界面内聚力模型及有限元法ppt课件
合集下载
有限元入门ppt课件
有限体积法 (Finite Volume Method)
其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。
1-2 应力的概念
作用于弹性体的外力(或称荷载)可能有两种: 表面力,是分布于物体表面的力,如静水压力,一物体与另一物体之间的接触压力等。单位面积上的表面力通常分解为平行于座标轴的三个成分,用记号 来表示。 体力,是分布于物体体积内的外力,如重力、磁力、惯性力等。单位体积内的体力亦可分解为三个成分,用记号X、Y、Z表示。 弹性体受外力以后,其内部将产生应力。
边界元法 (Boundary Element Method)
边界元法是一种继有限元法之后发展起来的一种新的数值方法,与有限元法不同,边界元法仅在定义域的边界划分单元,用满足控制方程的函数去逼近边界条件。所以边界元与有限元相比具有单元和未知数少、数据准备简单等优点,但边界元法解非线性问题时,遇到同非线性项相对应的区域积分,这种积分奇异点处的强烈的奇异性,使求解遇到困难。边界元法在塑性问题中应用还比较少。
弹性力学 — 区别与联系 — 材料力学 弹性力学与材料力学既有联系又有区别。它们都同属于固体力学领域,但弹性力学研究的对象更普遍,分析的方法更严密,研究的结果更精确,因而应用的范围更广泛。 弹性力学 固有弱点: 由于研究对象的变形状态较复杂,处理的方法又较严谨,因而解算问题时,往往需要冗长的数学运算。但为了简化计算,便于数学处理,它仍然保留了材料力学中关于材料性质的假定:
塑性有限元常用软件
有限元分析 ppt课件
有限元分析 Finite Element Analysis
课程目标
1) 了解什么是有限单元法、有限单元法的基本 思想。
2) 学习有限单元法的原理,主要结合弹性力学 问题来介绍有限单元法的基本方法,包括单 元分析、整体分析、载荷与约束处理、等参 单元等概念。
3) 初步学会使用商用有限元软件分析简单工程 问题。
4. O.C. Zienkiewicz, R.L. Taylor. The finite element method( 5th ed). Oxford ; Boston : Butterworth-Heinemann, 2000
5. 郭和德编. 有限单元法概论,清华大学, 1998
1 有限单元法简介
自重作用下等截面直杆的材料力学解答
N(x)q(Lx)
d(L x)N(x)d xq(Lx)dx EA EA
u(x)xN(x)d xq(L xx2)
0 EA EA 2
x
du q (Lx) dx EA
x
Ex
q(Lx) A
自重作用下等截面直杆的有限单元法 解答
1)离散化 如图所示,将直杆划分 成n个有限段,有限段之 间通过一个铰接点连接。 称两段之间的连接点为 结点,称每个有限段为 单元。 第 i 个 单 元 的 长 度 为 Li , 包含第i,i+1个结点。
1.3.1网格划分
对弹性体进行必要的简化,再将弹性体 划分为有限个单元组成的离散体。 单元之间通过单元节点相连接。 由单元、结点、结点连线构成的集合称 为网格。
1.3.1网格划分
通常把三维实体划分成四面体(Tetrahedron) 或六面体(Hexahedron)单元的网格
四面体4结点单元
六面体8结点单元
课程目标
1) 了解什么是有限单元法、有限单元法的基本 思想。
2) 学习有限单元法的原理,主要结合弹性力学 问题来介绍有限单元法的基本方法,包括单 元分析、整体分析、载荷与约束处理、等参 单元等概念。
3) 初步学会使用商用有限元软件分析简单工程 问题。
4. O.C. Zienkiewicz, R.L. Taylor. The finite element method( 5th ed). Oxford ; Boston : Butterworth-Heinemann, 2000
5. 郭和德编. 有限单元法概论,清华大学, 1998
1 有限单元法简介
自重作用下等截面直杆的材料力学解答
N(x)q(Lx)
d(L x)N(x)d xq(Lx)dx EA EA
u(x)xN(x)d xq(L xx2)
0 EA EA 2
x
du q (Lx) dx EA
x
Ex
q(Lx) A
自重作用下等截面直杆的有限单元法 解答
1)离散化 如图所示,将直杆划分 成n个有限段,有限段之 间通过一个铰接点连接。 称两段之间的连接点为 结点,称每个有限段为 单元。 第 i 个 单 元 的 长 度 为 Li , 包含第i,i+1个结点。
1.3.1网格划分
对弹性体进行必要的简化,再将弹性体 划分为有限个单元组成的离散体。 单元之间通过单元节点相连接。 由单元、结点、结点连线构成的集合称 为网格。
1.3.1网格划分
通常把三维实体划分成四面体(Tetrahedron) 或六面体(Hexahedron)单元的网格
四面体4结点单元
六面体8结点单元
有限元基础教学课件PPT
ε E T u (几何线性)
为梯度矢
ε u 一一对应,多连通域中未必一一对应. 在单连通域中:
31
§0.2 应力分析
取P点处一微平行六面体与xyz平行, 决定P点应力状态的6个分量记为
ζ x y z yz zx xy
f f x fy fz
T
T
ε E u,
T
u : u u : P E ν ζ
