北师大版七年级数学上册第一章检测卷(含答案)

合集下载

北师大版七年级上册数学第一章测试卷(附答案)

北师大版七年级上册数学第一章测试卷(附答案)

北师大版七年级上册数学第一章测试卷(附答案)一、单选题(共12题;共36分)1.下列说法上正确的是()A. 长方体的截面一定是长方形;B. 正方体的截面一定是正方形;C. 圆锥的截面一定是三角形;D. 球体的截面一定是圆。

2.如图是由5个小立方块搭建而成的几何体,它的俯视图是()A. B. C. D.3.如图是一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是()A. 8B. 10C. 12D. 144.如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是()A. 200cm2B. 600cm2C. 100πcm2D. 200πcm25.下列的正方体表面展开图中,折成正方体后“快”与“乐”相对的是()A. B. C. D.6.一个几何体的展开图如图所示,这个几何体是()A. 三棱柱B. 三棱锥C. 四棱柱D. 四棱锥7.如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是()A. B. C. D.8.如图摆放的正六棱柱的俯视图是()A. B. C. D.9.三通管的立体图如图所示,则这个几何体的主视图是()A. B. C. D.10.下列由若干个单位立方体搭成的几何体中,左视图如图所示的为()A. B. C. D.11.如图,是一个用若干个相同的小立方块搭成的几何体的三视图,则组成这个几何体的小立方块的个数是()A. 2B. 3C. 4D. 512.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体()A. 3个B. 4个C. 5个D. 6个二、填空题(共5题;共15分)13.某几何体的三视图如图所示,则这个几何体的名称是________.14.立方体木块的六个面分别标有数字1、2、3、4、5、6,如图,是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是________.15.一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中与“价”字相对的字是________.16.已知有一个立体图形由四个相同的小立方体组成。

++第一章+丰富的图形世界+单元检测卷++2024--2025学年北师大版七年级数学上册

++第一章+丰富的图形世界+单元检测卷++2024--2025学年北师大版七年级数学上册

2024--2025学年北师大版数学七年级上册第一章丰富的图形世界单元检测试卷2(含答案)一、选择题(本大题共10小题,每小题3分,共30分)1、下列四个几何体中,是三棱柱的为( )2、用平面去截一个正方体,截面的形状不可能是()A、三角形B、五边形C、六边形D、七边形3、下列四个图形中,不能作为正方体的展开图的是( )4、如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是 ( )A、从正面看到的图形的面积为5B、从左面看到的图形的面积为3C、从上面看到的图形的面积为3D、从正面、左面和上面看到的图形的面积都是45、如图是一个几何体从上面看到的形状图,则这个几何体的形状可能是( )6、一个三棱柱的侧面数,顶点数分别在()A、4,10B、3,6C、5,15D、6,157、如图是正方体的一种展开图,其中每个面上都有一个数字,那么在原正方体中,与数字6相对面上 的数字是( )A 、1B 、4C 、5D 、28、用一些大小相同的小正方体搭成一个几何体,从上面看这个几何体时看到的图形如图,其中正方 形中的数字表示该位置上的小正方体的个数,那么从左面看这个几何体时,看到的图形是( )9、如图,三个大小不等的正方体拼成的几何体,其中两个小正方体的棱长之和等于大正方体的棱长, 分别从正面、左面、上面看该几何体所得到的平面图形面积分别为S 1、S 2、S 3,则S 1、S 2、S 3的大 小关系是( )A 、321S S S ==B 、321S S S <<C 、123S S S <<D 、213S S S <<10、一个积木由若干个大小相同且棱长为1的正方体搭成,如图分别是从三个方向看到的形状图,则该积木中棱长为1的正方体的个数是( )A 、6个B 、7个C 、8个D 、9个二、填空题(本大题共10小题,每小题3分,共30分)11、如图,属于柱体的是__________,属于锥体的是________,属于球体的是________.(填序号)12、小明拿着一个有10个面的棱柱,小明拿着的是________棱柱。

2024年北师大版七年级上册数学第一章综合检测试卷及答案

2024年北师大版七年级上册数学第一章综合检测试卷及答案
①②③④
15.一个几何体从3个方向看到的形状图如图所示,则该几何体的侧面积是_______.(结果保留 )
三、解答题(共55分)
16.(7分)请你画出如图所示的几何体从正面、左面、上面看到的形状图.
解:
17.(7分)如图所示,给出了6个立体图形.找出图中具有相同特征的图形,并说明相同特征.
解:①③都是由六个面组成的,且六个面都是四边形;①③④的面都是平的;②⑤⑥都有一个面是曲的;②⑥至少有一个面是圆.
(1) 和 ;
解: , .
(2) 和 ;
[答案] , .
(3) 和 .
[答案] , .
D
A.从正面看到的形状图不同B.仅从上面看到的形状图相同C.仅从左面看到的形状图不同D.从正面、上面、左面看到的形状图都相同
二、填空题(每小题3分,共15分)
11.国扇文化有深厚的文化底蕴,历来中国有“制扇王国”之称.打开折扇时,随着扇骨的移动形成一个扇面,这种现象可以用数学原理解释为__________.
19.(10分)如图所示的是某几何体的表面展开图.
(1)这个几何体的名称是______;
圆柱
(2)画出从三个方向看这个竖直放置的几何体的形状图;
解:
(3)求这个几何体的体积.
[答案] 这个几何体的体积为 .
20.(12分)如图是一个长为 、宽为 的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1,图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大.(结果保留 )
线动成面
12.在图中增加1个小正方形,使所得图形经过折叠能够围成一个正方体,在图中适合按要求加上小正方形的位置有___个.
4
13.一个几何体从正面看、从左面看、从上面看到的形状图如图所示,该几何体是________.

第1章 丰富的图形世界 七年级上册数学北师大版(2024)单元质检B卷(含答案)

第1章 丰富的图形世界 七年级上册数学北师大版(2024)单元质检B卷(含答案)

(2)丰富的图形世界—七年级上册数学北师大版(2024)单元质检卷(B卷)【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.下面几何体中,是圆锥的为( )A. B. C. D.2.如图,将小立方块①从4个大小相同的小立方块所搭的几何体中移走后,所得几何体( )A.从上面看到的图形改变,从左面看到的图形改变B.从上面看到的图形不变,从左面看到的图形改变C.从前面看到的图形改变,从左面看到的图形不变D.从前面看到的图形不变,从左面看到的图形不变3.下面的几何图形,哪一个不能由平面图形绕某直线旋转一周得到( )A. B. C. D.4.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )A. B. C. D.5.用一个平面去截长方体、圆柱、圆锥、正方体、五棱柱,截面形状可能是三角形的有( )A.2个B.3个C.4个D.5个6.给出下列结论:①圆柱由三个面围成,这三个面都是平的;②圆锥由两个面围成,这两个面中,一个面是平的,一个面是曲的;③球仅由一个面围成,这个面是曲的;④长方体由六个面围成,这六个面都是平的.其中正确的有( )A.①②③B.①③④C.②③④D.①②④7.下面各说法中,错误的是( )A.直五棱柱有7个面B.直三棱柱有9条棱C.用平面去截一个圆锥,截面可能是三角形D.绕正方形四条边长中的任意一条边旋转一周得到的几何体不可能是圆柱8.能由如图所示的平面图形折叠而成的立体图形是( )A. B. C. D.9.走马灯,又称仙音烛,据史料记载,走马灯的历史起于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日,在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成一个棱锥形的“走马灯”,正方形做底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意”的字样.则在A、B、C处依次写上的字可以是( )A.吉如意B.意吉如C.吉意如D.意如吉10.用一个平面去截下列几何体,若截面的形状是三角形,则这个几何体不可能是( )A. B. C. D.二、填空题(每小题4分,共20分)11.如图所示,用一个平面截六棱柱,剩下的几何体(阴影部分)是______,共有______个面.12.《雨不绝》是唐代诗人杜甫的作品,其中有诗句:鸣雨既过渐细微,映空摇飏如丝飞.译文:喧哗的雨已经过去,逐渐变得细微,映着天空摇漾的是如丝的细雨飘飞.诗中描写雨滴滴下来形成雨丝,用数学知识解释为__________.13.如图,将一张正方形纸板的四角各剪去一个小正方形,折成一个无盖长方体盒子,若折成的长方体盒子的底面边长为,体积为,则原正方形纸面的边长为____________ .14.用一个平面取截取一个几何体,截面形状为圆,则这个几何体可能是_________.(填序号)①正方体;②圆柱;③圆锥;④正三棱柱15.一个几何体由13个大小相同的小立方块搭成.从前面、左面、上面看这个几何体得到的平面图形如图所示,则这个几何体的搭法共有________种.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)指出如图所示的立体图形中的柱体、锥体、球.柱体:___________________________.锥体:___________________________.球体:___________________________.(填序号)17.(8分)我们知道,三棱柱的上、下底面都是三角形,那么正三棱柱的上、下底面都是等边三角形.如图,大正三棱柱的底面周长为10,截取一个底面周长为3的小正三棱柱.(1)请写出截面的形状;(2)请直接写出四边形DECB的周长.18.(10分)如图是由若干个边长为1cm的小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请分别画出从正面和从左面看到的形状图,井计算出该几何体的表面积.19.(10分)如图所示,长方形ABCD的长AB为10 cm,宽AD为6 cm,把长方形ABCD绕AB 边所在的直线旋转一周,然后用平面沿AB方向去截所得的几何体,求截面的最大面积.20.(12分)(1)如果将图①~⑤的平面图形绕虚线旋转一周,可以得到图Ⅰ~Ⅴ的几何体,请你把有对应关系的平面图形与几何体用线连接起来;(2)在图Ⅰ~Ⅴ的几何体中,有顶点的几何体是______,没有顶点的几何体是________;(3)图Ⅴ中的几何体由几个面围成?面与面相交成几条线?它们是直的还是曲的?21.(12分)如图,图1为一个长方体,,,图2为左图的表面展开图,请根据要求回答问题:(1)面“学”的对面是面什么?(2)图1中,M、N为所在棱的中点,试在图2中画出点M、N的位置;并求出图2中的面积.答案以及解析1.答案:B解析:A选项为圆柱,不合题意;B选项为圆锥,符合题意;C选项为三棱锥,不合题意;D选项为球,不合题意;故选B.2.答案:A解析:将小立方块①从4个大小相同的小立方块所搭的几何体中移走后,所得几何体从前面看到的图形不变,从左面看到的图形由原来的两列变为一列,从上面看到的图形由原来的两行变为一行.故选A.3.答案:B解析:球可以由一个半圆绕直径所在的直线旋转一周得到,故A不符合题意;正方体不能由一个平面图形绕某直线旋转一周得到,故B符合题意;圆锥可以由一个直角三角形绕一条直角边所在的直线旋转一周得到,故C不符合题意;圆柱可以由一个矩形绕一条边所在的直线旋转一周得到,故D不符合题意.故选:B.4.答案:A解析:A.可以通过旋转得到两个圆柱,故本选项正确;B.可以通过旋转得到一个圆柱,一个圆筒,故本选项错误;C.可以通过旋转得到一个圆柱,两个圆筒,故本选项错误;D.可以通过旋转得到三个圆柱,故本选项错误.故选:A.5.答案:C解析:用一个平面去截长方体、圆柱、圆锥、正方体、五棱柱,截面形状可能是三角形的有长方体、圆锥、正方体、五棱柱,一共4个.6.答案:C解析:圆柱的侧面是曲的,①错误:圆锥由侧面和底面两个面围成,侧面是曲的,底面是平的,②正确;球只由一个面围成,这个面是曲的,③正确;长方体由六个面围成,这六个面都是平的,④正确.故正确的有②③④,故选C.7.答案:D解析:A.直五棱柱有7个面,故选项A说法正确,不符合题意;B.直三棱柱有9条棱,故选项B说法正确,不符合题意;C.用平面去截一个圆锥,截面可能是三角形,故选项C说法正确,不符合题意;D.绕正方形四条边长中的任意一条边旋转一周得到的几何体是圆柱,故选项D说法错误,符合题意;故选:D.8.答案:D解析:对于A项,圆圈在正面时,两竖线应在上下两面或左右两面,故A项不符合题意;对于B项,当正方形在正面,且含有线的一面为上面时,此面上的线应为竖线,故B项不符合题意;对于C项,折叠后,含有竖线的两个面应相对,故C项不符合题意.9.答案:A解析:由题意可得:展开图是四棱锥,A、B、C处依次写上的字可以是吉,如,意;或如,吉,意;故选A.10.答案:B解析:、用一个平面截正方体的一个角即可得到一个三角形,故此选项不符合题意;、圆柱从哪个方向截,截面不可能是三角形,故此选项符合题意;、用一个平面截六棱柱的一个角即可得到一个三角形,故此选项不符合题意;、沿着圆锥中心轴去截,即可截到三角形,故此选项不符合题意;故选:.11.答案:8解析:如上图所示,用一个平面截六棱柱,剩下的几何体(阴影部分)是六棱柱,共有8个面,故答案为:六棱柱;8.12.答案:点动成线解析:雨滴滴下来形成雨丝属于点动成线,故答案为:点动成线13.答案:解析:由题意得,减去的小正方形的边长为,所以原正方形纸面的边长为,故答案为:.14.答案:②③/③②解析:①当平面截正方体时,所得到的截面不可能是圆;②当平面平行于圆柱的底面时,得到的截面是圆;③用平面平行于圆锥底面时,可以得到圆;④当平面截正三棱柱时,所得到的截面不可能是圆;综上分析可知,用一个平面取截取一个几何体,截面形状为圆,则这个几何体可能是②③.故答案为:②③.15.答案:3解析:由从上面看得到的平面图形可知最底层小立方块的个数为9,由另外两个方向看得到的平面图形可知第三层有1个小立方块,那么第二层有3个小立方块,结合图形可知这个几何体的搭法共有3种,如图所示,数字表示该位置小立方块的个数.故答案为3.16.答案:①②⑤⑦⑧;④⑥;③解析:柱体为:①②⑤⑦⑧;锥体为:④⑥;球体为:③.故答案为:①②⑤⑦⑧;④⑥;③.17.答案:(1)长方形(2)9解析:(1)由题可得,截面的形状为长方形.(2)是周长为3的等边三角形,,又是周长为10的等边三角形,,,四边形DECB的周长9.18.答案:图见解析,解析:从正面和从左面看到的形状如图所示:该几何体的表面积是:19.答案:截面的最大面积为解析:把长方形ABCD绕AB边所在的直线旋转一周,得到的几何体为圆柱,且圆柱的底面半径为6 cm,高为10 cm.当沿图示的方法截圆柱时,得到的截面面积最大且为一个长方形,此长方形的长为圆柱的底面直径,宽为圆柱的高.所以截面的最大面积为.20.答案:(1)见解析(2)Ⅰ、Ⅱ、Ⅲ;Ⅳ、Ⅴ(3)Ⅴ中的几何体有2个面,其中一个是平面,一个是曲面,面与面相交有一条线,是一条曲线解析:(1)如图所示:(2)在图I~Ⅴ的几何体中,有顶点的几何体是Ⅰ、Ⅱ、Ⅲ,没有顶点的几何体是Ⅳ、Ⅴ;故答案为:Ⅰ、Ⅱ、Ⅲ;Ⅳ、Ⅴ.(3)Ⅴ中的几何体有2个面,其中一个是平面,一个是曲面,面与面相交有一条线,是一条曲线.21.答案:(1)面“学”的对面是面国(2)的面积为64解析:(1)正方体的表面展开图,相对的面之间一定相隔一个正方形,“学”与“国”是相对面,“叶”与“际”是相对面,“枫”与“校”是相对面,答:面“学”的对面是面国.(2)点M、N如图所示,∵N是所在棱的中点,∴点N到AB的距离为,∴的面积.。

七年级数学上册第一章丰富的图形世界检测题含解析新版北师大版

七年级数学上册第一章丰富的图形世界检测题含解析新版北师大版

港云连的丽美第一章 丰富的图形世界检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分) 1.在棱柱中( ) A.只有两个面平行 B.所有的棱都平行 C.所有的面都是平行四边形 D.两底面平行,且各侧棱也互相平行2.下列平面图形不能够围成正方体的是( )3. (2016·浙江丽水中考) 下列图形中,属于立体图形的是( ) A .B .C .D .4. (2016·江苏连云港中考)如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是( )A .丽B .连C .云D .港5.(2015·湖北宜昌中考)下列图形中可以作为一个三棱柱的展开图的是( )A B 第4题图C D6.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列左图是以下四个图中的哪一个绕着直线旋转一周得到的( )A B D C7.如图是一个立体图形从三个不同方向看到的形状图,这个立体图形是由一些相同的小正方体构成,这些相同的小正方体的个数是()A.4B.5C.6D.78.如图所示的几何体中,从上面看到的图形相同的是()第8题图A.①②B.①③C.②③D.②④9. (2016·安徽中考改编)如图,一个放置在水平桌面上的圆柱,从正面看到的图形是( )第9题图10.如图,下面三个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂黄色、白色、红色的对面分别是()A.蓝色、绿色、黑色B.绿色、蓝色、黑色C.绿色、黑色、蓝色D.蓝色、黑色、绿色二、填空题(每小题3分,共24分)11.下列表面展开图的立体图形的名称分别是:______、______、______、______.第11题图12.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去____(填序号).13.如果一个几何体从三个方向看到的图形之一是三角形,这个几何体可能是(写出3个即可).14.若几何体从正面看是圆,从左面和上面看都是长方形,则该几何体是 .15.在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则摆出这样的图形至少需要块正方体木块,至多需要块正方体木块.第15题图16.如图所示的立体图形是由几个小正方体组成的一个几何体,这个几何体从上面看到的形状图是_____________.(填A或B或C或D)第16题图17.(2015·山东青岛中考)如图,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭的几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小正方体,王亮所搭几何体的表面积为___.第17题图18.下列第二行的哪种几何体的表面能展开成第一行的平面图形?请对应填空.①:_____________;②:_____________;③:_____________;④:_____________;⑤:_____________.第18题图三、解答题(共46分)19.(6分)如图是一个正方体骰子的表面展开图,请根据要求回答问题:(1)如果1点在上面,3点在左面,几点在前面?(2)如果5点在下面,几点在上面?第19题图第20题图20.(6分)画出如图所示的正三棱锥从正面、上面看到的形状图.21.(6分)如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.第21题图第22题图22.(7分)画出下列几何体从正面、左面看到的形状图.23.(7分)如图,某同学在制作正方体模型的时候,在方格纸上画出几个小正方形(图中阴影部分),但是由于疏忽少画了一个,请你给他补上一个,使之可以组合成正方体,你有几种画法,在图上用阴影注明.第23题图24.(7分)如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求的值.第24题图25.(7分)一只蜘蛛在一个正方体的顶点A处,一只蚊子在正方体的顶点B处,如图所示,现在蜘蛛想尽快地捉到这只蚊子,那么它所走的最短路线是怎样的,在图上画出来,这样的最短路线有几条?第25题图第一章丰富的图形世界检测题参考答案一、选择题1.D 解析:对于A,如果是长方体,不止有两个面平行,故错误;对于B,如果是长方体,不可能所有的棱都平行,只是所有的侧棱都平行,故错误;对于C,如果是底面为梯形的棱柱,不是所有的面都是平行四边形,故错误;对于D,根据棱柱的定义知其正确,故选D.2.B 解析:利用自己的空间想象能力或者自己动手实践一下,可知答案选B.3.C 解析:A中,角是平面图形,故A错误;B中,圆是平面图形,故B错误;C中,圆锥是立体图形,故C正确;D中,三角形是平面图形,故D错误.4. D 解析:根据正方体的表面展开图可知,丽与连相对;美与港相对;的与云相对.5.A 解析: 依据平面展开图想象围成的多面体的形状,借助想象力,通过比较与综合可知只有选项A中的展开图才能围成三棱柱.6.A 解析:A可以通过旋转得到两个圆柱,故本选项正确;B可以通过旋转得到一个圆柱,一个圆筒,故本选项错误;C可以通过旋转得到一个圆柱,两个圆筒,故本选项错误;D可以通过旋转得到三个圆柱,故本选项错误.7.D8.C 解析:①从上面看到的图形是一个没圆心的圆,②③从上面看到的图形是一个带圆心的圆,④从上面看到的图形是两个不带圆心的同心圆,故答案选C.9.C 解析:对于放置在水平桌面上的圆柱体,从它的正面看到的图形是长方形,所以选C.10.B 解析:分析可知黄色的对面是绿色,白色的对面是蓝色,红色的对面是黑色.二、填空题11.圆柱圆锥四棱锥三棱柱12.1或2或6 解析:根据有“田”字格的展开图都不是正方体的表面展开图可知,应剪去1或2或6,答案不唯一.13.圆锥,三棱柱,三棱锥等14.圆柱解析:几何体从正面看是圆,从左面和上面看都是长方形,符合这个条件的几何体只有圆柱.15.6 16 解析:易得第一层最少有4块正方体,最多有12块正方体;第二层最少有2块正方体,最多有4块正方体,故总共至少有6块正方体,至多有16块正方体.16.C 解析:该几何体从上面看是三个正方形排成一行,所以从上面看到的形状图是C.17.19,48 解析:两人所搭成的几何体拼成一个大长方体,该长方体的长、宽、高至少为3,3,4,所以它的体积为36,故它是由36个棱长为1的小正方体搭成的,那么王亮至少还需要36-17=19(个)小正方体.王亮所搭几何体上面面积为8,右侧面积为7,左侧面积为7,后面面积为9,前面面积为9,底面面积为8,故表面积为48.18.D,E,A,B,C三、解答题19.解:(1)如果1点在上面,3点在左面,那么2点在前面.(2)如果5点在下面,那么2点在上面.20.解:几何体从正面、上面看到的形状图如图所示.第20题图21.解:从正面和从左面看到的形状图如图所示:第21题图22.解:从正面、左面看到的形状图如图所示:第22题图23.解:画图如图所示,共有四种画法.第23题图24.解:由于正方体的平面展开图共有六个面,其中面“”与面“3”相对,面“”与面“-2”相对,面“”与面“10”相对, 则,,,解得,,.故.25.分析:欲求从点A到点B的最短路线,在立体图形中难以解决,可以考虑把正方体展开成平面图形来考虑.如图(1)所示,我们都有这样的实际经验,在两点之间,走直线路程最短,因而沿着从点A到点B的虚线走,路程最短,然后把展开图折叠起来.第25题图(1)解:所走的最短路线是正方体平面展开图中从点A到点B的连线(如图(1)).在正方体上,像这样的最短路线一共有6条,但通过地面的有2条,这2条不符合实际意义,故符合题意的只有4条,如图(2)所示.第25题图(2)。

