人教版八年级数学13.4最短路径问题(包含答案)

合集下载

人教版八年级数学上册13.4 课题学习 最短路径问题(解析版)

人教版八年级数学上册13.4 课题学习  最短路径问题(解析版)

第十三章轴对称13. 4课题学习最短路径问题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.A、B是直线l上的两点,P是直线l上的任意一点,要使PA+PB的值最小,那么点P的位置应在A.线段AB上B.线段AB的延长线上C.线段AB的反向延长线上D.直线l上【答案】A2.直线l是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是lA.B.C.D.【答案】D【解析】本题的依据就是两点之间线段最短.首先作点P关于直线l的对称点P′,连接P′Q就是最短的路程.故选D.学&科网3.如图,在△ABC中,∠C=90°,∠BAC=30°,AB=8,AD平分∠BAC,点PQ分别是AB、AD边上的动点,则PQ+BQ的最小值是A.4 B.5C.6 D.7【答案】A二、填空题:请将答案填在题中横线上.4.已知,如图△ABC为等边三角形,高AH=10 cm,P为AH上一动点,D为AB的中点,则PD+PB的最小值为__________cm.【答案】10学&科网【解析】如图,连接PC,∵△ABC为等边三角形,D为AB的中点,∴CD⊥AB,∴CD=AH=10 cm.∵AH⊥BC,∴PB=PC,∴PD+PB的最小值为:PD+PB=PC+PD=CD=AH=10 cm.故答案为:10.学&科网5.如图,△ABC中,AC=10,AB=12,△ABC的面积为48,AD平分∠BAC,F,E分别为AC,AD上两动点,连接CE,EF,则CE+EF的最小值为__________.【答案】8三、解答题:解答应写出文字说明、证明过程或演算步骤.6.要在燃气管道L上修建一个泵站P,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?在图上画出P 点位置,不写作法,保留痕迹.【解析】如图,作点A 关于燃气管道L 的对称点A ′,连接A ′B 交L 于点P ,即点P 即为所求.7.如图所示的方格纸中,每个小方格的边长都是1,点(41)A -,,(33)B -,,(12)C -,. (1)作ABC △关于y 轴对称的A'B'C'△;(2)在x 轴上找出点P ,使PA PC +最小,并直接写出点P 的坐标.。

初中数学人教版八年级上册13.4 课题学习 最短路径问题

初中数学人教版八年级上册13.4 课题学习 最短路径问题

重合),连接AC′,BC′,B′C′.
由轴对称的性质知,
BC =B′C,BC′=B′C′. ∴ AC +BC
= AC +B′C = AB′, AC′+BC′
= AC′+B′C′.
A
·
C′ C
B
·
l
B′
探索新知
问题3 你能用所学的知识证明AC +BC最短吗?
证明:在△AB′C′中, AB′<AC′+B′C′, ∴ AC +BC<AC′+BC′. 即 AC +BC 最短.
C,都保持CB 与CB′的长度
相等?
B
·
l
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
追问2 你能利用轴对称的
A
·
有关知识,找到上问中符合条
件的点B′吗?
B
·
l
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
点.
(2)求直线同侧的两点与直线上一点所连线段的和最 小的问题,只要找到其中一个点关于这条直线的对称 点,连接对称点与另一个点,则与该直线的交点即为 所求.
如图所示,点A,B分别是直线l同侧的两个点,在l上 找一个点C,使CA+CB最短,这时先作点B关于直线l 的对称点B',则点C是直线l与AB'的交点.
P
探索新知
问题1 相传,古希腊亚历山大里亚城里有一位久 负盛名的学者,名叫海伦.有一天,一位将军专程拜访 海伦,求教一个百思不得其解的问题:

人教版八年级数学上册等腰三角形1课题学习最短路径问题(含答案)

人教版八年级数学上册等腰三角形1课题学习最短路径问题(含答案)

13.3等腰三角形13.4课题学习最短路径问题专题一等腰三角形的性质和判定的综合应用1.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF 和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是___________.(填序号)2.如图,在△ABC中,AB=AC,点D、E、F分别在边AB、BC、AC上,且BE=CF,AD+EC=AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?(4)请你猜想:当∠A为多少度时,∠EDF+∠EFD=120°,并请说明理由.3.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.专题二等边三角形的性质和判定4.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP 长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是__________.5.如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.6.如图,△ABC中,AB=BC=AC=12 cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.专题三最短路径问题7.如图,A、B两点分别表示两幢大楼所在的位置,直线a表示输水总管道,直线b表示输煤气总管道.现要在这两根总管道上分别设一个连接点,安装分管道将水和煤气输送到A、B两幢大楼,要求使铺设至两幢大楼的输水分管道和输煤气分管道的用料最短.图中,点A′是点A关于直线b的对称点,A′B分别交b、a于点C、D;点B′是点B关于直线a的对称点,B′A分别交b、a于点E、F.则符合要求的输水和输煤气分管道的连接点依次是()A.F和C B.F和E C.D和C D.D和E8.如图,现准备在一条公路旁修建一个仓储基地,分别给A、B两个超市配货,那么这个基地建在什么位置,能使它到两个超市的距离之和最小? (保留作图痕迹及简要说明)状元笔记【知识要点】1.等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).2.等腰三角形的判定方法如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.等边三角形的性质和判定方法性质:等边三角形的三个内角都相等,并且每一个角都等于60°.判定方法1:三个角都相等的三角形是等边三角形.判定方法2:有一个角是60°的等腰三角形是等边三角形.4.直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【温馨提示】1.“等边对等角”和“等角对等边”只限于在同一个三角形中,在两个三角形中时,上述结论不一定成立.2.在应用直角三角形的性质时应注意以下两点:(1)必须是在直角三角形中;(2)必须有一个锐角等于30°.【方法技巧】1.等腰三角形的性质是证明两个角相等的重要方法,当要证明同一个三角形的两个内角相等时,可尝试用“等边对等角”.2.等腰三角形的判定是证明线段相等的一个重要方法,当要证明位于同一个三角形的两条线段相等时,可尝试用“等角对等边”.3.利用轴对称可以解决几何中的最值问题,本方法的实质是依据轴对称的性质以及两点之间线段最短和三角形两边之和大于第三边.参考答案:1.①②③解析:∵DE∥BC,∴∠DFB=∠FBC,∠EFC=∠FCB.∵BF是∠ABC的平分线,CF是∠ACB的平分线,∴∠FBC=∠DBF,∠FCE=∠FCB.∴∠DBF=∠DFB,∠EFC=∠ECF,∴△DFB,△FEC都是等腰三角形.∴DF=DB,FE=EC,即有DE=DF+FE=DB+EC.∴△ADE的周长=AD+AE+DE=AD+AE+DB+EC=AB+AC.综上所述,命题①②③正确.2.解:(1)证明:∵AD+EC=AB,∴BD=CE.∵AB=AC,∴∠B=∠C.∵BE=CF,∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.(2)∵∠A=40°,∴∠B=∠C=12(180°-∠A)=12(180°-40°)=70°.∵△BDE≌△CEF,∴∠BDE=∠CEF.∴∠DEF=180°-∠BED-∠CEF=180°-∠BED-∠BDE=∠B=70°.(3)不能.∵∠DEF=∠B≠90°,∴△DEF不可能是等腰直角三角形.(4)60°.理由:当∠A=60°时,∠B=∠C=60°,由(2)可得∠DEF=60°.∴∠EDF+∠EFD=120°.3.解:(1)△ABC,△ABD,△ADE,△EDC.(2)AD与BE垂直.证明:∵BE 为∠ABC 的平分线,∴∠ABE=∠DBE. 又∵∠BAE=∠BDE=90°,BE=BE ,∴△ABE 沿BE 折叠,一定与△DBE 重合.∴A 、D 是对称点.∴AD ⊥BE .(3)∵BE 是∠ABC 的平分线,DE ⊥BC ,EA ⊥AB ,∴AE=DE .在Rt △ABE 和Rt △DBE 中,AE =DE BE =BE ⎧⎨⎩,, ∴Rt △ABE ≌Rt △DBE (HL ).∴AB=BD .又△ABC 是等腰直角三角形,∠BAC=90°,∴∠C=45°.又∵ED⊥BC,∴△DCE为等腰直角三角形.∴DE=DC.即AB+AE=BD+DC=BC=10.4.6 解析:连接OD,∵PO=PD,∴OP=DP=OD.∴∠DPO=60°.∵△ABC是等边三角形,∴∠A=∠B=60°,AC=AB=9.∵∠OPA=∠PDB=∠DPA-60°.∴△OPA≌△PDB.∵AO=3,∴AO=PB=3,∴AP=6.5.解:(1)△ODE是等边三角形,其理由是:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵OD∥AB,OE∥AC,∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°.∴△ODE是等边三角形.(2)BD=DE=EC.其理由是:∵OB平分∠ABC,且∠ABC=60°,∴∠ABO=∠OBD=30°.∵OD∥AB,∴∠BOD=∠ABO=30°.∴∠DBO=∠DOB.∴DB=DO.同理,EC=EO.∵DE=OD=OE,∴BD=DE=EC.6.解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12.(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB-BN=12-2t,∵三角形△AMN是等边三角形,∴t=12-2t.解得t=4.∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M 、N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形,由(1)知12秒时M 、N 两点重合,恰好在C 处,如图②,假设△AMN 是等腰三角形,∴AN=AM .∴∠AMN=∠ANM .∴∠AMC=∠ANB .∵AB=BC=AC ,∴△ACB 是等边三角形.∴∠C=∠B .在△ACM 和△ABN 中,AC AB C B AMC ANB =⎧⎪=⎨⎪=⎩,∠∠,∠∠, ∴△ACM ≌△ABN .∴CM=BN.设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y-12,NB=36-2y,CM=NB.y-12=36-2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N运动的时间为16秒.7.A 解析:由轴对称--最短路线的要求可知:输水分管道的连接点是点B关于a的对称点B′与A的连线的交点F,煤气分管道的连接点是点A关于b的对称点A′与B的连线的交点C.故选A.8.解:如图,作点B关于公路的对称点B′,连接AB′,交公路于点C,则这个基地建在C处,才能使它到这两个超市的距离之和最小.。

13.4轴对称之最短路径问题人教版2024—2025学年八年级上册

13.4轴对称之最短路径问题人教版2024—2025学年八年级上册

13.4轴对称之最短路径问题人教版2024—2025学年八年级上册二、例题讲解例1.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知线段AB=4,DE=2,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值.变式1.如图,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连结AC,EC,已知AB=5,DE=1,BD=8.(1)请问点C什么位置时AC+CE的值最小?最小值为多少?(2)设BC=x,则AC+CE可表示为,请直接写出的最小值为.例2.如图,直线l是一条河,P,Q是两个村庄,欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.变式1.如图,在⊥ABC中,BA=BC,BD平分⊥ABC,交AC于点D,点M、N 分别为BD、BC上的动点,若BC=10,⊥ABC的面积为40,则CM+MN的最小值为.变式2.如图,等腰三角形ABC的底边BC长为8,面积是24,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF 上一动点,则⊥CDM的周长的最小值为()A.7B.8C.9D.10变式3.如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)点D的坐标为;(2)若E为边OA上的一个动点,当⊥CDE的周长最小时,求点E的坐标.例3.如图,⊥AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若⊥PMN的周长是6cm,则P1P2的长为()A.6cm B.5cm C.4cm D.3cm变式1.已知点P在⊥MON内.如图1,点P关于射线OM的对称点是G,点P 关于射线ON的对称点是H,连接OG、OH、OP.(1)若⊥MON=50°,求⊥GOH的度数;(2)如图2,若OP=6,当⊥P AB的周长最小值为6时,求⊥MON的度数.变式2.如图,⊥MON=45°,P为⊥MON内一点,A为OM上一点,B为ON上一点,当⊥P AB的周长取最小值时,⊥APB的度数为()A.45°B.90°C.100°D.135°变式3.如图,⊥AOB=30°,P是⊥AOB内的一个定点,OP=12cm,C,D分别是OA,OB上的动点,连接CP,DP,CD,则⊥CPD周长的最小值为.变式4.如图,在五边形中,⊥BAE=140°,⊥B=⊥E=90°,在边BC,DE上分别找一点M,N,连接AM,AN,MN,则当⊥AMN的周长最小时,求⊥AMN+⊥ANM 的值是()A.100°B.140°C.120°D.80°例4.如图,在⊥ABC中,AB=AC,⊥A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,⊥DNM+⊥EMN的大小是()A.45°B.90°C.75°D.135°变式1.如图,在平面直角坐标系中,已知点A(0,1),B(4,0),C(m+2,2),D(m,2),当四边形ABCD的周长最小时,m的值是()A.B.C.1D.变式2.如图,在四边形ABCD中,⊥B=90°,AB⊥CD,BC=3,DC=4,点E 在BC上,且BE=1,F,G为边AB上的两个动点,且FG=1,则四边形DGFE 的周长的最小值为.例5.如图,⊥AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记⊥MPQ=α,⊥PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°变式1.如图,∠AOB=20°,M,N分别为OA,OB上的点,OM=ON=3,P,Q分别为OA,OB上的动点,求MQ+PQ+PN的最小值。