p
物体表面 u , 取未知函数 u ,经代换
: E DE u f 0 : u : u u
T
Px, y, z
: P E ν DET u (位移表示的应力边界条件)
14
应用领域:机械工程
(a) 铲运机举升工况测试
(b) 铲运机插入工况有限元分析
WJD-1.5型电动铲运机
15
液压挖掘机
(a) KOMATSU液压挖掘机
(b) 某液压挖掘机动臂有限元分析
16
驾驶室受侧向力 应力云图
接触问题结构件 应力云图
17
液压管路速度场分布云图
磨片热应力云图
支架自由振动云图
称为弹性矩阵
34
ζ Dε 或 ε D 1ζ
1 1 1 D E 0 0 0 1 0 0 0 1 0 0 0 0 0 0 21 0 0 0 0 0 0 21 0 0 21 0 0 0 0
i 1
RB
m
(Gu g ) 0
i 1
m
为了消除残差,通常引进内部权函数 WI 和边界权函 数WB ,将它们分别与 RI 和 RB 相乘,列出消除内部残 值方程式及消除边界方程式分别如下: RIWI dv 0 V C j ( j 1,2,, n) m S RBWB ds 0
有限元法ppt课件
3)理论基础简明,物理概念清晰,且可在不同的水平上建 立起对该法的理解;
25
4)具有灵活性和适用性,适应性强。它可以把形状 不同、性质不同的单元组集起来求解,故特别适 用于求解由不同构件组合的结构,应用范围极为 广泛。它不仅能成功地处理如应力分析中的非均 匀材料、各向异性材料、非线性应力应变以及复 杂的边界条件等问题,且随着其理论基础和方法 的逐步完善,还能成功地用来求解如热传导、流 体力学及电磁场领域的许多问题。
双金属片 受热变形
38
第二节 有限元法的分类
39
一、结构有限元法的分类
结构有限元法可以分为两类,即线弹性有限元 法和非线性有限元法。其中线弹性有限元法是非 线性有限元法的基础,二者不但在分析方法和研 究步骤上有类似之处,而且后者常常要引用前者 的某些结果。
40
1.线弹性有限元 线弹性有限元是以理想弹性体为研究对象的,
12
有限元法是一种以计算机为手段,通过离散化 将研究对象变换成一个与原始结构近似的数学模 型,再经过一系列规范化的步骤以求解应力、应 变、位移等参数的数值计算方法。
所谓离散化就是将一个连续体分割成若干个通 过节点相连的单元,这样一个有无限个自由度的 结构就变换成一个具有有限个自由度的近似结构。 该过程还包括对单元和节点进行编码以及局部坐 标系和整体坐标系的确定。
下的响应; ➢ 模型中所有单元响应的“和”给出了设计的总
体响应; ➢ 单元中未知量的个数是有限的,因此称为“有
限单元”。
15
2)节点(node)
单元与单元之间的联结点,称为节点。在有限 元法中,节点就是空间中的坐标位置,它具有物
理特性,且存在相互物理作用。
载荷
节点: 空间中的坐标位置,具有
25
4)具有灵活性和适用性,适应性强。它可以把形状 不同、性质不同的单元组集起来求解,故特别适 用于求解由不同构件组合的结构,应用范围极为 广泛。它不仅能成功地处理如应力分析中的非均 匀材料、各向异性材料、非线性应力应变以及复 杂的边界条件等问题,且随着其理论基础和方法 的逐步完善,还能成功地用来求解如热传导、流 体力学及电磁场领域的许多问题。
双金属片 受热变形
38
第二节 有限元法的分类
39
一、结构有限元法的分类
结构有限元法可以分为两类,即线弹性有限元 法和非线性有限元法。其中线弹性有限元法是非 线性有限元法的基础,二者不但在分析方法和研 究步骤上有类似之处,而且后者常常要引用前者 的某些结果。
40
1.线弹性有限元 线弹性有限元是以理想弹性体为研究对象的,
12
有限元法是一种以计算机为手段,通过离散化 将研究对象变换成一个与原始结构近似的数学模 型,再经过一系列规范化的步骤以求解应力、应 变、位移等参数的数值计算方法。
所谓离散化就是将一个连续体分割成若干个通 过节点相连的单元,这样一个有无限个自由度的 结构就变换成一个具有有限个自由度的近似结构。 该过程还包括对单元和节点进行编码以及局部坐 标系和整体坐标系的确定。
下的响应; ➢ 模型中所有单元响应的“和”给出了设计的总
体响应; ➢ 单元中未知量的个数是有限的,因此称为“有
限单元”。
15
2)节点(node)
单元与单元之间的联结点,称为节点。在有限 元法中,节点就是空间中的坐标位置,它具有物
理特性,且存在相互物理作用。
载荷
节点: 空间中的坐标位置,具有
第1章有限元基本理论ppt课件
x dx
li
E i
i
E (ui1ui )
x
x
li
1.8 直杆受自重作用的拉伸问题(续)
❖ 外载荷与结点的平衡方程
EA(uiui1 ) li1
EA(ui1ui ) li
q(li1 li ) 2
q(li1li ) 为第i个结点上承受的外载荷
2
1.8 直杆受自重作用的拉伸问题(续)
❖ 假定将直杆分割成3个单元,每个单元长为a=L/3, 则对结点2,3,4列出的平衡方程为:
单元: 一组节点自由度间相互作用的 数值、矩阵描述(称为刚度或系数 矩阵)。单元有线、面或实体以及二 维或三维的单元等种类。
载荷
有限元模型由一些简单形状的单元组成,单 元之间通过节点连接,并承受一定载荷。
1.6 节点和单元 (续)
信息是通过单元之间的公共节点传递的。
. . 2 nodes ...
