第3章流体力学连续性方程微分形式

合集下载

流体力学三大方程的推导

流体力学三大方程的推导

微分形式的连续性方程连续方程是流体力学的基本方程之一,流体运动的连续方程,反映流体运动和流体质量分布的关系,它是在质量守恒定律在流体力学中的应用。

重点讨论不同表现形式的流体连续方程。

用一个微六面体元控制体建立微分形式的连续性方程。

设在流场中取一固定不动的微平行六面体(控制体),在直角坐标系oxyz 中,六面体的边长取为dx ,dy ,dz 。

先看x 轴方向的流动,流体从ABCD 面流入六面体,从EFGH 面流出。

在x 轴方向流出与流入质量之差()()[]x x x x u u u dx dydzdt u dydzdt dxdydzdt x xρρρρ∂∂+-=∂∂用同样的方法,可得在y 轴方向和z 轴方向的流出与流入质量之差分别为()y u dxdydzdt y ρ∂∂()z u dxdydzdt z ρ∂∂这样,在dt 时间内通过六面体的全部六个面净流出的质量为:()()()[]y x z u u udxdydzdt x x x ρρρ∂∂∂++∂∂∂在dt 的时间内,六面体内的质量减少了 , 根据质量守恒定律,净流出六面体的质量必等于六面体内所减少的质量()dxdydzdt t ρ∂-∂()()()[]y x z u u u dxdydzdt dxdydzdt x y z tρρρρ∂∂∂∂++=-∂∂∂∂()()()0y x z u u u x y z tρρρρ∂∂∂∂+++=∂∂∂∂这就是直角坐标系中流体运动的微分形式的连续性方程。

这就是直角坐标系中流体运动的微分形式的连续性方程。

代表单位时间内,单位体积的质量变化代表单位时间内,单位体积内质量的净流出利用散度公式:得到利用矢量场基本运算公式和随体导数公式:得到 )()()()div(z y x u z u y u x u ρρρρ∂∂+∂∂+∂∂= 0)div(=+∂∂u tρρ()()()0y x z u u u x y z tρρρρ∂∂∂∂+++=∂∂∂∂在连续方程中 div()div u u u ρρρ=+⋅∇ρρρ∇⋅+∂∂=u tDt D 0div =+u Dt D ρρdiv 0u u tρρρ∂++⋅∇=∂讨论*表明对不可压流体,体积在随体运动中保持不变。

工程流体力学3.3流体运动的连续性方程-录像

工程流体力学3.3流体运动的连续性方程-录像

故此流动不连续。不满足连续性方程的流动是不存在的
第三节 流体流动的连续性方程
【例3-5】 有一不可压缩流体平面流动,其速度分布 规律为u=x2siny,v=2xcosy,试分析该流动是否连续。
【解】 根据式(3-29)
所以
u 2x sin y v 2x sin y
x
y
u v 2x sin y (2x sin y) 0 x y
V2
V1

d1 d2
2

2 0.5 2 1

0.5(m/s)
第三节 流体流动的连续性方程
图 3-14 输水管道
u v w 0
t x y z
第三节 流体流动的连续性方程
可压缩流体非定常三维流动的连续性方程
u v w 0
t x y z

0 t
可压缩流体定常三维流动的连续性方程
u v w 0
第三节 流体流动的连续性方程
知识点(一)
直角坐标系下连续性微元 方程式
第三节 流体流动的连续性方程
流体连续地充满所占据的空间,当流体流动时在其内部不 形成空隙,这就是流体运动的连续性条件。
质量守恒定律(conservation of mass) : 连续性方程
若在某一定时间内,流出的流体质量和流入的流体质量 不相等时,则这封闭曲面内一定会有流体密度的变化,以 便使流体仍然充满整个封闭曲面内的空间;
如果流体是不可压缩的,则流出的流体质量必然等于流 入的流体质量。 在管路和明渠等流体力学计算中得到极为广泛的应用。
第三节 流体流动的连续性方程
一、连续性微分方程推导
图 3-12 流场中的微元平行六面体