北师大版七年级数学上第一章测试题含答案

北师大版七年级数学上第一章测试题含答案

单元测试(一)丰富的图形世界(时间:45分钟满分:IOO分)一.选择题(每小题3分,共24分)1.下列几何体没有曲面的是()A.圆锥B.圆柱C.球2.把一个正方体截去一个角,剩下的几何体最多有()A. 5个而B. 6个面C. 7个而3.下列说法不正确的是()A.球的截而一定是圆C.从三个不同的方向看正方体,得到的都是正方形)C.)D •棱柱D. 8个而B.D.组成长方体的各个而中不可能有正方形圆锥的截而可能是圆4.将半圆绕它的直径旋转360度形成的几何体是(A.圆柱B.圆锥5.下列图形中,能通过折叠困成一个三棱柱的是(A B6.下图是由六个棱长为1的正方体组成的几何体,D.正方体则从上而看得到的平而图形的而积是()D・6不能得到的平而图形是(A. 3 B・ 4 C・ 57.如图是由四个正方体组成的图形.观察这个图形,8.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以羽成一个封闭的长方体包装盒的是()B C D二、填空题〈每小题3分,共18分)9.飞机表演的"飞机拉线”用数学知识解释为:______________ .10.易拉罐类似于几何体中的________ 体,英中有________ 个平而,W.11.一个棱柱有12个顶点,所有侧棱长的和是48 cm,则每条侧棱长是12.用五个而围成的几何体可能是________________ .13.从正而、左而、上而看一个几何体得到的形状图完全相同,该几何体是__________________ .(写出一个即可)14.把棱长为1 Cln的四个正方体拼接成一个长方体,则在所得长方体中,表而积最大等于三、解答题(共58分)15・(8分)如图所示,请将下列几何体分类.体,其中有. 个曲面.cm.16・(8分)如图所示的正方体被竖直截去了一部分,求被截去的那一部分的体积.(棱柱的体积等于底而积乘以髙)17・(8分)如图是一个由若干个小正方体搭成的几何体从上而看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正而和从左而看到的形状图.• 2 32 2■18・(12分)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个而,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形:②添加的正方形用阴影表示)19・(10分)根据如图所给出的几何体从三个方向看得到的形状图,试确左几何体中小正方体的数目的范围.20・(12分)把一个长方形绕它的一条边所在的直线旋转一周能得到一个圆柱体,那么把一个长为8 cm,宽为6 cm 的长方形,绕它的一条边所在的直线旋转一周后,你能计算出所得到的圆柱体的体积吗?(结果保留兀)从左Ifti参考答案LD 2. C 3. B 4∙ C 5. C 6∙ C 7. D &C 9•点动成线 10•圆柱2 1 11.8 12•四棱锥或三棱柱13•球、正方体等14・18 15.方法一:(1)、(3)、(5)是一类,都是柱体:(2)是锥体;(4)是球体.方法二:(1)、(3)是一类,只由平而构成:(2)、(5)是一类,由平面和曲而构成;(4)是一类,只由曲而构成.16. V=i× (5-4) × (5-3) ×5=5(cm 3).答:被截去的那一部分体积为 5 cm 1. 17. 从正而和从左而看到的形状图如图所示.答案不唯一,如图.19•根据题意,构成几何体所需小正方体最多情况如图1所示,构成几何体所需小正方体最少情况如图2所示:所以最多需要11个小正方体,最少需要9个小正方体.20•①若绕着长所在的直线旋转,所得图形为圆柱,此时底而圆半径为6 cm,圆柱的髙为8 cm,则V =I Ix6:X8= 288 π (Cno : ②若绕着宽所在的直线旋转,所得图形为圆柱,此时底而圆半径为8 cm.圆柱的髙为6 cm,贝Ij V= π×82×6 = 384 H (cm 3).答:所得到的圆柱体的体积为288兀cn?或384兀CmI□ □I S Z□ 二 □IZ章末复习(一)丰富的图形世界基础题知识点1生活中的立体图形1.(东台月考)下列图形属于棱柱的有(A. 2个B. 3个2.下列说法错误的是()A.长方体、正方体都是棱柱C.三棱柱的侧而是三角形C・4个D- 5个B.D.3.人在雪地上行走,他的脚印形成一条知识点2图形的展开与折叠4.(泰州中考)一个几何体的表面展开图如图所示,则这个A.四棱锥B.四棱柱C.三棱锥D.三棱柱5.(通辽中考)妈妈为今年参加中考的女儿小红制作了一个正方体礼品盒(如图),六个而上各有一个字,连起来就是“预祝中考成功”,其中“祝”的对而是“考”,“成”的对而是“功",则它的平面展开图可能是()六棱柱有18条棱、6个侧面.12个顶点圆柱由两个平而和一个曲面围成_______ ,这就是 ________ 的原理.6・(河南中考)如图是正方体的一种展开图,其每个而上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是()A・1 B. 4 C・5 D・6知识点3截一个几何体7.(玉田中考)如图所示,用一个平而去截一个圆柱,则截得的形状应为(8.用一平而去截下列几何体,其截而可能是长方形的有()A. 1个B・2个知识点4从三个方向看物体的形状9.(广州中考)从正而看如图所示的几何体得到的平而图形是(圆,这个几何体是()10・在下而四个几何体中•从左而看、从上而看分別得到的平而图形是长方形、中档题11.(普宁校级月考)下列说法中,正确的个数是() A①柱体的两个底而一样大;②圆柱、圆锥的底而都是圆;③棱柱的底而是四边形;④长方体一总是柱体:⑤棱柱的侧面一定是长方形.A・2 B・3 C. 4 D・512・(牡丹江中考)如图,由高和直径相同的5个圆柱搭成的几何体,从左边看得到的平面图形是()I)15・如图的几何体有 ________ 个而, ________ 条棱, ________ 个顶点, 它是由简单的几何体 ________ 和 _______ 组成的. 16.帀成下而这些立体图形的族个而中,哪些而是平的?哪些而是曲的?(1) (2)在无阴影的方格中选出两个画出阴影,使它们与图中四个有阴影的正方形一起可以构成 一个正方体的表而展开图.(填出两种答案)综合题18・(镇江校级期末)如图,图1为一个长方体,AB=AD=16> AE=6,图2为左图的表而展开图,请根据要求回答 (2)图1中,M 、N 为所在棱的中点,试在图2中画出点爪N 的位置,并求出图2中AABN 的而积.13・(河南模拟)如图是一个正方体彼截去一个正三棱锥得到的几何体,从上而看这个几何体,则所看到的平而图形 是() 14・(槐荫区校级期中)观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来() 17・(通许期末)如图所示, 问题:ABD叶国C际学校⑴面“学”的对而是面“ _________ 图图2参考答案基础题I. B 2. C 3.线点动成线 4. A 5. D 6. B 7. B 8. C 9. A 10. A 中档题II.B 12. C 13. B 14. D 15•九十六九四棱锥四棱柱16.(1)中的5个面都是平的.(2)中圆锥的侧而是曲的,圆柱的侧而是曲的,圆柱的底而是平的.17.如图所示(答案不唯一)•综合题18.(1)国⑵点H、N如图所示.因为N是所在棱的中点,所以点N到AB的距离为*X 16=8. 所以AABN的面积为i× 16X8=64.。

北师大版七年级数学上册各章测试卷(共7套,含答案)

北师大版七年级数学上册各章测试卷(共7套,含答案)