八年级上册数学人教版课时练《4 课题学习 最短路径问题》 试题试卷 含答案解析

八年级上册数学人教版课时练《4 课题学习 最短路径问题》 试题试卷 含答案解析

《13.4课题学习最短路径问题》课时练一、选择题(共15小题)1.如图,在直角坐标系中有线段AB ,AB =50cm ,A 、B 到x 轴的距离分别为10cm 和40cm ,B 点到y 轴的距离为30cm ,现在在x 轴、y 轴上分别有动点P 、Q ,当四边形PABQ 的周长最短时,则这个值为()A .50B .505C .505-50D .505+502.如图,在平面直角坐标系中,点A (-2,4),B (4,2),在x 轴上取一点P ,使点P 到点A 和点B 的距离之和最小,则点P 的坐标是()A .(-2,0)B .(4,0)C .(2,0)D .(0,0)3.如图,等边△ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若AE =2,当EF +CF 取得最小值时,则∠ECF 的度数为().A .15°B .22.5°C .30°D .45°4.如图,∠AOB =30°,内有一点P 且OP =6,若M 、N 为边OA 、OB 上两动点,那么△PMN 的周长最小为().A .62B .6C .621D .65.已知两点M (3,5),N (1,-1),点P 是x 轴上一动点,若使PM +PN 最短,则点P 的坐标应为().A .(21,-4)B .(32,0)C .(34,0)D .(23,0)6.已知∠AOB 的大小为α,P 是∠AOB 内部的一个定点,且OP =2,点E 、F 分别是OA 、OB 上的动点,若△PEF 周长的最小值等于2,则α=().A .30°B .45°C .60°D .90°7.直线L 是一条河,P ,Q 是两个村庄.欲在L 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是().A .B .C .D .8.已知两点A (3,2)和B (1,-2),点P 在y 轴上且使AP +BP 最短,则点P 的坐标是().A .(0,21-)B .(0,611)C .(0,-1)D .(0,41-)9.在平面直角坐标系中,点A 、B 的坐标分别为(2,0),(4,0),点C 的坐标为(m ,3m )(m 为非负数),则CA +CB 的最小值是().A .6B .73C .72D .510.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是().A .3B .4C .5D .611.如图,锐角三角形ABC 中,∠C =45°,N 为BC 上一点,NC =5,BN =2,M 为边AC 上的一个动点,则BM +MN 的最小值是().A .29B .21C .74D .4512.加油站A 和商店B 在马路MN 的同一侧(如图),A 到MN 的距离大于B 到MN 的距离,AB =7米,一个行人P 在马路MN 上行走,问:当P 到A 的距离与P 到B 的距离之差最大时,这个差等于()米.A .8B .9C .6D .713.如图,△ABC 中,AB =AC =13,BC =10,AD 是BC 边上的中线,F 是AD 上的动点,E 是AC 边上的动点,则CF +EF 的最小值为().A .13120B .10C .12D .1314.如图,Rt △ABC 中,AC =BC =4,点D ,E 分别是AB ,AC 的中点,在CD 上找一点P ,使PA +PE 最小,则这个最小值是().A .32B .4C .52D .515.已知,如图,一牧童在A 处牧马,牧童家在B 处,A ,B 两处距河岸的距离AC ,BD 的长分别为700米,500米,且CD 的距离为500米,天黑前牧童从A 点将马牵到河边去饮水后,再赶回家,那么牧童最少要走()米.A .1100B .1200C .1300D .1400二、填空题(共5小题)1.如图,已知AB ⊥AD ,CD ⊥AD ,垂足分别为A 、D ,AD =6,AB =5,CD =3,P 是线段AD 上的一个动点,设AP =x ,DP =y ,92522+++=y x a ,则a 的最小值是______.2.已知如图所示,∠MON =40°,P 为∠MON 内一点,A 为OM 上一点,B 为ON 上一点,则当△PAB 的周长取最小值时,∠APB 的度数为_____.3.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值是_____.4.已知:如图所示,M(3,2),N(1,-1).点P在y轴上使PM+PN最短,则P点坐标为_________.5.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4,E是AB边的中点,F是AC边的中点,则(1)EF=____;(2)若D是BC边上一动点,则△EFD的周长最小值是____.三、解答题(共6小题)1.已知:如图,在∠POQ内部有两点M、N,∠MOP=∠NOQ.(1)画图并简要说明画法:在射线OP上取一点A,使点A到点M和点N的距离和最小;在射线OQ上取一点B,使点B到点M和点N的距离和最小;(2)直接写出AM+AN与BM+BN的大小关系.2.某大型农场拟在公路L旁修建一个农产品储藏、加工厂,将该农场两个规模相同的水果生产基地A、B的水果集中进行储藏和技术加工,以提高经济效益.请你在图中标明加工厂所在的位置C,使A、B两地到加工厂C的运输路程之和最短.(要求:用尺规作图,保留作图痕迹,不写作法和证明)3.如图,△ABC的边AB、AC上分别有定点M、N,请在BC边上找一点P,使得△PMN 的周长最短.(写出作法,保留作图痕迹)4.在某一地方,有条小河和草地,一天某牧民的计划是从A处的牧场牵着一只马到草地牧马,再到小河饮马,你能为他设计一条最短的路线吗?(在N上任意一点即可牧马,M上任意一点即可饮马.)(保留作图痕迹,需要证明)5.已知:如图所示,(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使PA+PC最小.6.作图题:(写出作法,保留作图痕迹)M、N为△ABC为AB、AC上的两个定点,请你在BC边上找一点P,使PMN周长最小?参考答案一、选择题(共15小题)1.D2.C3.C4.D5.C6.A7.D8.C9.C10.B11.C12.D13.A14.C15.C二、填空题(共5小题)1.102.100°3.54.(0,-41)5.2;2+213三、解答题(共6小题)1.(1)如图所示.画法:①作点M 关于射线OP 的对称点M',②连接M'N 交OP 于点A .③作点N 关于射线OQ 的对称点N',④连接N'M 交OQ 于点B .(2)答:AM +AN 与BM +BN 的大小关系是:AM +AN =BM +BN .2.如图3.①作点N关于BC的对称点N′,连接MN′交BC于点P,②由对称的性质可知PN=PN′,故PN+PM=MN′,③由两点之间线段最短可知,△PMN的最短周长即为MN′+MN.4.沿AC-CD-DB路线走是最短的路线如图(1)所示:证明:在ON上任意取一点T,在OM上任意取一点R,连接FR、BR、RT、ET、AT,∵A、E关于ON对称,∴AC=EC,同理BD=FD,FR=BR,AT=ET,∴AC+CD+DB=EC+CD+FD=EF,AT+TR+BR=ET+TR+FR,∵ET+TR+FR>EF,∴AC+CD+DB<AT+TR+BR,即沿AC-CD-DB路线走是最短的路线.5.(1)分别作A、B、C的对称点,A′、B′、C′,由三点的位置可知:A′(-1,2),B′(-3,1),C′(-4,3)(2)先找出C点关于x轴对称的点C″(4,-3),连接C″A交x轴于点P,(或找出A点关于x轴对称的点A″(1,-2),连接A″C交x轴于点P)则P点即为所求点.6.作法:(1)作M关于BC的对称点M’(2)连接M’N交BC于P点(3)连线MP,则△PMN周长最小P为所求作的点.。

八年级数学人教版(上册)13.4课题学习最短路径问题

八年级数学人教版(上册)13.4课题学习最短路径问题

F两点,并说明理由.
(3)如图③,在∠AOB内部有两点M、N,是否在OA、OB上分
别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最
短,找出E、F两点,并说明理由.
D
A
A M
C A 图图①① B
侵权必究
P
O
图图②②
BO
N B
图图③③
当堂练习
D C
AP C' 图①
P' A
E
P
O
F
B
图② P''
点,P是m上到A、B距离相等的点 C.P、Q都是m上到A、B距离之和最
短的点 D.P、Q都是m上到A、B距离相等
的点 侵权必究
当堂练习
2.如图,∠AOB=30°,∠AOB内有一定点P,且OP=
10.在OA上有一点Q,OB上有一点R.若△PQR周长
最小,则最小周长是( A )
A.10
B.15
C.20
在△AB′C′中,
C
AB′<AC′+B′C′,
C′
l
∴ AC +BC<AC′+BC′.
B′
即 AC +BC 最短.
侵权必究
讲授新课
如图,直线l是一条河,P、Q是两个村庄.欲在l上的某处
修建一个水泵站,向P、Q两地供水,现有如下四种铺设方案,
图中实线表示铺设的管道,则所需要管道最短的是( D )
Q
Q
B
M' A
E
M
N
O
B
F
N'
图③
侵权必究
课堂小结
✓ 归纳总结 ✓ 构建脉络
侵权必究

课题学习:最短路径问题(分层作业)(解析版)-八年级数学上册

课题学习:最短路径问题(分层作业)(解析版)-八年级数学上册

13.4课题学习:最短路径问题夯实基础篇一、单选题:1.直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是().A.B.C.D.【答案】D【知识点】轴对称的应用-最短距离问题【解析】【解答】作点P关于直线L的对称点P′,连接QP′交直线L于M.根据两点之间,线段最短,可知选项D铺设的管道,则所需管道最短.故选D.【分析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.2.如图,点M,N在直线l的同侧,小东同学想通过作图在直线l上确定一点Q,使MQ与QN的和最小,那么下面的操作正确的是()A.B.C.D.【答案】C【知识点】轴对称的应用-最短距离问题【解析】【解答】作点M关于直线l的对称点M′,再连接M′N交l于点Q,则MQ+NQ=M′Q+NQ=M′N,由“两点之间,线段最短”,可知点Q即为所求.故答案为:C【分析】先作点M关于l的对称点M′,连接M′N交l于点Q,即可.3.如图,在等腰△AB C中,AB=AC=6,∠ACB=75°,AD⊥BC于D,点M、N分别是线段AB,AD上的动点,则MN+BN的最小值是()C.4.5D.6A.3B.【答案】A【知识点】角平分线的性质;等腰三角形的性质;含30°角的直角三角形;轴对称的应用-最短距离问题【解析】【解答】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AB=AC,AD⊥BC于D,∴∠ABC=∠C,AD是∠BAC 的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵∠ABC=∠C,∠ACB=75°,∴∠BAC=30°,∵BH⊥AC,∴BH=12AB=3.故答案为:A【分析】根据等腰三角形的三线合一,得到AD是∠BAC的平分线,由角平分线的性质可知,角平分线上的点到角两边的距离相等,得到BH是点B到直线AC的最短距离,再由三角形内角和定理得到∠BAC=30°,根据在直角三角形中,30度角所对的边是斜边的一半,求出MN+BN的最小值.4.如图:△AB C中, ACB=90°,AC=BC,AB=4,点E在BC上,且BE=2,点P在 ABC 的平分线BD上运动,则PE+PC的长度最小值为()A.1B.2C.3D.4【答案】B【知识点】三角形的角平分线、中线和高;轴对称的应用-最短距离问题【解析】【解答】作点E关于BD的对称点E',连接E'C,如下图:∵BD是∠ABC的平分线,∴通过作图知,BP垂直平分EE',∴PE'=PE∴此时PE+PC=PE'+PC=E'C,PE+PC的长度最小,∵点E、点E'关于BD的对称,∴BE'=BE=2,又∵AB=4,∴点E'是A B中点,CE'是中线.∵△AB C中,∠ACB=90°,AC=BC,∴△ABC是等腰直角三角形,∠ABC=45 ,∴CE'又是底边AB的高,∴△BE'C也是等腰直角三角形,∴E'C=2,即:PE+PC的长度最小值为2.故选B.【分析】此题考查最短路径问题,利用轴对称,作点E关于BD的对称点E',连接E'C,可知此时PE+PC的长度最小,PE+PC=PE'+PC=E'C.再根据作图和等腰直角三角形性质求出E'C的长即可.5.如图,在锐角△AB C中,AB=AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.4B.245C.5D.6【答案】C【知识点】等腰三角形的性质;轴对称的应用-最短距离问题【解析】【解答】解:如图,∵AD 是∠BAC 的平分线,AB =AC ,∴点B 关于AD 的对称点为点C ,过点C 作CN ⊥AB 于N 交AD 于M ,由轴对称确定最短路线问题,点M 即为使BM +MN 最小的点,CN =BM +MN ,∵AB =10,S △ABC =25,∴12×10•CN =25,解得CN =5,即BM +MN 的最小值是5.故答案为:C.【分析】根据AD 是∠BAC 的平分线,AB =AC 可得出确定出点B 关于AD 的对称点为点C ,根据垂线段最短,过点C 作CN ⊥AB 于N 交AD 于M ,根据轴对称确定最短路线问题,点M 即为使BM +MN 最小的点,CN =BM +MN ,利用三角形的面积求出CN ,从而得解.6.如图,等边ABC 中,D 为A C 中点,点P 、Q 分别为AB 、AD 上的点,4BP AQ ,3QD ,在BD 上有一动点E ,则PE QE 的最小值为()A .7B .8C .10D .12【答案】C【知识点】等边三角形的判定与性质;轴对称的应用-最短距离问题【解析】【解答】解:如图,ABC ∵是等边三角形,BA BC ,∵D 为A C 中点,∴BD AC ,∵4AQ ,3QD ,7AD DC AQ QD ,作点Q 关于BD 的对称点Q ',连接PQ '交BD 于E ,连接QE ,此时PE +QE 的值最小,最小值PE +QE =PE +EQ '=PQ ',4AQ ∵,7AD DC ,3QD DQ ,4CQ BP ,10AP AQ ,60A ∵,APQ 是等边三角形,10PQ PA ,∴PE +QE 的最小值为10.故答案为:C.【分析】作点Q关于BD的对称点Q',连接PQ'交BD于E,连接QE,此时PE+QE 的值最小,最小值PE+QE=PE+EQ'=PQ',进而判断△APQ'是等边三角形,即可解决问题.7.如图,等腰三角形ABC的底边BC长为3,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为()A.7.5B.8.5C.10.5D.13.5【答案】D【知识点】三角形的面积;线段垂直平分线的性质;等腰三角形的性质;轴对称的应用-最短距离问题【解析】【解答】解:如图,连接AM、AD∵EF垂直平分线段AC∴CM=AM∴CM+MD=AM+MD≥AD即当A、M、D三点在一直线上且与AD重合时,CM+MD取得最小值,且最小值为线段AD的长∵△CMD的周长=CM+MD+CD=AM+MD+AD∴△CMD的周长的最小值为AD+CD ∵D为BC的中点,AB=AC∴1 1.52CD BC,AD⊥BC∴13182ABCS AD∴AD=12∴AD+CD=12+1.5=13.5即△CDM周长的最小值为13.5故答案为:D.【分析】连接AM、AD,由线段垂直平分线的性质可得CM=AM,当A、M、D三点在一直线上且与AD重合时,CM+MD取得最小值,且最小值为线段AD的长;根据等腰三角形三线合一的性质可得1 1.52CD BC,AD⊥BC,利用△ABC的面积可求出AD的长,从而求出此时△CDM的周长即可.二、填空题:8.如图的4×4的正方形网格中,有A,B,C,D四点,直线a上求一点P,使PA+PB 最短,则点P应选点(C或D).【答案】C【知识点】轴对称的应用-最短距离问题【解析】【解答】解:如图,点A ′是点A 关于直线a 的对称点,连接A ′B ,则A ′B 与直线a 的交点,即为点P ,此时PA +PB 最短,∵A ′B 与直线a 交于点C ,∴点P 应选C 点.故答案为:C.【分析】点A ′是点A 关于直线a 的对称点,连接A ′B ,则A ′B 与直线a 的交点,即为点P ,此时PA +PB 最短,据此即得结论.9.如图,在ABC 中,3,4,,AB AC AB AC EF 垂直平分BC ,点P 为直线EF 上一动点,则ABP 周长的最小值是.【答案】7【知识点】轴对称的应用-最短距离问题【解析】【解答】解:∵EF 垂直平分BC ,∴B ,C 关于直线EF 对称.设AC 交EF 于点D ,∴当P 和D 重合时,AP BP 的值最小,最小值等于AC 的长,∴ABP 周长的最小值是437 .【分析】根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP 的最小值,求出AC长度即可得到结论.中,AB=4,AC=6,BC=7,EF垂直平分BC,点P为直线EF上10.如图,在ABC的任一点,则ABP周长的最小值是.【答案】10【知识点】轴对称的应用-最短距离问题【解析】【解答】解:如图,连接PC,∵,4AB,AB PA PB PA PB的周长为4ABP要使ABP的周长最小,则需PA PB的值最小,∵垂直平分BC,EF,PC PBPA PB PA PC ,由两点之间线段最短可知,当点,,A P C 共线,即点P 在AC 边上时,PA PC 取得最小值,最小值为AC ,即PA PB 的最小值为6AC ,则ABP 周长的最小值是4610 .故答案为:10.【分析】如图,连接PC ,先把ABP 的周长表示出来为4+PA +PB ,接着根据垂直平分线性质得到PB =PC ,故只需PA +PC 最小△ABP 周长才最小,由两点之间线段最短得出P 点在AC 上时最小,此时PA +PC =AC =6,从而即可得出答案.11.如图,在△AB C 中,AB =AC =10,BC =12,AD =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是.【答案】9.6【知识点】三角形的面积;等腰三角形的性质;轴对称的应用-最短距离问题【解析】【解答】解:∵AB =AC ,AD 是∠BAC 的平分线,∴AD 垂直平分BC ,∴BP =CP .过点B 作BQ ⊥AC 于点Q ,BQ 交AD 于点P ,则此时PC +PQ 取最小值,最小值为BQ 的长,如图所示.∵S△ABC12BC•AD12AC•BQ,∴BQ12810BC ADAC9.6.故答案为:9.6.【分析】根据等腰三角形的三线合一得出AD垂直平分BC,根据垂直平分线上的点到线段两个端点的距离相等得出BP=CP,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,然后根据三角形的面积法,得出BC•AD =AC•BQ,根据等积式即可求出BQ的长.三、作图题:12.有一个养鱼专业户,在如图所示地形的两个池塘里养鱼,他每天早上要从住处P分别前往两个池塘投放鱼食,试问他怎样走才能以最短距离回到住地?(请用尺规作图,保留作图痕迹,不写做法)【答案】解:答图如图所示,该养鱼专业户若要以最短距离回到住地,则他所走路线是:,P M N P.或P N M P【知识点】轴对称的应用-最短距离问题【解析】【分析】分别作P点关于AB,AC的对称点,连接这两个对称点交AB于点M,交AC于点N,该养鱼专业户若要以最短距离回到住地,则他所走路线是:,或P N M P.P M N P13.如图,P和Q为△ABC边AB与AC上两点,在BC边上求作一点M, 使△PQM的周长最小。