. . . 1 node
1.1 有限元分析 (FEA)
有限元分析 是利用数学近似的方法对真实物理
系统(几何和载荷工况)进行模拟。它利用简 单而又相互作用的元素,即单元,用有限数量 的未知量去逼近无限未知量的真实系统。
1.2 有限单元法的基本思想
❖ 将连续的结构离散成有限个单元,并在每一单元中 设定有限个节点,将连续体看作只在节点处相连接 的一组单元的集合体。
I
J
O
N
三维实体结构单元
K UX, UY, UZ
P
M L
J
I
J
K J
O N
K J
三维梁单元 UX, UY, UZ, ROTX, ROTY, ROTZ
三维四边形壳单元 UX, UY, UZ, ROTX, ROTY, ROTZ
第6章有限元法绪论已排ppt课件
应变:
du q
εx
(LX) dX EA
应力:
σx
Eεx
q (LX) EA
16
实例 2 (1)结构离散
有限单元法求解直杆拉伸: 直接公式法
1、离散化
L1
1
L2
2
2、外载荷集中到结点上,即把阴 影部分的重量作用在结点i上
Li Li1
i-1 i i+1
n-1 n
图 2-2
L i
L i+1
i-1
i q (L + L ) i i+1 2
k1 11
EA cos2
l1
k1 21
EAcossin
l1
同理,节点2作用于单元1上的力,其大小与之相等,方
向相反,x和y方向的分量分别记为:
k1 31
EA cos2
l1
k1 41
EAcossin
l1
注:k
i
e j
表示第e个单元的第j个自由度产生单位位移,而其它
自由度上的位移为零时,第i个自由度上所受的力。常称其
1965年O.C.Zienkiewicz和Y.K.Cheung(张佑启)发现只 要能写成变分形式的所有场问题,都可以用与固体力学有限 元法的相同步骤求解。
1969年B.A.Szabo和G.C.Lee指出可以用加权余量法特别 是Galerkin法,导出标准的有限元过程来求解非结构问题。
23
有限单元法的发展
19
实例2 (3)整体分析与求解
假设线单元数为3个的情况,
L1=a L2=a L3=a
0 u0 1 u1
2 u2 3 u3
图 2-6
平衡方程有3个:
有限元课件ppt
整体刚度矩阵
将所有单元的刚度矩阵依照一定的方式组合起来,形成整体的刚度 矩阵。
载荷向量与束缚条件
载荷向量
表示作用在结构上的外力,包括集中力和散布力。
束缚条件
表示结构在某些结点上的位移受到限制,常见的束缚有固定束缚、 弹性束缚等。
载荷向量和束缚条件的引入
在建立整体刚度矩阵后,需要将载荷向量和束缚条件引入到整体刚 度矩阵中,形成完全的线性方程组。
并行计算
采取并行计算技术,提高计算效率。
算法改进
优化算法,提高计算精度和效率。
06 有限元分析软件 介绍
ANSYS
01
功能特点
ANSYS是一款功能强大的有限元分析软件,广泛应用于结构、流体、
电磁等多种工程领域。它提供了丰富的建模工具和求解器,能够处理复
杂的工程问题。
02
优点
ANSYS具有友好的用户界面和强大的前后处理功能,使得建模和网格
有限元法的应用领域
结构分析
有限元法在结构分析中应用最 为广泛,可以用于分析各种类 型的结构,如桥梁、建筑、机
械零件等。
热传导
有限元法可以用于求解温度场 的问题,如热传导、热对流和 热辐射等问题。
流体动力学
有限元法在流体动力学领域也 有广泛应用,可以用于求解流 体流动和流体传热等问题。
其他领域
除了上述领域外,有限元法还 广泛应用于电磁场、声场、化
学反应等领域。
02 有限元的数学基 础
线性代数基础
向量与矩阵
01
介绍向量的基本概念、向量的运算、矩阵的表示和运算规则等
。
线性方程组
02
论述线性方程组的解法,包括高斯消元法、LU分解等。
特征值与特征向量
将所有单元的刚度矩阵依照一定的方式组合起来,形成整体的刚度 矩阵。
载荷向量与束缚条件
载荷向量
表示作用在结构上的外力,包括集中力和散布力。
束缚条件
表示结构在某些结点上的位移受到限制,常见的束缚有固定束缚、 弹性束缚等。
载荷向量和束缚条件的引入
在建立整体刚度矩阵后,需要将载荷向量和束缚条件引入到整体刚 度矩阵中,形成完全的线性方程组。
并行计算
采取并行计算技术,提高计算效率。
算法改进
优化算法,提高计算精度和效率。
06 有限元分析软件 介绍
ANSYS
01
功能特点
ANSYS是一款功能强大的有限元分析软件,广泛应用于结构、流体、
电磁等多种工程领域。它提供了丰富的建模工具和求解器,能够处理复
杂的工程问题。
02
优点
ANSYS具有友好的用户界面和强大的前后处理功能,使得建模和网格
有限元法的应用领域
结构分析
有限元法在结构分析中应用最 为广泛,可以用于分析各种类 型的结构,如桥梁、建筑、机
械零件等。
热传导
有限元法可以用于求解温度场 的问题,如热传导、热对流和 热辐射等问题。
流体动力学
有限元法在流体动力学领域也 有广泛应用,可以用于求解流 体流动和流体传热等问题。
其他领域
除了上述领域外,有限元法还 广泛应用于电磁场、声场、化
学反应等领域。
02 有限元的数学基 础
线性代数基础
向量与矩阵
01
介绍向量的基本概念、向量的运算、矩阵的表示和运算规则等
。
线性方程组
02
论述线性方程组的解法,包括高斯消元法、LU分解等。
特征值与特征向量
有限元法PPT课件
重工业
Motorola– Drop Test Fujitsu-Computers Intel –Chip Integrity
电子
Baxter - Equipment J&J – Stents Medtronic - Pacemakers
医疗
Principia-spain Arup-U.K. T.Y. Lin - Bridge
有限元法
左图所示,为分析齿轮上一个齿内的应力分布,可分析图中所示的一个平面截面内位移分布.作为近似解,可以先求出图中各三角形顶点的位移.这里的 三角形就是单元,其顶点就是节点。
从物理角度理解, 可把一个连续的齿形截面单元之间在节点处以铰链相链接,由单元组合而成的结构近似代替原连续结构,在一定的约束条件下,在给定的载荷作用下,就可以求出各节点的位移,进而求出应力.