(新)北师大版七年级数学上册各章测试卷(共7套,含答案)第一章达标检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.生活中的“八宝粥”易拉罐同学们都很熟悉,你认为“八宝粥”易拉罐类似于( )A.棱柱B.圆柱C.圆锥D.长方体2.将图中的图形绕虚线旋转一周,形成的几何体是( )(第2题)3.如图是一个螺母的示意图,从上面看得到的图形是( )(第3题)4.一个无盖的正方体盒子的表面展开图可以是如图所示的( )(第4题)A.①B.①②C.②③D.①③5.下列说法正确的是( )A.有六条侧棱的棱柱的底面一定是三角形B.棱锥的侧面是三角形C.长方体和正方体不是棱柱D.柱体的上、下两底面可以大小不一样6.用一个平面去截下列几何体,所得截面与其他三个不同的是( )(第7题)7.如图为一个长方体截去两个角后的立体图形,如果照这样截去长方体的八个角,则所得新的立体图形的棱有( )A.26条B.30条C.36条D.42条8.能由如图所示的平面图形折叠而成的立体图形是( )(第8题)9.把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去了7个小正方体),所得到的几何体的表面积是( ) A.78 B.72 C.54 D.4810.如图是由一些小立方块所搭的几何体从三个不同方向看到的图形,若在所搭的几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要的小立方块个数是( )(第10题) A.50 B.51 C.54 D.60二、填空题(每题3分,共24分)11.快速旋转一枚竖立的硬币(假定旋转轴在原地不动),旋转形成的立体图形是________.12.一个棱柱有12个顶点,所有侧棱长的和是48 cm,则每条侧棱长是________.13.如图,将七个小正方形中的一个去掉,就能成为一个正方体的展开图,则去掉的小正方形的序号是______或______.(第13题)(第14题)(第15题)14.如图是从不同方向看一个立体图形得到的平面图形,则这个立体图形的侧面积是________.15.正方体木块的六个面分别标有数字1,2,3,4,5,6,如图是从不同方向观察这个正方体木块看到的数字情况,数字1对面的数字是______.16.如图,木工师傅把一根长为1.6 m的长方体木料锯成3段后,表面积比原来增加了80 cm2,那么这根木料原来的体积是________.(第16题)(第17题)(第18题)17.如图,长方形ABCD的长AB=4,宽BC=3,以AB所在的直线为轴,将长方形旋转一周后所得几何体从正面看到的形状图的面积是________.18.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么该几何体从______面看到的形状图的面积最大.三、解答题(19~21题每题10分,其余每题12分,共66分)19.(1)如图是一些基本立体图形,在括号里写出它们的名称.(第19题)(2)将这些几何体分类,并写出分类的理由.20.如图①②都是几何体的表面展开图,先想一想,再折一折,然后说出图①②折叠后的几何体的名称、棱数与顶点数.(第20题)21.如图是一个立体图形从三个不同方向看所得到的形状图,请写出这个立体图形的名称,并计算这个立体图形的体积(结果保留π).(第21题)22.如图,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状).(1)王亮至少需要多少个小正方体?(2)王亮所搭几何体的表面积是多少?(第22题)23.如图①,在正方体中,点P,Q,S分别是所在边的中点,将此正方体展开,请在展开图(图②)中标出点P,Q,S的位置,当正方体的棱长为a时,求出展开图中三角形PSQ 的面积.(第23题)24.如图①至③是将正方体截去一部分后得到的几何体.(第24题)(1)根据要求填写表格:图面数(f) 顶点数(v) 棱数(e)①②③(2)猜想f,v,e三个数量间有何关系;(3)根据猜想计算,若一个几何体有2 013个顶点,4 023条棱,试求出它的面数.答案一、1.B 2.B 3.B 4.D 5.B 6.D 7.C 8.D 9.B 10.C二、11.球 12.8 cm 13.6;7 14.18 cm 215.3 16.3 200 cm 317.24 18.正三、19.解:(1)球;圆柱;圆锥;长方体;三棱柱(2)第一类:球、圆柱、圆锥,几何体的面中含有曲面;第二类:长方体、三棱柱,几何体的面中不含有曲面.(答案不唯一)20.解:图①折叠后是长方体,有12条棱,8个顶点;图②折叠后是六棱柱,有18条棱,12个顶点.21.解:这个立体图形是圆柱,体积为π×⎝ ⎛⎭⎪⎫822×10=160π(cm 3). 22.解:(1)两人所搭成的几何体拼成一个大长方体,该大长方体的长、宽、高至少为3,3,4,所以它的体积为36,则它是由36个棱长为1的小正方体搭成的,那么王亮至少需要36-17=19(个)小正方体.(2)王亮所搭几何体的上面面积为8,右侧面积为7,左侧面积为7,后面面积为9,前面面积为9,底面面积为8,故表面积为48.23.解:如图所示.(第23题)S 所在位置有两种情况.如图,过点Q 作QT ⊥BC 交直线BC 于点T.S 三角形PSQ =52a ·a -12a ·52a ·12-12a ·32a ·12-a ·a ·12=a 2.由图可以看出三角形PS ′Q 和三角形PSQ 的面积相等,所以三角形PS ′Q 的面积也是a 2.24.解:(1)7;9;14;6;8;12;7;10;15 (2)f +v -e =2.(3)因为v =2 013,e =4 023,f +v -e =2,所以f +2 013-4 023=2,f =2 012,即它的面数是2 012.第二章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分) 1.下列各数中是正数的是( )A .-12B .2C .0D .-0.22.2的相反数是( )A .2B .12C .-2D .-123.在-1,-2,0,1这四个数中最小的数是( )A .-1B .-2C .0D .14.下列计算正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-1C .(-3)2÷(-2)2=32D .0-7-2×5=-175.有理数a ,b 在数轴上对应的位置如图所示,则( )(第5题)A .a +b <0B .a +b >0C .a -b >0D .a b>06.移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A .1.62×104B .162×106C .1.62×108D .0.162×1097.已知|a|=5,|b|=2,且a <b ,则a +b 的值为( )A .3或7B .-3或-7C .-3D .-78.下列说法中正确的是( )A .一个有理数不是正数就是负数B .|a|一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数9.如图的数轴被墨迹盖住一部分,被盖住的整数点有( )(第9题)A .7个B .8个C .9个D .10个10.如图,下面每个表格中的四个数都是按相同规律填写的:(第10题)根据此规律确定x 的值为( )A .135B .170C .209D .252二、填空题(每题3分,共24分)11.-25的绝对值是________,倒数是________.12.某项科学研究,以45 min 为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正.例如9:15记为-1,10:45记为1,以此类推,上午7:45应记为________.13.某商店出售三种品牌的洗衣粉,袋上分别标有质量为(500±0.1) g ,(500±0.2)g ,(500±0.3) g 的字样,从中任意拿出两袋,它们最多相差________.14.比较一个正整数a ,其倒数1a,相反数-a 的大小:________________.15.若x ,y 为有理数,且(5-x)4+|y +5|=0,则⎝ ⎛⎭⎪⎫x y 2 016=________.16.已知在如图所示没有标明原点的数轴上有四个点,且它们表示的数分别为a ,b ,c ,d ,若|a -c|=10,|a -d|=12,|b -d|=9,则|b -c|=________.(第16题)(第17题)17.按如图所示的程序进行计算,如果第一次输入的数是20,而结果不大于100时,应把结果作为输入的数再进行第二次运算,直到符合要求为止,则最后输出的结果为________.18.一列数a 1,a 2,a 3,…,a n .其中a 1=-1,a 2=11-a 1,a 3=11-a 2,…,a n =11-a n -1,则a 1+a 2+a 3+…+a 2 017=________.三、解答题(21题6分,19,22,23题每题8分,其余每题12分,共66分) 19.把下列各数填在相应的集合中:15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,π,1.6·正数集合{ …} 负分数集合{ …} 非负整数集合{ …} 有理数集合{ …} 20.计算:(1)-5-(-3)+(-4)-[-(-2)];(2)-14+⎝ ⎛⎭⎪⎫-112-38+712×(-24);(3)-62×⎝ ⎛⎭⎪⎫-1122-32÷⎝ ⎛⎭⎪⎫-1123×3;(4)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).21.如果a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求a +b a +b +c +m 2-cd 的值.22.一辆货车从超市出发,向东走了1 km ,到达小明家,继续向东走了3 km 到达小兵家,然后向西走了10 km ,到达小华家,最后又向东走了6 km 结束行程.(1)如果以超市为原点,以向东为正方向,用1个单位长度表示1 km ,请你在如图所示的数轴上表示出小明家、小兵家和小华家的具体位置.(第22题)(2)请你通过计算说明货车最后回到什么地方?(3)如果货车行驶1 km 的用油量为0.25 L ,请你计算货车从出发到结束行程共耗油多少升?23.已知有理数a ,b 满足ab 2<0,a +b >0,且|a|=2,|b|=3,求⎪⎪⎪⎪⎪⎪a -13+(b -1)2的值.24.商人小周于上周日收购某农产品10 000 kg ,每千克2.3元,进入批发市场后共占5个摊位,每个摊位最多能容纳 2 000 kg 该农产品,每个摊位的市场管理价为每天20元.批发市场该农产品上周日的批发价为每千克 2.4元,下表为本周内该农产品每天的批发价格比前一天的涨跌情况.(涨记为正,跌记为负)星期一 二 三 四 五 与前一天相比价格的涨跌情况/元+0.3 -0.1 +0.25 +0.2 -0.5 当天的交易量/kg2 5002 0003 0001 5001 000(1)星期四该农产品价格为每千克多少元?(2)本周内该农产品的最高价格为每千克多少元?最低价格为每千克多少元? (3)小周在销售过程中采用逐步减少摊位个数的方法来降低成本,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算.25.观察下列各式: -1×12=-1+12;-12×13=-12+13; -13×14=-13+14;… (1)你发现的规律是____________________;(用含n 的式子表示)(2)用以上规律计算:⎝ ⎛⎭⎪⎫-1×12+⎝ ⎛⎭⎪⎫-12×13+⎝ ⎛⎭⎪⎫-13×14+…+⎝ ⎛⎭⎪⎫-12 017×12 018.答案一、1.B 2.C 3.B 4.D 5.A 6.C 7.B 8.C 9.C10.C 点拨:首先根据图示,可得第n 个表格的左上角的数等于n ,左下角的数等于n +1;然后根据4-1=3,6-2=4,8-3=5,10-4=6,…,可得从第一个表格开始,右上角的数与左上角的数的差分别是3,4,5,…,n +2,据此求出a 的值是多少;最后根据每个表格中右下角的数等于左下角的数与右上角的数的积加上左上角的数,求出x 的值是多少即可.二、11.25;-5212.-3 13.0.6 g 14.-a <1a ≤a15.1 16.7 17.320 18.1 007三、19.解:正数集合{15,0.81,227,171,3.14,π,1.6·,…}负分数集合{-12,-3.1,…}非负整数集合{15,171,0,…}有理数集合{15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,1.6·,…}20.解:(1)原式=-8. (2)原式=30. (3)原式=-73. (4)原式=-40.21.解:由题意,得a +b =0,cd =1, m =±2,所以m 2=4. 所以a +b a +b +c +m 2-cd=0+c+4-1 =0+4-1=3. 22.解:(1)略.(2)由题意得(+1)+(+3)+(-10)+(+6)=0(km ),因而货车最后回到超市. (3)由题意得,1+3+10+6=20(km ),货车从出发到结束行程共耗油0.25×20=5(L ).23.解:由ab 2<0,知a <0.因为a +b >0,所以b >0. 又因为|a|=2,|b|=3, 所以a =-2,b =3.所以⎪⎪⎪⎪⎪⎪a -13+(b -1)2=⎪⎪⎪⎪⎪⎪-2-13+(3-1)2=73+4 =613. 24.解:(1)2.4+0.3-0.1+0.25+0.2=3.05(元). 所以星期四该农产品价格为每千克3.05元. (2)星期一的价格是2.4+0.3=2.7(元); 星期二的价格是2.7-0.1=2.6(元); 星期三的价格是2.6+0.25=2.85(元); 星期四的价格是3.05元;星期五的价格是3.05-0.5=2.55(元).因而最高价格为每千克3.05元,最低价格为每千克2.55元.(3)(2 500×2.7-5×20)+(2 000×2.6-4×20)+(3 000×2.85-3×20)+(1 500×3.05-2×20)+(1 000×2.55-20)-10 000×2.3=6 650+5 120+8 490+4 535+2 530-23 000=27 325-23 000=4 325(元).所以他在本周的买卖中共赚了4 325元.25.解:(1)-1n ×1n +1=-1n +1n +1(n 为正整数)(2)原式=-1+12-12+13-13+14-…-12 017+12 018=-1+12 018=-2 0172 018.第三章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分) 1.下列各式中,代数式的个数是( )①12; ②a +38; ③ab =ba ; ④1x +y ; ⑤2a -1; ⑥a ; ⑦12(a 2-b 2); ⑧5n +2.A .5B .6C .7D .82.单项式-π3a 2b 的系数和次数分别是( )A .π3,3 B .-π3,3 C .-13,4 D .13,43.下列各组是同类项的是( )A .xy 2与-12x 2y B .3x 2y 与-4x 2yz C .a 3与b 3 D .-2a 3b 与12ba 34.如果多项式(a -2)x 4-12x b +x 2-3是关于x 的三次多项式,那么( )A .a =0,b =3B .a =1,b =3C .a =2,b =3D .a =2,b =15.下列去括号正确的是( )A .a -(2b -3c)=a -2b -3cB .x 3-(3x 2+2x -1)=x 3-3x 2-2x -1C .2y 2+(-2y +1)=2y 2-2y +1D .-(2x -y)-(-x 2+y 2)=-2x +y +x 2+y 26.某校组织若干师生到活动基地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车,则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A .200-60xB .140-15xC .200-15xD .140-60x7.如图,阴影部分的面积是( )(第7题)A .112x yB .132xy C .6xy D .3xy8.已知-x +3y =5,则代数式5(x -3y)2-8(x -3y)-5的值为( )A .80B .-170C .160D .609.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的错误结果为xy -2yz +3xz ,则正确答案是( )A .2xy -5yz +xzB .3xy -8yz -xzC .yz +5xzD .3xy -8yz +xz10.如图,小明用棋子摆放图形来研究数的规律.图①中棋子围成三角形,其颗数分别为3,6,9,….类似地,图②中棋子围成正方形,其颗数分别为4,8,12,….下列选项中既能围成三角形又能围成正方形的棋子颗数是( )(第10题)A .2 010B .2 012C .2 014D .2 016二、填空题(每题3分,共24分)11.用代数式表示“比a 的平方的一半小1的数”是____________. 12.已知15 m xn 和-29m 2n 是同类项,则|2-4x|+|4x -1|的值为________.13.已知有理数a ,b 在数轴上对应的点的位置如图所示,化简|a +b|-|b -a|的结果为________.(第13题)14.三角形三边的长分别为(2x +1) cm ,(x 2-2) cm 和(x 2-2x +1) cm ,则这个三角形的周长是________.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 等于________.16.已知a 2-4ab =1,3ab +b 2=2,则整式3a 2+4b 2的值是________.17.随着通讯市场竞争的日益激烈,为了占领市场,甲公司推出的优惠措施是每分降低a 元后,再下调25%;乙公司推出的优惠措施是每分下调25%,再降低a 元.若甲、乙两公司原来每分的收费标准相同,则推出优惠措施后收费较便宜的是________公司.18.有一个正六面体骰子,放在桌面上,将骰子按如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2 017次后,骰子朝下一面的点数是________.(第18题)三、解答题(19,21,22题每题10分,其余每题12分,共66分) 19.先去括号,再合并同类项.(1)2a -(5a -3b)+(4a -b); (2)3(m 2n +mn)-4(mn -2m 2n)+mn.20.先化简,再求值:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1),其中a =-23;(2)⎝ ⎛⎭⎪⎫32x 2-5xy +y 2-⎣⎢⎡⎦⎥⎤-3xy +2⎝ ⎛⎭⎪⎫14x 2-xy +23y 2,其中|x -1|+(y +2)2=0.21.已知A =y 2-ay -1,B =2by 2-4y -1,且2A -B 的值与字母y 的取值无关,求2(a 2b -1)-3a 2b +2的值.22.小刚在图书馆认识了新朋友小明,他想知道小明的年龄,于是说:“把你的年龄减去5,再乘2后减去结果的一半,再加11,把最后结果告诉我,我就能猜出你的年龄.”小明这样做后,小刚果然迅速猜到了小明的年龄.你能说出小刚是用了什么办法猜对的吗?23.A,B两家公司都准备向社会招聘人才,两家公司条件基本相同,只有工资待遇有如下差异:A公司年薪20万元,每年加工龄工资4 000元;B公司半年薪10万元,每半年加工龄工资2 000元.A,B两家公司第n年的年薪分别是多少?从经济角度考虑,选择哪家公司有利?24.如图是一个长方形娱乐场所的设计图.其中半圆形休息区和长方形游泳池以外的地方都是绿地.试解答下列问题:(1)游泳池和休息区的面积各是多少? (2)绿地的面积是多少?(3)如果这个娱乐场所的长是宽的1.5倍,要求绿地面积占整个面积的一半以上.小亮同学根据要求,设计的游泳池的长和宽分别是大长方形的长和宽的一半,你说他的设计符合要求吗?为什么?(第24题)答案一、1.C 2.B 3.D 4.C 5.C 6.C 7.A 8.C9.B 点拨:由题意可知原多项式为(xy -2yz +3xz)+(xy -3yz -2xz)=2xy -5yz +xz ,则正确的答案为(2xy -5yz +xz)+(xy -3yz -2xz)=3xy -8yz -xz.10.D 二、11.12a 2-112.13 点拨:因为15m xn 和-29m 2n 是同类项,所以x =2.所以|2-4x|+|4x -1|=6+7=13.13.-2b 14.2x 2cm 15.416.11 点拨:因为a 2-4ab =1,所以3a 2-12ab =3 ①.因为3ab +b 2=2,所以12ab +4b 2=8 ②.①+②得3a 2+4b 2=11.17.乙 点拨:设甲、乙两公司原来的收费为每分b(b >a)元,则推出优惠措施后,甲公司的收费为(b -a)×75%=0.75b -0.75a (元),乙公司的收费为(0.75b -a )元.因为0.75b -a <0.75b -0.75a ,所以乙公司收费较便宜.18.2三、19.解:(1)2a -(5a -3b)+(4a -b) =2a -5a +3b +4a -b =a +2b.(2)3(m 2n +mn)-4(mn -2m 2n)+mn =3m 2n +3mn -4mn +8m 2n +mn =11m 2n.20.解:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1) =-a 2-4a +3a 2-5a 2-2a +1 =-3a 2-6a +1.当a =-23时,原式=-3×⎝ ⎛⎭⎪⎫-232-6×⎝ ⎛⎭⎪⎫-23+1=113.(2)⎝ ⎛⎭⎪⎫32x 2-5xy +y 2-[-3xy +2(14x 2-xy)+23y 2]=32x 2-5xy +y 2+3xy -12x 2+2xy -23y 2=x 2+13y 2. 因为|x -1|+(y +2)2=0, 所以x -1=0且y +2=0.所以x =1,y =-2.所以原式=12+13×(-2)2=73.21.解:2A -B =2(y 2-ay -1)-(2by 2-4y -1) =2y 2-2ay -2-2by 2+4y +1 =(2-2b)y 2+(4-2a)y -1. 由题意知2-2b =0,4-2a =0, 即a =2,b =1.2(a 2b -1)-3a 2b +2=2a 2b -2-3a 2b +2=-a 2b =-22×1=-4.22.解:设小明的年龄是x 岁,则2(x -5)-12×2(x -5)+11=x +6(小明说的这个数是x +6).所以只要小明说出这个数,小刚再把这个数减去6就能得知小明的年龄. 23.解:A 公司第n 年的年薪为200 000+4 000(n -1)=196 000+4 000n(元),B 公司第n 年的年薪为100 000×2+(2n -1)×2 000=198 000+4 000n(元). 因为n >0,所以196 000+4 000n <198 000+4 000n. 所以从经济角度考虑,选择B 公司有利. 24.解:(1)游泳池的面积为mn ; 休息区的面积为12×π×⎝ ⎛⎭⎪⎫n 22=18πn 2.(2)绿地的面积为ab -mn -18πn 2.(3)符合要求.理由如下:由已知得a =1.5b ,m =0.5a ,n =0.5b. 所以⎝ ⎛⎭⎪⎫ab -mn -18πn 2-12ab = 38b 2-π32b 2>0. 所以ab -mn -18πn 2>12ab ,即小亮设计的游泳池符合要求.第四章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.小辉同学画出了如下的四个图形,你认为是四边形的是( )2.在党中央、国务院“振兴中央苏区”的精神鼓舞下,老区人民掀起了建设家乡的热潮.某村把一条弯曲的公路改为直道以达到缩短路程的目的,其道理用数学知识解释应是( )A .两点之间线段最短B .两点确定一条直线C .线段可以比较大小D .线段有两个端点3.对于下列直线AB ,线段CD ,射线EF ,能相交的是( )4.如图,OB ,OC 都是∠AOD 内部的射线,如果∠AOB =∠COD ,那么( )A .∠AOC>∠BODB .∠AOC =∠BOD C .∠AOC<∠BOD D .以上均有可能(第4题)(第5题)5.如图,下列等式中错误的是( )A .AD -CD =AB +BC B .AC -BC =AD -BD C .AC -BC =AC +BD D .AD -AC =BD -BC6.晓敏早晨8:00出发,中午12:30到家,那么晓敏到家时时针和分针的夹角是( )A .160°B .165°C .120°D .125°7.下列说法正确的有( ) ①角的大小与所画边的长短无关;②比较角的大小就是比较它们的度数的大小;③从角的顶点出发的一条射线把这个角分成两个角,这条射线叫做这个角的平分线; ④如果∠AOC =12∠AOB ,那么OC 是∠AOB 的平分线.A .1个B .2个C .3个D .4个8.如图,射线OA 与正东方向所成的角是30°,射线OA 与射线OB 所成的角是100°,则射线OB 的方向为( )A .北偏西30°B .北偏西50°C .北偏西40°D .西偏北30°(第8题)(第9题)(第10题)9.如图,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线.如果∠AOC =30°,∠BOD =80°,那么∠COE 的度数为( )A .50°B .60°C .65°D .70°10.如图,C ,D 为线段AB 上的两点,M 是AC 的中点,N 是BD 的中点,如果MN =a ,CD =b ,那么线段AB 的长为( )A .2(a -b)B .2a -bC .2a +2bD .2a +b二、填空题(每题3分,共24分)11.工人师傅在用地砖铺地时,常常打两个木桩然后沿着拉紧的线铺地,这样地砖就铺得整齐,这是根据________________________.12.如图,线段有________条,射线有________条.(第12题)13.时钟由2点30分到2点55分,时针走过的角度是________,分针走过的角度是________.14.如图,直径AC 与BD 互相垂直,则半径分别是______________________,扇形AOD 的圆心角是________,弧AD 可表示为________.(第14题)(第15题)(第16题)15.如图,已知线段AB ,延长AB 到C ,使BC =12AB ,D 为AC 的中点,DC =3 cm ,则DB=________.16.如图,∠AOB 是平角,∠AOC =30°,∠BOD =60°,OM ,ON 分别是∠AOC ,∠BOD 的平分线,则∠MON 等于________.17.如图,艺术节期间我班数学兴趣小组设计了一个长方形时钟作品,其中心为O ,数3,6,9,12标在各边中点处,数2在长方形顶点处,则数1应该标在________处(选填一个序号:①线段DE的中点;②∠DOE的平分线与DE的交点).(第17题)(第18题)18.点M,N在数轴上的位置如图所示,如果P是数轴上的另外一点,且3PM=MN,则点P对应的有理数是________.三、解答题(19题8分,20题6分,24题12分,其余每题10分,共66分)19.读句画图:如图,A,B,C,D四点在同一平面内.(1)过点A和点D画直线;(2)画射线CD;(3)画线段AB;(4)连接BC,并反向延长BC.(第19题)20.计算:(1)83°46′+52°39′16″;(2)96°-18°26′59″;(3)20°30′×8;(4)105°24′15″÷3.21.如图,由点O引出6条射线OA,OB,OC,OD,OE,OF,且∠AOB=90°,OF平分∠BOC,OE平分∠AOD.若∠EOF=170°,求∠COD的度数.(第21题)22.如图,在O点的观测站测得渔船A,B的方向分别为北偏东45°,南偏西30°,为了减少相互干扰并取得较好的捕鱼效益,渔船C恰好位于∠AOB的平分线上,求渔船C相对观测站的方向.(第22题)23.如图,已知A ,B ,C 三点在同一直线上,AB =24 cm ,BC =38AB ,E 是线段AC 的中点,D 是线段AB 的中点,求DE 的长.(第23题)24.如图,B 是线段AD 上一动点,沿A →D →A 以2 cm /s 的速度往返运动1次,C 是线段BD 的中点,AD =10 cm ,设点B 的运动时间为t s (0≤t ≤10).(1)当t =2时,①AB =________;②求线段CD 的长度. (2)用含t 的代数式表示运动过程中AB 的长.(3)在运动过程中,若AB 的中点为E ,则EC 的长是否发生变化?若不变,求出EC 的长;若发生变化,请说明理由.(第24题)25.如图,正方形ABCD 内部有若干个点,利用这些点以及正方形ABCD 的顶点A ,B ,C ,D 把原正方形分割成一些三角形(互相不重叠):(第25题)(1)填写下表:正方形ABCD 内点的个数 1 2 3 4 … n 分割成的三角形的个数46…(2)原正方形能否被分割成2 018个三角形?若能,求此时正方形ABCD 内部有多少个点;若不能,请说明理由.答案一、1.B 2.A 3.B 4.B 5.C 6.B 7.B 8.C 9.D 10.B 二、11.两点确定一条直线 12.6;813.12.5°;150°14.OA ,OB ,OC ,OD ;90°;AD ︵15.1 cm 16.135°17.② 点拨:根据钟表表盘的特征可得数1应该标在∠DOE 的平分线与DE 的交点处.故答案为②.18.-1或-5 点拨:因为3PM =MN ,所以PM =13×(3+3)=2.所以当点P 在点M 左侧时,点P 对应的有理数是-5;当点P 在点M 右侧时,点P 对应的有理数是-1.三、19.解:如图.(第19题)20.解:(1)83°46′+52°39′16″= 135°85′16″=136°25′16″.(2)96°-18°26′59 ″=95°59′60″-18°26′59″=77°33′1″. (3)20°30′×8=160°240′=164°. (4)105°24′15″÷3=35°8′5″.21.解:因为∠EOF =170°,∠AOB =90°,所以∠BOF +∠AOE =360°-∠EOF -∠AOB =360°-170°-90°=100°.又因为OF 平分∠BOC ,OE 平分∠AOD ,所以∠COF =∠BOF ,∠EOD =∠AOE. 所以∠COF +∠EOD =∠BOF +∠AOE =100°.所以∠COD =∠EOF -(∠COF +∠EOD)=170°-100°=70°.22.解:由题意可知∠AOB =180°-45°+30°=165°,165°÷2-30°=52.5°,所以渔船C 在观测站南偏东52.5°方向.23.解:因为AB =24 cm ,BC =38AB ,所以BC =38×24=9(cm ).所以AC =AB +BC =24+9=33(cm ). 因为E 是线段AC 的中点, 所以AE =12×33=16.5(cm ).因为D 是线段AB 的中点, 所以AD =12AB =12×24=12(cm ).所以DE =AE -AD =16.5-12=4.5(cm ). 24.解:(1)①4 cm②因为AD =10 cm ,AB =4 cm , 所以BD =10-4=6(cm ). 因为C 是线段BD 的中点, 所以CD =12BD =12×6=3(cm ).(2)因为B 是线段AD 上一动点,沿A →D →A 以2 cm /s 的速度往返运动,所以当0≤t ≤5时,AB =2t cm ;当5<t ≤10时,AB =10-(2t -10)=20-2t(cm ). (3)不变.因为AB 的中点为E ,C 是线段BD 的中点, 所以EC =12(AB +BD)=12AD =12×10=5(cm ).25.解:(1)填表如下: 正方形 ABCD 内点的个数,1,2,3,4,…,n 分割成的 三角形的个数,4,6,8,10,…,2n +2(2)能.当2n +2=2 018,即n =1 008时,原正方形被分割成2 018个三角形,此时正方形ABCD 内部有1 008个点.第五章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.下列方程中,是一元一次方程的是( )A .x =1B .2x+1=0 C .3x +y =2 D .x 2-1=5x2.下列等式变形正确的是( )A .若a =b ,则a -3=3-bB .若x =y ,则x a =y aC .若a =b ,则ac =bcD .若b a=d c,则b =d3.下列方程中,解是x =2的方程是( )A .23x =2B .-14x +12=0 C .3x +6=0 D .5-3x =14.下列解方程过程正确的是( )A .由47x =5-27x ,得4x =5-2xB .由30%x +40%(x +1)=5,得30x +40(x +1)=5C .由x0.2-1=x ,得5x -1=xD .由x -6=8,得x =25.若代数式4x -5与2x -12的值相等,则x 的值是( )A .1B .32C .23D .26.已知方程2x -3=m3+x 的解满足|x|-1=0,则m 的值是( )A .-6B .-12C .-6或-12D .任何数7.已知方程7x +2=3x -6与关于x 的方程x -1=k 的解相同,则3k 2-1的值为( )A .18B .20C .26D .-268.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是( )A .10x +20=100B .10x -20=100C .20-10x =100D .20x +10=1009.如图①,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20 g 的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的一个砝码后,天平仍呈平衡状态,如图②,则被移动的玻璃球的质量为( )(第9题)A .10 gB .15 gC .20 gD .25 g10.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元二、填空题(每题3分,共24分) 11.方程2x -1=0的解是x =________. 12.已知关于x 的方程(a -3)x|2a -7|-5=0是一元一次方程,则a =________.13.若k 是方程3x +1=7的解,则4k +3=________.14.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量比国画作品数量的2倍多7幅,则展出的油画作品有__________幅.15.一个两位数,个位上的数字是十位上的数字的2倍,如果把十位上与个位上的数字对调,那么所得的两位数比原两位数大27,求原两位数.若设原两位数个位上的数字为x ,则可列方程为____________________;若设原两位数十位上的数字为y ,则可列方程为______________________.16.甲、乙两个足球队连续进行对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,共赛10场,甲队保持不败,得22分,甲队胜________场.(第18题)17.某商店一套服装的进价为200元,若按标价的80%销售可获利72元,则该服装的标价为________元.18.如图是一块在电脑屏幕上出现的长方形色块图,由6个不同颜色的正方形组成,已知中间最小的一个正方形的边长为1,那么这个长方形色块图的面积为________.三、解答题(20~22题每题10分,其余每题12分,共66分) 19.解下列方程:(1)5y -3=2y +6; (2)5x =3(x -4);(3)2x +13-5x -16=1; (4)x 0.7-0.17-0.2x 0.03=1.20.若x=5是方程ax-6=22+a的解.试求关于y的方程ay+5=a-3y的解.21.轮船在静水中的航行速度为20 km/h,水流速度为4 km/h,从甲码头顺流航行到乙码头,再返回甲码头,共用5 h(不计停留时间),求甲、乙两码头间的距离.22.某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15 m3,按每立方米1.8元收费;如果超过15 m3,超过部分按每立方米2.3元收费,其余仍按每立方米1.8元收费.另外,每立方米加收污水处理费1元.若某户一月份共支付水费58.5元,求该户一月份的用水量.23.用一个长60 m的篱笆围成一个长方形鸡场(鸡场的一边靠墙,墙长为20 m).如图,若BC=2AB,求AB和BC的长,并检验是否符合要求;若不符合要求,提出改进意见,并求出改进后的AB,BC的长,使其仍满足BC=2AB.(1)一变:若不利用墙,使围成鸡场的长比宽多6 m,求鸡场的面积;(2)二变:不利用墙,若围成正方形、圆形,分别求出鸡场的面积,并猜想要使鸡场的面积更大一些,最好围成什么图形.(第23题)24.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过一天罚款1 000元,甲、乙两人经商量后签了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合做了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适?为什么?答案一、1.A 2.C 3.B 4.C 5.B 6.C 7.C 8.A 9.A 10.C 二、11.1212.4 点拨:由题意得|2a -7|=1且a -3≠0,解得a =4. 13.11 14.6915.10×x 2+x =10x +x2-27;10y +2y =10×2y +y -27 16.6 17.340 18.143 三、19.解:(1)y =3. (2)x =-6. (3)x =-3. (4)x =1417.20.解:把x =5代入方程ax -6=22+a ,得5a -6=22+a ,解得a =7, 把a =7代入关于y 的方程ay +5=a -3y ,得7y +5=7-3y , 解得y =15.21.解:设甲、乙两码头间的距离为x km ,由题意得x 20+4+x20-4=5.解这个方程得x=48.所以甲、乙两码头间的距离为48 km .22.解:若该户一月份的用水量为15 m 3,则需支付水费15×(1.8+1)=42(元),而42<58.5,所以该户一月份的用水量超过15 m 3.设该户一月份的用水量为x m 3,则列方程为42+(2.3+1)(x -15)=58.5,解得x =20. 所以该户一月份的用水量为20 m 3. 23.解:设AB =x m ,根据题意, 得x +x +2x =60,解得x =15, 所以BC =30 m >20 m . 所以不符合题意. 改进意见:墙AE 做鸡场一边AD 的一部分,如图,设AB =y m ,此时可得方程2(y +2y)-20=60,解得y =403,所以AB =403 m .AD =BC =803m >20 m ,符合题意.(第23题)(1)设宽为z m ,则长为(z +6) m . 由题意,得2(z +6+z)=60. 解得z =12,则长为12+6=18(m ),所以鸡场的面积为12×18=216(m 2). (2)若围成正方形, 则其边长为60÷4=15(m ), 所以面积为152=225(m 2);若围成圆形,则其半径为60÷2π=30π(m ),所以面积为π×⎝ ⎛⎭⎪⎫30π2=900π≈286.6(m 2).因为286.6>225,所以要使鸡场的面积更大一些,最好围成圆形. 24.解:(1)正常情况下,甲、乙两人能履行该合同.理由如下:设两人合做需x 天,由题意得x 30+x20=1,解得x =12,因为12<15,所以正常情况下,两人能履行该合同. (2)调走甲更合适.理由如下:完成这项工程的75%所用天数为34÷⎝ ⎛⎭⎪⎫130+120=9(天),若调走甲,设共需y 天完成,由题意得 34+y -920=1,解得y =14, 因为14<15,所以能履行该合同.若调走乙,设共需z 天完成,由题意得34+z -930=1,解得z =16.5,因为16.5>15,所以不能履行该合同.综上可知,调走甲更合适.第六章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.在下列调查中,适宜采用普查的是( )A .了解我省中学生的视力情况B .了解九(1)班学生校服的尺码情况C .检测一批电灯泡的使用寿命D .调查台州《600全民新闻》栏目的收视率2.为了了解某校1 500名学生的体重情况,从中抽取了100名学生的体重,就这个问题来说,下面说法正确的是( )A .1 500名学生的体重是总体B .1 500名学生是总体C .每名学生是个体D .100名学生是所抽取的一个样本3.PM 2.5指数是衡量空气污染程度的一个重要指标,在一年中最可靠的一种观测方法是( )A .随机选择5天进行观测B .选择某个月进行连续观测C .选择在春节7天期间连续观测D .每个月随机选中5天进行观测4.要反映北京市某周内每天最高气温的变化情况,采用的统计图比较合适的是( )A .条形统计图B .扇形统计图C .折线统计图D .上述三种统计图都可以5.如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角的度数是( )A .36°B .72°C .108°D .180°。