第13章13.4课题学习最短路径问题(课后作业)人教版数学八年级上册试题试卷含答案

第13章13.4课题学习最短路径问题(课后作业)人教版数学八年级上册试题试卷含答案

1.如图,某河的同侧有A ,B 两个工厂,它们垂直于河边的小路的长度分别为2km AC =,3km BD =,这两条小路相距5 km .现要在河边建立一个抽水站,把水送到A ,B 两个工厂去,若使供水管最短,抽水站应建立的位置为( )A .距C 点1 km 处B .距C 点2km 处C .距C 点3 km 处D .CD 的中点处2.如图,一牧童在A 处牧马,牧童家在B 处,A 、B 处距河岸的距离AC 、BD 的长分别为500m和700m ,且C 、D 两地的距离为500m ,天黑前牧童从A 点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走( )A.B .1200m C .1300m D .1700m3.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ∆周长的最小值为( )A .6B .8C .10D .12课后作业:基础版题量: 10题 时间: 20min13.4最短路径问题4.如图,在ABC ∆中,AB AC =,AD 、CE 是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP EP +最小值的是( )A .BCB .CEC .AD D .AC5.如图,正方形ABCD 的边长为8,点M 在边DC 上,且2DM =,点N 是边AC 上一动点,则线段DN MN +的最小值为( )A .8B.C.D .106.在平面直角坐标系中,点A 、B 的坐标分别为(2,0),(4,0),点C 的坐标为(m,)(m为非负数),则CA CB +的最小值是( )A .2B .4C .6D.7.如图线段4AB =,P 是m 上的一个动点,m AB ,AB 与m 间的距离为1.5,PA PB +的最小值为__________.8.如图,已知牧马营地在P 处,每天牧马人要赶着马群先到河边饮水,再带到草地吃草,然后回到营地,请你替牧马人设计出最短的放牧路线.9.如图,点A 、B 是直线l 同侧的两点,请你在l 上求作一个点P ,使PA PB 最小.10.如图,要在街道旁修建一个牛奶站,向居民区A ,B 提供牛奶,牛奶站应建在什么地方,才能使A ,B 到它的距离之和最短?【错误题号】【错因自查】 基础不牢 审题不清思路不清 计算错误 粗心大意【正确解答】【错误题号】【错因自查】 基础不牢 审题不清思路不清 计算错误 粗心大意【正确解答】1.B 2.C 3.C 4.B 5.D 6.D7.58.如图所示:9.作点A 关于l 的对称点A ',连接A B ',交l 与点P ,点P 就是所求.10.作点A 关于直线l 的对称点A ',连接A B '交直线l 于点M ,则点M即为所求点.1.如图,某河的同侧有A ,B 两个工厂,它们垂直于河边的小路的长度分别为2km AC =,3km BD =,这两条小路相距5 km .现要在河边建立一个抽水站,把水送到A ,B 两个工厂去,若使供水管最短,抽水站应建立的位置为( )A .距C 点1 km 处B .距C 点2km 处C .距C 点3 km 处D .CD 的中点处2.如图,一牧童在A 处牧马,牧童家在B 处,A 、B 处距河岸的距离AC 、BD 的长分别为500m和700m ,且C 、D 两地的距离为500m ,天黑前牧童从A 点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走( )A.B .1200m C .1300m D .1700m3.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ∆周长的最小值为( )A .6B .8C .10D .12课后作业:提升版题量: 10题 时间: 20min13.4最短路径问题4.如图,在ABC ∆中,AB AC =,AD 、CE 是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP EP +最小值的是( )A .BCB .CEC .AD D .AC5.如图,正方形ABCD 的边长为8,点M 在边DC 上,且2DM =,点N 是边AC 上一动点,则线段DN MN +的最小值为( )A .8B.C.D .106.在平面直角坐标系中,点A 、B 的坐标分别为(2,0),(4,0),点C 的坐标为(m,)(m为非负数),则CA CB +的最小值是( )A .2B .4C .6D.7.(★)如图,ABC ∆是等边三角形,AD 是BC 边上的高,点E 是AC 边的中点,点P 是AD上的一个动点,当PC PE +最小时,CPE ∠的度数是( )A .30︒B .45︒C .60︒D .90︒8.(★)如图,等边ABC ∆的周长为18,BD 为AC 边上的中线,动点P ,Q 分别在线段BC ,BD 上运动,连接CQ ,PQ ,当BP 长为__________时,线段CQ PQ +的和为最小.9.(★)如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为10AC =千米,30BD =千米,且30CD =千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?10.(★)如图,已知30AOB ∠=︒,P 为其内部一点,3OP =,M 、N 分别为OA 、OB 边上的一点,要使PMN ∆的周长最小,请给出确定点M 、N 位置的方法,并求出最小周长.【错误题号】【错因自查】 基础不牢 审题不清思路不清 计算错误 粗心大意【正确解答】1.B 2.C 3.C 4.B 5.D 6.D7.(★)C 8.(★)39.(★)作A 关于CD 的对称点A ',连接A B '与CD ,交点CD 于M ,点M 即为所求作的点,则10DK A C AC ='==千米,40BK BD DK ∴=+=千米,50AM BM A B ∴+='==千米,总费用为503150⨯=万元.10.(★)作点P 关于OA 的对称点1P ,点P 关于OB 的对称点2P ,连接12PP ,与OA 的交点即为点M ,与OB 的交点即为点N ,PMN ∆的最小周长为1212PM MN PN PM MN P N PP ++=++=,即为线段12PP 的长,连接1OP 、2OP ,则123OP OP ==,又12260POP AOB ∠=∠=︒ ,∴△12OPP 是等边三角形,1213PP OP ∴==,即PMN ∆的周长的最小值是3.1.如图,某河的同侧有A ,B 两个工厂,它们垂直于河边的小路的长度分别为2km AC =,3km BD =,这两条小路相距5 km .现要在河边建立一个抽水站,把水送到A ,B 两个工厂去,若使供水管最短,抽水站应建立的位置为( )A .距C 点1 km 处B .距C 点2km 处C .距C 点3 km 处D .CD 的中点处2.如图,一牧童在A 处牧马,牧童家在B 处,A 、B 处距河岸的距离AC 、BD 的长分别为500m和700m ,且C 、D 两地的距离为500m ,天黑前牧童从A 点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走( )A.B .1200m C .1300m D .1700m3.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ∆周长的最小值为( )A .6B .8C .10D .12课后作业:培优版题量: 10题 时间: 20min13.4最短路径问题4.如图,在ABC ∆中,AB AC =,AD 、CE 是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP EP +最小值的是( )A .BCB .CEC .AD D .AC 5.如图,正方形ABCD 的边长为8,点M 在边DC 上,且2DM =,点N 是边AC 上一动点,则线段DN MN +的最小值为( )A .8B.C.D .106.在平面直角坐标系中,点A 、B 的坐标分别为(2,0),(4,0),点C 的坐标为(m,)(m为非负数),则CA CB +的最小值是( )A .2B .4C .6D.7.(★★)如图,点P 是AOB ∠内任意一点,5cm OP =,点M 和点N 分别是射线OA 和射线OB 上的动点,PMN ∆周长的最小值是5 cm ,则AOB ∠的度数是( )A .25︒B .30︒C .35︒D .40︒8.(★★)如图,30AOB ∠=︒,M ,N 分别是边OA ,OB 上的定点,P ,Q 分别是边OB ,OA 上的动点, 记OPM α∠=,OQN β∠=,当MP PQ QN ++最小时,则关于α,β的数量关系正确的是( )A .60βα-=︒B .210βα+=︒C .230βα-=︒D .2240βα+=︒9.(★★)已知:如图所示,(3,2)M ,(1,1)N -.点P 在y 轴上使PM PN +最短,求P 点坐标.10.(★★)如图,在ABC ∆的一边AB 上有一点P .(1)能否在另外两边AC 和BC 上各找一点M 、N ,使得PMN ∆的周长最短?若能,请画出点M 、N 的位置,若不能,请说明理由;(2)若52ACB ∠=︒,在(1)的条件下,求出MPN ∠的度数.【错误题号】【错因自查】 基础不牢 审题不清思路不清 计算错误 粗心大意【正确解答】【错误题号】【错因自查】 基础不牢 审题不清思路不清 计算错误 粗心大意【正确解答】1.B2.C3.C4.B5.D6.D7.(★★)B8.(★★)B9.(★★)根据题意画出图形,找出点N 关于y 轴的对称点N ',连接MN ',与y 轴交点为所求的点P ,(1,1)N - ,(1,1)N ∴'--,设直线MN '的解析式为y kx b =+,把(3,2)M ,(1,1)N '--代入得:321k b k b +=⎧⎨-+=-⎩,解得3414k b ⎧=⎪⎪⎨⎪=-⎪⎩,所以3144y x =-,令0x =,求得14y =-,则点P 坐标为1(0,)4-.10.(★★)(1)①作出点P 关于AC 、BC 的对称点D 、G ,②连接DG 交AC 、BC 于两点,③标注字母M 、N ;(2)PD AC ⊥ ,PG BC ⊥,90PEC PFC ∴∠=∠=︒,180C EPF ∴∠+∠=︒,52C ∠=︒ ,128EPF ∴∠=︒,180D G EPF ∠+∠+∠=︒ ,52D G ∴∠+∠=︒,由对称可知:G GPN ∠=∠,D DPM ∠=∠,52GPN DPM ∴∠+∠=︒,1285276MPN ∴∠=︒-︒=︒.。