一.Abaqus公司简介
公司
’00 ’01 ’02 ’03 ’04 ‘05 ’06 ‘07
18%
18%
20%
SIMULIA公司(原ABAQUS公司)成立于1978年,全球超过600名员工,100% 专注于有限元分析领域。 全球28个办事处和9个代表处 业务迅速稳定增长,是当前有限元软件行业中唯一保持两位数增长率的公司。 2005年5月ABAQUS加入DS集团,将共同成为全球PLM的领导者
Where :
Displacement interpolation functions (位移插值函数)
13.3 Approximating Functions for Two-Dimensional Linear Triangular Elements (二维线性三角形单元的近似函数)
node (节点)
element(单元)
Motorola– Drop Test Fujitsu-Computers Intel –Chip Integrity
电子
Baxter - Equipment J&J – Stents Medtronic - Pacemakers
医疗
Principia-spain Arup-U.K. T.Y. Lin - Bridge
有限元法
左图所示,为分析齿轮上一个齿内的应力分布,可分析图中所示的一个平面截面内位移分布.作为近似解,可以先求出图中各三角形顶点的位移.这里的 三角形就是单元,其顶点就是节点。
从物理角度理解, 可把一个连续的齿形截面单元之间在节点处以铰链相链接,由单元组合而成的结构近似代替原连续结构,在一定的约束条件下,在给定的载荷作用下,就可以求出各节点的位移,进而求出应力.
一.Abaqus公司简介
公司
’00 ’01 ’02 ’03 ’04 ‘05 ’06 ‘07
18%
18%
20%
SIMULIA公司(原ABAQUS公司)成立于1978年,全球超过600名员工,100% 专注于有限元分析领域。 全球28个办事处和9个代表处 业务迅速稳定增长,是当前有限元软件行业中唯一保持两位数增长率的公司。 2005年5月ABAQUS加入DS集团,将共同成为全球PLM的领导者
Where :
Displacement interpolation functions (位移插值函数)
13.3 Approximating Functions for Two-Dimensional Linear Triangular Elements (二维线性三角形单元的近似函数)
node (节点)
element(单元)
界面内聚力模型及有限元法
有一向出现开裂失效,则整个裂纹面完全开裂,该处不 能再承载任何方向载荷。在内聚力模型中即为各向应力 的完全耦合关系。 相比较于其他类型的内聚力模型张力位移关系,指数
内聚力模型为具有耦合关系的内聚力法则,参数q,r对
于耦合关系产生作用。 在指数内聚力模型计算时,界面开裂过程中,断裂能 值连续变化,其同样能够表征着界面开裂的状态。
2
2 2 t t n n q 1 q exp 2 t
界面内聚力模型
内聚力区域代表了待扩展 的裂尖前沿的区域,其中内
聚力区域中裂尖的概念是一
种数值定义,而非实际材料 中的裂尖范畴。 内聚力区域中定义的“虚
裂纹尖端
内聚力区
=f ( )
拟裂纹”描述了一对虚拟面
之间的动态应力场。
图1 裂纹尖端的内聚力区
界面内聚力模型
内聚力模型的重要特征是张力-位移曲线的形状和内
聚力参数。 目前,应用较为广泛的内聚力准则,如图2所示。
t t
t
a)指数型
t
b)双线性 型
c)多项式型
d)梯形型
图2 不同形式的内聚力准则 a)指数 b)双线性 c)多项式 d)梯形区
界面内聚力模型
双线性张力位移法则
双线性张力位移法则是一种简单有效的内聚力法则,
被广泛应用于有限元软件中已实现内聚力模型计算。
t2 t n n q 1 q exp 2 t
在单向开裂过程中,总断裂能值等于该向的断裂能计
算值,通过考察单向开裂条件下的应力值或断裂能的值,
都可以判断内聚力模型的计算结果与状态。
内聚力模型为具有耦合关系的内聚力法则,参数q,r对
于耦合关系产生作用。 在指数内聚力模型计算时,界面开裂过程中,断裂能 值连续变化,其同样能够表征着界面开裂的状态。
2
2 2 t t n n q 1 q exp 2 t
界面内聚力模型
内聚力区域代表了待扩展 的裂尖前沿的区域,其中内
聚力区域中裂尖的概念是一
种数值定义,而非实际材料 中的裂尖范畴。 内聚力区域中定义的“虚
裂纹尖端
内聚力区
=f ( )
拟裂纹”描述了一对虚拟面
之间的动态应力场。
图1 裂纹尖端的内聚力区
界面内聚力模型
内聚力模型的重要特征是张力-位移曲线的形状和内
聚力参数。 目前,应用较为广泛的内聚力准则,如图2所示。
t t
t
a)指数型
t
b)双线性 型
c)多项式型
d)梯形型
图2 不同形式的内聚力准则 a)指数 b)双线性 c)多项式 d)梯形区
界面内聚力模型
双线性张力位移法则
双线性张力位移法则是一种简单有效的内聚力法则,
被广泛应用于有限元软件中已实现内聚力模型计算。
t2 t n n q 1 q exp 2 t
在单向开裂过程中,总断裂能值等于该向的断裂能计
算值,通过考察单向开裂条件下的应力值或断裂能的值,
都可以判断内聚力模型的计算结果与状态。
第二讲有限元法的理论基础(ppt)
有限元法的理论基础-变分原理
➢ 特点 1) 近似解对全域而言 2) 试探函数要求满足一定的边界条件,近似解
的精度与试探函数的选择有密切关系。 3) 待定系数不表示特定的物理意义。 4) 如果我们对问题了解比较清楚,能找到合适
的试函数,可以说事半功倍,但缺乏一般性。
有限元法的理论基础-变分原理
➢ 提示
1.1.1微分方程的等效积分形式