北师大版七年级数学上册第一章《丰富的图形世界》检测试卷(含答案)

北师大版七年级数学上册第一章《丰富的图形世界》检测试卷(含答案)

北师大版七年级数学上册第一章《丰富的图形世界》检测试卷(全卷满分100,时间90分钟)一、单选题(每小题2分,共20分)1.如图,是小云同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“动”字相对的面上的字是()A.造B.劳C.幸D.福2.一个棱柱有8个面,这是一个()A.四棱柱B.六棱柱C.七棱柱D.八棱柱3.一个长方体的棱长之和是180厘米,相交于一个顶点的三条棱的长度和是()A.45厘米B.30厘米C.90厘米D.60厘米4.一个几何体由若干大小相同的小正方体搭成,从左面和上面看到的这个几何体的形状图如图所示,则搭这个几何体需用小正方体的个数不可能是()A.5 B.6 C.7 D.85.如图所示,以直线为轴旋转一周,可以形成圆柱的是()A.B.C.D.6.用一个平面将一个正方体截去一部分,其面数将()A.增加B.减少C.不变D.不能确定7.用平面去截一个几何体,如果截面的形状是长方形,那么该几何体不可能是()A.正方体B.长方体C.圆柱D.圆锥8.如图是一个正方体纸盒,下面哪一个可能是它的表面展开图()A.B.C.D.9.下列说法:①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤直棱柱的侧面一定是长方形.其中正确的个数是()A.2个B.3个C.4个D.5个10.如图,硬纸板上有10个无阴影的正方形,从中选1个,使得它与图中多个有阴影的正方形一起能折叠成一个正方体纸盒,选法共有()A.4种B.5种C.6种D.7种二、填空题(每小题2分,共20分)1.一个正n棱柱有18条棱,一条侧棱为10cm,一条底边为3cm,则它的侧面积是_____2cm.2.一个几何体由几个大小相同的小立方块搭成,从正面和上面看到的这个几何体的形状如图所示,若组成这个几何体的小立方块的个数为n,则n的最少值为______.3.用一个平面去截三棱柱不可能截出以下图形中的_____(填序号).①等腰三角形,②等边三角形,③圆,④正方形,⑤五边形,⑥梯形.4.若用一个平面去截一个五棱柱,截面的边数最少是_____________;最多是____________.5.如图,一个正方体的六个面分别写着六个连续的整数,且相对面上的两个整数的和都相等,将这个正方体放在桌面,将其以如图所示的方式滚动,每滚动90︒算一次,请问滚动2022次后,正方体贴在桌面一面的数字是___________.6.如图,若平面展开图按虚线折叠成正方体后,相对面上两个数之积为20,则+__________.x y7.如图,将长方形纸片ABCD沿EF折叠后,若1110∠的度数为______.∠=︒,则28.将一个长4cm,2cm宽的长方形绕它的长边所在的直线旋转一周,所得几何体的体积为______3cm.9.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______. 10.用若干大小相同的小立方块搭一个几何体,使得从左面和从上面看到的这个几何请从A,B两题中任选一题作答.我选择___________题.A.搭成该几何体的小立方块最少有___________个.B.根据所给的两个形状图,要画出从正面看到的形状图,最多能画出___________种不同的图形.三、解答题(每小题6分,共60分)1.如图,上面的图形分别是下面哪个立体图形展开的形状,请你把有对应关系的平面图形与立体图形连接起来.2.如图是由九块积木搭成,这几块积木都是相同的正方体,请画出从正面、左面、上面看到的这个几何体的形状图.3.已知一个直棱柱,它有21条棱,其中一条侧棱长为10cm,底面各条边长均为4cm.(1)这个直棱柱是几棱柱?(3)求这个棱柱的所有侧面的面积之和.4.用若干相同的小正方体搭成一个几何体,使它从正面和上面看到的形状如图.(1)这样的几何体只有一种吗?(2)它最多需要多少个小正方体?最少需要多少个小正方体?(3)画出搭成几何体所用正方体最多时的从左面看的视图.5.如图所示,在长方形ABCD中,BC=6cm,CD=8cm.现绕这个长方形的一边所在直线旋转一周得到一个几何体。

北师大版七年级数学上册 第一章丰富的图形世界 单元测试卷(含答案)

北师大版七年级数学上册   第一章丰富的图形世界   单元测试卷(含答案)

第一章丰富的图形世界综合测试卷一、选择题(每题3分,共30分)1.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A.富B.强C.文D.民2.如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.3.下列几何体中,从正面和上面看都为矩形的是()A.B.C.D.4.圆柱是由下列哪一种图形绕虚线旋转一周得到的?()A.B.C.D.5.如图1所示,将一个正四棱锥(底面为正方形,四条测棱相等)的其中四条边剪开,得到图2,则被剪开的四条边有可能是()A.PA,PB,AD,BCB.PD,DC,BC,ABC.PA,AD,PC,BCD.PA,PB,PC,AD6.下列图形不是立体图形的是()A.球B.圆柱C.圆锥D.圆7.将一个圆围绕它的直径所在的直线旋转180°形成的几何体是()A.圆锥B.半球C.球体D.圆柱8.如图是一个长方体的表面展开图,6个面上分别标有数字1,2,3,4,5,6(数字都在表表面),与标有数字6的面相对面上的数字是()A.3 B.5 C.2 D.19.下列水平放置的几何体中,从上面看是矩形的是()A.圆柱B.长方体C.三棱柱D.圆锥10.埃及金字塔类似于几何体()A.圆锥B.圆柱C.棱锥D.棱柱二、填空题(每题3分,共30分)11.假如我们把水滴看成一个点,当水滴向下落时,就能形成水线,说明了____________;钟的时针旋转时,形成一个面,说明了____________;正方形铁丝框架绕它的一边所在的直线旋转一周,形成一个圆柱,说明了____________.12.如果某六棱柱的一条侧棱长为5 cm,那么所有侧棱长之和为__________.13.下列图形中,属于棱柱的有________个.14.如图所示的几何体有______个面、______条棱、______个顶点.15.下列各图是几何体的平面展开图,请写出对应的几何体的名称.16.如图,将七个小正方形中的一个去掉,就能成为一个正方体的展开图,则去掉的小正方形的序号是____________________________________.17.用平面去截正方体,在所得的截面中,边数最少的截面形状是__________.18.从不同方向观察一个几何体,所得的平面图形如图所示,那么这个几何体的侧面积是__________(结果保留π).19.如图,这是从不同方向观察由一些相同的小立方块搭成的几何体得到的形状图,则该几何体是由______个小立方块搭成的.20.图②是圆柱被一个平面斜切后得到的几何体,请类比梯形面积公式的推导方法(如图①),推导图②中几何体的体积为__________(结果保留π).三、解答题(22题8分,26题12分,其余每题10分,共60分)21.根据如图所示的图形,完成下列各题:(1)将以上图形按平面图形与立体图形分类;(2)把立体图形按柱体、锥体、球分类;(3)指出立体图形中各面都是平面的图形.22.如图所示的平面图形折叠成正方体后,相对面上的两个数之和为10,求x+y+z的值.23.一个几何体从三个方向看到的图形如图所示(单位:cm). (1)写出这个几何体的名称:__________;(2)若从上面看该几何体为正方形,根据图中数据计算这个几何体的体积.24.由7个相同的小立方块搭成的几何体如图所示. (1)请画出该几何体从三个方向看到的形状图; (2)若每个小立方块的棱长为1,请计算它的表面积.25.如图①,把一张长10 cm 、宽6 cm 的长方形纸板分成两个相同的直角三角形(圆锥的体积公式为V 圆锥=13πr 2h ,π取3.14).(1)甲三角形(如图②)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米? (2)乙三角形(如图③)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?26.把如图①所示的正方体切去一块,可得到如图②~⑤所示的几何体.(1)所得几何体各有多少个面?多少条棱?多少个顶点?(2)举例说明把其他形状的几何体切去一块,得到的几何体的面数、棱数和顶点数各是多少.(3)若面数记为f,棱数记为e,顶点数记为v,则f,e,v应满足什么关系式?参考答案一、1.【答案】A【解析】由图1可得,“富”和“文”相对;“强”和“主”相对;“民”和“明”相对;由图2可得,小正方体从图2的位置依次翻到第4格时,“文”在下面,则这时小正方体朝上面的字是“富”,故选A.2.【答案】A【解析】由四棱柱四个侧面和上下两个底面的特征可知,A.可以拼成一个长方体;B,C,D不符合长方体的展开图的特征,故不是长方体的展开图.故选A.3.【答案】B【解析】A.此几何体从正面是等腰三角形,从上面看是圆,故此选项错误;B.此几何体从正面是矩形,从上面看是矩形,故此选项正确;C.此几何体从正面是矩形,从上面看是圆,故此选项错误;D.此几何体从正面是梯形,从上面看是矩形,故此选项错误;故选B.4.【答案】B【解析】圆柱是由长方形绕它的一条边旋转而成的,故选B.5.【答案】A【解析】根据图2中的展开图可知,底面正方形ABCD的左边一个三角形是独立的,据此可知,需剪开图1中的PA、PB,根据正方形右边三个三角形脱离正方形的上下两边可知,需剪开AD、BC,综上,被剪开的四条边可能是:PA、PB、AD、BC,故选A.6.【答案】D【解析】立体图形是指图形的各个面不都在一个平面上,由此可判断出答案.由题意得:只有D选项符合题意.故选D.7.【答案】C【解析】一个圆围绕它的直径所在的直线旋转180°形成的几何体是球体,故选C.8.【答案】C【解析】根据题意和图示可知:“1”的对面是4,“6”的对面是2,“3”的对面是5.故选C.9.【答案】B【解析】A.圆柱从上面看是圆,故此选项错误;B.长方体从上面看是矩形,故此选项正确;C.三棱柱从上面看是三角形,故此选项错误;D.圆锥从上面看是圆,故此选项错误;故选B.10.【答案】C【解析】埃及金字塔底面是多边形,侧面是有公共顶点的三角形,所以是棱锥.故选C.二、11. 点动成线,线动成面,面动成体12.30 cm13.314.9;16;915.圆锥;三棱锥;圆柱16.6或717.三角形18.6π19.1020.63π三、21.解:(1)平面图形:②④⑦⑧;立体图形:①③⑤⑥⑨.(2)柱体:①③⑤;锥体:⑨;球:⑥.(3)立体图形中各面都是平面的图形:①⑤.22.解:由题意知x+5=10,y+2=10,2z+4=10,解得x=5,y=8,z=3.所以x+y+z=5+8+3=16.23.解:(1)长方体(2)由题图可知长方体的底面是边长为3 cm的正方形,高为4 cm,则这个几何体的体积是3×3×4=36(cm3).24.解:(1)如图所示.(2)从正面看有5个正方形,从后面看有5个正方形,从上面看有5个正方形,从下面看有5个正方形,从左面看有3个正方形,从右面看有3个正方形,中间空处的两边共有2个正方形,所以表面积为(5+5+3)×2+2=26+2=28. 25.解:(1)甲三角形旋转一周可以形成一个圆锥, 它的体积是13×3.14×62×10=376.8(cm 3).(2)乙三角形旋转一周可以形成一个圆柱,里面被挖去一个圆锥,它的体积是3.14×62×10-13×3.14×62×10=753.6(cm 3).26.解:(1)题中图②有7个面、15条棱、10个顶点, 图③有7个面、14条棱、9个顶点, 图④有7个面、13条棱、8个顶点, 图⑤有7个面、12条棱、7个顶点. (2)答案不唯一,例如:把三棱锥切去一块,如图所示,得到的几何体有5个面、9条棱、6个顶点.(3)f ,e ,v 满足的关系式为f +v -e =2.。