人教版八年级上册数学 13.4 最短路径问题 课时训练 (含答案)

人教版八年级上册数学 13.4 最短路径问题   课时训练  (含答案)

人教版八年级上册数学13.4 最短路径问题课时训练一.选择题1.如图所示,OB是一条河流,OC是一片菜田,张大伯每天从家(A点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是()A. B.C. D.2.已知A(﹣1,1)、B(2,﹣3),若要在x轴上找一点P,使AP+BP最短,此时点P的坐标为()A.(0,0)B.(,0)C.(﹣1,0)D.(﹣,0)3.如图,在锐角△ABC中,∠ACB=50°;边AB上有一定点P,M、N分别是AC和BC边上的动点,当△PMN 的周长最小时,∠MPN的度数是()A.50°B.60°C.70°D.80°4.如图.在五边形ABCDE中,∠BAE=136°,∠B=∠E=90°,在BC、DE上分别找一点M、N,使得△AMN 的周长最小时,则∠AMN+∠ANM的度数为()A.84°B.88°C.90°D.96°5.如图所示的平面直角坐标系中,点A坐标为(4,2),点B坐标为(1,﹣3),在y轴上有一点P使PA+PB 的值最小,则点P坐标为()A.(2,0)B.(﹣2,0)C.(0,2)D.(0,﹣2)6.如图,∠AOB=30°,点M、N分别是射线OB、OA上的动点,点P为∠AOB内一点,且OP=4,则△PMN 的周长的最小值为()A.2 B.4 C.6 D.8二.填空题7.如图,已知点A(0,3),B(3.0),C(1,2).在y轴上找一点P,使PC+PB的值最小.请你估计点P 的坐标是.8.在平面直角坐标系中,有A(3,3),B(1,﹣1)两点,现在y轴上取一点P,当P点的坐标为时,AP+BP的值最小.9.如图,在△ABC中,AB=AC=8,S△ABC=16,点P为角平分线AD上任意一点,PE⊥AB,连接PB,则PB+PE 的最小值为.10.如图,P为∠MON内部的已知点,连接OP,A为OM上的点,B为ON上的点,当△PAB周长的最小值与OP的长度相等,∠MON的度数为°.11.如图,在Rt△ABC中,∠BAC=90°,∠C=30°,AC=24,BD平分∠ABC,点E是AB的动点,点F是BD上的动点,则AF+EF的最小值为.12.如图,等腰三角形ABC的底边BC长为5,面积是14,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为.13.如图,已知∠AOB=30°,点P在∠AOB的内部,OP=6,若OA上有一动点M,OB上有一动点N,则△PMN 的周长的最小值是.三.解答题14.河的两岸成平行线,A,B是位于河两岸的两个车间(如图),要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短确定桥的位置的方法是:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB,EB交MN于D.在D处作到对岸的垂线DC,垂足为C,那么DC就是造桥的位置.请说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.15.如图,点P、Q为∠MON内两点,分别在OM与ON上找点A、B,使四边形PABQ的周长最小.16.如图,要在街道l上修建一个奶吧D(街道用直线l表示).(1)若奶吧D向小区A,B提供牛奶如图①,则奶吧D应建在什么地方,才能使它到小区A,B的距离之和最短?(2)若奶吧D向小区A,C提供牛奶如图②,则奶吧D应建在什么地方,才能使它到小区A,C的距离之和最短?17.如图,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN 的度数是多少?18.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=65°,则∠NMA的度数是度.(2)若AB=10cm,△MBC的周长是18cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.答案一.选择题1.D.2.D.3.D.4.B.5.D.6.B.二.填空题7.(0,1.5).8.(0,0).9.4.10.30.11.12.12.8.1.13.6.三.解答题14.解:利用图形平移的性质及连接两点的线中,线段最短,可知:AC+CD+DB=(ED+DB)+CD=EB+CD.而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB最短.15.解:作点P关于直线OM的对称点P′,作Q关于直线ON的对称点Q′,连接P′Q′交OM于A,ON于B,则此时四边形PABQ的周长最小.16.解:(1)奶吧D的位置如图1所示;(2)奶吧D的位置如图2所示.17.解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN 的周长最小值.∵∠DAB=100°,∴∠AA′M+∠A″=180°﹣∠BAD=180°﹣100°=80°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×80°=160°,∠MAN=180°﹣160°=20°.故当△AMN周长最小时,∠MAN的度数是20°.18.解:(1)∵AB=AC,∴∠ABC=∠C∵∠ABC=65°,∴∠C=65°,∴∠A=50°,MN是AB的垂直平分线,∴AM=BM,∴∠A=∠ABM=50°,∴∠MBC=∠ABC﹣∠ABM=15°,∴∠AMB=∠MBC+∠C=80°,∴∠NMA=∠AMB=40°.故答案为40度.(2)①∵AB=AC=10,△MBC的周长是18cm,即BM+MC+BC=18∵AM=BM,∴AM+MC+BC=18,∴AC+BC=18,∴BC=8.答:BC的长度为8cm.②当点P与点M重合时,△PBC周长的值最小,答:△PBC的周长的最小值为18cm.。

2023-2024学年人教版八年级数学上学期:课题学习 最短路径问题(附答案解析)

2023-2024学年人教版八年级数学上学期:课题学习 最短路径问题(附答案解析)

第1页(共9页)
2023-2024学年人教版八年级数学上学期13.4课题学习 最短路
径问题
一.选择题(共6小题)
1.如图,点P 为∠AOB 内一点,分别作点P 关于OA ,OB 的对称点P 1,P 2,连接P 1,P 2
交OA 于M ,交OB 于N ,若P 1P 2=6,则△PMN 周长为( )
A .4
B .5
C .6
D .7
2.如图,直线L 是一条输水主管道,现有A 、B 两户新住户要接水入户,图中实线表示铺
设的管道,则铺设的管道最短的是( )
A .
B .
C .
D .
3.如图,直线l 是一条河,P ,Q 是两个村庄.计划在l 上的某处修建一个水泵站M ,向P ,
Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是( )
A .
B .
C .
D .
4.如图,直线m 表示一条河,M ,N 表示两个村庄,欲在m
上的某处修建一个给水站,向。

人教版八年级数学上册课时练 第十三章轴对称 13.4 课题学习--最短路径问题【答案】

人教版八年级数学上册课时练 第十三章轴对称 13.4 课题学习--最短路径问题【答案】

人教版八年级数学上册课时练第十三章轴对称 13.4 课题学习--最短路径问题一、选择题1.如图,在锐角△ABC 中,∠ACB =50°;边AB 上有一定点P ,M 、N 分别是AC 和BC 边上的动点,当△PMN 的周长最小时,∠MPN 的度数是( )A .50°B .60°C .70°D .80°2.某平原有一条很直的小河和两个村庄,要在此小河边的某处修建一个水泵站向这两个村庄供水. 某同学用直线(虛线)l 表示小河,,P Q 两点表示村庄,线段(实线)表示铺设的管道,画出了如下四个示意图,则所需管道最短的是( ). A . B . C . D .3.如图,已知24AOB ∠=︒,OP 平分AOB ∠,1OP =,C 在OA 上,D 在OB 上,E 在OP 上.当CP CD DE ++取最小值时,此时PCD ∠的度数为( )A .36︒B .48︒C .60︒D .72︒4.如图,在公路 MN 两侧分别有 A 1, A 2......A 7,七个工厂,各工厂与公路 MN(图中粗线)之间有小公路连接.现在需要在公路 MN 上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是( ). ①车站的位置设在 C 点好于 B 点;②车站的位置设在 B 点与 C 点之问公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A .①B .②C .①③D .②③5.如图,在ABC ∆中,10BC =,CD 是ACB ∠的平分线.若P ,Q 分别是CD 和AC 上的动点,且ABC ∆的面积为24,则PA PQ +的最小值是( )A .125B .4C .245D .56.在△ABC 中,AB=BC ,点D 在AC 上,BD=6cm ,E ,F 分别是AB ,BC 边上的动点,△DEF 周长的最小值为6 cm ,则ABC ∠=( )A .20°B .25°C .30°D .35°7.如图,∠AOB=60°,点P 是∠AOB 内的定点且,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A B C .6 D .38.如图,在等边△ABC 中,BF 是AC 边上的中线,点D 在BF 上,连接AD ,在AD 的右侧作等边△ADE ,连接EF ,当△AEF 周长最小时,∠CFE 的大小是( )A .30°B .45°C .60°D .90°9.如图,某公司有三个住宅区,A ,B ,C 各区分别住有职工10人,15人,45人,且这三个区在一条大道上(A ,B ,C 三点共线),已知AB =150m ,BC =90m .为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A .点AB .点BC .点A ,B 之间D .点C10.如图,30AOB ∠=︒,M ,N 分别是边,OA OB 上的定点,P ,Q 分别是边,OB OA 上的动点,记,OPM OQN αβ∠=∠=,当MP PQ QN ++的值最小时,关于α,β的数量关系正确的是( )A .60βα-=︒B .210βα+=︒C .230βα-=︒D .2240βα+=︒二、填空题11.如图,AD 为等边△ABC 的高,E 、F 分别为线段AD 、AC 上的动点,且AE =CF ,当BF +CE 取得最小值时,∠AFB =_______°.12.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=4,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN周长的最小值是_________.13.已知∠AOB=45°,点P 在∠AOB 内部,点P 1与点P 关于OA 对称,点P 2与点P 关于OB 对称,连接P 1P 2交OA 、OB于E 、F ,若P 1E=12,,则EF 的长度是_____.14.如图,在锐角ABC ∆中,8AC cm =,218ABC S cm ∆=,AD 平分BAC ∠,M 、N 分别是AD 和AB 上 的动点,则BM MN +的最小值是__________cm .15.如图,在Rt △ABC 中,∠ACB=90°,∠ABC=60°,AB=4,点D 是BC 上一动点,以BD 为边在BC 的右侧作等边△BDE ,F 是DE 的中点,连结AF ,CF ,则AF+CF 的最小值是_____.三、解答题16.在平面直角坐标系中,B(2,),以OB 为一边作等边△OAB (点A 在x 轴正半轴上).(1)若点C 是y 轴上任意一点,连接AC ,在直线AC 上方以AC 为一边作等边△ACD .①如图1,当点D 落在第二象限时,连接BD ,求证:AB ⊥BD ;②若△ABD 是等腰三角形,求点C 的坐标;(2)如图2,若FB 是OA 边上的中线,点M 是FB 一动点,点N 是OB 一动点,且OM+NM 的值最小,请在图2中画出点M 、N 的位置,并求出OM+NM 的最小值.17.如图1,已知直线l 的同侧有两个点A 、B ,在直线l 上找一点P ,使P 点到A 、B 两点的距离之和最短的问题,可以通过轴对称来确定,即作出其中一点关于直线l 的对称点,对称点与另一点的连线与直线l 的交点就是所要找的点,通过这种方法可以求解很多问题.(1)如图2,在平面直角坐标系内,点A 的坐标为()1,1,点B 的坐标为()4,3,动点P 在x 轴上,求PA PB +的最小值;(2)如图3,在锐角三角形ABC 中,6AB =,60BAC ∠=︒,BAC ∠的角平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值为______.(3)如图4,30AOB ∠=︒,5OC =,12OD =,点E ,F 分别是射线OA ,OB 上的动点,则CF EF DE ++的最小值为__________.18.如图所示,已知点A 是锐角MON 内一点,试分别在,OM ON 上确定,B C 两点,使三角形ABC 的周长最小,写出你作图的主要步骤并标明你确定的点.19.(1)如图1,在△ABC 中∠A =60 º,BD 、CE 均为△ABC 的角平分线且相交于点O. ①填空:∠BOC = 度;②求证:BC =BE+CD .(写出求证过程)(2)如图2,在△ABC 中,AB=AC=m ,BC=n , CE 平分∠ACB .①若△ABC 的面积为S ,在线段CE 上找一点M ,在线段AC 上找一点N ,使得AM+MN 的值最小,则AM+MN 的最小值是 .(直接写出答案);②若∠A=20°,则△BCE 的周长等于 .(直接写出答案).20.如图所示,两条河12l l 、交于点O ,某人牧马,早上从家点C 出发,先到河岸1l 的点1P 处让马饮水,然后再到河岸2l 的点2P 处放牧,傍晚骑马到达马舍点D .他应如何选择马的饮水点1P 和放牧点2P ,才能使所走的路程最短?(假定12l l 、都是直线)21.如图,在△ABC 的一边AB 上有一点P.(1)能否在另外两边AC 和BC 上各找一点M 、N ,使得△PMN 的周长最短?若能,请画出点M 、N的位置,若不能,请说明理由;(2)若∠ACB =52°,在(1)的条件下,求出∠MPN 的度数.22.如图所示,在△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,过点O 作EF ∥BC ,交AB 于点E ,交AC 于点F .(1)若∠ABC=40°,∠ACB=60°,求∠BOE+∠COF的度数;(2)若△AEF的周长为8 cm,且BC=4 cm,求△ABC的周长.23.如图所示的是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为两相应点间的距离(单位:千米).一位游客从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为34小时.(1)当他沿着路线A→D→C→E→A游览回到A处时,共用了4小时,求CE的长;(2)若此学生打算从A处出发,步行速度与景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,说明这样设计的理由。

八年级初二上册数学 人教版《课题学习 最短路径问题》 练习试题 测试卷(含答案)(1)

八年级初二上册数学 人教版《课题学习 最短路径问题》 练习试题 测试卷(含答案)(1)