理解流体力学中的连续性方程

理解流体力学中的连续性方程

理解流体力学中的连续性方程流体力学是研究流体静力学和流体动力学的学科,涵盖了许多重要的基本方程。

其中,连续性方程是流体力学中的基础之一,用于描述流体在宏观尺度上的连续性。

理解连续性方程对于研究流体运动和分析流体现象具有重要意义。

本文将介绍连续性方程的定义、推导与应用,并探讨其中的物理意义。

一、连续性方程的定义与推导连续性方程描述了流体运动时,质量守恒的性质。

在宏观尺度上,流体的质量保持不变,由此可以得到连续性方程的数学表达式。

假设流体流动方向为坐标轴方向,流体通过某一截面的流量为Q,流动截面面积为A,则单位时间内通过截面的质量为Δm。

根据质量守恒原理,Δm应保持不变。

考虑时间间隔Δt内,流体运动导致流量Q发生变化。

根据定义,Δt时刻通过截面的质量为Δm1,Δt+Δt时刻通过截面的质量为Δm2。

根据质量守恒原理,Δm1+Δm2应等于Δm。

Δm1+Δm2 = ρ1QΔt + ρ2QΔt (1)其中,ρ1和ρ2分别为Δt时刻和Δt+Δt时刻的流体密度。

将流体密度表示为单位体积的质量,即ρ = m/V。

在Δt时间间隔内,流体的体积可以表示为:Δt时刻的体积为V1 = QΔt (2)Δt+Δt时刻的体积为V2 = QΔt + AΔx (3)其中,Δx为流体运动方向上的位移。

将公式(2)和(3)代入公式(1),得到:ρ1QΔt + ρ2QΔt = ρ1V1 + ρ2V2 (4)根据密度的定义,可以将公式(4)进一步推导为:ρ1Q + ρ2Q = ρ1Q + ρ2(Q + AΔx) (5)化简后可简化为:d(ρQ)/dt + A(ρv) = 0 (6)其中,v为流体的流速。

以上就是连续性方程的定义与推导过程。

连续性方程的表达形式可以用偏微分方程来表示,常被称为连续性方程的微分形式。

二、连续性方程的物理意义连续性方程描述了流体在运动过程中的连续性。

通过分析连续性方程,我们可以进一步理解其中的物理意义。

在连续性方程中,d(ρQ)/dt表示单位时间内流体质量的变化率,A(ρv)表示单位时间内流体通过截面边界的质量变化率。

流体力学中的三大基本方程

流体力学中的三大基本方程

a 流体质点加速度 在三个坐标轴上的分量表示成:
ax
dx
dt
x
t
x
x
x
y
x
y
z
x
z
ay
d y
dt
y
t
x
y
x
y
y
y
z
y
z
az
dz
dt
z
t
x
z
x
y
z
y
z
z
z
⑷代入牛顿第二定律求得运动方程: 得x方向上的运动微分方程:
dx
dt
dxdydz
p x
dxdydz
fxdxdydz
单位体积流体的运动微分方程:
2 :单位重量流体所具有的动能;
2g
理解:质量为m微团以v 运动,具有mv2/2动能,若用 重量mg除之得v2/2g
三者之和为单位重量流体具有的机械能。
物理意义: 理想、不可压缩流体在重力场中作稳定 流动时,沿流线or无旋流场中流束运动 时,单位重量流体的位能,压力能和动 能之和是常数,即机械能是守恒的,且 它们之间可以相互转换 。
②物理意义:揭示了沿某一根流线运动着 的流体质点速度,位移和压强、密度四者 之间的微分关系。
3.1 伯努利方程积分形式
1.沿流线的积分方程:
gdz 1 dp d 0
2
2
gz
dP
C
设: const
2 gz p C
2
Or
z p 2 C
r 2g
——理想流体微元流束的伯努利方程。
①适用条件:理想流体、不可压缩性流体、稳定 流动、质量力只有重力,且沿某一根流线; ②任选一根流线上的两点:

流体力学-第三讲,流体力学基本方程组

流体力学-第三讲,流体力学基本方程组
23
--------式(5) 为积分形式的动量方程
dui d
pn
dt
n
fid n j jids
(6)
s
ji为应力张量,是对称张量
ji — —i为作用面方向,j 为面力方向
2021/7/22
13
d ui dt
d
f i d
s
n j
jids
(6)
pn n
为应力张量
ji — —i为作用面方向,j 为面力方向
s
pn
则:作用在τ和s上的总质量力和面积力为:
F
fd
(1)
pnds
(2)
s
体积τ内流体的动量为:
ud
(3)
2021/7/22
12
于是动量定理可以写成:
d dt
ud
f d
s
pnds
(4)
把雷诺第二输运方程
d dt
F d
dFd
dt
应用于式(4)
du d
dt
f d
s
pnds
(5)
也可表达为
第三章 流体力学基本方程组
➢ 雷诺输运方程 ➢ 连续性方程 ➢ 运动方程(动量方程) ➢ 能量方程
2021/7/22
1
第一节 雷诺输运方程
一、 随体导数
dF dt
F t
ui
F xi
F t
u
F
以欧拉空间坐标所表示的流体质 点的运动属性对时间的全导数.
二、 雅可比行列式的时间导数 :
dJ ui J uJ
ui
0
(3b)
7
d ivu
u
u

工程流体力学第三章

工程流体力学第三章

物理量
比起流体质点本身, 比起流体质点本身,工程上我们更关心某一 时刻流体质点上所携带的一些特征参量,比如: 时刻流体质点上所携带的一些特征参量,比如: 速度、压强、温度、电流等。 速度、压强、温度、电流等。 我们把这些流体具有的特征参量统称为物理 我们把这些流体具有的特征参量统称为物理 流体具有的特征参量 流动参数。 也成为流动参数 量,也成为流动参数。 流体的流动是由流体具有的物理量来表征的, 流体的流动是由流体具有的物理量来表征的, 因此,描述流体的运动也就是表达流动参数在不 因此,描述流体的运动也就是表达流动参数在不 同空间位置上随时间的变化规律。 同空间位置上随时间的变化规律。
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t
L M’ M
V (M , t ) V ( M ' , t + ∆t )
3.1.3随体导数 随体导数
这里用 D 表示这种导数不同于牛顿定律 Dt 对速度的简单导数
L M’ M
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t
速度的变化有两方面的原因:
一方面的原因, 质点由M 点运动至M 点时,
'
时间过去了∆t,由于场的时间非定常性引 起速度的变化
另一方面, 质点由M 点运动至M '点时, 位置 发生了变化,由于场的空间不均匀性引起 速度的变化
3.1.3随体导数 随体导数
按照时间和空间引起速度变化,把极限分为两部分
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t

流体力学3-3连续性方程

流体力学3-3连续性方程

dxdydz
M x
同理可得:
( ux ) x ( u y ) y ( uz ) z
dxdydz dxdydz dxdydz
M y M z
质量守恒定律:单位时间内流出与流入六面体的流体质量差之总
和应 等于六面体内因密度变化而减少的质量
M x M y M z [
t
( ux ) x

( u y ) y

( uz ) z
]dxdydz dxdydz
t
流体的连续性微分方程的一般形式:

( u x ) x

( u y ) y

( u z ) z
0
物理意义:作为水力学三大方程之一,体现了运动与空 间的关系 适用范围:理想流体或实际流体;恒定流或非恒定流; 可压缩流体或不可压 缩流体。
第三节 连续性方程
一、连续性微分方程
在流场内取一微元六面体如图,边长为dx,dy,dz,中心点O’流速为 ( ux,uy,uz ) D' z C' 以x轴方向为例: 左表面流速 右表面流速
ux
1 u x 2 x
1 u x 2 x
u x dx x 2
A' M A o
dz o’ uy D dx
uz ux
B'
ux
N C
u x dx x 2
uM Байду номын сангаас x
dx
uN ux
dx
y
dy B
x
∴ 单位时间内x方向流出流进的质量流量差:

( ux ) x
( ux ) 1 ( ux ) M x M 右 M 左 [ u x 1 dx ] dydz [ u x 2 x 2 x dx]dydz

2-流体力学-第三章-流体动力学(1)-三大方程-黄国钦

2-流体力学-第三章-流体动力学(1)-三大方程-黄国钦

d ∂ ∂ ∂ ∂ = +u +v + w dt ∂t ∂x ∂y ∂z
质点导数亦称随体导数亦称物质导数等。
11 12
2
例题 例题:
r r r r V = x 2 yi − 3 yj + 2 z 2 k
3.2 几个概念 3.2.1 流动的分类——定常流和非定常流
试求点 (1, 2 , 3) 处流体加速度的三个分量 解:

欧拉法是流场法,
它定义流体质点的速 度矢量场为:
选定某一空 选定某一空 间固定点 间固定点
记录流动空间 某固定位置 处,流体运动 要素(速度、 加速度)随时 间变化规律
r r u =u (x,y,z,t)
综合流场中 许多空间点 随时间的变 化情况
(( x ,, y ,, zz )) 是 x y 是空 空间 间点 点( (场 场 r u 点)。流速 是在 点)。流速 是在 tt 时 时 刻占据 (( x ,, y ,, zz )) 的那个流 刻占据 x y 的那个流
工程流体力学 Engineering Fluid Mechanics
制造工程系:黄国钦
1
2
3.1.2 描述流体运动的两种方法及质点导数概念
3.1.2 描述流体运动的两种方法 3.1.2.1 拉格朗日法
基本思想:以研究个别流体质点的运动为基础,跟踪每个流体质点的运动全 基本思想: 过程,记录它们在运动过程中的各物理量及其变化规律。即通过描述每一质 点的运动了解流体运动。(随体法或跟踪法)
迹线
M(-1,-1)
o
x
流线
t = 0 时过 M(-1,-1)点的流线和迹线示意图
19
dx dy dz = = vx v y vz

流体力学中的三大基本方程

流体力学中的三大基本方程

dx
dt
p x
fx
单位质量流体的运动微分方程:
dx
dt
1
p x
fx
16
同理可得y,z方向上的:
dx
dt
x
t
x
x
x
y
x
y
z
x
z
1
p x
fx
dy
dt
y
t
x
y
x
y
y
y
z
y
z
1
p y
fy
dz
dt
z
t
x
z
x
y
z
y
z
z
z
1
p z
fz
17
向量形式:
dr
r f
1
gradp
dt
——理想流体欧拉运动微分方程
式中:
2x
z 2
)
y
t
x
y
x
y
y
y
z
y
z
fy
1
p y
( 2 y
x2
2 y
y 2
2 y )
z 2
19
z
t
x
z
x
y
z
y
z
z
z
fz
1
p z
( 2z
x 2
2z
y 2
2z )
z 2
1.
含有四个未知量(