北师大版七年级上册数学第一章丰富的图形世界练习题(含答案)

北师大版七年级上册数学第一章丰富的图形世界练习题(含答案)

北师大版七年级上册数学第一章丰富的图形世界练习题(含答案)一、单选题1.下列立体图形的面都是平面的是()A.球B.圆锥C.圆柱D.棱柱2.如图,含有曲面的几何体编号是()A.①②③B.②③④C.①④⑤D.②③3.下列几何体中,面的个数最多的是()A.B.C.D.4.2022年2月7日,中国女足不屈不挠、力闯难关,以骄人战绩时隔16年再次夺得亚洲杯冠军.如图所示,小楠将“中国女足夺冠”这句话写在了一个正方体的表面展开图上,那么在原正方体中,与“冠”所在面相对的面上的汉字是()A.中B.国C.女D.足5.下列图形中,不是正方体的表面展开图的是()A.B.C.D.6.如图,将长方体表面展开,下列选项中错误的是()A.B.C.D.7.用一个平面去截下列四个几何体,可以得到三角形截面的几何体有()A.1个B.2个C.3个D.4个8.用一个平面去截一个正方体,截面形状不能为()A.B.C.D.9.如图,是由四个相同的正方体组合而成的两个几何体,则下列表述正确的是()A.图甲的主视图与图乙的左视图形状相同B.图甲的左视图与图乙的俯视图形状相同C.图甲的俯视图与图乙的俯视图形状相同D.图甲的主视图与图乙的主视图形状相同10.几个大小相同的小正方体搭成几何体的俯视图如图所示,图中小正方形中数字表示对应位置小正方体的个数,该几何体的主视图是()A.B.C.D.二、填空题11.用8个棱长3厘米的立方体拼成一个长方体,其中表面积最小的长方体的面积为平方厘米.12.底面积为50 cm2的长方体的体积为25 lcm3,则l表示的实际意义是. 13.如图是某几何体的展开图,该几何体是.14.用一个平面分别去截长方体,圆锥,三棱柱,圆柱,能得到截面是三角形的几何体有个.15.如图是由五个大小相同的正方体搭成的几何体,从面看所得到的性状图的面积最小.三、解答题16.如图,一个正五棱柱的底面边长为2cm,高为4cm.(1)这个棱柱共有多少个面?计算它的侧面积;(2)这个棱柱共有多少个顶点?有多少条棱?(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.17.把19个边长为2cm的正方体重叠起来,作成如图那样的立体图形,求这个立体图形的表面积.18.请你举出利用圆柱体、长方体的表面能展开成平面图形的原理,在生产和生活中做圆柱形和长方体用品的实例.19.正方体是由六个平面图形围成的立体图形.设想沿着正方体的一些棱将它剪开,就可以把正方体剪成一个平面图形.但同一个正方体,按不同的方式展开所得的平面展开图悬不一样的,下面的图形是由6个大小一样的正方彤,拼接而成的,请问这些图形中哪些可以折成正方体?20.如图所示,说出下列几何体截面(阴影部分)的形状.21.如图是三个三棱柱,用一刀切下去.(1)把图①中的三棱柱分割成两个完全相同的三棱柱;(2)把图②中的三棱柱分割成一个四棱锥与一个三棱锥;(3)把图③中的三棱柱分割成一个四棱柱与一个三棱柱.22.一个几何体的三个视图如图所示(单位:cm).(1)写出这个几何体的名称;(2)若其俯视图为正方形,根据图中数据计算这个几何体的表面积.23.某一空间图形的三视图如图,其中主视图:半径为1的半圆以及高为1的矩形;左视图:半径为1的圆以及高为1的矩形;俯视图:半径为1的圆.求此图形的体积.答案1.D 2.D 3.C 4.B 5.D 6.C 7.B 8.A 9.B 10.D 11.216 12.长方体高的2倍 13.三棱柱 14.3 15.左16.解:(1)侧面有5个,底面有2个,共有5+2=7个面;侧面积:2×5×4=40(cm 2).(2)顶点共10个,棱共有15条;(3)n 棱柱的顶点数2n ;面数n+2;棱的条数3n .17.解:这个立体图形的表面积是4×2×(9+8+10)=216(平方厘米),答:这个立体图形的表面积是216平方厘米.18.圆柱体的展开图是由两个相同的圆和一个长方形组成。

2024七年级数学上册第一章丰富的图形世界检测新版北师大版

2024七年级数学上册第一章丰富的图形世界检测新版北师大版

检测内容:第一章丰富的图形世界得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.视察下列实物模型,其形态是圆锥的是( C )2.左图是由哪个图形绕虚线旋转一周形成的( D )3.如图,立体图形从左面看到的形态图是( B )4.(中牟县期末)如图是某几何体的表面绽开图,则这个几何体的顶点有( B )A.4个 B.6个 C.8个 D.10个第4题图第5题图第6题图5.某正方体的表面绽开图如图,则原正方体上“中”字所在面的对面汉字是( B ) A.国 B.的 C.我 D.梦6.如图,把正方体的八个角切去一个角后,余下的图形有几条棱( D )A.12或15 B.12或13C.13或14 D.12或13或14或157.一个六棱柱模型如图所示,底面边长都是5 cm,侧棱长为4 cm,这个六棱柱的全部侧面的面积之和是( C )A.20 cm2 B.60 cm2 C.120 cm2 D.240 cm2第7题图第8题图第9题图8.如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面绽开(外表面朝上),绽开图可能是( D )A B C D9.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形态图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形态图是( D )10.骰子是6个面上分别写有数字1,2,3,4,5,6的小正方体,它随意两对面上所写的两个数字之和为7.将这样相同的几个骰子依据相接触的两个面上的数字的积为6摆成一个几何体,从这个几何体三个方向看到的形态图如图所示,已知图中所标注的是部分面上的数字,则“*”所代表的数是( B )A.2 B.4 C.5 D.6二、填空题(每小题3分,共15分)11.用一个平面去截下列几何体:①正方体;②圆柱;③圆锥;④直三棱柱,其中,截面形态可以是三角形的有__①③④__.(写出全部正确结果的序号)12.假如按图中虚线对折可以做成一个上底面无盖的盒子,那么该盒子的下底面的字母是__B__.第12题图第13题图13.如图,正方形ABCD的边长为3 cm,以边AB所在直线为轴,将正方形旋转一周,所得几何体从正面看到的图形的面积是__18_cm2__.14.从图中的正方形中选两个涂色,使这两个正方形与4个写有汉字的正方形一起,折叠后能围成一个正方体,则所涂的正方形是__2和9(答案不唯一)__.(只填数字即可)第14题图第15题图15.一个正方体木块的六个面分别标有数字1,2,3,4,5,6.如图是从不同方向视察这个正方体木块看到的数字状况,则数字1对面的数字是__3__.三、解答题(共75分)16.(8分)将下列几何体分类,并说明分类的依据.解:按几何体自身特征分:柱体:(1)(2)(5)(6)(8),其中(1)(2)(5)(8)是棱柱,(6)是圆柱;锥体:(4)(7),其中(4)是圆锥,(7)是棱锥;球体:(3)17.(8分)如图是一个由若干个相同的小立方块所搭成的几何体从上面看得到的图形,小正方形中的数字表示在该位置上小立方块的个数,请画出这个几何体从正面和从左面看得到的图形.解:略18.(10分)如图是一长方体的绽开图,每一面内都标注了字母(标字母的面是外表面),依据要求回答问题:(1)假如D面在多面体的左面,那么F面在哪里?(2)B面和哪个面是相对的面?(3)假如C面在前面,从上面看到的是D面,那么从左面看是哪一面?(4)假如B面在后面,从左面看是D面,那么前面是哪个面?(5)假如A面在右面,从下面看是F面,那么B面在哪里?解:(1)右面(2)E面(3)B面(4)E面(5)后面19.(8分)把直角三角形ABC(如图)(单位:cm)沿着边AB和BC所在直线分别旋转一周,可以得到两个不同的圆锥,沿着哪条边所在的直线旋转得到的圆锥体积比较大?体积为多少?(V 圆锥=13πr 2h )解:当以AB 所在直线为轴旋转时,得到的圆锥底面半径是3 cm ,高是6 cm ,其体积=13×π×32×6=18π(cm 3);当以BC 所在直线为轴旋转时,得到的圆锥的底面半径是6 cm ,高是3 cm ,其体积=13 ×π×62×3=36π(cm 3).所以沿着边BC 所在直线旋转得到的圆锥的体积比较大,体积为36π cm 320.(8分)在平整的地面上,有若干个完全相同的小正方体堆成的一个几何体,如图所示.(1)请画出这个几何体从三个方向看到的图形;(2)若现在你手头上还有一些相同的小正方体,假如保持从上面看到的图形和从左面看到的图形不变,最多可以再添加几个小正方体?解:(1)如图所示:(2)最多可以再添加4个小正方体21.(9分)如图①所示的正方体,它的表面绽开图为图②,四边形APQC 是切正方体的一个截面.问截面的四条线段AC ,CQ ,QP ,PA 分别在绽开图的什么位置上?解:截面的四条线段AC,CQ,QP,PA在绽开图中的位置如图所示:22.(12分)(1)如图①四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有__5__个面,__9__条棱,__6__个顶点,视察图形,并解答:四棱柱有__6__个面,__12__条棱,__8__个顶点;五棱柱有__7__个面,__15__条棱,__10__个顶点;由此猜想n棱柱有__(n+2)__个面,__3n__条棱,__2n__个顶点.(2)如图②,小华用若干个正方形和长方形拼成一个长方体的绽开图,但他总觉得所拼图形存在问题.请你帮小华分析一下拼图是否存在问题:若有多余部分,则把图中多余部分涂黑;若还缺少,则干脆在原图中补全;若图中的正方形边长为2.1 cm,长方形的长为3 cm,宽为2.1 cm,恳求出修正后所折叠而成的长方体的体积.解:(2)拼图存在问题,如图,多了一个正方形.体积:2.1×2.1×3=13.23(cm3)23.(12分)一个几何体是由若干个棱长为3 cm的小正方体搭成的,从左面、上面看到的几何体的形态图如图所示:(1)该几何体最少由__9__个小立方体组成,最多由__14__个小立方体组成;(2)将该几何体的形态固定好,①求该几何体体积的最大值;②若要给体积最小时的几何体表面涂上油漆,求所涂油漆的面积.解:(2)①该几何体体积的最大值为(3×3×3)×14=378 (cm3)②有两种情形:露在外面的面=2×(前+上+侧)=2×[5+6+(6+1)]=36(个)面,涂漆面积S=36×9=324(cm2),露在外面的面=2×(前+上+侧)=2×[6+6+(6+1)]=38(个)面.涂漆面积S=38×9=342(cm2)。

北师大版七年级数学上册单元测试题全套(含答案)

北师大版七年级数学上册单元测试题全套(含答案)