《13.4课题学习最短路径问题》课时练一、选择题1.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=()A.60°B.70°C.80°D.90°2.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°3.如下图是一个的正方形,现要在中轴线上找一点,使最小,则的位置应选在()点处.A.P B.Q C.R D.S4.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50°B.60°C.70°D.80°5.如图,在△ABC中,AB=AC,∠BAC=60°,BC边上的高AD=8,E是AD上的一个动点,F是边AB的中点,则EB+EF的最小值是()A.5 B.6 C.7 D.86.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°7.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.2∠A=∠1﹣∠2 B.3∠A=2(∠1﹣∠2)C.3∠A=2∠1﹣∠2 D.∠A=∠1﹣∠28.附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP 与PC的长度比为何?()A.3:2 B.5:3 C.8:5 D.13:89.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD10.如图,∠AOB=30°,点P是∠AOB内的一个定点,OP=20cm,点C、D分别是OA、OB上的动点,连结CP、DP、CD,则△CPD周长的最小值为( )A.10cm B.15cm C.20cm D.40cm 二、填空题11.如图,把△ABC沿直线DE翻折后得到△A′DE,如果∠A′EC=32°,那么∠A′ED=.12.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB 上的动点,PN+PM+MN的最小值是5cm,则∠AOB的度数是.13.如图,已知点P在锐角∠AOB内部,∠AOB=α,在OB边上存在一点D,在OA边上存在一点C,能使PD+DC最小,此时∠PDC= .14.如图,在△ABC中,AB=3,AC=4,AB⊥AC,EF垂直平分BC,点P为直线EF上一动点,则△ABP周长的最小值是.15.如图,△ABC中,AB=AC,BC=5,S△ABC=15,AD⊥BC于点D,EF垂直平分AB,交AC于点F,在EF上确定一点P,使PB+PD最小,则这个最小值为__________.16.如图,△ABC中,AB=AC=13,BC=10,AD⊥BC,BE⊥AC,P为AD上一动点,则PE+PC最小值为.三、作图题17.要在河边修建一个水泵站,分别向张村、李庄送水(如图).修在河边什么地方,可使所用水管最短?试在图中确定水泵站的位置,并说明你的理由.18.如图,已知点A,B(3,﹣2)在平面直角坐标系中,按要求完成下列个小题.(1)写出与点A关于y轴对称的点C的坐标,并在图中描出点C;(2)在(1)的基础上,点B,C表示的是两个村庄,直线a表示河流,现要在河流a上的某点M处修建一个水泵站,向B、C两个村庄供水,并且使得管道BM+CM的长度最短,请你在图中画出水泵站M的位置.19.作图题:如图,已知点A,点B,直线l及l上一点M.(1)连接MA,并在直线l上作出一点N,使得点N在点M的左边,且满足MN=MA;(2)请在直线l上确定一点O,使点O到点A与点O到点B的距离之和最短,并写出画图的依据.20.如图,在所给的网格图中,完成下列各题(用直尺画图,否则不给分)(1)画出格点△ABC关于直线DE的对称的△A1B1C1;(2)在DE上画出点P,使PA+PC最小;(3)在DE上画出点Q,使QA﹣QB最大.四、解答题21.(1)如图1,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点并说明理由.(2)如图2,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点,并说明理由.(3)如图3,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点,并说明理由.参考答案1.D 2.D 3.B 4.D 5.D 6.C 7.A 8.A 9.B 10.C 11.74°.12.30°.13.2α.14.7.15.6.16.;17.解:先作点B关于河岸的对称点,然后连接此对称点与点A,交河岸于点P,点P即为所求.18.解:(1)写出与点A关于y轴对称的点C的坐标(﹣2,1),点C位置如图所示.(2)①作点B关于直线a的对称点B′,②连接CB′与直线a的交点为M.点M就是所求的点.(理由是两点之间线段最短)19.解:(1)作图如图1所示:(2)作图如图2所示:作图依据是:两点之间线段最短.20.解:(1)如图,△A1B1C1即为所求;(2)如图,连接A1C交DE于点P,点P即为所求;(3)延长AB交DE于点Q,点Q即为所求.21.解:(1)如图1,作C关于直线AB的对称点C′,连接C′D交AB于点P.则点P就是所要求作的点.理由:在l上取不同于P的点P′,连接CP′、DP′.∵C和C′关于直线l对称,∴PC=PC′,P′C=P′C′,而C′P+DP<C′P′+DP′,∴PC+DP<CP′+DP′∴CD+CP+DP<CD+CP′+DP′即△CDP周长小于△CDP′周长;(2)如图2,作P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB 于F,则点E,F就是所要求作的点.理由:在OA,OB上取不同于E,F的点E′,F′,连接CE′、E′P′,∵C和P关于直线OA对称,∴PE=CE,CE′=PE′,PF=DF,PF′=DF′,∵PE+EF+PF=CE+EF+DF,PE′+PF′+E′F′=CE′+E′F′+DE′,∴CE+EF+DF<CE′+E′F′+DF′,′∴PE+EF+PF<PE′+PF′+E′F′;(3)如图3,作M关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB 于F,则点E,F就是所要求作的点.理由:在OA,OB上取不同于E,F的点E′,F′,连接CE′、E′P′,∵C和P关于直线OA对称,∴PE=CE,CE′=PE′,PF=DF,PF′=DF′,由(2)得知MN+ME+EF+MF<ME′+E′F′+F′D.。

2020年人教版八年级上册13.4 课题学习 最短路径问题课时训练 含答案

2020年人教版八年级上册13.4 课题学习 最短路径问题课时训练  含答案

13.4 课题学习最短路径问题课时训练一.选择题1.已知A(﹣1,1)、B(2,﹣3),若要在x轴上找一点P,使AP+BP最短,此时点P的坐标为()A.(0,0)B.(,0)C.(﹣1,0)D.(﹣,0)2.如图所示,OB是一条河流,OC是一片菜田,张大伯每天从家(A点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是()A.B.C.D.3.如图所示的平面直角坐标系中,点A坐标为(4,2),点B坐标为(1,﹣3),在y轴上有一点P使P A+PB的值最小,则点P坐标为()A.(2,0)B.(﹣2,0)C.(0,2)D.(0,﹣2)4.如图,∠AOB=30°,点M、N分别是射线OB、OA上的动点,点P为∠AOB内一点,且OP=4,则△PMN的周长的最小值为()A.2B.4C.6D.85.如图,在锐角△ABC中,∠ACB=50°;边AB上有一定点P,M、N分别是AC和BC 边上的动点,当△PMN的周长最小时,∠MPN的度数是()A.50°B.60°C.70°D.80°6.如图.在五边形ABCDE中,∠BAE=136°,∠B=∠E=90°,在BC、DE上分别找一点M、N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()A.84°B.88°C.90°D.96°二.填空题7.在平面直角坐标系中,有A(3,3),B(1,﹣1)两点,现在y轴上取一点P,当P点的坐标为时,AP+BP的值最小.8.如图,已知点A(0,3),B(3.0),C(1,2).在y轴上找一点P,使PC+PB的值最小.请你估计点P的坐标是.9.如图,P为∠MON内部的已知点,连接OP,A为OM上的点,B为ON上的点,当△P AB周长的最小值与OP的长度相等,∠MON的度数为°.10.如图,在△ABC中,AB=AC=8,S△ABC=16,点P为角平分线AD上任意一点,PE⊥AB,连接PB,则PB+PE的最小值为.11.如图,等腰三角形ABC的底边BC长为5,面积是14,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为.12.如图,在Rt△ABC中,∠BAC=90°,∠C=30°,AC=24,BD平分∠ABC,点E是AB的动点,点F是BD上的动点,则AF+EF的最小值为.13.如图,已知∠AOB=30°,点P在∠AOB的内部,OP=6,若OA上有一动点M,OB 上有一动点N,则△PMN的周长的最小值是.三.解答题14.如图,点P、Q为∠MON内两点,分别在OM与ON上找点A、B,使四边形P ABQ的周长最小.15.河的两岸成平行线,A,B是位于河两岸的两个车间(如图),要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短确定桥的位置的方法是:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB,EB交MN于D.在D处作到对岸的垂线DC,垂足为C,那么DC就是造桥的位置.请说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.16.如图,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分别找一点M、N,当△AMN 周长最小时,求∠MAN的度数是多少?17.如图,要在街道l上修建一个奶吧D(街道用直线l表示).(1)若奶吧D向小区A,B提供牛奶如图①,则奶吧D应建在什么地方,才能使它到小区A,B的距离之和最短?(2)若奶吧D向小区A,C提供牛奶如图②,则奶吧D应建在什么地方,才能使它到小区A,C的距离之和最短?18.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=65°,则∠NMA的度数是度.(2)若AB=10cm,△MBC的周长是18cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.参考答案一.选择题1.解:设直线AB的解析式y=kx+b(k≠0),将点A(﹣1,1)、B(2,﹣3)的坐标代入得:解得:所以直线AB的解析式为:y=﹣x﹣.令y=0,解得x=﹣,所以点P的坐标为(﹣,0),故选:D.2.解:要找一条最短路线,分别过OB,OC作点A的对称点,则张大伯可沿着AM走一条直线去河边M点挑水,然后再沿MN走一条直线到菜园去,同理,画出回家的路线图如下:故选:D.3.解:如图所示:作B点关于y轴对称点B′点,连接AB′,交y轴于点P,则此时AP+PB=AP+PB′=AB′的值最小,∵点B坐标为(1,﹣3),∴B′(﹣1,﹣3),∴B′C=AC=5,∴∠AB′C=45°,∴PD=B′D=1,∵OD=|﹣3|=3,∴OP=2,∴P(0,﹣2),故选:D.4.解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M′、N′,连接OC、OD、PM′、PN′.∵点P关于OA的对称点为C,∴PM′=CM′,OP=OC,∠COB=∠POB;∵点P关于OB的对称点为D,∴PN′=DN′,OP=OD,∠DOA=∠POA,∴OC=OD=OP=4,∠COD=∠COB+∠POB+∠POA+∠DOA=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=4.∴当M、N分别与M′、N′重合时,△PMN的周长的最小值=PM′+M′N′+PN′=DN′+M′N′+CM′=CD=4.故选:B.5.解:∵PD⊥AC,PG⊥BC,∴∠PEC=∠PFC=90°,∴∠C+∠EPF=180°,∵∠C=50°,∵∠D+∠G+∠EPF=180°,∴∠D+∠G=50°,由对称可知:∠G=∠GPN,∠D=∠DPM,∴∠GPN+∠DPM=50°,∴∠MPN=130°﹣50°=80°,故选:D.6.解:如图,作点A关于BC的对称点P,关于DE的对称点Q,连接PQ与BC相交于点M,与DE相交于点N,则AM=PM,AN=QN,所以,∠P=∠P AM,∠Q=∠QAN,所以,△AMN周长=AM+MN+AN=PM+MN+QN=PQ,由轴对称确定最短路线,PQ的长度即为△AMN的周长最小值,∵∠BAE=136°,∴∠P+∠Q=180°﹣136°=44°,∵∠AMN=∠P+∠P AM=2∠P,∠ANM=∠Q+∠QAN=2∠Q,∴∠AMN+∠ANM=2(∠P+∠Q)=2×44°=88°,故选:B.二.填空题7.解:如图所示:作B点关于y轴对称点B′点,连接AB′,交y轴于点P,则此时AP+PB最小,∵B(1,﹣1),∴B′(﹣1,﹣1),设直线AB′的解析式为y=kx+b,∵A(3,3),∴,解得,∴直线AB′的解析式为y=x,∴直线y=x与y轴的交点P为(0,0).故答案为(0,0).8.解:如图所示:在x轴上得出B点关于y轴的对称点B′点,连接B′C,交y轴于点P,此时PC+PB的值最小,由题意可得出:B′点坐标为:(﹣3,0),C点坐标为:(1,2),∴设B′C的直线解析式为:y=ax+b,解得:,∴B′C的直线解析式为:y=x+,∴x=0时,y=,即点P的坐标是:(0.1.5).故答案为:(0,1.5).9.解:如图,分别作P关于OM、ON的对称点P1、P2,然后连接两个对称点即可得到A、B两点,∴△P AB即为所求的三角形,此时△P AB周长=P1P2,根据对称性知道:∠AOP1=∠AOP,∠BOP=∠BOP2,∠P1OP2=2∠MON,OP1=OP2=OP,∵△P AB周长的最小值与OP的长度相等,∴P1P2=OP,∴OP1=OP2=P1P2,∴△P1OP2是等边三角形,∴∠P1OP2=60°,∴∠MON=30°,故答案为:30.10.解:∵AB=AC=8,AD平分∠BAC,∴AD⊥BC,∴点B与点C关于直线AD对称,过C作CE⊥AB于E,交AD于P,则此时,PB+PE的值最小,且PB+PE的最小值=CE,∵S△ABC=AB•CE=16,∴CE==4,故答案为:4.11.解:如图,连接AD.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=•BC•AD=×5×AD=14,∴AD=,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=+=8.1,故答案为8.1.12.解:在射线BC上取一点E′,使得BE′=BE.过点A作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=24,∠C=30°,∴AH=AC=12,∵BD平分∠ABC,∴∠FBE=∠FBE′,∵BE=BE′,BF=BF,∴△FBE≌△FBE′(SAS),∴FE=FE′,∴AF+FE=AF+FE′,根据垂线段最短可知,当A,F,E共线且与AH重合时,AF+FE的值最小,最小值=12,故答案为12.13.解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=6.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=6.故答案为:6.三.解答题14.解:作点P关于直线OM的对称点P′,作Q关于直线ON的对称点Q′,连接P′Q′交OM于A,ON于B,则此时四边形P ABQ的周长最小.15.解:利用图形平移的性质及连接两点的线中,线段最短,可知:AC+CD+DB=(ED+DB)+CD=EB+CD.而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB最短.16.解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=100°,∴∠AA′M+∠A″=180°﹣∠BAD=180°﹣100°=80°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×80°=160°,∠MAN=180°﹣160°=20°.故当△AMN周长最小时,∠MAN的度数是20°.17.解:(1)奶吧D的位置如图1所示;(2)奶吧D的位置如图2所示.18.解:(1)∵AB=AC,∴∠ABC=∠C∵∠ABC=65°,∴∠C=65°,∴∠A=50°,MN是AB的垂直平分线,∴AM=BM,∴∠A=∠ABM=50°,∴∠MBC=∠ABC﹣∠ABM=15°,∴∠AMB=∠MBC+∠C=80°,∴∠NMA=∠AMB=40°.故答案为40度.(2)①∵AB=AC=10,△MBC的周长是18cm,即BM+MC+BC=18∵AM=BM,∴AM+MC+BC=18,∴AC+BC=18,∴BC=8.答:BC的长度为8cm.②当点P与点M重合时,△PBC周长的值最小,答:△PBC的周长的最小值为18cm.。