x
y,完 z整, P的)方程组。
2. 描述了各种量间的依赖关系。
3. 通解、单值条件(几何条件、物理条件、边界条件、初始 条件)→特解。

工程流体力学 第3章 流体流动的基本方程

工程流体力学 第3章 流体流动的基本方程
注意: 空间点本身不具有密度、速度等物理参数,某一时刻占 据该空间点的流体质点具有这些物理参数。 流体的任意物理量可以表示为:
B F ( x, y, z, t )
比如,流体质点的速度场:
u F ( x, y, z, t )
第3章 流体流动的基本方程
速度分布的分量可表示为:
u x F1 ( x, y , z , t ) u y F2 ( x, y , z , t ) u z F3 ( x, y , z , t )
u x 2 x 2 F1 (a, b, c, t ) ax 2 t t t 2 u y 2 y 2 F2 (a, b, c, t ) ay 2 t t t 2 u z 2 z 2 F3 (a, b, c, t ) az 2 t t t 2
教学内容
第0章 绪论
第1章 流体的主要物理性质
第2章 流体静力学
第3章 流体流动的基本方程
第4章 势流理论
第5章 相似理论与量纲分析
第6章 粘性流体管内流动
第7章 粘性流体绕物体的流动
第3章 流体流动的基本方程
流体运动——满足质量守恒、牛顿第二定律、能量守恒… 推导——连续方程,动量方程,动量矩方程,能量方程…
第3章 流体流动的基本方程
流体质点的速度和加速度
u ux i uy j uz k
x F1 (a, b, c, t ) ux t t y F2 (a, b, c, t ) uy t t z F3 (a, b, c, t ) uz t t
a ax i ay j az k
两边积分 ln x 2t C ,故 x c1e
' 1

流体力学连续性方程微分形式

流体力学连续性方程微分形式

0 t
适用范围:理想、实际、可压缩、不可压缩的恒定流。
(2)不可压缩流体的连续性微分方程
当为不可压缩流时

u x u y u z 0 x y z
Const
物理意义:不可压缩流体单位时间内流入单位空间的流体体积(质量) , 与流出的流体体积(质量)之差等于零。 适用范围:理想、实际、恒定流或非恒定流的不可压缩流体流动。
质量守恒定律:单位时间内流出与流入六面体的流体质量差之总和应
等于六面体内因密度变化而减少的质量,即:
[

( u x ) x
( u y ) ( u z ) y ]dxdydz dxdydz z t
流体的连续性微分方程的一般形式:
适用范围:理想流体或实际流体;恒定流或非恒定流;可压
第三节 流体动力学基本方程式
一、连续性微分方程
1
在流场内取一微元六面体(如图),边长为dx,dy,dz,中心点O流速为 ( ux,uy,uz ) D' z C' ux dx ux dx A' dz u B' u z u x x 2 x x 2 o’ M uy ux N 以x轴方向为例: C D ux dx 1 dx dy u u 左表面流速 M A x 2 x B o u x x 1 右表面流速 u N u x dx 2 x y ∴ 单位时间内x方向流出流进的质量流量差: ( u x ) ( u x ) 1 1 M M [ u x dx]dydz [ u x dx]dydz 右 左 2 x 2 x ( u x ) x dxdydz

等,即pxx pyy pzz。任一点动压强为:
p xx p p zz ) 3 u

(最新整理)流体力学第三章流体动力学

(最新整理)流体力学第三章流体动力学

Mz
(uz)dxdydzdt
z
dt时间内,控制体总净流出质量:
M M xM yM z(xux)(yuy)(zuz)d x d y d z
u d xd d y( id u v )d zx dd t yd zd t
由质量守恒:控制体总净流出质量,必等于控制体内由于
2021/7/26
密度变化而减少的质量,即
解:流线方程: dxdyx2y2c (流线是同心圆族)
ky kx
线变形: x y 0
(无线变形)
角变形: z 0
(无角变形)
旋转角速度:针的旋转)
2021/7/26
刚体旋转流动
36
有旋流动和无旋流动
1.有旋流动 2.无旋流动
0 0
即: x 0
y 0
z 0
uz u y y z ux uz z x
(2) 不可压缩流体中,流线的疏密程度反映了该时刻 流场中各点的速度大小,流线越密,流速越大,流 线越稀,流速越小。
(3)恒定流动中,流线的形状不随时间而改变,流 线与迹线重合;非恒定流动中,一般情况下,流线 的形状随时间而变化,流线与迹线不重合。
2021/7/26
12
例:速度场vx=a,vy=bt,vz=0(a、b为常数) 求:(1)流线方程及t =0、1、2时流线图;
2021/7/26
20
A
B
A
B
A
B
0
12
3
4
56
A B
A
B
7
8
9
10
显然,渐变流是一种近似的均匀流。因此,渐变流有如 下性质: (1)渐变流的流线近于平行直线,过流断面近于平面; (2)渐变流过流断面上的动压强分布与静止流体压强分