北师大版七年级数学上册单元测试题全套(含答案)work Information Technology Company.2020YEAR北师大版七年级数学上册单元测试题全套(含答案)第一章检测卷一、选择题(每小题3分,共30分)1.下列几何体中,是圆柱的是( )2.下列几何体没有曲面的是( )A.圆锥 B.圆柱 C.球 D.棱柱3.如图,一平面经过圆锥的顶点截圆锥所得到的截面形状是( )4.下列说法错误的是( )A.长方体、正方体都是棱柱B.三棱柱的侧面是三角形C.直六棱柱有六个侧面,侧面均为长方形D.从正面、左面、上面看球体得到的图形均为同样大小的圆形5.如图,一个长方形绕轴l旋转一周得到的立体图形是( )A.棱锥 B.圆锥 C.圆柱 D.球第5题图第7题图6.如图是由六个相同的小正方体搭成的几何体,从正面看该几何体得到的平面图形是( )7.如图所示是某几何体从三个方向看到的图形,则这个几何体是( )A.三棱锥 B.圆柱 C.球 D.圆锥8.下列展开图不能叠合成无盖正方体的是( )9.如图,圆柱高为8,底面半径为2,若截面是长方形,则长方形的最大面积为( )A.16 B.20 C.32 D.18第9题图第10题图10.一个几何体由几个大小相同的小正方体搭成,其从左面看和从上面看得到的图形如图所示,则搭成这个几何体的小正方体的个数是( )A.3个 B.4个 C.5个 D.6个二、填空题(每小题3分,共18分)11.夜晚的流星划过天空时留下一道明亮的光线,由此说明了____________的数学事实.12.下面的几何体中,属于柱体的有______;属于锥体的有_____;属于球体的有______.13.用一个平面去截正方体,截面__________是三角形(填“可能”或“不可能”).14.如图,某长方体的底面是长为4cm,宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,则这个长方体的体积等于________.第14题图第16题图15.用平面去截一个几何体,如果得到的是长方形,那么所截的这个几何体可能是________________(至少填两种).16.一个圆柱的侧面展开图为如图所示的长方形,则这个圆柱的底面面积为__________.三、解答题(共72分)17.(8分)下列图形中,上面是一些具体的实物,下面是一些立体图形,请找出与下面立体图形相类似的实物,用线连接起来.18.(9分)由7个相同的小立方块搭成的几何体如图所示,请画出从正面、左面、上面看到的几何体的形状图.19.(10分)小毅设计了某个产品的包装盒(如图所示),由于粗心少设计了其中一部分,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有________种添补的方法;(2)任意画出一种成功的设计图.20.(10分)一个几何体从三个方向看到的图形如图所示(单位:cm).(1)写出这个几何体的名称:________;(2)若其从上面看为正方形,根据图中数据计算这个几何体的体积.21.(12分)如图①,把一张长10厘米、宽6厘米的长方形纸板分成两个相同的直角三角形.(1)甲三角形(如图②)旋转一周,可以形成一个怎样的几何体它的体积是多少立方厘米(2)乙三角形(如图③)旋转一周,可以形成一个怎样的几何体它的体积是多少立方厘米22.(11分)用5个相同的正方体搭出如图所示的组合体.(1)分别画出从正面、左面、上面看这个组合体时看到的图形;(2)如果在这个组合体中,再添加一个相同的正方体组成一个新组合体,从正面、左面看这个新组合体时,看到的图形与原来相同.你认为这个设想能实现吗?若能,画出添加正方体后,从上面看这个组合体时看到的图形;若不能,说明理由.23.(12分)如图所示,图①为一个正方体,其棱长为10,图②为图①的表面展开图(数字和字母写在外表面上,字母也可以表示数),请根据要求回答问题:(1)如果正方体相对面上的两个数字之和相等,则x=________,y=________;(2)如果面“2”是右面,面“4”在后面,则上面是________(填“6”“10”“x”或“y”);(3)图①中,M,N为所在棱的中点,试在图②中找出点M,N的位置,并求出图②中三角形ABM的面积.参考答案与解析1.A 2.D 3.B 4.B 5.C 6.B 7.D 8.C 9.C10.B 解析:由图可知,底层有3个小正方体,第2层有1个小正方体.故搭成这个几何体的小正方体的个数是3+1=4(个).11.点动成线12.①③⑤⑥④②13.可能14.24cm315.圆柱、长方体(答案不唯一)16.4π或π解析:(1)当底面周长为4π时,半径为4π÷π÷2=2,底面圆的面积为π×22=4π;(2)当底面周长为2π时,半径为2π÷π÷2=1,底面圆的面积为π×12=π.故其底面圆的面积为4π或π.17.解:如图所示.18.解:如图所示.19.解:(1)4(2)答案不唯一,如图.20.解:(1)长方体(2)由题可知,长方体的底面是边长为3cm 的正方形,高是4cm ,则这个几何体的体积是3×3×4=36(cm 3). 答:这个几何体的体积是36cm 3.21.解:(1)甲三角形旋转一周可以形成一个圆锥体,它的体积是13×3.14×62×10=376.8(立方厘米).(2)乙三角形旋转一周可以形成一个空心的圆柱,它的体积是 3.14×62×10-13×3.14×62×10=753.6(立方厘米).22.解:(1)画出的图形如图①所示.(2)能实现.(6分)添加正方体后从上面看到的图形如图②所示,有两种情况.23.解:(1)12 8 (2)6(3)有两种情况.如图甲,三角形ABM 的面积为12×10×5=25.如图乙,三角形ABM 的面积为12×(10+10+5)×10=125.∴三角形ABM 的面积为25或125.第二章检测卷一、选择题1.如果温泉河的水位升高0.8m 时水位变化记作+0.8m ,那么水位下降0.5m 时水位变化记作( ) A .0m B .0.5m C .-0.8m D .-0.5m 2.下列四个数中,最大的数是( ) A .-2 B.13C .0D .63.一天早晨的气温是-10℃,中午的气温比早晨上升了8℃,中午的气温是( ) A .8℃ B.-2℃ C .18℃ D.-8℃4.如图,数轴上有A ,B ,C ,D 四个点,其中表示2的相反数的点是( )A .点AB .点BC .点CD .点D5.用计算器计算230,按键顺序正确的是( ) A.30xy2= B.xy302= C.230xy= D.2xy30=6.下列各式中,计算正确的是( )A .(-5.8)-(-5.8)=-11.6B .[(-5)2+4×(-5)]×(-3)2=45 C .-23×(-3)2=72 D .-42÷14×14=-17.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x ,则x 的值为( )A .4.2B .4.3C .4.4D .4.58.有理数a 、b 在数轴上的对应点如图所示,则下列式子中错误的是( )A .ab >0B .a +b <0 C.a b<1 D .a -b <09.已知|a +1|与|b -4|互为相反数,则a b的值是( ) A .-1 B .1 C .-4 D .410.已知点A 是数轴上的一点,且点A 到原点的距离为2,把点A 沿数轴向右移动5个单位得到点B ,则点B 表示的有理数是( )A .7B .-3C .7或3D .-7或-3二、填空题11.在0,1,-2,-3.5这四个数中,是负整数的为________. 12.|-0.3|的相反数等于________.13.某公司在埃及新投产一座鸡饲料厂,年生产的饲料可饲养57000000只肉鸡,这个数据用科学记数法可表示为____________只.14.计算:-22-(-2)2=________.15.如图是一个简单的数值运算程序.当输入x 的值为-1时,则输出的数值为________.输入x ―→×(-3)―→-2―→输出16.数轴上表示整数的点叫作整点.某数轴的单位长度为1厘米,若在这条数轴上随意画出一条长度为2016厘米的线段,则线段盖住的整点个数为______________.三、解答题(共72分) 17.(12分)计算:(1)(-2)2×5-(-2)3÷4; (2)-24×⎝ ⎛⎭⎪⎫-56+38-112;(3)⎝ ⎛⎭⎪⎫-56+23÷⎝ ⎛⎭⎪⎫-712×72; (4)[-33×2+(-3)2×4-5×(-2)3]÷⎝ ⎛⎭⎪⎫-142.18.(8分)画出数轴,在数轴上表示下列各数,并用“>”把它们连接起来. -⎝ ⎛⎭⎪⎫-412,-2,0,(-1)2,|-3|,-313.19.(10分)水浮莲是一种生长速度非常快的水生植物,如果在某个池塘中水浮莲每5天能生长到原来面积的3倍,那么面积是1平方米的水浮莲大约经过第几个5天就能覆盖700平方米的池塘?20.(10分)如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示-112,设点B 所表示的数为m . (1)求m 的值;(2)求|m -1|+(m -6)2的值.21.(10分)已知a ,b 均为有理数,现我们定义一种新的运算,规定:a #b =a 2+ab -5,例如:1#2=12+1×2-5=-2.求:(1)(-3)#6的值;(2)⎣⎢⎡⎦⎥⎤2#⎝ ⎛⎭⎪⎫-32-[(-5)#9]的值.22.(10分)有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元(结果保留整数)23.(12分)下表给出了某班6名同学的身高情况(单位:cm).(1)(2)他们6人中最高身高比最矮身高高多少?(3)如果身高达到或超过平均身高时叫达标身高,那么这6名同学身高的达标率是多少?参考答案与解析1.D 2.D 3.B 4.A 5.D 6.B 7.C 8.C 9.B10.C 解析:根据题意,点A表示的数是-2或2,当点A表示的数是-2时,点B表示的数是3;当点A表示的数是2时,点B表示的数是7.故点B表示的有理数是3或7.11.-2 12.-0.3 13. 5.7×10714.-8 15. 116.2016或2017个 解析:当线段的起点恰好是一个整点时,盖住的整点个数为2017个,其他情况下,盖住的整点个数为2016个.故线段盖住的整点个数为2016或2017个.17.解:(1)原式=22.(3分)(2)原式=13. (3)原式=1.(4)原式=352. 18.解:如图所示.由数轴得-⎝ ⎛⎭⎪⎫-412>|-3|>(-1)2>0>-2>-313.19.解:假设1平方米的水浮莲经过n 个5天后能覆盖700平方米的池塘,则n 个5天后水浮莲的面积为3n平方米.当n =5时,水浮莲的面积为35=243(平方米); 当n =6时,水浮莲的面积为36=729(平方米).因为243<700<729,所以面积是1平方米的水浮莲经过第6个5天就能覆盖700平方米的池塘. 20.解:(1)m =-112+2=12.(2)|m -1|+(m -6)2=⎪⎪⎪⎪⎪⎪12-1+⎝ ⎛⎭⎪⎫12-62=12+1214=1234.21.解:(1)(-3)#6=(-3)2+(-3)×6-5=9-18-5=-14.(2)⎣⎢⎡⎦⎥⎤2#⎝ ⎛⎭⎪⎫-32-[(-5)#9]=[22+2×⎝ ⎛⎭⎪⎫-32-5]-[(-5)2+(-5)×9-5]=(4-3-5)-(25-45-5)=-4+25=21.22.解:(1)最重的一筐超过2.5千克,最轻的差3千克,2.5-(-3)=5.5(千克). 答:最重的一筐比最轻的一筐重5.5千克.(2)1×(-3)+4×(-2)+2×(-1.5)+3×0+2×1+8×2.5=-3-8-3+2+20=8(千克). 答:20筐白菜总计超过8千克.(3)2.6×(25×20+8)=1320.8≈1321(元). 答:出售这20筐白菜可卖1321元.23.解:(1)根据题意得,班级的平均身高为166cm ,则表格中从左到右,从上到下依次填:168 163 170 0 +6(5分)(2)根据题意得172-163=9(cm). 答:他们6人中最高身高比最矮身高高9cm. (3)根据题意得46×100%≈67%.答:这6名同学身高的达标率约是67%.第三章检测卷一、选择题(每小题3分,共30分) 1.下列各式:①2x -1;②0;③S =πR 2;④x <y ;⑤s t;⑥x 2.其中代数式有( ) A .3个 B .4个 C .5个 D .6个 2.单项式-2xy 3的系数与次数分别是( ) A .-2,4 B .2,3 C .-2,3 D .2,4 3.在下列单项式中,与2xy 是同类项的是( ) A .2x 2y 2B .3yC .xyD .4x4.小芳在纸上画了大小不等的两个圆,并量得小圆的半径为5cm.如果大圆的半径比小圆的半径多a cm ,则大圆面积比小圆面积多( )A .25πcm 2B .πa 2cm 2C .π(a +5)2cm 2D .[π(a +5)2-25π]cm 25.当a =12,b =1时,代数式a 2+3ab -b 2的值为( )A.14B.12C.34D.54 6.下面计算正确的是( ) A .3x 2-x 2=3 B .3a 2+2a 3=5a 5C .3+x =3xD .-0.75ab +34ba =07.按如图所示的运算程序,能使输出结果为3的x ,y 的值是( )A .x =5,y =-2B .x =3,y =-3C .x =-4,y =2D .x =-3,y =-98.已知-4x a y +x 2y b =-3x 2y ,则a +b 的值为( ) A .1 B .2 C .3 D .49.若m -n =1,则(m -n )2-2m +2n 的值是( ) A .3 B .2 C .1 D .-110.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178 二、填空题(每小题3分,共18分)11.钢笔每支a 元,铅笔每支b 元,买2支钢笔和3支铅笔共需________元.12.当a =1,b =-2时,代数式2a +12b 2的值是________.13.已知x 2+3x 的值为6,则代数式3x 2+9x -12=________. 14.若-7xm +2y 与-3x 3y n 是同类项,则m =________,n =________.15.一个三角形一条边长为a +b ,另一条边比这条边长2a +b ,第三条边比这条边短3a -b ,则这个三角形的周长为____________.16.规定⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,若⎪⎪⎪⎪⎪⎪-5 3x 2+52 x 2-3=6,则-11x 2+6=________. 三、解答题(共72分) 17.(8分)计算:(1)2(m 2-n 2+1)-2(m 2+n 2)+mn ; (2)3a -2b -[-4a +(c +3b )].18.(12分)化简求值:(1)(3a 2-8a )+(2a 2-13a 2+2a )-2(a 3-3),其中a =-2; (2)3x 2y -⎣⎢⎡⎦⎥⎤2xy 2-2⎝ ⎛⎭⎪⎫xy -32x 2y +xy +3xy 2,其中x =3,y =-13.19.(10分)老师在黑板上书写了一个正确的验算过程,随后用手掌捂住了一个二次三项式,形式如下:(1)求所捂的二次三项式;(2)若-x 2+2x =1,求所捂二次三项式的值.20.(10分)一个花坛的形状如图所示,它的两端是半径相等的半圆,求:(1)花坛的周长l;(2)花坛的面积S;(3)若a=8m,r=5m,求此时花坛的周长及面积(π取3.14).21.(10分)若代数式(4x2-mx-3y+4)-(8nx2-x+2y-3)的值与字母x的取值无关,求代数式(-m2+2mn-n2)-2(mn-3m2)+3(2n2-mn)的值.22.(10分)某公司的某种产品由一家商店代销,双方协议不论这种产品销售情况如何,该公司每月给商店a元代销费,同时商店每销售一件产品有b元提成,该商店一月份销售了m件,二月份销售了n件.(1)用式子表示这两个月公司应付给商店的钱数;(2)假设代销费为每月200元,每件产品的提成为2元,该商店一月份销售了200件,二月份销售了250件,求该商店这两个月销售此种产品的收益.23.(12分)用三角形和六边形按如图所示的规律拼图案.(1)第4个图案中,三角形的个数有________个,六边形的个数有________个;(2)第n(n为正整数)个图案中,三角形的个数与六边形的个数各有多少个?(3)第2017个图案中,三角形的个数与六边形的个数各有多少个?(4)是否存在某个符合上述规律的图案,其中有100个三角形与30个六边形?如果有,指出是第几个图案;如果没有,说明理由.参考答案与解析1.B 2.A 3.C 4.D 5.C 6.D 7.D 8.C 9.D10.B 解析:根据排列规律可知10下面的数是12,10右面的数是14.∵8=2×4-0,22=4×6-2,44=6×8-4,∴m=12×14-10=158.故选B.11.(2a+3b) 12. 4 13. 614.1 1 15. 2a +5b 16. 7 17.解:(1)原式=-4n 2+mn +2. (2)原式=7a -5b -c .18.解:(1)原式=3a 2-8a +2a 2-13a 2+2a -2a 3+6=-2a 3-8a 2-6a +6.当a =-2时,原式=-2×(-2)3-8×(-2)2-6×(-2)+6=2.(2)原式=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy 2+xy .当x =3,y =-13时,原式=3×⎝ ⎛⎭⎪⎫-132+3×⎝ ⎛⎭⎪⎫-13=-23.19.解:(1)所捂的二次三项式为x 2-2x +1.(2)若-x 2+2x =1,则x 2-2x +1=-(-x 2+2x )+1=-1+1=0. 20.解:(1)l =2πr +2a . (2)S =πr 2+2ar .(3)当a =8m ,r =5m 时,l =2π×5+2×8=10π+16≈47.4(m),S =π×52+2×8×5=25π+80≈158.5(m 2). 21.解:(4x 2-mx -3y +4)-(8nx 2-x +2y -3) =4x 2-mx -3y +4-8nx 2+x -2y +3 =(4-8n )x 2+(1-m )x -5y +7. ∵上式的值与字母x 的取值无关, ∴4-8n =0,1-m =0,即m =1,n =12.∴原式=-m 2+2mn -n 2-2mn +6m 2+6n 2-3mn =5m 2+5n 2-3mn =194.22.解:(1)这两个月公司应付给商店的钱数为[2a +(m +n )b ]元. (2)当a =200,b =2,m =200,n =250时,2a +(m +n )b =1300(元). 答:该商店这两个月销售此种产品的收益为1300元. 23.解:(1)10 4.(2)观察发现,第1个图案中有4个三角形与1个六边形,以后每个图案都比它前一个图案增加2个三角形与1个六边形,则第n 个图案中三角形的个数为4+2(n -1)=(2n +2)个,六边形的个数为n . (3)第2017个图案中,三角形的个数为2×2017+2=4036(个),六边形的个数为2017个.(4)不存在.理由如下:假设存在这样的一个图案,其中有30个六边形,则这个图案是第30个图案,而第30个图案中三角形的个数为2×30+2=62≠100,所以这样的图案不存在.第四章检测卷一、选择题(每小题3分,共30分) 1.下列各直线的表示法中,正确的是( )A .直线ab B.直线Ab C.直线A D.直线AB2.下图中射线OA 与OB 表示同一条射线的是( )3.如图,OC 是∠AOB 的平分线,若∠AOC =75°,则∠AOB 的度数为( ) A .145° B.150° C.155° D.160°第3题图 第4题图4.如图,点C 在线段AB 上,点D 是AC 的中点,如果CD =3cm ,AB =10cm ,那么BC 的长度是( ) A .3cm B .3.5cm C .4cm D .4.5cm5.从五边形的一个顶点出发,分别连接这个点与其余各顶点,可以把五边形分割成几个三角形( ) A .2个B.3个C.4个D.5个6.若∠A =25°18′,∠B =25°19′1″,∠C =25.31°,则( ) A .∠A >∠B >∠C B .∠B >∠A >∠C C .∠B >∠C >∠A D .∠C >∠B >∠A7.如图,C 是线段AB 的中点,D 是CB 上一点,下列说法中错误的是( ) A .CD =AC -BD B .CD =12BC C .CD =12AB -BD D .CD =AD -BC第7题图8.用A ,B ,C 分别表示学校、小明家、小红家,已知学校在小明家的南偏东25°,小红家在小明家的北偏东35°,则∠ABC 等于( )A .35° B.120° C.105° D.115°9.如图,将一张长方形纸片对折,然后剪下一个角,如果剪出的角展开后是一个直角,那么剪口线与折痕AB 形成的夹角度数是( )A .180° B.90° C.45° D.22.5°第9题图 第10题图10.如图,一条流水生产线上L 1、L 2、L 3、L 4、L 5处各有一名工人在工作,现要在流水生产线上设置一个零件供应站P ,使五人到供应站P 的距离总和最小,这个供应站设置的位置是( )A .L 2处B .L 3处C .L 4处D .生产线上任何地方都一样 二、填空题(每小题3分,共18分)11.开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌摆在一条线上,整整齐齐,这是因为 . 12.如图,图中的线段共有 条,直线共有 条.第12题图13.一个圆被分为1∶5两部分,则较大的弧所对的圆心角是 .14.如图,OA 的方向是北偏东15°,OB 的方向是北偏西40°,若∠AOC =∠AOB ,则OC 的方向是 .第14题图 第15题图15.如图,在∠AOB 中,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线,若∠AOB =135°,则∠EOD = .16.已知A ,B ,C 是直线l 上的三点,且线段AB =9cm ,BC =13AB ,那么A ,C 两点的距离是 .三、解答题(共72分) 17.(12分)计算:(1)48°39′+67°33′; (2)15°24′+32°47′-6°55′;(3)13°53′×3-32°5′31″; (4)50°24′×3+98°12′25″÷5.18.(8分)如图,∠AOC 为直角,OC 是∠BOD 的平分线,且∠AOB =35°,求∠AOD 的度数.19.(10分)如图所示,已知点A,B,请你按照下列要求画图(延长线都画成虚线).(1)过点A,B画直线AB,并在直线AB上方任取两点C,D;(2)画射线AC,线段CD;(3)延长线段CD,与直线AB相交于点M;(4)画线段DB,反向延长线段DB,与射线AC相交于点N.20.(10分)如图所示,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=50°,∠DOE=35°,求∠BOD的度数;(2)若∠AOE=160°,∠COD=40°,求∠AOB的度数.21.(10分)如图,点C是线段AB上一点,M是线段AC的中点,N是线段BC的中点.(1)如果AB=10cm,AM=3cm,求CN的长;(2)如果MN=6cm,求AB的长.22.(10分)小明家O,学校A和公园C的平面示意图如图所示,图上距离OA=2cm,OC=2.5cm.(1)学校A、公园C分别在小明家O的什么方向上?(2)若学校A到小明家O的实际距离是400m,求公园C到小明家O的实际距离.23.(12分)如图①,将一副三角板的两个锐角顶点放到一块,∠AOB =45°,∠COD =30°,OM ,ON 分别是∠AOC ,∠BOD 的平分线.(1)当∠COD 绕着点O 逆时针旋转至射线OB 与OC 重合时(如图②),则∠MON 的大小为 ;(2)如图③,在(1)的条件下,继续绕着点O 逆时针旋转∠COD ,当∠BOC =10°时,求∠MON 的大小,写出解答过程;(3)在∠COD 绕点O 逆时针旋转过程中,∠MON = °.参考答案与解析1.D 2.B 3.B 4.C 5.B 6.C 7.B 8.B 9.C 10.B11.两点确定一条直线 12. 3 1 13. 300° 14.北偏东70° 15. 67.5° 16.6cm 或12cm 解析:如图,应分两种情况:(1)当点C 在点B 左侧时,AC =AB -BC =9-13×9=6(cm);(2)当点C 在点B 右侧时,AC =AB +BC =9+13×9=12(cm).故A ,C 两点的距离为6cm 或12cm.17.解:(1)原式=116°12′.(2)原式=41°16′. (3)原式=9°33′29″.(4)原式=170°50′29″.18.解:∵∠AOC 为直角,∴∠AOC =90°,∴∠BOC =∠AOC -∠AOB =90°-35°=55°.又OC 平分∠BOD ,∴∠COD =∠BOC =55°,∴∠AOD =∠AOC +∠COD =90°+55°=145°. 19.解:答案不唯一,例如画出的图形如图所示.20.解:(1)∵OB 是∠AOC 的平分线,OD 是∠COE 的平分线, ∴∠COB =∠BOA =50°,∠COD =∠DOE =35°, ∴∠BOD =∠COB +∠COD =50°+35°=85°.(2)∵OD 是∠COE 的平分线,∴∠COE =2∠COD =2×40°=80°, ∴∠AOC =∠AOE -∠COE =160°-80°=80°.又∵OB 是∠AOC 的平分线,∴∠AOB =12∠AOC =12×80°=40°.21.解:(1)∵M 是线段AC 的中点,∴CM =AM =3cm ,AC =6cm. 又AB =10cm ,∴BC =4cm.∵N 是线段BC 的中点,∴CN =12BC =12×4=2(cm).(2)∵M 是线段AC 的中点,N 是线段BC 的中点, ∴NC =12BC ,CM =12AC .∴MN =NC +CM =12BC +12AC =12(BC +AC )=12AB ,∴AB =2MN =2×6=12(cm).22.解:(1)∵∠NOA =90°-45°=45°,∠CON =90°-60°=30°, ∴学校A 在小明家O 的北偏东45°方向,公园C 在小明家O 的北偏西30°方向. (2)∵学校A 到小明家O 的实际距离是400m ,且OA =2cm , ∴平面图上1cm 代表的实际距离是200m ,∴平面图上2.5cm 代表的实际距离是2.5×200=500(m). 故公园C 到小明家O 的实际距离是500m. 23.解:(1)37.5°(2)当绕着点O 逆时针旋转∠COD ,∠BOC =10°时,∠AOC =55°,∠BOD =40°, ∴∠BON =12∠BOD =20°,∠MOB =12∠AOC -∠BOC =27.5°-10°=17.5°,∴∠MON =∠MOB +∠BON =17.5°+20°=37.5°.(3)37.5 解析:∠AOC =∠AOB +∠BOC ,∠BOD =∠COD +∠BOC ,又OM ,ON 分别是∠AOC ,∠BOD 的平分线,∠AOB =45°,∠COD =30°,∴∠MOC =12∠AOC =12(∠AOB +∠BOC ),∠CON =12∠BOD -∠BOC ,∴∠MON =∠MOC +∠CON =12(∠AOB +∠BOC )+12∠BOD -∠BOC =12∠AOB +12(∠BOD -∠BOC )=12∠AOB +12∠COD =37.5°.第五章检测卷一、选择题(每小题3分,共30分) 1.下列方程中,是一元一次方程的是( )A .x 2-4x =3 B .3x -1=x2 C .x +2y =1 D .xy -3=52.方程-2x +3=0的解是( )A .x =23B .x =-23C .x =32D .x =-323.方程3x +2x -13=3-x +12去分母正确的是( )A .18x +2(2x -1)=18-3(x +1)B .3x +2(2x -1)=3-(x +1)C .18x +(2x -1)=18-(x +1)D .3x +2(2x -1)=3-3(x +1) 4.下列说法错误的是( )A .若x a =y a,则x =y B .若x 2=y 2,则-4ax 2=-4ay 2C .若a =b ,则a -3=b -3D .若ac =bc ,则a =b5.一元一次方程12x -1=2的解表示在数轴上,是图中数轴上的哪个点( )A .D 点B .C 点 C .B 点D .A 点6.已知x =-3是方程k (x +4)-2k -x =5的解,则k 的值是( ) A .-2 B .2 C .3 D .57.某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x 人,则可列方程( ) A .22+x =2×26 B .22+x =2(26-x ) C .2(22+x )=26-x D .22=2(26-x )8.小马虎在做作业时,不小心将方程中的一个常数污染了,被污染的方程是2(x -3)-●=x +1,怎么办呢?他想了想便翻看书后的答案,方程的解是x =9,那么这个被污染的常数是( ) A .1 B .2 C .3 D .49.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元,而按原定价的九折出售,将赚20元,则这种商品的原价是( )A .500元B .400元C .300元D .200元10.如图,在长方形ABCD 中,AB =10cm ,BC =6cm ,动点P ,Q 分别从点A ,B 同时出发,点P 以3cm/s 的速度沿AB ,BC 向点C 运动,点Q 以1cm/s 的速度沿BC 向点C 运动.设P ,Q 运动的时间是t 秒,当点P 与点Q 重合时t 的值是( )A.52B .4C .5D .6二、填空题(每小题3分,共18分) 11.已知方程2xm -3+3=5是关于x 的一元一次方程,则m =________.12.2x =3(5-x )的解是________.13.若a 3+1与2a -73互为相反数,则a =________.14.定义运算“&”:a &b =2a +b ,则满足x &(x -6)=0的x 的值为________.15.一个两位数,个位数字是十位数字的4倍,如果把个位数字与十位数字对调,那么得到的新数比原数大54,则原数为________.16.一艘轮船航行于A ,B 两个码头之间,顺水航行需3小时,逆水航行需5小时.已知水流速度为4千米/时,则两码头之间的距离为________千米. 三、解答题(共72分) 17.(8分)解方程:(1)2(x +3)=-3(x -1)+2; (2)1-x 3-x =3-x +24.18.(8分)当x 为何值时,式子5x +12-3x 的值比式子7x -53的值大5?19.(10分)若方程2x -35=23x -2与关于x 的方程3n -14=3(x +n )-2n 的解相同,求(n -3)2的值.20.(10分)根据以下对话,分别求小红所买的笔和笔记本的价格.21.(12分)根据下面的两种移动电话计费方式表,解答下列问题:(1)(2)若某人预计一个月内使用本地通话费90元,则应该选择哪种通讯方式较合算?22.(12分)如图,线段AB=60厘米.(1)点P沿线段AB自A点向B点以4厘米/分的速度运动,同时点Q沿线段自B点向A点以6厘米/分的速度运动,几分钟后,P,Q两点相遇?(2)几分钟后,P,Q两点相距20厘米?23.(12分)若干个3的倍数按照一定的规律排成下表,用如图所示的正方形框出四个数.(1)如果框出的四个数的和是1158,你能确定四个数分别是多少吗?(2)你认为能否框出四个数,使这四个数的和是190.请说明理由.参考答案与解析1.B 2.C 3.A 4.D 5.A 6.A 7.B 8.B 9.C10.C 解析:当点P 与点Q 重合时有3t -t =10,解得t =5,故选C. 11.4 12.x =3 13.4314. 2 15. 2816.60 解析:设船在静水中的速度为x 千米/时,由题意可得3(x +4)=5(x -4),解得x =16,所以两码头之间的距离为3×(16+4)=60(千米).17.解:(1)x =-15.(2)x =-2.18.解:根据题意,得5x +12-3x -7x -53=5,解得x =-1.19.解:解方程2x -35=23x -2得x =214.把x =214代入3n -14=3(x +n )-2n ,解得n =8.所以(n -3)2=25.20.解:设笔的价格为x 元/支,则笔记本的价格为3x 元/本. 由题意得10x +5×3x =30,解得x =1.2,3x =3.6. 答:笔的价格为1.2元/支,笔记本的价格为3.6元/本.21.解:(1)设一个月内本地通话x 分钟时,两种通讯方式的费用相同,由题意得25+0.2x =0.3x ,解得x =250. 答:一个月内本地通话250分钟时,两种通讯方式的费用相同.(2)设一个月内本地通话y 分钟时,“全球通”:25+0.2y =90,解得y =325.“神州行”:0.3y =90,解得y =300.∵325>300,∴选择全球通比较合算.22.解:(1)设经过x 分钟后,P ,Q 两点相遇,依题意得4x +6x =60,解得x =6. 答:经过6分钟后,P ,Q 两点相遇.(2)设经过y 分钟后,P ,Q 两点相距20厘米,依题意得①4y +6y +20=60,解得y =4; ②4y +6y -20=60,解得y =8.答:经过4或8分钟后,P 、Q 两点相距20厘米.23.解:(1)设四个数中最小的一个数是x ,那么其余的三个数分别表示为x +3,x +30,x +33.根据题意得x +(x +3)+(x +30)+(x +33)=1158.即4x +66=1158,解得x =273.所以x +3=276,x +30=303,x +33=306,即这四个数分别是273,276,303,306.(2)不能框出四个数,使这四个数的和是190,理由如下:由(1)可知,若设四个数中最小的为y ,则有4y +66=190,解得y =31.而31不是3的倍数,所以不在此数表中,因此不能框出四个数,使这四个数的和是190.第六章检测卷一、选择题(每小题3分,共30分) 1.下面调查中,适合采用普查的是( )A .调查全国中学生心理健康现状B .调查你所在班级同学的身高情况C .调查我市食品的合格情况D .调查《人民的民义》的收视率 2.下列选项中,能显示部分在总体中所占百分比的统计图是( ) A .扇形图 B .条形图 C .折线图 D .直方图3.某校为了解360名七年级学生的体重情况,从中抽取了60名学生进行测量,下列说法正确的是( )A.总体是360 B.样本容量是60C.样本是60名学生 D.个体是每个学生4.如图是某手机店今年1~5月份音乐手机销售额统计图.根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是( )A.1月至2月 B.2月至3月 C.3月至4月 D.4月至5月第4题图第5题图5.湘西某县有68万人口,各民族所占比例如图所示,则该县少数民族人口共有( )A.30.0万 B.37.4万 C.30.6万 D.40.0万6.如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角度数是( ) A.36° B.72° C.108° D.180°第6题图第7题图7.如图是某班一次数学测验成绩的频数直方图,则数学成绩在69.5~89.5分范围内的学生共有( )A.24人 B.10人 C.14人 D.29人8.频数直方图由五个小长方形组成,且五个小长方形的高度之比是3∶5∶4∶2∶3.若第一小组的频数为12,则数据总数为( )A.60 B.64 C.68 D.729.为了解本校九年级学生的体能情况,随机抽查了其中30名学生,测试1分钟仰卧起坐的次数,并将其绘制成如图所示的频数直方图.那么仰卧起坐次数在25~30次的人数占抽查总人数的百分比是( )A.40% B.30% C.20% D.10%第9题图第10题图10.甲、乙两人参加某体育项目训练,为了便于研究,把最近五次的训练成绩绘制成如图所示的折线统计图,下面结论错误的是( )A.甲的第三、四次成绩相同 B.甲、乙两人第三次成绩相同C.甲的第四次成绩比乙的第四次成绩少2分 D.甲每次的成绩都比乙的高二、填空题(每小题3分,共18分)11.为了解北京火车站2017年“春运”期间每天的乘车人数,随机调查了2017年2月11~2月15日这5天的乘车人数,抽查的这5天中每天的乘车人数是这个调查的________.12.某超市对今年前两个季度每月销售总量进行统计,为了更清楚地看出销售总量的总趋势是上升还是下降,应选用________统计图来描述数据.13.对150名男生的身高进行测量,数据最大的是181厘米,最小的是164厘米.若画频数分布直方图时取组距为2厘米,则应将数据分成________组.14.某校根据去年九年级学生参加中考的数学成绩的等级,绘制成如图所示的扇形统计图,则图中表示A等级的扇形的圆心角的大小为________.第14题图第15题图第16题图15.为了解小学生的体能情况,抽取了某小学同年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频数直方图.已知图中从左到右前三个小组所占的百分比分别是10%,30%,40%,第一小组的频数为5,则第四小组所占的百分比是________,参加这次测试的学生有________人.16.如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30%,表示踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是1∶2,那么表示参加“其他”活动的人数占总人数的________.三、解答题(共72分)17.(8分)下面这几个抽样调查选取样本的方法是否合适?并说明理由.(1)为调查全校学生对购买正版书籍、唱片和软件的支持率,在全校所有的班级中,任意抽取8个班级,调查这8个班所有学生对购买正版书籍、唱片和软件的支持率;(2)为调查一个省的污染情况,调查省会城市的环境污染情况.18.(10分)在对某地区的一次人口抽样统计分析中,各年龄段(年龄为整数)的人数如下表所示.请根据此表回答下列问题:(1)(2)________岁年龄段的人数最多,________岁年龄段的人数最少;(3)年龄在60岁以上(含60岁)的频数是________,所占百分比是________;。