人教版数学八年级上册 第十三章 13.4 课题学习 最短路径问题 培优练习 (答案版)

人教版数学八年级上册 第十三章 13.4 课题学习 最短路径问题 培优练习 (答案版)

人教版数学八年级上册第十三章13.4 课题学习最短路径问题培优练习一、选择题1.如图,等边三角形ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点.若AE=2,当EF+CF取得最小值时,则∠ECF的度数为( )A.15°B.22.5°C.30°D.45°【答案】C2.如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=2,点E,F分别是OA,OB上的动点.若∠PEF周长的最小值等于2,则α=( )A.30°B.45°C.60°D.90°【答案】A【解析】如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,交OB于F.此时,∠PEF的周长最小.连接OC,OD,PE,PF.∠点P与点C关于OA对称,∠OA垂直平分PC,∠∠COA=∠AOP,PE=CE,OC=OP.同理,可得∠DOB=∠BOP,PF=DF,OD=OP,∠∠COA+∠DOB=∠AOP+∠BOP=∠AOB=α,OC=OD=OP=2,∠∠COD=2α.又∠∠PEF的周长=PE+EF+FP=CE+EF+FD=CD=2,∠OC=OD=CD=2,∠∠COD是等边三角形,∠2α=60°,∠α=30°.故选A.3.如图,牧童在A处放牛,其家在B处,A,B到河岸的距离分别为AC和BD,且AC=BD.若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是( )A.750米B.1000米C.1500米D.2000米【答案】B【解析】作出点A的对称点,连接与CD相交于M,则牧童从A处把牛牵到河边饮水再回家,最短距离是的长.如图,∠AC=BD,∠.∠A,B到河岸的距离分别为AC和BD,∠AC∠CD,BD∠CD,∠.又∠,∠,∠CM=DM,,∠M为CD的中点.由于A到河岸CD的中点的距离为500米,所以到M的距离为500米,.故最短距离是1000米.4.如图,在∠ABC中,∠ACB=90°,以AC为一边在∠ABC外侧作等边三角形ACD,过点D作DE∠AC,垂足为F,DE与AB相交于点E,连接CE,AB=15cm,BC=9cm,P是射线DE上的一点.连接PC,PB,若∠PBC的周长最小,则最小值为( )A.22cmB.21cmC.24cmD.27cm【答案】C【解析】根据轴对称最短路径的知识可得,点C关于DE的对称点和点B的连线与DE的交点即是点P的位置.在等边三角形ACD中,AD=DC,又∠DE∠AC,∠点C关于DE的对称点即为点A,即当点P与点E重合的时候PB+PC最小,此时∠PBC的周长最小,如图所示,此时,PA=PC,又∠∠ACB=90°,∠,故∠PBC的最小周长为:PB+PC+BC=AB+BC=15+9=24.故选C.5.如图,在四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD边上分别找一点M,N,使∠AMN周长最小时,∠AMN+∠ANM的度数为( )A.130°B.120°C.110°D.100°【答案】B【解析】如图,分别作点A关于直线BC,CD的对称点,连接交BC于点M,交CD于点N.由对称可知,,且此时∠AMN的周长最小,即为.此时∠1=∠2,∠3=∠4,∠AMN+∠ANM=2∠1+2∠3=2(∠1+∠3)=2(180°-120°)=120°.故选B.6.如图,在平面直角坐标系中,点A(-2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小,则点P的坐标是()A.(-2,0)B.(4,0)C.(2,0)D.(0,0)【答案】C【解析】作A关于x轴的对称点C,连接AC交x轴于D,连接BC交交x轴于P ,连接AP ,则此时AP +PB 最小,即此时点P 到点A 和点B 的距离之和最小,∠A (-2,4),∠C (-2,-4),设直线CB 的解析式是y =kx +b ,把C 、B 的坐标代入得:⎩⎨⎧+-=-+=bk b k 2442,解得:k =1,b =-2,∠y =x -2,把y =0代入得:0=x -2,x =2,即P 的坐标是(2,0),故选C .7. 如图所示,∠MON=40°,P 为∠MON 内一点,A 为OM 上一点,B 为ON 上一点,则当∠PAB 的周长取最小值时,∠APB 的度数为( )A.80°B.100°C.110°D.120° 【答案】B【解析】如图所示,分别作点P 关于OM ,ON 的对称点,,连接,,.分别交OM ,ON 于点A ,B ,连接PA ,PB ,此时∠PAB 的周长最小,最小值即为的长.由对称可得,,,,∠,∠.又∠,,∠∠APB=∠APO+∠BPO=100°.故选B.8.如图,等腰三角形ABC的底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边的中点,M为线段EF上一动点,则∠BDM的最短周长为( )A.6cmB.8cmC.10cmD.12cm【答案】B【解析】如图,连接AD,∠∠ABC是等腰三角形,点D是BC边的中点,∠AD∠BC,∠,∠AD=6.∠EF是线段AB的垂直平分线,∠点B关于直线EF的对称点为点A,∠AD的长为BM+MD的最小值,∠∠BDM的最短周长为,.故选B.9. 已知A 和B 两地在一条河的两岸,现要在河上建造一座桥MN ,使从A 到B 的路径AMNB 最短,则应按照下列哪种方式来建造(假定河的两岸是平行直线,桥要与河岸垂直)( )A. B.C.D.【答案】D 【解析】根据垂线段最短,得出MN 与河岸垂直时最短,即MN∠直线a (或直线b ),此时只要AM+BN 最短即可,如图所示,过点A 作河岸a 的垂线AC ,垂足为点C ,在射线AC 上取点D ,使AD 的长等于河岸a ,b 之间的距离.连接BD ,交河岸b 于点N ,过点N 作MN 垂直于河岸b ,交河岸a 于点M , 此时的MN 即为所求.故选D .二、填空题10. 如图,已知AB∠AD ,CD∠AD ,垂足分别为A 、D ,AD =6,AB =5,CD =3,P 是线段AD 上的一个动点,设AP =x ,DP =y ,92522+++=y x a ,则a 的最小值是______.【答案】10【解析】由题意可得,当BPC 三点在同一直线时,a 的值最小.则∠ABP∠∠DCP ,x =415,y =49,则a 的最小值是10. 11. 已知如图所示,∠MON =40°,P 为∠MON 内一点,A 为OM 上一点,B 为ON 上一点,则当∠PAB 的周长取最小值时,∠APB 的度数为_____.【答案】100°【解析】如图,作出P 点关于OM 、ON 的对称点P 1,P 2连接P 1,P 2交OM ,ON 于A 、B 两点,此时∠PAB 的周长最小,由题意可知∠P 1PP 2=180°-∠MON =180°-40°=140°,∠∠P 1PA +∠P 2PB =∠P 1+∠P 2=180°-∠P 1PP 2=40°,∠∠APB =140°-40°=100°.故答案为:100°.12. 如图,在∠ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值是_____.【答案】5【解析】过点C 作CO∠AB 于O ,延长CO 到C′,使OC′=OC ,连接DC′,交AB 于E ,连接CE ,此时DE +CE =DE +EC′=DC′的值最小.连接BC′,由对称性可知∠C′BE =∠CBE =45°,∠∠CBC′=90°,∠BC′∠BC ,∠BCC′=∠BC′C =45°,∠BC =BC′=2,∠D 是BC 边的中点,∠BD =1,根据勾股定理可得DC′=22'BD BC +=51222=+.故答案为:5.13. 已知:如图所示,M (3,2),N (1,-1).点P 在y 轴上使PM +PN 最短,则P 点坐标为_________.【答案】(0,-41) 【解析】根据题意画出图形,找出点N 关于y 轴的对称点N′,连接MN′,与y 轴交点为所求的点P ,∠N (1,-1),∠N′(-1,-1),设直线MN′的解析式为y =kx +b ,把M (3,2),N′(-1,-1)代入得:⎩⎨⎧-=+-=+123b k b k ,解得⎪⎪⎩⎪⎪⎨⎧-=-=4143b k ,所以y =43x -41, 令x =0,求得y =-41,则点P 坐标为(0,-41).14. 如图,在Rt∠ABC 中,∠ACB =90°,∠ABC =60°,BC =4,E 是AB 边的中点,F 是AC 边的中点,则(1)EF =____;(2)若D 是BC 边上一动点,则∠EFD 的周长最小值是____.【答案】2;2+213【解析】(1)∠E 是AB 边的中点,F 是AC 边的中点,∠EF 为∠ABC 的中位线,∠BC =4,∠EF =21BC =21×4=2; (2)延长FC 到P ,使FC =PC ,连接EP 交BC 于D ,连接ED 、FD , 此时ED +FD 最小,即∠EDF 的周长最小,∠EF 为∠ABC 的中位线,∠EF∠BC ,∠∠C =90°,∠∠EFC =90°,FC =PC =21AC =23, ∠在Rt∠EFP 中,EP =22FP EF +=22)3232(2++=213,∠∠EDF的周长为:EF+FD+ED=2+ED+PD=2+EP=2+213,故答案为:2;2+213.三、解答题15.已知,如图,在直线l的同侧有两点A,B.(1)在图1的直线上找一点P,使PA+PB最短;(2)在图2的直线上找一点P,使PA-PB最长.【答案】见解析【解析】(1)作点B关于直线l的对称点C,连接AC交直线l于点P,连接BP.点P即为所求.图略.(2)连接AB并延长,交直线l于点P.图略.16.如图,村庄A,B位于一条小河的两侧,若河岸a,b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近?【解析】∠过点A作AP∠a,并在AP上向下截取AA′,使AA′的长等于河的宽度;∠连接A′B交b于点D;∠过点D作DE∠AA′交a于点C;∠连接AC.则CD即为桥的位置.图略.17.茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短.【答案】见解析【解析】解:如图.作法:∠作点C关于OA的对称点C1,点D关于OB的对称点D1;∠连接C1D1,分别交OA,OB于点P,Q,连接CP,DQ,那么小明沿C→P→Q→D 的路线行走,所走的总路程最短.18. (兰州中考改编)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使∠AMN周长最小,求∠AMN+∠ANM的度数.【解析】作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,连接AM,AN,则A′A″即为∠AMN的周长最小值.作DA延长线AH.∠∠DAB=120°,∠∠HAA′=60°.∠∠A′+∠A″=∠HAA′=60°.∠∠A′=∠MAA′,∠NAD=∠A″,且∠A′+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∠∠AMN+∠ANM=∠A′+∠MAA′+∠NAD+∠A″=2(∠A′+∠A″)=2×60°=120°.19.已知:如图,在∠POQ内部有两点M、N,∠MOP=∠NOQ.(1)画图并简要说明画法:在射线OP上取一点A,使点A到点M和点N的距离和最小;在射线OQ上取一点B,使点B到点M和点N的距离和最小;(2)直接写出AM+AN与BM+BN的大小关系.【答案】见解析【解析】(1)如图所示.画法:∠作点M关于射线OP的对称点M',∠连接M'N交OP于点A.∠作点N关于射线OQ的对称点N',∠连接N'M交OQ于点B.(2)答:AM+AN与BM+BN的大小关系是:AM+AN=BM+BN.20.如图,∠ABC的边AB、AC上分别有定点M、N,请在BC边上找一点P,使得∠PMN的周长最短.(写出作法,保留作图痕迹)【答案】见解析【解析】∠作点N关于BC的对称点N′,连接MN′交BC于点P,∠由对称的性质可知PN=PN′,故PN+PM=MN′,∠由两点之间线段最短可知,∠PMN的最短周长即为MN′+MN.21.在某一地方,有条小河和草地,一天某牧民的计划是从A处的牧场牵着一只马到草地牧马,再到小河饮马,你能为他设计一条最短的路线吗?(在N上任意一点即可牧马,M上任意一点即可饮马.)(保留作图痕迹,需要证明)【答案】见解析【解析】沿AC-CD-DB路线走是最短的路线如图(1)所示:证明:在ON上任意取一点T,在OM上任意取一点R,连接FR、BR、RT、ET、AT,∠A、E关于ON对称,∠AC=EC,同理BD=FD,FR=BR,AT=ET,∠AC+CD+DB=EC+CD+FD=EF,AT+TR+BR=ET+TR+FR,∠ET+TR+FR>EF,∠AC+CD+DB<AT+TR+BR,即沿AC-CD-DB路线走是最短的路线.。

