了克服这个难点,科学家们利用材料表面处理技术将羟基磷灰石生物陶瓷材料涂覆杠钛合金等金属基体的表面,形成羟基磷灰石生物陶瓷涂层材料。
HA生物陶瓷涂层可以充分发挥生物陶瓷材料和钛合金材料各自的优势,克服各自的缺点,较好满足临床应用的需要。
结合强度是限制生物陶瓷涂层材料应用的最大障碍之一。
钛合金表面涂覆单一HA生物陶瓷涂层材料的结合强度一般不高,利用等离子喷涂方法获得的HA/钛合金材料的结合强度约为12.9 MPa左右。
结合强度低下的根本原因是由于HA的线胀系数(一15×10K-1)与钛合金基体的线胀系数(~8.8×10K-1)相差较大,热膨胀系数失配导致涂层与基体界面存在较大的残余热应力J。
因此,解决结合强度问题的关键在于缩小涂层和基体材料的热膨胀系数差,减少残余应力。
金属基质(metal substrate)与羟基磷灰石牢固结合是涂层假体成功的关键,制备过程相当复杂。
涂层的结晶度是影响HA最终性能的另一个关键因素,结晶度低,则HA在体液中溶解过快,涂层的长期有效性受到严重影响.短期内造成失效,从而无法满足临床应用的需要。
影响结晶度最关键的因素是不同的制备方法和及其采用的工艺参数。
所有的羟基磷灰石涂层都不相同。
尽管羟基磷灰石涂层的制备有许多技术方法,但采用最广泛的是等离子喷涂技术。
有些新技术的采用,如低压等离子喷涂、生物梯度涂层(biogradient coating),可以增加金属与涂层的结合强度和抗分解能力。
在钛合金表面制备HA生物涂层材料,是一种应用前景广阔,经济效益巨大的新型生物材料,随着新技术、新工艺、新方法和新材料的不断涌现,HA/钛合金复合材料的结合强度、结晶度、生物活性、长期有效性等都会得到不断的提高和发展、生产的成本不断降低,在医用生物材料领域的应用也会不断扩大。
3.2纳米羟基磷灰石在生物医学上研究进展纳米HA是一种性能优良的无机陶瓷材料、同时具有独特的生物学活性。
纳米HA粒子的大小为1~100nm,由于其尺寸小,与普通的HA相比具有溶解度较高、比表面积(SSA)大、表面能较大的优点,因而具有更好生物学活性拉,骨植入体的扭转模量、拉伸模量和拉伸强度更高,疲劳抗力也相应提高。
由纳米HA构成人工骨可以根据不同部位骨生长的需要制成不同的硬度,具有与骨生长相匹配的降解速率,且具有和天然骨类似的多孔结构,与人体不会产生排异反应。
它与原有传统骨材料的最大区别在于修复后的骨和人体骨完全一样,不会在体内留下植人物。
有研究者发现纳米HA本身还具有一定的生物学效应和抑癌作用,也有作为药物载体用于疾病治疗的报道。
HA粒子有良好的组织相容性、无毒、无免疫原性,比表面积大,生物粘附性强且能结合和传递大分子药物,吸附药物量大,具备了药物载体的基本要求。
羟基磷灰石作为药物载体系统能提高药物在生物膜中的透过性,有利于药物透皮吸收并发挥在细胞内的药效。
纳米羟基磷灰石作为药物载体十分安全,因为其与人或动物的骨骼、牙齿成分相同,且不为胃肠液所溶解,在释放药物后可降解吸收或全部随粪便排出.此外,纳米羟基磷灰石在生成过程中很方便引入放射性元素,可用于癌细胞的灭活冲。
HA纳米粒子直接抗肝癌细胞主要体现在提高细胞内的钙离子含量,因Ca2+对细胞有极重要的生理功能,调节着许多的生理活动,可作为细胞的第二信使而发挥作用,如果细胞钙平衡失调将导致细胞功能紊乱。
Ca2+可激活细胞内Ca2+/Mg+依赖性核酸内切酶,使DNA发生降解并导致凋亡,细胞形态学表现出特征性变化:细胞体积缩小,胞膜皱缩,核固缩,核质沿核膜浓缩边集,形成数个团块或境界分明的新月形小体,有的细胞核碎裂,形成由膜状物包裹内容物的凋亡小体,这一结果证明HA纳米粒子可诱导人肝癌细胞凋亡。