七年级数学上册北师大版第1章丰富的图形世界测试卷(3)含答案

七年级数学上册北师大版第1章丰富的图形世界测试卷(3)含答案

《第一章丰富的图形世界》章末测试卷一.选择题(共12小题)1.下列图形中,属于立体图形的是()A.B.C.D.2.如图,矩形ABCD,AB=a,BC=b,a>b;以AB边为轴将矩形绕其旋转一周形成圆柱体甲,再以BC边为轴将矩形绕其旋转一周形成圆柱体乙;记两个圆柱体的体积分别为V 甲、V乙,侧面积分别为S甲、S乙,则下列式子正确的是()A.V甲>V乙S甲=S乙B.V甲<V乙S甲=S乙C.V甲=V乙S甲=S乙 D.V甲>V乙S甲<S乙3.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是()A.3 B.9 C.12 D.184.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来5.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④6.下面平面图形中能围成三棱柱的是()A.B.C.D.7.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是()A.丽B.连C.云D.港8.图1是一个正六面体,把它按图2中所示方法切割,可以得到一个正六边形的截面,则下列展开图中正确画出所有的切割线的是()A.B.C.D.9.一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是()A.B.C.D.10.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.11.一个几何体的三视图如图所示,则该几何体的表面积为()A.4πB.3πC.2π+4 D.3π+412.如图是边长为1的六个小正方形组成的平面图形,经过折叠能围成一个正方体,那么点A、B在围成的正方体上相距()A.0 B.1 C.D.二.填空题(共4小题)13.如图,在长方体ABCD﹣EFGH中,平面ABFE与平面DCGH的位置关系是平行.14.如图,一个长方体的表面展开图中四边形ABCD是正方形,则根据图中数据可得原长方体的体积是12cm3.15.如图,一个表面涂满颜色的正方体,现将每条棱三等分,再把它切开变成若干个小正方体,两面都涂色的有12个;只有一面涂色的小正方体有6个.16.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为24π.(结果保留π)三.解答题(共6小题)17.如图,上面的平面图形绕轴旋转一周,可以得出下面的立方图形,请你把有对应关系的平面图形与立体图形连接起来.18.把19个边长为2cm的正方体重叠起来,作成如图那样的立体图形,求这个立体图形的表面积.19.小明用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长6cm,长方形的长为8cm,宽为6cm,请求出修正后所折叠而成的长方体的表面积和体积.20.如图,这是一个正方体的展开图,折叠后它们的相对两面的数字之和相等,请你求出y﹣x的值.21.如图所示,木工师傅把一个长为 1.6米的长方体木料锯成3段后,表面积比原来增加了80cm2,那么这根木料本来的体积是多少?22.(1)如图①是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)参考答案一.选择题(共12小题)1.下列图形中,属于立体图形的是()A.B.C.D.【考点】认识立体图形.【分析】根据平面图形所表示的各个部分都在同一平面内,立体图形是各部分不在同一平面内的几何,由一个或多个面围成的可以存在于现实生活中的三维图形,可得答案.【解答】解:A、角是平面图形,故A错误;B、圆是平面图形,故B错误;C、圆锥是立体图形,故C正确;D、三角形是平面图形,故D错误.故选:C.【点评】本题考查了认识立体图形,立体图形是各部分不在同一平面内的几何,由一个或多个面围成的可以存在于现实生活中的三维图形.2.如图,矩形ABCD,AB=a,BC=b,a>b;以AB边为轴将矩形绕其旋转一周形成圆柱体甲,再以BC边为轴将矩形绕其旋转一周形成圆柱体乙;记两个圆柱体的体积分别为V 甲、V乙,侧面积分别为S甲、S乙,则下列式子正确的是()A.V甲>V乙S甲=S乙B.V甲<V乙S甲=S乙C.V甲=V乙S甲=S乙 D.V甲>V乙S甲<S乙【考点】点、线、面、体.【分析】根据圆柱体的体积=底面积×高求解,再利用圆柱体侧面积求法得出答案.【解答】解:V甲=π?b2×a=πab2,V乙=π?a2×b=πba2,∵πab2<πba2,∴V甲<V乙,∵S甲=2πb?a=2πab,S乙=2πa?b=2πab,∴S甲=S乙,故选:B.【点评】此题主要考查了面动成体,关键是掌握圆柱体的体积和侧面积计算公式.3.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是()A.3 B.9 C.12 D.18【考点】几何体的表面积.【分析】观察几何体,得到这个几何体向前、向后、向上、向下、向左、向右分别有3个正方形,则它的表面积=6×3×1.【解答】解:这个几何体的表面积=6×3×1=18.故选:D.【点评】本题考查了几何体的表面积:正方体表面积为6a2 (a为正方体棱长).4.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来【考点】几何体的展开图.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“遇”与“的”是相对面,“见”与“未”是相对面,“你”与“来”是相对面.故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④【考点】展开图折叠成几何体.【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选:A.【点评】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.6.下面平面图形中能围成三棱柱的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、能围成三棱柱,故选项正确;B、折叠后有两个面重合,不能围成三棱柱,故选项错误;C、不能围成三棱柱,故选项错误;D、折叠后有两个侧面重合,不能围成三棱柱,故选项错误.故选:A.【点评】考查了展开图折叠成几何体,解题时勿忘记三棱柱的特征及正方体展开图的各种情形.7.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是()A.丽B.连C.云D.港【考点】专题:正方体相对两个面上的文字.【分析】正方体的平面展开图中,相对面的特点是必须相隔一个正方形,据此作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“港”是相对面,“丽”与“连”是相对面,“的”与“云”是相对面.故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8.图1是一个正六面体,把它按图2中所示方法切割,可以得到一个正六边形的截面,则下列展开图中正确画出所有的切割线的是()A.B.C.D.【考点】截一个几何体;几何体的展开图.【分析】根据正六面体和截面的特征,可动手操作得到答案.【解答】解:动手操作可知,画出所有的切割线的是图形C.故选C.【点评】考查了截一个几何体和几何体的展开图,观察思考与动手操作结合,得到相应的规律是解决本题的关键.9.一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是()A.B.C.D.【考点】简单几何体的三视图.【分析】从左面看会看到该几何体的两个侧面.【解答】解:从左边看去,应该是两个并列并且大小相同的矩形,故选B.【点评】本题考查了几何体的三视图及空间想象能力.10.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,故选A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.11.一个几何体的三视图如图所示,则该几何体的表面积为()A.4πB.3πC.2π+4 D.3π+4【考点】由三视图判断几何体.【分析】首先根据三视图判断几何体的形状,然后计算其表面积即可.【解答】解:观察该几何体的三视图发现其为半个圆柱,半圆柱的直径为2,长方体的长为2,宽为1,高为1,故其表面积为:π×12+(π+2)×2=3π+4,故选D.【点评】本题考查了由三视图判断几何体的知识,解题的关键是首先根据三视图得到几何体的形状,难度不大.12.如图是边长为1的六个小正方形组成的平面图形,经过折叠能围成一个正方体,那么点A、B在围成的正方体上相距()A.0 B.1 C.D.【考点】展开图折叠成几何体.【分析】将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB 之间的距离.【解答】解:将图1折成正方体后点A和点B为同一条棱的两个端点,故此AB=1.故选:B.【点评】本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置关系是解题的关键.二.填空题(共4小题)13.如图,在长方体ABCD﹣EFGH中,平面ABFE与平面DCGH的位置关系是平行.【考点】认识立体图形.【分析】在长方体中,面与面之间的关系有平行和垂直两种.【解答】解:平面ABFE与平面DCGH,故答案为:平行.【点评】此题主要考查了认识立体图形,在立体图形中,两个平行的面中的每条棱也互相平行.14.如图,一个长方体的表面展开图中四边形ABCD是正方形,则根据图中数据可得原长方体的体积是12cm3.【考点】几何体的展开图.【分析】利用正方形的性质以及图形中标注的长度得出AB=AE=4cm,进而得出长方体的长、宽、高进而得出答案.【解答】解:如图,∵四边形ABCD是正方形,∴AB=AE=4cm,∴立方体的高为:(6﹣4)÷2=1(cm),∴EF=4﹣1=3(cm),∴原长方体的体积是:3×4×1=12(cm3).故答案为:12.【点评】此题主要考查了几何体的展开图,利用已知图形得出各边长是解题关键.15.如图,一个表面涂满颜色的正方体,现将每条棱三等分,再把它切开变成若干个小正方体,两面都涂色的有12个;只有一面涂色的小正方体有6个.【考点】截一个几何体.【分析】根据图示可发现除顶点外位于棱上的小方块两面,涂色位于表面中心的一面涂色.【解答】解:根据以上分析:有一条边在棱上的正方体有12个两面涂色;每个面的正中间的一个只有一面涂色的有6个.故答案为:12,6.【点评】主要考查了正方体的组合与分割.要熟悉正方体的性质,在分割时有必要可动手操作.16.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为24π.(结果保留π)【考点】由三视图判断几何体.【分析】根据主视图确定出圆柱体的底面直径与高,然后根据圆柱体的侧面积公式列式计算即可得解.【解答】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4?π×6=24π.故答案为:24π.【点评】本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.三.解答题(共6小题)17.如图,上面的平面图形绕轴旋转一周,可以得出下面的立方图形,请你把有对应关系的平面图形与立体图形连接起来.【考点】点、线、面、体.【分析】根据“面动成体”的原理,结合图形特征进行旋转,判断出旋转后的立体图形即可.【解答】解:连线如下:【点评】本题考查了图形的旋转,注意培养自己的空间想象能力.18.把19个边长为2cm的正方体重叠起来,作成如图那样的立体图形,求这个立体图形的表面积.【考点】几何体的表面积.【分析】前后面各有10个小正方形,上下面各有9个小正方形,左右面各有8个小正方形,而每个小正方形的面积是4,即可求出表面积.【解答】解:这个立体图形的表面积是4×2×(9+8+10)=216(平方厘米),答:这个立体图形的表面积是216平方厘米.【点评】本题考查了几何体的表面积的应用,能理解表面积的意义是解此题的关键,难度不是很大.19.小明用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长6cm,长方形的长为8cm,宽为6cm,请求出修正后所折叠而成的长方体的表面积和体积.【考点】展开图折叠成几何体;几何体的展开图.【分析】(1)根据长方体展开图中每个面都有一个全等的对面,可得答案;(2)根据表面积公式,可得答案;根据长方体的体积,可得答案.【解答】解:(1)多余一个正方形如图所示;(2)表面积=6×8×4+62×2=192+72=264cm2.【点评】本题考查了展开图折叠成几何题,利用长方体展开图中每个面都有一个全等的对面是解题关键.20.如图,这是一个正方体的展开图,折叠后它们的相对两面的数字之和相等,请你求出y﹣x的值.【考点】专题:正方体相对两个面上的文字.【分析】利用正方体的表面展开图,相对的面之间一定相隔一个正方形,可得x+3x=2+6,y﹣1+5=2+6,解方程求出x与y的值,进而求解即可.【解答】解:由题意,得x+3x=2+6,y﹣1+5=2+6,解得x=2,y=4,所以y﹣x=4﹣2=2.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.21.如图所示,木工师傅把一个长为 1.6米的长方体木料锯成3段后,表面积比原来增加了80cm2,那么这根木料本来的体积是多少?【考点】截一个几何体;几何体的表面积.【分析】根据长方体的切割特点可知,切割成三段后,表面积是增加了4个长方体的侧面的面积,由此利用增加的表面积即可求出这根木料的侧面积,再利用长方体的体积公式即可解答问题.【解答】解:∵把长方体木料锯成3段后,其表面积增加了四个截面,因此每个截面的面积为80÷4=20cm2,∴这根木料本来的体积是: 1.6×100×20=3200(cm3).【点评】此题主要考查了几何体的表面积,抓住切割特点和表面积增加面的情况是解决本题的关键.22.(1)如图①是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)【考点】简单组合体的三视图;几何体的表面积.【分析】(1)找到从正面和上面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.(2)根据题目所给尺寸,计算出下面长方体表面积+上面圆柱的侧面积.【解答】解:(1)如图所示:;(2)表面积=2(8×5+8×2+5×2)+4×π×6=2(8×5+8×2+5×2)+4×3.14×6=207.36(cm2).【点评】此题主要考查了简单几何体的三视图,以及几何体的表面积,关键是掌握三视图所看的位置.。