1.1微分方程的等效积分形式
1.1.1微分方程的等效积分形式
1.1微分方程的等效积分形式
1.1.1微分方程的等效积分形式
1.1微分方程的等效积分形式
1.1.1微分方程的等效积分形式
1.1微分方程的等效积分形式
1.1.1微分方程的等效积分形式
1.1微分方程的等效积分形式
作用:强迫余量在某种平均意义上等于零
1.2 加权余量法
1.2 加权余量法
3. 加权余量法的关键(两种函数的选择)
1)与等效积分形式不同:一个是精确解,而加权余量法得 到的为是近似解。
a.近似表达式为有限项。 b.对某些特定的权函数(非任意 ) 2)试函数:如能满足一定的域内条件或边界条件,使问题 简化,且有一定的精确度。 3)权函数:不同的权函数,涉及不同的计算格式。 例如:
1) 经典意义上的泛函变分理论只适应于线性自伴随 微分方程。
预备知识
三、均匀性假设 物体在各点处的弹性性质都相同。
四、自然状态假设 假设物体不受外力作用和温度的影响,物体便没 有应力和变形,即不考虑由于制造工艺引起的残 余应力和装配应力。
预备知识
弹性力学问题的矩阵表示
预备知识
一、基本物理量 位移: 应变: 应力:
预备知识
一、场方程 几何方程:
界面内聚力模型及有限元法
修正后的界面损伤指数内聚力模型,通过加入损伤因 子,能表征界面由于累积的损伤,界面承载能力的下降。
通过对指数模型的张力位移关系以及断裂能控制方程 加入损伤因子进行修正,得到了完整的界面损伤指数内 聚力模型。
界面内聚力模型
不同形式的内聚力模型共同特征: 裂纹尖端内聚力区域内应力在外载荷的作用下,最初
q 1
n
n
t
2
n
n
q
1
q
exp
t2
t2
对于修正后的界面损伤指数内聚力模型,界面在受载 荷作用开裂时,随着损伤因子的减小,其应力位移曲线 中,应力最大值减小,且更早出现应力的最大值,而界 面最终破坏时的界面开裂位移值亦减小。
界面内聚力模型
图7给出了 =0.4,0.8,1三种损伤因子条件下,界 面损伤内聚力模型的法向应力与法向断裂能变化。
界面内聚力模型
指数内聚力模型在开裂过程中的断裂能控制方程为:
n
n
exp
n
n
1
r
n
n
1 q r 1
q
rq r 1
n
n
exp
t2
t2
n 、t 分别为界面上的法向与切向位移值,n 为纯法 向开裂状态下界面完全开裂时的界面断裂能, n、 t 为 法向与切向界面开裂特征位移,即应力最大值点对应的
a) 法向应力
b) 法向断裂能
图7 界面损伤内聚力模型的法向应力与法向断裂能变化
界面内聚力模型
由以图7(a)可以观察到,随着损伤因子减小,模型的 应力峰值减小,其对应的位移值减小,在开裂扩展阶段, 开裂破坏的最终位移值减小。此外图7(b)所示法向断裂 能变化,损伤因子减小使得开裂过程的临界最大断裂能 值减小。
通过对指数模型的张力位移关系以及断裂能控制方程 加入损伤因子进行修正,得到了完整的界面损伤指数内 聚力模型。
界面内聚力模型
不同形式的内聚力模型共同特征: 裂纹尖端内聚力区域内应力在外载荷的作用下,最初
q 1
n
n
t
2
n
n
q
1
q
exp
t2
t2
对于修正后的界面损伤指数内聚力模型,界面在受载 荷作用开裂时,随着损伤因子的减小,其应力位移曲线 中,应力最大值减小,且更早出现应力的最大值,而界 面最终破坏时的界面开裂位移值亦减小。
界面内聚力模型
图7给出了 =0.4,0.8,1三种损伤因子条件下,界 面损伤内聚力模型的法向应力与法向断裂能变化。
界面内聚力模型
指数内聚力模型在开裂过程中的断裂能控制方程为:
n
n
exp
n
n
1
r
n
n
1 q r 1
q
rq r 1
n
n
exp
t2
t2
n 、t 分别为界面上的法向与切向位移值,n 为纯法 向开裂状态下界面完全开裂时的界面断裂能, n、 t 为 法向与切向界面开裂特征位移,即应力最大值点对应的
a) 法向应力
b) 法向断裂能
图7 界面损伤内聚力模型的法向应力与法向断裂能变化
界面内聚力模型
由以图7(a)可以观察到,随着损伤因子减小,模型的 应力峰值减小,其对应的位移值减小,在开裂扩展阶段, 开裂破坏的最终位移值减小。此外图7(b)所示法向断裂 能变化,损伤因子减小使得开裂过程的临界最大断裂能 值减小。
界面内聚力模型及有限元法
界面内聚力模型及内聚力 有限元法
xxx xxxx.xx.xx
a
1
界面内聚力模型
随着复合材料结构种类的多样性发展,传统断裂 力学已不能满足韧性开裂以及复合材料界面开裂等研究 需求。基于弹塑性断裂力学的内聚力模型(cohesive zone model, CZM) 已被应用于计算复合材料界面损伤和断裂 过程。
max max分别为内聚力界面上法向与切向强度,则指数 内聚力模型中的参数之间的关系为:
n emaxn
a t
e 2
max
t
13
界面内聚力模型
复合开裂时应力耦合关系分析
实际材料或结构开裂过程中,在复合开裂条件下,若 有一向出现开裂失效,则整个裂纹面完全开裂,该处不 能再承载任何方向载荷。在内聚力模型中即为各向应力 的完全耦合关系。
指数内聚力模型具有连续性的张力位移关系,同时其 断裂能的值也为连续变化。
与双线性以及梯形法则相比,指数法则的张力位移关 系是非线性连续变化的,更符合实际界面开裂的状态。
a
11
界面内聚力模型
指数内聚力模型在开裂过程中的断裂能控制方程为:
n n e x p n n 1 r n n 1 r q 1 q r r q 1 n n e x p t t 2 2
为切向的应力值, m a x 、 m a x
分别为法向及切向的最大
n
m ax
t
0 t
f t
应力值,对应的裂纹界面
0 n
f n
张开位移值分别为
0 n
0 t
。
a)法向张力位移关系 b)切向张力位移关系