3.3羟基磷灰石其他复合材料的研究进展3.3.1羟基磷灰石/壳聚糖复合材料壳聚糖(chjtosan,简称CS)是一种天然的生物可降解多糖,其降解产物为氨基葡萄糖,对人体及组织无毒、无害。
它对多种组织细胞的黏附和增殖具有促进作用,是一种较理想的天然可降解的阳离子多糖。
壳聚糖可由甲壳类动物的壳中提取的甲壳素脱乙酰化而得,也可用蛆皮和蛹壳以及黑曲霉纤维素酶等来制备。
壳聚糖具有天然的药物活性、抗肿瘤活性、消炎作用,能加快创伤愈合,作为细胞、生长因子载体和支架材料已被用于皮肤、神经、骨和软骨以及肝脏组织工程中ll引,还成功地用作手术缝合线、伤口敷料、药物缓释剂、缺损填充物及组织工程支架。
虽然壳聚糖的研究取得了很大进展,但由于壳聚糖缺乏骨键合生物活性,单独使用时的力学性能不够理想,缺乏弹性和柔韧性,从而限制了在骨组织工程中的应用。
为了弥补这方面的不足,许多学者将羟基磷灰石、壳聚糖两种材料复合,所得到的复合材料不仅具有二者的优点,而且两相之间的协同作用赋予复合体优异的力学性能,可以适用于人体的生理负载环境,从而为开发出新型实用的骨组织修复和替代材料带来了新的希望。
在材料的性能方面,羟基磷灰石/壳聚糖复合材料与人体骨骼性能一样,从而避免了材料因弹性模量较骨高时造成骨质吸收,弹性模量过低又不能起到刺激骨生长的作用。
同时该复合材料也继承了羟基磷灰石良好的生物相容性,避免了植入生物体内产生的排斥效应。
更为重要的是该复合材料完全无毒,能很好的做为骨组织观察的替代材料。
3.3.2 羟基磷灰石/聚乙烯复合材料聚乙烯(polyethlene),简称PE,是一种乳白色半透明的固体,它是一种生物惰性材料,其耐寒性、耐水性、耐药品性、耐化学性良好。
有学者将纳米羟基磷灰石与聚乙烯、聚砜合成HA一多聚体复合物,通过对HA与这两种多聚体聚合形成的新化合物的两轴疲劳试验测试,结果表明该化合物有良好的临床应用价值。
李冬梅等在羟基磷灰石/超高分子聚乙烯(hydroxyapatite/ultra—high molecularweight polyethtlene,HA/UHMWPE)复合材料的组织相容性及骨传导性实验研究中将复合材料置入兔的眶骨缺损中,实验结果表明复合材料既具有HA的良好生物性能和骨传导性,又保留有超高分子聚乙烯的可塑性。
在材料置人的8周后,于材料边缘可见骨细胞及钙盐呈板状骨样沉着,说明HA/UHMWPE材料可与骨组织形成直接的、牢固的骨性结合。
也有研究者将羟基磷灰石/聚乙烯复合物植入11例患者中耳,2~30个月后分别将11例中耳假体取出于光镜、透射电镜和扫描电镜下进行研究,结果证实该复合物植人体生物相容性好,非常适用于中耳重建术。
5.结语生物材料是一类特殊的功能材料,利用它可以对有机体进行修复、替代与再生。
生物医学材料研究的最终目的是用其能够替代或修复人体器官和组织,并实现其生理功能。
而羟基磷灰石因其良好的生物相容性,在生物医用材料中受到着普遍关注。
由于其自身的性质,在很多应用方面只有通过与其他材料复合来达到所需要的性能。
总之,随着材料科学、生命科学和医学的发展,羟基磷灰石及其复合材料的研究已经取得了较大的进展。
但仍然存在很多问题,如目前羟基磷灰石,聚合物复合材料的研究,基本上只是HA颗粒与聚合物的机械混合,材料的性能优化也往往只限于聚合物的结晶化,复合材料两相间缺乏化学键的结合,界面结合力不够牢固,也没有形成有序的微观结构,无机微粒在聚合物相中的分散程度还不是太理想,材料的降解速率也还不能很好地控制等。
总的来说,羟基磷灰石及其复合材料在诸多方面所具有的功能优势,预示着它在生物医用材料研究领域中的巨大潜力,必将引起更多的关注、研究和更广泛的应用前景。