探索性因子分析(课堂PPT)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
★ 基本思想 通过分析变量间的相关系数矩阵内部结构,将原
变量进行重新组合,利用数学工具将众多的原变量 组成少数的独立的新变量。
3
• 探索性因子分析法(Exploratory Factor Analysis ,EFA)是一项用来找出多元观测变量的本质结 构、并进行处理降维的技术。
• 特点: (1)利用因子分析来确定因子个数——降维 (2)完全依赖资料数据
20
估计因子得分的方法
➢回归法
因子得分的均值为0,方差等于估计因子 得分与实际得分之间的多元相关的平方
➢Bartlett法
因子得分均值为0,超出变量范围的特殊 因子平方和被最小化
➢Anderson-Rubin法
因子得分的均值为0,标准差为1,且彼此 不相关。是为了保证因子的正交性而对 Bartlett因子的调整。
9
判断变量是否适合做因子分析
1. KMO(Kaiser-meyer-olkin)检验 KMO统计量是用来比较各变量间简单相关系
数和偏相关系数的大小。在0~1之间取值,越接近 1,越适合作因子分析。 2. 巴特利特球形检验
巴特利特球形检验原假设H0为:相关阵是单 位阵,既各变量各自独立。 3. 反映象相关矩阵检验
21
Biblioteka Baidu
• Example
22
• 旋转后的因子表达式可以写成:
FA1C 10.091po'p0.392sch'o0o.0l39emp' l 0.299serv'ic0.4es03hou' se FA2C 10.484po'p0.096sch'o0o.4l65emp' lo 0.138serv'ic0.0es98hou' se
19
因子得分
• 因子得分就是每个观测量的公共因子的值。根 据因子得分系数和原始变量的标准化值,可以 计算每个观测量的各因子的得分数,并可以据 此对观测量进行进一步的分析。
• 计算因子得分的基本思想是将因子变量表现为 原有变量的线性组合,即通过以下的因子得分 函数计算:
F j j 1 x 1 j 2 x 2 jx 3 jx p (j=1,2···p)
反映象相关矩阵检验是将偏相关系数矩阵的 每个元素取反得到的。如果变量中确实能够提取 出公共因子,那么偏相关系数必然很小,则反映 象相关矩阵中的有些元素的绝对值比较大,则说 明这些变量可能不适合作因子分析。
10
确定因子个数
• 主成分分析的主要统计量
11
确定因子个数的方法(一)
➢特征根
特征根可以看成是表示公因子影响力度大 小的指标,一般取特征值大于1的成分作 为主成分,特征根小于1,不引入
其中,Xn表示观测变量,FM代表公因子,它 是各个观测变量所共有的因子,解释变量之间的 相关;Un代表特殊因子,它是每个观测变量所特 有的因子,只对一个原始变量起作用;WM代表 因子载荷,是每个变量在公因子上的相关系数; 而en代表了每一观测变量的随机误差。
6
• 探索性因子分析模型
7
应用范围
探索性因子分析主要应用于三个方面 ➢寻求基本结构,解决多元统计分析中
4
探索性因子分析的理论假设
主要包括: ①所有的公共因子都相关(或都不相关); ②所有的公共因子都直接影响所有的观测变
量; ③特殊(唯一性)因子之间相互独立; ④所有观测变量只受一个特殊(唯一性)因子
的影响; ⑤公共因子与特殊因子(唯一性)相互独立。
5
探索性因子分析基本原理
探索性因子分析模型的一般表达式为
• 因子旋转通常分为两类:
➢ 正交旋转
Varimax方差最大旋转,它使每个因子上的具有 最高载荷的变量数最小,可简化对因子的解释。
➢ 斜交旋转
18
因子旋转(二)
• 正交旋转的基本假定是,因子分析中被提 取出来的因子之间是相互独立的,因子间 并不相关。它的目的是要获得因子的简单 结构,即使每个变量在尽可能少的因子上 有较高的负载;而斜交旋转中,因子间的夹 角是任意的,也就是说斜交旋转对因子间 是否相关并无限定,这种因子旋转的结果 就会使各因子所解释的变量的方差出现一 定程度的重叠。
的变量间强相关问题 ➢数据化简,将具有错综复杂关系的
变量综合为少数几个因子(不可观 测的、相互独立的随机变量) ➢发展测量量表
8
探索性因子分析——步骤
收集观测变量
构造相关矩阵
判断是否适合作因子分析
确定因子个数 提取因子
特征值大小、因子累计贡献率、碎石图
因子旋转 解释因子结构 计算因子得分
便于对因子结构进行合理解释 做进一步的研究,如聚类分析、评价
• Example
16
• 因子分析的一个重要目的在于对原 始变量进行分门别类的综合评价。 如果因子分析结果保证了因子之间 的正交性,但对因子不易命名,可 以通过对因子模型的旋转,得到容 易解释的结果。
17
因子旋转(一)
• 所谓旋转就是一种坐标变换。因子旋转的 目的是为了便于理解和解释因子的实际意 义,在旋转后的新坐标系中,因子载荷将 得到重新分配,使得对公因子的命名和解 释更加容易。
1
目录
1
因子分析介绍
2
探索性因子分析的基本理论
3
探索性因子分析的结构及步骤
4
实例演示
2
因子分析
★ 概念 用于分析影响变量、支配变量的共同因子有几
个且各因子本质为何的一种统计方法。它是一类 降维的相关分析技术,用来考察一组变量之间的 协方差或相关系数结构,并用以解释这些变量与 为数较少的因子之间的关联。
13
确定因子个数的方法(三)
➢碎石图
碎石图是按特征值大小排列因子,横轴表 示因子序号,纵轴表示特征值大小。
14
公因子提取方法
➢主成分分析法
假设变量是因子的纯线性组合,第 一成分有较大的方差,后续成分其 可解释的方差逐个递减。
➢最大似然法
该方法不要求多元正态分布,给出 参数估计。
15
因子命名
• 因子载荷阵显示了原始变量与各主成分之 间的相关程度。根据他们的相关程度的大 小,综合出各因子的含义。如果每个因子 与原始变量相关系数没有很明显的差异, 对因子命名就比较困难。
➢公因子的累积方差贡献率
根据累计贡献率达到的百分比确定
12
确定因子个数的方法(二)
• 实际上累积贡献率是一个次要指标 。主要指标是特征值, 在前一指标达 到的情况下,只要累计贡献率不是 太差都可以接受。即使70%也不是 太大的问题。实际处理中,很少碰 到累计贡献率太低的情况,如果问 卷设计和数据收集没有太大问题的 前提下。
相关文档
最新文档