图线斜率为内聚力刚度。 图3 双线性张力位移关系
a
6
界面内聚力模型
xxx xxxx.xx.xx
a
1
界面内聚力模型
随着复合材料结构种类的多样性发展,传统断裂 力学已不能满足韧性开裂以及复合材料界面开裂等研究 需求。基于弹塑性断裂力学的内聚力模型(cohesive zone model, CZM) 已被应用于计算复合材料界面损伤和断裂 过程。
max max分别为内聚力界面上法向与切向强度,则指数 内聚力模型中的参数之间的关系为:
n emaxn
a t
e 2
max
t
13
界面内聚力模型
复合开裂时应力耦合关系分析
实际材料或结构开裂过程中,在复合开裂条件下,若 有一向出现开裂失效,则整个裂纹面完全开裂,该处不 能再承载任何方向载荷。在内聚力模型中即为各向应力 的完全耦合关系。
指数内聚力模型具有连续性的张力位移关系,同时其 断裂能的值也为连续变化。
与双线性以及梯形法则相比,指数法则的张力位移关 系是非线性连续变化的,更符合实际界面开裂的状态。
a
11
界面内聚力模型
指数内聚力模型在开裂过程中的断裂能控制方程为:
n n e x p n n 1 r n n 1 r q 1 q r r q 1 n n e x p t t 2 2
为切向的应力值, m a x 、 m a x
分别为法向及切向的最大
n
m ax
t
0 t
f t
应力值,对应的裂纹界面
0 n
f n
张开位移值分别为
0 n
0 t
。
a)法向张力位移关系 b)切向张力位移关系
图线斜率为内聚力刚度。 图3 双线性张力位移关系
a
6
界面内聚力模型
有限元法介绍 PPT
与CAD软件的无缝集成
当今有限元分析系统的另一个特点是与通用CAD 软件的集成使用, 即:在用CAD软件完成部件和零件 的造型设计后,自动生成有限元网格并进行计算,如 果分析的结果不符合设计要求则重新进行造型和计算, 直到满意为止,从而极大地提高了设计水平和效率。 当今所有的商业化有限元系统商都开发了和著名的 CAD软件( 例如Pro/ENGINEER 、Unigraphics 、 SolidEdge 、SolidWorks 、IDEAS 、Bentley 和 AutoCAD 等) 的接口。
3、增强可视化的前置建模和后置数据处理功 能
➢随着数值分析方法的逐步完善,尤其是计算机 运算速度的飞速发展,整个计算系统用于求解 运算的时间越来越少,而数据准备和运算结果 的表现问题却日益突出。
➢在现在的工程工作站上,求解一个包含10万个 方程的有限元模型只需要用几十分钟。工程师 在分析计算一个工程问题时有80%以上的精力 都花在数据准备和结果分析上。
取决于材料性质、形状、尺寸
节点位移
ui
v
i
e
u v
j j
u
m
v m
节点力
U i
V
i
F
e
U
V
j j
U
m
V m
FeKee
– 选择位移模式:在反映力和位移的关系式中,依据那一 个量是未知量,可建立不同的模型。
➢ 位移法:选择节点位移作为基本未知F量e称为K位e移法e ;
➢ 力法:选择节点力作为基本未知量时称为力法; ➢ 混合法:取一部分节点力和一部分节点位移作为基
本未知量时称为混合法。 位移法易于实现计算自动化,所以,在有限单元法 中位移法应用范围最广。
界面内聚力模型及有限元法
为切向的应力值, m a x 、 m a x
分别为法向及切向的最大
n
m ax
t
0 t
f t
应力值,对应的裂纹界面
0 n
f n
张开位移值分别为
0 n
0 t
。
a)法向张力位移关系 b)切向张力位移关系
图线斜率为内聚力刚度。 图3 双线性张力位移关系
A
6
界面内聚力模型
在达到其最大值后应力开始减小至零时裂纹开裂完成,
面损伤内聚力模型的法向应力与法向断裂能变化。
a) 法向应力
b) 法向断裂能
图7 界面损伤内聚力模型的法向应力与法向断裂能变化
A
23
界面内聚力模型
由以图7(a)可以观察到,随着损伤因子减小,模型的 应力峰值减小,其对应的位移值减小,在开裂扩展阶段, 开裂破坏的最终位移值减小。此外图7(b)所示法向断裂 能变化,损伤因子减小使得开裂过程的临界最大断裂能 值减小。
n 、 t 分别为界面上的法向与切向位移值, n 为纯法
向开裂状态下界面完全开裂时的界面断裂能, n 、 t 为 法向与切向界面开裂特征位移,即应力最大值点对应的
位移值。+
参数
q ,r
分别为:
q
t n
r
* n
n
t 为纯切向开裂状态下界面完全开裂时的界面断裂能。
* n
为在法向应力为零时,切向完全开裂时的法向位移值。
A
27
内聚力有限元法
ABAQUS中的内聚区采用一层厚度接近零的内聚力 单元表示,内聚力单元可以灵活地嵌入到传统单元之间, 单元的上下表面与相邻单元连接,外力引起的材料损伤 限制在内聚力单元中,其它单元不受影响,如图8所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
界面内聚力模型
指数内聚力模型在开裂过程中的断裂能控制方程为:
n
n
exp
n
n
1
r
n
n
1 q r 1
q
rq r 1
n
n
exp
t2
t2
n 、t 分别为界面上的法向与切向位移值,n 为纯法 向开裂状态下界面完全开裂时的界面断裂能, n、 t 为 法向与切向界面开裂特征位移,即应力最大值点对应的过程中,在复合开裂条件下,若 有一向出现开裂失效,则整个裂纹面完全开裂,该处不 能再承载任何方向载荷。在内聚力模型中即为各向应力 的完全耦合关系。
相比较于其他类型的内聚力模型张力位移关系,指数 内聚力模型为具有耦合关系的内聚力法则,参数q,r对 于耦合关系产生作用。
断裂能的控制方程
27 4
T0
0
1
2
n 0
2
1
4 3
n 0
1 2
n 0