部编版人教数学八年级上册《13.4课题学习 最短路径问题 同步训练习题(含答案)》最新精品

部编版人教数学八年级上册《13.4课题学习 最短路径问题 同步训练习题(含答案)》最新精品

前言:
该同步训练习题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。

以高质量的同步训练习题助力考生查漏补缺,在原有基础上更进一步。

(最新精品同步训练习题)
13.4 课题学习最短路径问题
[学生用书P63]
1.如图13-4-6,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,∠APB的度数是( ) A.40° B.100° C.140° D.50°
图13-4-6
2.如图13-4-7所示,四边形EFGH是一个矩形的台球桌面,有黑白两球分别位于A,B两点,试说明怎样撞击B,才能使白球先撞击台球桌边EF,反弹后又能击中黑球A?
图13-4-7
3.如图13-4-8,点A,B在直线m的同侧,点B′是点B关于m的对称点,AB′交m于点P.
(1)AB′与AP+BP相等吗?为什么?
(2)在m上再取一点N,并连接AN与BN,比较AN+BN与AP+BP的大小,并说明理由.
图13-4-8
4.[2015·鄂尔多斯]如图13-4-9,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMMNNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)( D )。

人教版八年级数学13.4最短路径问题(包含答案)

人教版八年级数学13.4最短路径问题(包含答案)

人教版八年级数学13.4最短路径问题(包含答案)13.4最短路径问题知识要点:1.求直线异侧的两点到直线上一点距离的和最小的问题,只要连接这两点,所得线段与直线的交点即为所求的位置.2.求直线同侧的两点到直线上一点距离的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,所得线段与该直线的交点即为所求的位置.一、单选题1.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在()A.在A的左侧B.在AB之间C.在BC之间D.B处【答案】D2.A、B是直线l上的两点,P是直线l上的任意一点,要使PA+PB的值最小,那么点P 的位置应在()A.线段AB上B.线段AB的延长线上C.线段AB的反向延长线上D.直线l上【答案】A3.如图,直线l是一条河,P,Q是两个村庄.欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.【答案】D4.已知:如图,在Rt△ABC中,△ACB=90°,△A<△B,CM是斜边AB上的中线,将△ACM 沿直线CM折叠,点A落在点A1处,CA1与AB交于点N,且AN=AC,则△A的度数是()A.30° B.36° C.50° D.60°【答案】A5.如图,在Rt△ABC中,△ACB=90°,AC=6,BC=8,AD是△BAC的平分线.若P,Q 分别是AD和AC上的动点,则PC+PQ的最小值是()A.2.4B.4 C.4.8D.5【答案】C6.如图所示,△ABC中,AB=AC,△EBD=20°,AD=DE=EB,则△C的度数为()A.70°B.60°C.80°D.65°【答案】A7.如图所示,在Rt△ABC中,△ACB=90°,△B=15°,AB边的垂直平分线交AB于点E,交BC于点D,且BD=13 cm,则AC的长是()A.13 cm B.6.5 cmC.30 cm D.cm【答案】B8.如图所示,从点A到点F的最短路线是()A.A→D→E→F B.A→C→E→FC.A→B→E→F D.无法确定【答案】C9.如图,在Rt△ABC中,△ACB=90°,AC=6,BC=8,AD是△BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.125B.4 C.245D.510.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是A.(0,0)B.(0,1)C.(0,2)D.(0,3)【答案】D11.如图,直线l是一条河,A、B两地相距10km,A、B两地到l的距离分别为8km、14km,欲在l上的某点M处修建一个水泵站,向A、B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短..的是()二、填空题12在平面直角坐标系中,已知点A(0,2)、B(4,1),点P 在轴上,则PA+PB的最小值是______________。

人教版 八年级数学上册 13.4 课题学习 最短路径 同步培优(含答案)

人教版 八年级数学上册 13.4 课题学习 最短路径 同步培优(含答案)

人教版八年级数学上册13.4 课题学习最短路径同步培优一、选择题1. 如图,A,B是两个居民小区,快递公司准备在公路l上的点P处建一个服务中心,使P A+PB最短.下面四种选址方案符合要求的是()2. 如图,在△ABC中,AB=6,BC=7,AC=4,直线m是△ABC中BC边的垂直平分线,P是直线m上的一动点,则△APC的周长的最小值为()A.10 B.11 C.11.5 D.133. 如图,在四边形ABCD中,AB∥CD,AD⊥AB,P是AD边上的一动点,要使PC+PB的值最小,则点P应满足()A.PB=PC B.P A=PDC.∠BPC=90°D.∠APB=∠DPC4. 如图,在四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小,则∠AMN+∠ANM的度数为()A.130°B.120°C.110°D.100°5. 如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案()6. 如图,直线l是一条河,P,Q是两个村庄.欲在直线l上的某处修建一个水泵站M,向P,Q两村供水,现有如下四种铺设方案,图中PM,MQ表示铺设的管道,则所需管道最短的是()7. 如图,点P,Q在直线AB外,在点O沿着直线AB从左往右运动的过程中,形成无数个三角形:△O1PQ,△O2PQ,…,△O n PQ,在这样的运动变化过程中,这些三角形的周长()A.不断变大B.不断变小C.先变小再变大D.先变大再变小8. 如图,等腰三角形ABC的底边BC的长为4,面积为24,腰AC的垂直平分线EF分别交边AC,AB于点E,F,若D为BC边的中点,M为线段EF上一动点,则△CDM的周长的最小值为()A.8B.10C.12D.149. 如图,在四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小,则此时∠AMN+∠ANM的度数为 ()A.80°B.90°C.100°D.130°10. 如图,在△ABC中,AB=BC,点D在AC上,BD=6 cm,E,F分别是AB,BC边上的动点,△DEF周长的最小值为6 cm,则∠ABC的度数为()A.20°B.25°C.30°D.35°二、作图题11. 在如图所示的正方形网格中,每个小正方形的边长均为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)在如图所示的网格平面内作出平面直角坐标系;(2)作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;(3)P是x轴上的动点,在图中找出使△A′BP周长最短的点P,直接写出点P的坐标.12. 如图,在河岸l的同侧有两个居民小区A,B,现欲在河岸边建一个长为a的绿化带CD(宽度不计),使C到小区A的距离与D到小区B的距离之和最小.在图中画出绿化带的位置,并写出画图过程.13. 河岸l同侧的两个居民小区A,B到河岸的距离分别为a米,b米(即图①中所示,AA′=a米,BB′=b米),A′B′=c米.现欲在河岸边建一个长度为s米的绿化带CD(宽度不计),使C到小区A的距离与D到小区B的距离之和最小.在图②中画出绿化带的位置,并写出画图过程.14. 如图,山娃星期天从A处赶了几只羊到草地l1放羊,然后赶羊到小河l2饮水,之后再回到B处的家,假设山娃赶羊走的都是直路,请你为他设计一条最短的路线,标明放羊与饮水的位置.15. 如图,已知牧马营地在点M处,每天牧马人要赶着马群到河边饮水.(1)求到河边饮水的最短路线;(2)如果饮完水后,需再到草地吃草,然后回到营地,试设计出最短的牧马路线.三、解答题16. 如图,在Rt△ABC中,∠A=90°,∠ACB=30°,AC=10,CD是角平分线.(1)如图①,若E是AC边上的一个定.点,在CD上找一点P,使P A+PE的值最小;(2)如图②,若E是AC边上的一个动.点,在CD上找一点P,使P A+PE的值最小,并求出这个最小值.17. 如图①所示,A,B两地在一条河的两岸,现要在河岸上造一座桥MN,桥造在何处才能使从A地到B地的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)[思考1]如图②,如果A,B两地之间有两条平行的河流,我们要建的桥都是与河岸垂直的,我们应该如何找到这个最短的路径呢?[思考2]如图③,如果A,B两地之间有三条平行的河流呢?[拓展]如图④,如果在上述其他条件不变的情况下,两条河并不是平行的,又该如何建桥呢?请将你的思考在下面准备好的图形中表示出来,保留作图痕迹,将行走的路线用实线画出来.链接听P30例2归纳总结人教版八年级数学上册13.4 课题学习最短路径同步培优-答案一、选择题1. 【答案】A2. 【答案】A[解析] ∵直线m垂直平分AB,∴B,C关于直线m对称.设直线m交AB于点D,∴当点P和点D重合时,AP+CP的值最小,最小值等于AB 的长,∴△APC的周长的最小值是6+4=10.3. 【答案】D4. 【答案】B[解析] 如图,分别作点A关于BC,DC的对称点A1,A2,连接A1A2交BC于点M,交DC于点N,则此时△AMN的周长最小.∵∠A1AA2=120°,∴∠A1+∠A2=60°.∵MA=MA1,NA=NA2,∴∠AMN+∠ANM=2(∠A1+∠A2)=2×60°=120°.5. 【答案】C[解析] 如图,作PP′垂直于河岸L,使PP′等于河宽,连接QP′,与河岸L相交于点N,将P′N沿竖直方向向上平移河宽个单位长度,得到PM,PM -MN-NQ即所求.根据“两点之间,线段最短”,QP′最短,即PM+NQ最短.观察选项,选项C符合题意.6. 【答案】D7. 【答案】C[解析] 如图,作点P关于直线AB的对称点P',连接P'Q交直线AB于点O.∵两点之间线段最短,且PQ的长为定值,∴当点O运动到此点时三角形的周长最短.∴这些三角形的周长先变小再变大.8. 【答案】D[解析] 如图,连接AD,MA.∵△ABC是等腰三角形,D是底边BC的中点,∴AD⊥BC.∴S=BC·AD=×4AD=24,△ABC解得AD=12.∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC.∴MC+DM=MA+DM≥AD.∴AD的长为MC+MD的最小值.∴△CDM的周长的最小值为(MC+MD)+CD=AD+BC=12+×4=14.故选D.9. 【答案】C[解析] 如图,延长AB到点A',使得BA'=BA,延长AD到点A″,使得DA″=AD,连接A'A″与BC,CD分别交于点M,N.∵∠ABC=∠ADC=90°,∴点A,A'关于BC对称,点A,A″关于CD对称,此时△AMN的周长最小.∵BA=BA',MB⊥AB,∴MA=MA'.同理NA=NA″.∴∠A'=∠MAB,∠A″=∠NAD.∵∠AMN=∠A'+∠MAB=2∠A',∠ANM=∠A″+∠NAD=2∠A″,∴∠AMN+∠ANM=2(∠A'+∠A″).∵∠BAD=130°,∴∠A'+∠A″=180°-∠BAD=50°.∴∠AMN+∠ANM=2×50°=100°.10. 【答案】C[解析] 如图,将△ABD和△DBC分别沿着AB和BC向外翻折,得△ABG和△HBC,连接GH,分别交AB,BC于点E,F,此时△DEF的周长最小,即为GH的长,∴GH=6 cm.∵BD=6 cm,∴BG=BH=BD=6 cm=GH.∴△BGH是等边三角形.∴∠GBH=60°.∴2∠ABD+2∠DBC=60°.∴∠ABD+∠DBC=30°.∴∠ABC=30°.故选C.二、作图题11. 【答案】解:(1)如图所示.(2)△A′B′C′如图所示,点B′的坐标为(2,1).(3)如图所示,点P的坐标为(-1,0).12. 【答案】解:如图,作线段AP∥l,使AP=a,且点P在点A的右侧;作点P关于直线l的对称点P',连接BP'交l于点D;在l上点D的左侧截取DC=a,则CD就是所求绿化带的位置.13. 【答案】解:如图,作线段AP∥l,使AP=s,且点P在点A右侧,取点P关于l的对称点P′,连接BP′交l于点D,在l上点D左侧截取DC=s,则CD即为所求绿化带的位置.14. 【答案】解:如图,作点A关于l1的对称点E,作点B关于l2的对称点F,连接EF,分别交l1,l2于点C,D,则折线ACDB是所求的最短路线.15. 【答案】解:把河流抽象成直线a,把草地抽象成直线b.(1)如图①,过点M作MP⊥直线a于点P,则MP即为最短路线.(2)如图②,分别作点M关于直线a,b的对称点A,B,连接AB与直线a,b分别交于点C,D,则最短的牧马路线为M→C→D→M.三、解答题16. 【答案】解:(1)如图①,过点D作DF⊥BC于点F,连接EF交CD于点P,点P即为所求.(2)如图②,过点D作DF⊥BC于点F,过点F作FE⊥AC交CD于点P,则此时PA+PE的值最小,PA+PE的最小值为线段EF的长.∵CD是角平分线,∠BAC=∠DFC=90°,∴DA=DF.又∵DC=DC,∴Rt△ADC≌Rt△FDC.∴CF=AC=10.∵∠ACB=30°,∴EF=12CF=5,即PA+PE的最小值为5.17. 【答案】如图①所示,MN即为所求.[思考1] 如图②所示,折线AMNEFB即为所求.[思考2] 如图③所示,折线AMNGHFEB即为所求.[拓展] 如图④所示,折线AMNEFB即为所求.。

八年级数学上册 第十三章 轴对称 13.4 最短路径问题同步练习(含解析)(新版)新人教版-(新版)

八年级数学上册 第十三章 轴对称 13.4 最短路径问题同步练习(含解析)(新版)新人教版-(新版)