第3章-流体力学连续性方程微分形式

第3章-流体力学连续性方程微分形式

欧拉运动微分方程组各式分别乘以dx,dy,dz(流场任意相邻两点间距ds 的坐标分量),然而相加得:
( Xdx
Ydy

Zdz)

1
( px
dx

p y
dy

p z
dz)

dux dt
dx

duy d;
<II>
<III>
一、在势流条件下的积分
考虑条件 1、恒定流
当为恒定流时

t

0

(ux
x
)

(uy
y
)

(uz
z
)

0
适用范围:理想、实际、可压缩、不可压缩的恒定流。
(2)不可压缩流体的连续性微分方程
当为不可压缩流时 Const

u x x

u y y

u z z
0
物理意义:不可压缩流体单位时间内流入单位空间的流体体积(质量) ,
dt
p'xx 'xz 'xy
x
第三节 流体动力学基本方程式
考虑条件:
13
1)
不可压缩流体的连续性微分方程:uxx

uy y

uz z
0
2)切应力与主应力的关系表达式
• 不可压缩粘性流体运动微分方程:纳维埃-斯托克斯方程(Navier-
Stokes,N-S)方程:
X

1
p x
1
第三章 流体动力学基础
第三节 流体动力学基本方程式
一、连续性微分方程 二、理想流体运动微分方程 三、粘性流体的运动微分方程

第三章流体力学--流体力学基本方程

第三章流体力学--流体力学基本方程

§3-1 描述流体运动的方法
a V u V v V w V t x y z
§3-1 描述流体运动的方法
a V u V v V w V t x y z
加速度的投影值:
ax
u t
u
u x
v
u y
w
u z
v v v v ay t u x v y w z
az
w t
u
w x
v
w y
dx dy dz x 2y 5z
dx1d(2y)d(5z) x 2 2y 5z
dx x
1 2
d(2 y) 2y
dx x
d(5 z) 5 z
由上述两式分别积分,并整理得:
§3-1 描述流体运动的方法
x
y c1

xc2z5c2 0
即流线为曲面 x y c1 和平面 xc2z5c20的交线。
§3-1 描述流体运动的方法

§3-1 描述流体运动的方法
§3-1 描述流体运动的方法
例1:已知:u = x + t,v = -y + t, w = 0
求:t = 0 时,经过点A(-1,-1)的流线方程。 解: t = 0时,u=x,v=-y, w= 0 ;代入流线微分方程:
dx dy x y
因此:
d dt
d
dM dt
t
d
A
vndA
对于任一物理量φ(如动量):
d dt
d
t
d
vndA
A
φ——单位体积的某物理量。
§3-2 连续性方程
d dt
d
t
d
vndA
A
即:系统的任一物理量的总变化率等于控制体内该物理量的 时间变化率和该物理量通过控制体表面的净流出率之和。