2
1 2
t 0
2
1
4 3
t 0
1 2
n 0
2
为法向与切向刚度之间的一个比例系数,T0 为纯法
向时的最大内聚力,0 为最大张开量。 9
界面内聚力模型
由
T
可得
Tn
exp
2t
2 t
1 q r 1
1
exp
2t
t2
r
n
n
2
Tt
- n n
2
n t
t
t
q
r q r 1
n
n
exp
n
n
exp
2t
2 t
max max分别为内聚力界面上法向与切向强度,则指数 内聚力模型中的参数之间的关系为:
n e max n
t
e 2
max
t
13
界面内聚力模型
。各项的断裂能临
界值 nc
,tc 。计算公式为:
nc
1 2
max
f n
tc
1 2
max
t
f
双线性内聚力模型简单有效,能较好的在有限元等方法 中计算而一般不会出现计算困难。
7
界面内聚力模型
梯形张力位移法则(逐段线性张力位移法则)
控制方程为
f
max 1 max
max( f -2
- )
1 1 2 2 f
位移值。+
参数
q,r 分别为:
q
t n
r
* n
n
t 为纯切向开裂状态下界面完全开裂时的界面断裂能。
*n 为在法向应力为零时,切向完全开裂时的法向位移值。 12
界面内聚力模型
界面上的各向应力为: T
将断裂能控制方程对于各向位移值进行偏导得到各向
应力与位移的关系式为:
Tn
-
n n
exp
n
n
n
n
界面内聚力模型
双线性张力位移法则 双线性张力位移法则是一种简单有效的内聚力法则,
被广泛应用于有限元软件中已实现内聚力模型计算。 控制方程为
max
0 n
max
f n
f n
0 n
(
0)
n
(
0)
n
max
0 t
max
tf tf
tf
(
0)
t
(
0)
t
5
界面内聚力模型
其中 为法向的应力值, max
为切向的应力值, max 、 max
10
界面内聚力模型
指数内聚力模型
指数内聚力模型被广泛的应用于计算复合材料界面开 裂、脆性材料中的动态裂纹扩展、韧性基体上薄膜涂层 之间的开裂裂纹萌生等过程。
指数内聚力模型具有连续性的张力位移关系,同时其 断裂能的值也为连续变化。
与双线性以及梯形法则相比,指数法则的张力位移关 系是非线性连续变化的,更符合实际界面开裂的状态。
分别为法向及切向的最大
n
max
t
0 t
tf
应力值,对应的裂纹界面
0 n
f n
张开位移值分别为
0 n
0 t
。
a)法向张力位移关系 b)切向张力位移关系
图线斜率为内聚力刚度。 图3 双线性张力位移关系
6
界面内聚力模型
在达到其最大值后应力开始减小至零时裂纹开裂完成,
其对应的位移值为最终开裂位移值
f n
内聚力实际上是物质原子或分子之间的相互作用力。 在内聚力区域内,应力是开裂位移的函数,即张力-开 裂位移(Traction-separation)关系,也称为内聚力准则。
2
界面内聚力模型
内聚力区域代表了待扩展 的裂尖前沿的区域,其中内 聚力区域中裂尖的概念是一 种数值定义,而非实际材料 裂纹尖端 中的裂尖范畴。
f
0
临界的断裂能值为: c
1 2
m
( ax
f
2
1)
梯形张力位移关系中,其模型 的参数除了最大应力值以及临界 断裂能之外,还必须给出 1 2 的值。
max
c
1
2 f
图4 梯形张力位移 8
界面内聚力模型
多项式张力位移法则
多项式张力位移法则的内聚力模型由Needleman于 1992年提出,采用了高次多项式的函数。
界面内聚力模型及内聚力 有限元法
xxx xxxx.xx.xx
1
界面内聚力模型
随着复合材料结构种类的多样性发展,传统断裂力学 已不能满足韧性开裂以及复合材料界面开裂等研究需求。 基于弹塑性断裂力学的内聚力模型(cohesive zone model, CZM) 已被应用于计算复合材料界面损伤和断裂过程。
27 4 T0
n 0
2
1
2
n 0
n 0
2
n 0
2
n 0
1
Tr
27 4
T0
t 0
2
1
t 0
n 0
2
与双线性及梯形张力位移关系不同,多项式张力位移
关系为连续性的方程,首先提出断裂能的控制方程,对
其进行偏导求得张力位移关系的控制方程。
15
界面内聚力模型
复合开裂条件下,在 q 1 时,不论两向同时开裂速 度的差异,两向的张力位移关系完全耦合。计算开裂过 程的总断裂能以及法向与切向的单向断裂能,其随着开 裂位移变化如图5所示。
在指数内聚力模型计算时,界面开裂过程中,断裂能 值连续变化,其同样能够表征着界面开裂的状态。
14
界面内聚力模型
指数内聚力模型法向与切向的单向断裂能计算式分别
为
n
n
n
exp
n
n
1
r
n
n
1 q r 1
q
rq r 1
n
n
t
n
n
q
1
q
exp
2 t
2 t
在单向开裂过程中,总断裂能值等于该向的断裂能计 算值,通过考察单向开裂条件下的应力值或断裂能的值, 都可以判断内聚力模型的计算结果与状态。
内聚力区
=f ( )
内聚力区域中定义的“虚 拟裂纹”描述了一对虚拟面 之间的动态应力场。
图1 裂纹尖端的内聚力区
3
界面内聚力模型
内聚力模型的重要特征是张力-位移曲线的形状和内 聚力参数。
目前,应用较为广泛的内聚力准则,如图2所示。
t
t
a)指数型
b)双线性
t
t型
c)多项式型
d)梯形型
图2 不同形式的内聚力准则 a)指数 b)双线性 c)多项式 d)梯形区 4
界面内聚力模型
指数内聚力模型在开裂过程中的断裂能控制方程为:
n
n
exp
n
n
1
r
n
n
1 q r 1
q
rq r 1
n
n
exp
t2
t2
n 、t 分别为界面上的法向与切向位移值,n 为纯法 向开裂状态下界面完全开裂时的界面断裂能, n、 t 为 法向与切向界面开裂特征位移,即应力最大值点对应的过程中,在复合开裂条件下,若 有一向出现开裂失效,则整个裂纹面完全开裂,该处不 能再承载任何方向载荷。在内聚力模型中即为各向应力 的完全耦合关系。