第十三章轴对称13.4 最短路径问题(练习)一、单选题(共10小题)1.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间【答案】A【解析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.【详解】解:①以点A为停靠点,则所有人的路程的和=15×300+10×900=13500(米),②以点B为停靠点,则所有人的路程的和=30×300+10×600=15000(米),③以点C为停靠点,则所有人的路程的和=30×900+15×600=36000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<300),则所有人的路程的和是:30m+15(300-m)+10(900-m)=13500+5m>13500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<600),则总路程为30(300+n)+15n+10(600-n)=15000+35n>13500.∴该停靠点的位置应设在点A;故选:A.【点睛】考查了比较线段的长短,此题为数学知识的应用,考查知识点为两点之间线段最短.2.已知村庄A和B分别在一条河的两岸,现要在河上造一座桥MN(假定河的两岸彼此平行,且桥与河岸互相垂直),下列示意图中,桥的建造位置能使从村庄A经桥过河到村庄B的路程最短的是( )A.B.C.D.【答案】C【解析】如图作AI∥MN,且AI=MN,连接BI,由两点之间线段最短可知此时从A点到B点的距离最短,所以AM∥BN.【详解】解:如图,作AI∥MN,且AI=MN,连接BI,∴四边形AMNI为平行四边形,∴AM∥BN,此时从A点到B点距离最短.故选:C.【点睛】本题主要考查了最短路径的问题,运用到了两点之间线段最短,平行四边形等知识点,解此题的关键在于熟练掌握其知识点.3.某公司员工分别住在A、B、C、D四个住宅区,A区有20人,B区有15人,C区有5人,D区有30人,四个区在同一条直线上,位置如图所示.该公司的接送车打算在此间设立一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设置在()A.D区 B.A区 C.AB两区之间 D.BC两区之间【答案】D【解析】根据题意分别计算停靠点分别在各点时员工步行的路程和,选择最小的即可解答.【详解】解:∵当停靠点在D区时,所有员工步行到停靠点路程和是:20×800+15×400+5×200=23000m;当停靠点在A区时,所有员工步行到停靠点路程和是:15×400+5×600+30×800=33000m;当停靠点在AB两区之间时,设距离B区x米,所有员工步行到停靠点路程和是:20×(400-x)+15x+5×(200+x)+30×(400+x)=(30x+21000)m;当停靠点在BC两区之间时,设距离B区x米,所有员工步行到停靠点路程和是:20×(400+x)+15x+5×(200-x)+30×(400-x)=21000m.∴当停靠点在BC两区之间时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在BC两区之间.故选:D.【点睛】此题考查了比较线段的长短,正确理解题意是解题的关键.要能把线段的概念在现实中进行应用.4.如图所示,从点A到点F的最短路线是()A.A→D→E→F B.A→C→E→FC.A→B→E→F D.无法确定【答案】C【解析】认真分析图形,要求点A到点F的最短路线,其中AB,EF的线路是固定的,则需要确定点B到点E之间的最短路线,由两点之间,线段最短可得,点B到点E之间BE最短.【详解】解:由图中可以看出,从点A到点F,AB,EF是必须经过的路线,点B到点E的路线中BE最短,所以点A到点F的最短路线为A→B→E→F,故答案选C.【点睛】本题主要考查了线段的性质,根据两点之间线段最短确定出点A到点F的最短路线是解题的关键.5.如图,从A地到B地有①、②、③三条路线,每条路线的长度分别为l、m、n,则()A.l>m>n B.l=m>n C.m<n=l D.l>n>m【答案】C【解析】分析:根据两点间直线距离最短,认真观察图形,可知①③都是相当于走直角线,故①③相等,②走的是直线,最短.详解:由题意可得:∵从C到B地有①②③条路线可以走,每条路线长分别为l,m,n,则AC+AB=l>BC∴l=n>m.故选:C.点睛:本题考查了生活中的平移现象,要求学生充分利用两点间线段距离最近.6.如图,直线l表示一条河,点A,B表示两个村庄,想在直线l的某点P处修建一个向A,B供水的水站,现有如图所示的四种铺设管道的方案(图中实线表示铺设的管道),则铺设管道一定最短的是( )A.B.C.D.【答案】A【解析】依据轴对称的性质,通过等线段代换,将所求路线长转化为两点之间的距离即可.【详解】解:作点A关于直线l的对称点A′,连接BA′交直线l于P.根据两点之间,线段最短,可知选项A铺设的管道最短.故选:A.【点睛】本题考查了最短路线问题,这类问题的解答依据是“两点之间,线段最短”.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.7.下列命题是真命题的是()A.两点之间的距离是这两点间的线段B.墙上固定一根木条,至少需要两根钉子,其依据是“两点之间,线段最短”C.同一平面内,两条直线的位置关系有平行、相交和垂直三种D.同平面内,过一点有且只有一条直线与已知直线垂直【答案】D【解析】根据两点间的距离的定义、垂线的性质即可作出判断.【详解】A、两点之间的距离是这两点间的线段的长度,故错误;B、墙上固定一根木条,至少需要两根钉子,其依据是“两点可以确定一条直线”,故错误;C、同一平面内,两条直线的位置关系有平行、相交两种,故错误;D、同一平面内,过一点有且只有一条直线与已知直线垂直,故正确.故选:D.【点睛】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(2017·某某市临淄区皇城镇第二中学初一期中)小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点有且只有一条直线D.两点之间线段最短【答案】D【解析】试题解析:由图可知,剪掉一部分,相当于用一条线段取代了连接原来两点之间的曲线.根据线段公理:两点之间,线段最短,所以剩下树叶的周长比原树叶的周长要小.故本题应选D.点睛:直线公理是指两点确定一条直线,而线段公理是指两点之间线段最短,我们要清楚这两者的区别. 9.(2017·某某市临淄区皇城镇第二中学初一期中)下列说法正确的是()A.两点之间的连线中,直线最短 B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点 D.两点之间的线段叫做这两点之间的距离【答案】B【解析】A中,两点之间线段最短,故A错误;B中,若P是线段AB的中点,则点P到A、B的距离相等,即AP=BP,故B正确;C中,若AP=BP,点P不一定是线段AB的中点,如,故C错误;D中,两点之间的线段的长度叫做这两点之间的距离,故D错误.故选B.10.如图,点A,B在直线l的同侧,若要用尺规在直线l上确定一点P,使得AP+BP最短,则下列作图正确的是()A. B. C. D.【答案】C【解析】根据对称的性质以及两点之间线段最短可知选项C是正确的.故选C.二、解答题(共3小腿)A B C;(2) 11.(2019·某某市外国语学校初一期末)如下图所示.(1)作出△ABC关于y轴对称的图形111在x轴上确定一点P,使得PA+PC最小.【答案】(1)见解析;(2)见解析.【解析】(1)根据网格结构找出点A、B、C关于y轴对称的点A1、B1、C1,然后顺次连接即可;(2)根据轴对称确定最短路线问题,找出点A关于x轴的对称点A′的位置,然后连接A′B与x轴的交点即为点P【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,点P即为所求(有两种做法:作A或C的对称点均可).【点睛】此题考查作图-轴对称变换,轴对称-最短路线问题,掌握作图法则是解题关键12.(2018·泸西县中枢镇逸圃初级中学初二期中)作图题(保留作图痕迹,不写作法)如图,A、B两村在一条小河MN的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,在图1中用尺规作图....作出厂址P的位置.(2)若要使自来水厂到两村的输水管用料最省,在图2中作出厂址Q的位置.【答案】作图见解析.【解析】试题分析:(1)根据中垂线的性质知,作AB的中垂线,交于直线MN于点P就是所求的点;(2)由三角形的三边关系,三角形是任意两边之和大于第三边知,故作出点A关于直线MN的对称点E,连接BE交于直线MN的点Q是所求的点.试题解析:(1)如图所示:点P即为所求;(2)如图所示:点Q即为所求.13.(2017·某某鄂尔多斯康巴什新区第二中学初二期中)如图,在游艺室的水平地面上,沿着地面的AB 边放一行球,参赛者从起点C起步,跑向边AB任取一球,再折向D点跑去,将球放入D点的纸箱内便完成任务,完成任务的时间最短者获得胜利,如果邀请你参加,你将跑去选取什么位置上的球?为什么?【答案】见解析【解析】试题分析:可过点D作关于AB的对称点D′,连接CD′与AB交于点E,即为所求.试题解析:如图,参赛者应向E点跑,因为AB所在直线是DD′的垂直平分线,所以ED=ED′,C、D′两点之间CE+ED′是最短的(两点之间线段最短),所以CE+ED是最短的.点睛:此题考查轴对称最短路径问题,能够利用两点之间线段最短求解一些简单的实际问题.凡是涉及到最短距离问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.4最短路径问题
知识要点:
1.求直线异侧的两点到直线上一点距离的和最小的问题,只要连接这两点,所得线段与直线的交点即为所求的位置.
2.求直线同侧的两点到直线上一点距离的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,所得线段与该直线的交点即为所求的位置.
一、单选题
1.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在()
A.在A的左侧B.在AB之间C.在BC之间D.B处
【答案】D
2.A、B是直线l上的两点,P是直线l上的任意一点,要使PA+PB的值最小,那么点P 的位置应在()
A.线段AB上B.线段AB的延长线上
C.线段AB的反向延长线上D.直线l上
【答案】A
3.如图,直线l是一条河,P,Q是两个村庄.欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()
A.B.C.
D.
【答案】D
4.已知:如图,在Rt△ABC中,△ACB=90°,△A<△B,CM是斜边AB上的中线,将△ACM 沿直线CM折叠,点A落在点A1处,CA1与AB交于点N,且AN=AC,则△A的度数是()
A.30° B.36° C.50° D.60°
【答案】A
5.如图,在Rt△ABC中,△ACB=90°,AC=6,BC=8,AD是△BAC的平分线.若P,Q 分别是AD和AC上的动点,则PC+PQ的最小值是()
A.2.4B.4 C.4.8D.5
【答案】C
6.如图所示,△ABC中,AB=AC,△EBD=20°,AD=DE=EB,则△C的度数为()
A.70°B.60°C.80°D.65°
【答案】A
7.如图所示,在Rt△ABC中,△ACB=90°,△B=15°,AB边的垂直平分线交AB于点E,交BC于点D,且BD=13 cm,则AC的长是()
A.13 cm B.6.5 cm
C.30 cm D.cm
【答案】B
8.如图所示,从点A到点F的最短路线是()
A.A→D→E→F B.A→C→E→F
C.A→B→E→F D.无法确定
【答案】C
9.如图,在Rt△ABC中,△ACB=90°,AC=6,BC=8,AD是△BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()
A.12
5B.4 C.24
5
D.5
10.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是
A.(0,0)B.(0,1)C.(0,2)D.(0,3)
【答案】D
11.如图,直线l是一条河,A、B两地相距10km,A、B两地到l的距离分别为8km、14km,
欲在l上的某点M处修建一个水泵站,向A、B两地供水,现有如下四种铺设方案,图中实线表示铺设的
管道,则铺设的管道最短
..的是()
二、填空题
12在平面直角坐标系中,已知点A(0,2)、B(4,1),点P在轴上,则PA+PB的最小值是______________。

【答案】5
13.如图所示,已知△ABC关于直线y=1对称,点C到AB的距离为2,AB长为6,则点A,B的坐标分别为____.
【答案】(2,-2),(2,4)
14.如图,已知△AOB=30°,OC平分△AOB,在OA上有一点M,OM=10 cm,现要在OC,OA上分别找点Q,N,使QM+QN最小,则其最小值为________ .
【答案】5cm
AD=,E是AD上的一个动点,F是15.如图,在等边三角形ABC中,BC边上的中线4
+的最小值是______.
边AB上的一个动点,在点E、F运动的过程中,EB EF
【答案】4
16.在平面直角坐标系中,点P (2,0),Q (2,4),在y轴有一点M,若PM + QM最小,则M的坐标为.
【答案】(0,2)
三、解答题
17.如图所示,A,B是两个村庄,若要在河边l上修建一个水泵站往两村输水,则水泵站应修在河边的什么位置,才能使铺设的管道最短?请说明理由.
解:连接AB,与直线l的交点P为所求水泵站的位置.因为两点之间的所有连线中,线段最短.
18.如图1,在一条河同一岸边有A和B两个村庄,要在河边修建码头M,使M到A和B 的距离之和最短,试确定M的位置;
试题解析:所求点如下图所示:
∵两点之间线段最短,
∵需要能将AM、BM两边转化到一条直线上,
∵用轴对称可以办到,
求点M的位置的具体步骤如下:
∵作作点A关于直线BC的轴对称点A’,
∵连结A’B交BC于点M,
∵连结AM,
则点M就是所求作的点,能够使M到A和B的距离之和最短.
19.如图所示,P,Q为△ABC边上的两个定点,在BC上求作一点R,使△PQR的周长最小.
试题解析:(1)作点P关于BC所在直线的对称点P′,
(2)连接P′Q,交BC于点R,则点R就是所求作的点(如图所示).
20.如图,村庄A,B位于一条小河的两侧,若河岸a,b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近?
(1)过点A作河岸a的垂线AE;
(2)在a的垂线AE上截取AA′等于河宽(即桥长CD),从而确定点A′的位置;
(3)连接A′B与河岸b相交于点C;
(4)过点C作河岸b的垂线,交河岸a于点D.
所以,CD就是桥所在的位置.
21.如图所示,在△ABC中,△ABC和△ACB的平分线交于点O,过点O作EF△BC,交AB于点E,交AC于点F.
(1)若△ABC=40°,△ACB=60°,求△BOE+△COF的度数;
(2)若△AEF的周长为8 cm,且BC=4 cm,求△ABC的周长.
【答案】(1)∵BOE+∵COF=50°;(2)12cm.
解:(1)∵EF∵BC,
∴∵OCB=∵COF,∵OBC=∵BOE.
又∴BO,CO分别是∵BAC和∵ACB的角平分线,
∴∵COF=∵FCO=1
2
∵ACB=30°,∵BOE=∵OBE=
1
2
∵ABC=20°.
∵∵BOE+∵COF=50°.
(2)∵∵COF=∵FCO,∴OF=CF.
∴∵BOE=∵OBE,∴OE=BE.
∴∵AEF的周长=AF+OF+OE+AE=AF+CF+BE+AE=AB+AC=8 cm.∵∵ABC的周长=8+4=12(cm).。

相关文档
最新文档