2020年北师大版七年级数学上册第一章《丰富的图形世界》检测题(含答案)

2020年北师大版七年级数学上册第一章《丰富的图形世界》检测题(含答案)

港云连的丽美2020年七年级数学上册第一章《丰富的图形世界》检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.在棱柱中( )A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行 2.下列平面图形不能够围成正方体的是( )3. 下列图形中,属于立体图形的是( ) A .B .C .D .4. 如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是( ) A .丽 B .连 C .云 D .港5.下列图形中可以作为一个三棱柱的展开图的是( )A B 第4题图C D6.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列左图是以下四个图中的哪一个绕着直线旋转一周得到的( )7.如图是一个立体图形从三个不同方向看到的形状图,这个立体图形是由一些相同的小正方体构成,这些相同的小正方体的个数是( )A.4B.5C.6D.78.如图所示的几何体中,从上面看到的图形相同的是( )第8题图A.①②B.①③C.②③D.②④ 9. 如图,一个放置在水平桌面上的圆柱,从正面看到的图形是( )第9题图10.如图,下面三个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么A B DC涂黄色、白色、红色的对面分别是()A.蓝色、绿色、黑色B.绿色、蓝色、黑色C.绿色、黑色、蓝色D.蓝色、黑色、绿色二、填空题(每小题3分,共24分)11.下列表面展开图的立体图形的名称分别是:______、______、______、______.第11题图12.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去____(填序号).13.如果一个几何体从三个方向看到的图形之一是三角形,这个几何体可能是(写出3个即可).14.若几何体从正面看是圆,从左面和上面看都是长方形,则该几何体是.15.在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则摆出这样的图形至少需要块正方体木块,至多需要块正方体木块.第15题图16.如图所示的立体图形是由几个小正方体组成的一个几何体,这个几何体从上面看到的形状图是_____________.(填A或B或C或D)第16题图17.如图,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭的几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小正方体,王亮所搭几何体的表面积为___.第17题图18.下列第二行的哪种几何体的表面能展开成第一行的平面图形?请对应填空.①:_____________;②:_____________;③:_____________;④:_____________;⑤:_____________.第18题图三、解答题(共46分)19.(6分)如图是一个正方体骰子的表面展开图,请根据要求回答问题:(1)如果1点在上面,3点在左面,几点在前面?(2)如果5点在下面,几点在上面?第19题图第20题图20.(6分)画出如图所示的正三棱锥从正面、上面看到的形状图.21.(6分)如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.22.(7分)画出下列几何体从正面、左面看到的形状图.23.(7分)如图,某同学在制作正方体模型的时候,在方格纸上画出几个小正方形(图中阴影部分),但是由于疏忽少画了一个,请你给他补上一个,使之可以组合成正方体,你有几种画法,在图上用阴影注明.第23题图24.(7分)如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求的值.第24题图25.(7分)一只蜘蛛在一个正方体的顶点A处,一只蚊子在正方体的顶点B处,如图所示,现在蜘蛛想尽快地捉到这只蚊子,那么它所走的最短路线是怎样的,在图上画出来,这样的最第25题图参考答案一、选择题1.D 解析:对于A,如果是长方体,不止有两个面平行,故错误;对于B,如果是长方体,不可能所有的棱都平行,只是所有的侧棱都平行,故错误;对于C,如果是底面为梯形的棱柱,不是所有的面都是平行四边形,故错误;对于D,根据棱柱的定义知其正确,故选D.2.B 解析:利用自己的空间想象能力或者自己动手实践一下,可知答案选B.3.C 解析:A中,角是平面图形,故A错误;B中,圆是平面图形,故B错误;C中,圆锥是立体图形,故C正确;D中,三角形是平面图形,故D错误.4. D 解析:根据正方体的表面展开图可知,丽与连相对;美与港相对;的与云相对.5.A 解析:依据平面展开图想象围成的多面体的形状,借助想象力,通过比较与综合可知只有选项A中的展开图才能围成三棱柱.6.A 解析:A可以通过旋转得到两个圆柱,故本选项正确;B可以通过旋转得到一个圆柱,一个圆筒,故本选项错误;C可以通过旋转得到一个圆柱,两个圆筒,故本选项错误;D可以通过旋转得到三个圆柱,故本选项错误.7.D8.C 解析:①从上面看到的图形是一个没圆心的圆,②③从上面看到的图形是一个带圆心的圆,④从上面看到的图形是两个不带圆心的同心圆,故答案选C.9.C 解析:对于放置在水平桌面上的圆柱体,从它的正面看到的图形是长方形,所以选C.10.B 解析:分析可知黄色的对面是绿色,白色的对面是蓝色,红色的对面是黑色.二、填空题11.圆柱圆锥四棱锥三棱柱12.1或2或6 解析:根据有“田”字格的展开图都不是正方体的表面展开图可知,应剪去1或2或6,答案不唯一.13.圆锥,三棱柱,三棱锥等14.圆柱解析:几何体从正面看是圆,从左面和上面看都是长方形,符合这个条件的几何体只有圆柱.15.6 16 解析:易得第一层最少有4块正方体,最多有12块正方体;第二层最少有2块正方体,最多有4块正方体,故总共至少有6块正方体,至多有16块正方体.16.C 解析:该几何体从上面看是三个正方形排成一行,所以从上面看到的形状图是C.17.19,48 解析:两人所搭成的几何体拼成一个大长方体,该长方体的长、宽、高至少为3,3,4,所以它的体积为36,故它是由36个棱长为1的小正方体搭成的,那么王亮至少还需要36-17=19(个)小正方体.王亮所搭几何体上面面积为8,右侧面积为7,左侧面积为7,后面面积为9,前面面积为9,底面面积为8,故表面积为48.18.D,E,A,B,C三、解答题19.解:(1)如果1点在上面,3点在左面,那么2点在前面.(2)如果5点在下面,那么2点在上面.20.解:几何体从正面、上面看到的形状图如图所示.第20题图21.解:从正面和从左面看到的形状图如图所示:第21题图22.解:从正面、左面看到的形状图如图所示:第22题图23.解:画图如图所示,共有四种画法.第23题图24.解:由于正方体的平面展开图共有六个面,其中面“”与面“3”相对,面“”与面“-2”相对,面“”与面“10”相对,则,,,解得,,.故.25.分析:欲求从点A到点B的最短路线,在立体图形中难以解决,可以考虑把正方体展开成平面图形来考虑.如图(1)所示,我们都有这样的实际经验,在两点之间,走直线路程最短,因而沿着从点A到点B的虚线走,路程最短,然后把展开图折叠起来.第25题图(1)解:所走的最短路线是正方体平面展开图中从点A到点B的连线(如图(1)).在正方体上,像这样的最短路线一共有6条,但通过地面的有2条,这2条不符合实际意义,故符合题意的只有4条,如图(2)所示.第25题图(2)。

北师大版七年级上册数学第一单元测试卷及答案

北师大版七年级上册数学第一单元测试卷及答案

《第一章丰富的图形世界》章末检测一、选择题1.如图所示的图形的名称按从左到右的顺序依次是()A.圆柱圆锥、正方体、长方体B.圆柱、球、正方体、长方体C.棱柱、球、正方体、长方体D.棱柱、圆锥、四棱柱、长方体2.(2020独家原创试题)下列四个立体图形中,面数最少的是()A.B.C.D.3.(2019江苏连云港中考)一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.4.圆柱和圆锥的共同点是()A.都有顶点B.底面是平面,侧面是曲面C.面数相同D.都没有顶点5.(2016四川遂宁中考)下列各选项中,不是正方体表面展开图的为()A.B.C.D.6.下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.7.(2019山东滨州中考)如图,一个几何体由5个棱长为1的小正方体搭成,下列说法正确的是()A.主视图的面积为4B.左视图的面积为4C.俯视图的面积为3D.三种视图的面积都是48.下列说法正确的是()①正方体的截面可以是等边三角形;②正方体不可能截出七边形;③用一个平面截正方体,当这个平面与四个平面相交时,所得的截面一定是正方形;④正方体的截面中边数最多的是六边形A.①②③④B.①②③C.①③④D.①②④9.如图所示,绕直线m旋转一周后形成的几何体是()A.B.C.D.10.(2015吉林中考)如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.11.(2019山西中考)某正方体的每个面上都有一个汉字,图是它的一种展开图,那么在原正方体中,与“点”字所在面相对的面上的汉字是()A.青B.春C.梦D.想12.(2020辽宁阜新实验中学第一次月考)几个棱长为1的小正方体组成的几何体的三视图如图所示,则这个几何体的体积是()A.4B.5C.6D.7二、填空题13.飞机表演的“飞机拉线”用数学知识解释为___________.14.图(1)、(2)、(3)中几何体的截面分别是___________、___________、___________.15.如果一个棱柱的底面是六边形且侧棱长为5cm,那么所有侧棱长之和为___________cm.16.在如图所示的四个图形中,图形___________可以用平面截长方体得到;图形___________可以用平面截圆锥得到(填序号)17.(2020独家原创试题)图是由10个同样大小的小正方体摆成的几何体,将小正方体①移走后,则新几何体从三个方向看到的图形中,与原几何体从三个方向看到的图形相比较,从___________看到的图形不变.18.有一个正六面体骰子放在桌面上,若将骰子沿如图所示的顺时针方向滚动,每滚动90°为一次,则滚动第2019次后,骰子朝下一面的点数是___________.三、解答题19.(2020河南平顶山三六联校期中)(14分)(1)在如图所示的方格纸中,已经有编号为1~5的5个小正方形,请在图中标出编号为6的小正方形位置,使它们恰好能折成一个正方体(写个即可);(2)图是由7个大小相同的小正方体组成的几何体,请画出它的主视图、左视图和俯视图.20.(2019江西景德镇期中)(10分)一个直棱柱有18个面,且所有的侧棱长的和为64,底面边长都是3.(1)这是几棱柱?(2)求此棱柱的侧面展开图的面积.21.(2019辽宁灯塔一中期中)(10分)图是由几个小立方体所组成几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体的主视图和左视图.22.(12分)有一个长为4cm,宽为3cm的长方形纸片.(1)若将此长方形纸片绕长边或短边所在直线旋转一周,能形成的几何体是__________,这能说明的事实是__________;(2)当此长方形纸片绕长边所在直线旋转一周时,求所形成的几何体的体积;(3)当此长方形纸片绕短边所在直线旋转一周时,求所形成的几何体的体积.参考答案1.答案:B解析:根据图形特征判定.2.答案:B解析:球只有1个面.3.答案:B解析:由题图知,该几何体为四棱锥,所以它的底面是四边形,故选B.4.答案:B解析:圆柱和圆锥的底而都是平面,侧面都是曲面.5.答案:C解析:根据正方体的表面展开图的特征或通过动手操作,易知C不是正方体的表面展开图.6.答案:C解析:动手操作易知只有C能折成三棱柱.7.答案:A解析:观察该几何体,主视图有4个小正方形,面积为4;左视图有3个小正方形,面积为3;俯视图有4个小正方形,面积为4.故A正确.8.答案:D解析:正方体一共六个面,最多截出六边形,不可能截出七边形,故②④中的说法正确.可以截出等边三角形,如图,故①中的说法正确.用③的方法截正方体,也可能截出长方形或等腰梯形,故③中的说法不正确.故选D.9.答案:B解析:动手操作逐项验证选项的正确性.10.答案:B解析:显然A中圆形与“纸巾”相对,C、D中“纸巾”这两个字的方向不对,故选B.11.答案:B解析:由题图可知,“点”与“春”所在面是相对面.故选B.12.答案:B解析:由题图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5,所以这个几何体的体积是5.故选B.13.答案:点动成线解析:把飞机看成一个点,则“飞机拉线”用数学知识解释为点动成线.14.答案:圆;长方形;三角形解析:15.答案:30解析:一个棱柱的底面是六边形,则共有6条侧棱,侧棱长之和为6×5=30cm.16.答案:②③④;①④解析:长方体可以用平面截出长方形、梯形、等腰三角形等,不可能截出圆;圆锥可以截出等腰三角形和圆,不可能截出四边形.17.答案:正面和上面解析:移走①,从左面看会少一个小正方形,从正面和上面看到的图形不变. 18.答案:5解析:观察题图可知点数1和点数6相对,点数3和点数4相对,点数2和点数5相对,且四次滚动为一循环,因为2019÷4=504…...3,所以滚动2019次后,骰子朝上一面的点数为2,所以骰子朝下一面的点数为5.19.答案:见解析解析:(1)如图(答案不唯一)(2)如图.20.答案:见解析解析:(1)十六棱柱.(2)由题意得,侧棱长为64÷16=4,直棱柱侧面展开图为长方形,面积为3×16×4=192,即此棱柱的侧面展开图的面积为192.21.答案:见解析解析:如图.22.答案:见解析解析:(1)圆柱;面动成体.(2)绕长边所在直线旋转一周得到的圆柱的底面半径为3cm,高为4cm,体积为π×32×4=36π(cm3).(3)绕短边所在直线旋转一周得到的圆柱的底面半径为4cm,高为3cm,体积为π×42×3=48π(cm3).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版七年级数学上册第一章检测卷
一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)
1.下列几何体中,没有曲面的是()
2.如图中的图形绕虚线旋转一周,可得到的几何体是()
3.如图所示是由六个相同的小正方体搭成的几何体,从正面看该几何体得到的平面图形是()
4.如图所示是某几何体从三个方向看到的图形,则这个几何体是()
A.三棱锥
B.圆柱
C.球
D.圆锥
第4题图第6题图
5.三棱柱的侧面展开图是下列图形中的()
6.一个几何体由几个大小相同的小正方体搭成,其从左面看和从上面看得到的图形如图所示,则搭成这个几何体的小正方体的个数是()
A.3个
B.4个
C.5个
D.6个
二、填空题(本大题共6小题,每小题3分,共18分)
7.在朱自清的《春》中有描写春雨的语句“像牛毛,像细丝,密密地斜织着”,这里把雨滴看成了点,用数学知识解释这一现象:.
8.如果某六棱柱的一条侧棱长为5cm,那么所有侧棱之和为.
9.用一个平面去截正方体,截面是三角形(填“可能”或“不可能”).
10.如图,某长方体的底面是长为4cm、宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,则这个长方体的体积等于.
第10题图第11题图第12题图
11.如图所示是一个正方体的展开图,它所有相对的面上两数之和相等,则x的值为.
12.一个圆柱的侧面展开图为如图所示的长方形,则这个圆柱的底面面积为.
三、(本大题共5小题,每小题6分,共30分)
13.如图,上面是一些实物,下面是一些立体图形,试找出与下面立体图形相类似的实物(用线连接).
14.如图所示,将下列几何体分类.
15.如图所示,说出下列几何体截面(阴影部分)的形状.
16.由7个相同的小立方块搭成的几何体如图所示,请画出从正面、左面、上面看到的几何体的形状图.
17.小毅设计了某个产品的包装盒(如图所示),由于粗心少设计了其中一部分,请你把它补上,使其成为一个两面均有盖的正方体盒子.
(1)共有种添补的方法;
(2)任意画出一种成功的设计图.
四、(本大题共3小题,每小题8分,共24分)
18.在如图所示的长方形纸中,剪出两个圆和一个长方形恰好可以围成一个圆柱,求这个圆柱的体积(π取3.14).
19.一个几何体从三个方向看到的图形如图所示(单位:cm).
(1)写出这个几何体的名称:;
(2)若其从上面看为正方形,根据图中数据计算这个几何体的体积.
20.如图所示是一个多面体的展开图形,每个面(外表面)都标注了字母,请你根据要求回答问题:
(1)这个多面体是什么常见几何体?
(2)如果D是多面体的底部,那么哪一面在上面?
(3)如果B在前面,C在左面,那么哪一面在上面?
五、(本大题共2小题,每小题9分,共18分)
21.如图①,把一张长10厘米、宽6厘米的长方形纸板分成两个相同的直角三角形.
(1)甲三角形(如图②)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?
(2)乙三角形(如图③)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米(π取3.14)?
22.用5个相同的正方体搭出如图所示的组合体.
(1)分别画出从正面、左面、上面看这个组合体时看到的图形;
(2)如果在这个组合体中,再添加一个相同的正方体组成一个新组合体,从正面、左面看这个新组合体时,看到的图形与原来相同.你认为这个设想能实现吗?若能,画出添加正方体后,从上面看这个组合体时看到的图形;若不能,说明理由.
六、(本大题共12分)
23.如图,图①为一个正方体,其棱长为10,图②为图①的表面展开图(数字和字母写在外表面上,字母也可以表示数),请根据要求回答问题:
(1)如果正方体相对面上的两个数字之和相等,则x=,y=;
(2)如果面“2”是右面,面“4”在后面,则上面是(填“6”“10”“x”或“y”);
(3)如图①所示,M,N为所在棱的中点,试在图②中找出点M,N的位置.
参考答案与解析
1.B
2.B
3.B
4.D
5.B
6.B解析:由图可知,底层有3个小正方体,第2层有1个小正方体.故搭成这个几何体的小正方体的个数是3+1=4(个).
7.点动成线8.30cm9.可能10.24cm311.4
12.4π或π解析:分以下两种情形:(1)当底面周长为4π时,半径为4π÷π÷2=2,底面圆的面积为π×22=4π;(2)当底面周长为2π时,半径为2π÷π÷2=1,底面圆的面积为π×12=π.故其底面圆的面积为4π或π.
13.解:如图所示.(6分)
14.解:①③⑤⑥属于柱体,(2分)④属于锥体,(4分)②属于球体.(6分)
15.解:图①②截面形状均为三角形,(4分)图③截面形状为四边形.(6分)
16.解:如图所示.(每个图2分)
17.解:(1)4(4分)
(2)答案不唯一,如图所示.(6分)
18.解:由图可知圆柱的半径r=12.56÷2π=2(dm),高h=4r=8dm.(4分)则体积V=πr2h
=3.14×22×8=100.48(dm3).(7分)
答:这个圆柱的体积是100.48dm3.(8分)
19.解:(1)长方体(3分)
(2)由题可知,长方体的底面是边长为3cm的正方形,高是4cm,则这个几何体的体积是3×3×4=36(cm3).(7分)
答:这个几何体的体积是36cm3.(8分)
20.解:(1)这个多面体是一个长方体.(2分)
(2)B面在上面.(5分)
(3)E面在上面.(8分)
21.解:(1)甲三角形旋转一周可以形成一个圆锥,(2分)它的体积是1
3×3.14×6
2×10=
376.8(立方厘米).(4分)
(2)乙三角形旋转一周可以形成一个空心的圆柱,(6分)它的体积是 3.14×62×10-1 3
×3.14×62×10=753.6(立方厘米).(9分)
22.解:(1)画出的图形如图①所示.(3分)
(2)能实现.(5分)添加正方体后从上面看到的图形如图②所示,有两种情况.(9分)
23.解:(1)128(4分)(2)y(6分)
(3)点N在与DC相对的棱上,点M的位置有两种情况,如图甲、图乙所示.(12分)。

相关文档
最新文档