相比较于其他类型的内聚力模型张力位移关系,指数 内聚力模型为具有耦合关系的内聚力法则,参数q,r对 于耦合关系产生作用。
断裂能的控制方程
27 4
T0
0
1
2
n 0
2
1
4 3
n 0
1 2
n 0
2
1 2
t 0
2
1
4 3
t 0
1 2
n 0
2
为法向与切向刚度之间的一个比例系数,T0 为纯法
向时的最大内聚力,0 为最大张开量。 9
界面内聚力模型
由
T
可得
Tn
exp
2t
2 t
1 q r 1
1
exp
2t
t2
r
n
n
2
Tt
- n n
2
n t
t
t
q
r q r 1
n
n
exp
n
n
exp
2t
2 t
max max分别为内聚力界面上法向与切向强度,则指数 内聚力模型中的参数之间的关系为:
n e max n
t
e 2
max
t
13
界面内聚力模型
。各项的断裂能临
界值 nc
,tc 。计算公式为:
nc
1 2
max
f n
tc
1 2
max
t
f
双线性内聚力模型简单有效,能较好的在有限元等方法 中计算而一般不会出现计算困难。
7
界面内聚力模型
梯形张力位移法则(逐段线性张力位移法则)
控制方程为
f
max 1 max
max( f -2
- )
1 1 2 2 f
位移值。+
参数
q,r 分别为:
q
t n
r
* n
n
t 为纯切向开裂状态下界面完全开裂时的界面断裂能。
*n 为在法向应力为零时,切向完全开裂时的法向位移值。 12
界面内聚力模型
界面上的各向应力为: T
将断裂能控制方程对于各向位移值进行偏导得到各向
应力与位移的关系式为:
Tn
-
n n
exp
n
n
n
n
界面内聚力模型
双线性张力位移法则 双线性张力位移法则是一种简单有效的内聚力法则,
被广泛应用于有限元软件中已实现内聚力模型计算。 控制方程为
max
0 n
max
f n
f n
0 n
(
0)
n
(
0)
n
max
0 t
max
tf tf
tf
(
0)
t
(
0)
t
5
界面内聚力模型
其中 为法向的应力值, max
为切向的应力值, max 、 max
10
界面内聚力模型
指数内聚力模型
指数内聚力模型被广泛的应用于计算复合材料界面开 裂、脆性材料中的动态裂纹扩展、韧性基体上薄膜涂层 之间的开裂裂纹萌生等过程。
指数内聚力模型具有连续性的张力位移关系,同时其 断裂能的值也为连续变化。
与双线性以及梯形法则相比,指数法则的张力位移关 系是非线性连续变化的,更符合实际界面开裂的状态。
分别为法向及切向的最大
n
max
t
0 t
tf
应力值,对应的裂纹界面
0 n
f n
张开位移值分别为
0 n
0 t
。
a)法向张力位移关系 b)切向张力位移关系
图线斜率为内聚力刚度。 图3 双线性张力位移关系
6
界面内聚力模型
在达到其最大值后应力开始减小至零时裂纹开裂完成,
其对应的位移值为最终开裂位移值
f n
内聚力实际上是物质原子或分子之间的相互作用力。 在内聚力区域内,应力是开裂位移的函数,即张力-开 裂位移(Traction-separation)关系,也称为内聚力准则。
2
界面内聚力模型
内聚力区域代表了待扩展 的裂尖前沿的区域,其中内 聚力区域中裂尖的概念是一 种数值定义,而非实际材料 裂纹尖端 中的裂尖范畴。
f
0
临界的断裂能值为: c
1 2
m
( ax
f
2
1)
梯形张力位移关系中,其模型 的参数除了最大应力值以及临界 断裂能之外,还必须给出 1 2 的值。
max
c
1
2 f
图4 梯形张力位移 8
界面内聚力模型
多项式张力位移法则
多项式张力位移法则的内聚力模型由Needleman于 1992年提出,采用了高次多项式的函数。
界面内聚力模型及内聚力 有限元法
xxx xxxx.xx.xx
1
界面内聚力模型
随着复合材料结构种类的多样性发展,传统断裂力学 已不能满足韧性开裂以及复合材料界面开裂等研究需求。 基于弹塑性断裂力学的内聚力模型(cohesive zone model, CZM) 已被应用于计算复合材料界面损伤和断裂过程。
27 4 T0
n 0
2
1
2
n 0
n 0
2
n 0
2
n 0
1
Tr
27 4
T0
t 0
2
1
t 0
n 0
2
与双线性及梯形张力位移关系不同,多项式张力位移
关系为连续性的方程,首先提出断裂能的控制方程,对
其进行偏导求得张力位移关系的控制方程。
15
界面内聚力模型
复合开裂条件下,在 q 1 时,不论两向同时开裂速 度的差异,两向的张力位移关系完全耦合。计算开裂过 程的总断裂能以及法向与切向的单向断裂能,其随着开 裂位移变化如图5所示。
在指数内聚力模型计算时,界面开裂过程中,断裂能 值连续变化,其同样能够表征着界面开裂的状态。
14
界面内聚力模型
指数内聚力模型法向与切向的单向断裂能计算式分别
为
n
n
n
exp
n
n
1
r
n
n
1 q r 1
q
rq r 1
n
n
t
n
n
q
1
q
exp
2 t
2 t
在单向开裂过程中,总断裂能值等于该向的断裂能计 算值,通过考察单向开裂条件下的应力值或断裂能的值, 都可以判断内聚力模型的计算结果与状态。
内聚力区
=f ( )
内聚力区域中定义的“虚 拟裂纹”描述了一对虚拟面 之间的动态应力场。
图1 裂纹尖端的内聚力区
3
界面内聚力模型
内聚力模型的重要特征是张力-位移曲线的形状和内 聚力参数。
目前,应用较为广泛的内聚力准则,如图2所示。
t
t
a)指数型
b)双线性
t
t型
c)多项式型
d)梯形型
图2 不同形式的内聚力准则 a)指数 b)双线性 c)多项式 d)梯形区 4