流体力学讲义 第三章 流体动力学基础

流体力学讲义 第三章 流体动力学基础

第三章流体动力学基础本章是流体动力学的基础。

主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。

此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。

第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。

图3-1为流线谱中显示的流线形状。

(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。

流线是欧拉法分析流动的重要概念。

图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。

图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。

b.流线不能是折线,而是一条光滑的曲线。

因为流体是连续介质,各运动要素是空间的连续函数。

c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。

因为对不可压缩流体,元流的流速与其过水断面面积成反比。

(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。

所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。

图3-5中烟火的轨迹为迹线。

(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。

流体力学chap.3连续性方程

流体力学chap.3连续性方程
Ⅱ)
t时刻与控制 体位置重合的 流体为系统
B
∫∫∫ ηρ dV
V
ρ → 密度,η → 单位质量流体所含的物理量
2
控制体内物理量 随时间的变化
单位时间内通过控制 面流出与流入控制体 的物理量差值
DN ∂ = ∫∫∫ ηρ dV + ∫∫ ηρ u ⋅ dS Dt ∂t V S
时变项 对流项
(2-31)
∂ 恒定流: ∫∫∫ ηρ dV = 0 ∂t V
物理量N: 质量 m 动量 K
DN = ∫∫ ηρ u ⋅ dS Dt S
= mu
动能
1 mu 2 2
内能E
单位质量物理量
η : η =1
η =u
{u x , u y , u z }
(2-32) 1 2 η = u η =e 2 e=E/m
如果流体是不可压缩 (3-2)
Dρ =0 Dt
奥高公式
∂ρ ∫∫∫ ∂t dV + ∫∫∫ (∇ ⋅ ρ u)dV = 0 V V ∂ρ + ∇ ⋅ ( ρ u )]dV = 0 ∂t
∫∫∫ [
V
积分域的任意性
∂u x ∂u y ∂u z div(u ) = ∇ • u = + + =0 ∂x ∂y ∂z
x
5
2 水动力学几种常用形式的连续性方程 (1)铅直平面二维流动的连续性方程为:
∂u x ∂u y + =0 ∂x ∂y
ds 1 s
A2 A A+dA
s
(3-4)
A1
2 (2)水平面二维流动的连续性方程
∂h ∂hU x ∂hU y + + =0 ∂t ∂x ∂y

流体力学第3章

流体力学第3章

相应的流体静压强增加dp,压强的增量取决于质量力。
22.04.2021
12
二、流体平衡条件
对于不可压缩均质流体,有
dpfxdxfydyfzdz
上式的左边是全微分,它的右边也必须是全微分。由数学
分析知:该式右边成为某一个函数全微分的充分必要条
件是
f y f z z y
f z f x x z
f x f y y x
22.04.2021
15
第三节 重力场中流体的平衡帕斯卡原理
一、重力作用下的静力学基本方程式
P0
P2 P1 Z1 Z2
推导静力学基本方程式用图
22.04.2021
16
作用在液体上的质量力只有重力G=mg,其单位质 量力在各坐标轴上的分力为 fx=0,fy=0,fz=-g
代入压强差公式,得
dpgdz
及烟囱的底部等处的绝对压强都低于当地大气压强,这些地
方的计示压强都是负值,称为真空或负压强,用符号pv表示,

pv pa p
如以液柱高度表示,则
hv
pv
g
pa p
g
式中hv称为真空高度。
22.04.2021
29
(1)当地大气压强是某地气压表上测得的压强值, 它随着气象条件的变化而变化,所以当地大气压强 线是变动的。
M点的绝对压强为 p=pa+ρ2gh2-ρ1gh1
M点的计示压强为 pe=p-pa=ρ2gh2-ρ1gh1
于是,可以根据测得的h1和h2以及已知的ρ1和ρ2计 算出被测点的绝对压强和计示压强值。
22.04.2021
37
• (2) 被测容器中的流体压强小于大气压强(即p<pa):

第三章 流体流动的基本概念与基本方程

第三章 流体流动的基本概念与基本方程

第三章流体流动的基本概念与方程质量守恒定律、牛顿第二定律、能量守恒定律等是物质运动的普遍原理,流体作为一类物质也应该遵循这些原理。

这些原理刚体运动的方程式在物理学和理论力学中大家已经学习过,适用于流体运动的方程式将在本章讨论。

本章首先介绍描述流体流动的一些基本概念,然后推导出流体流动的基本方程,即连续方程、动量方程、能量方程等。

这些基本概念与方程在流体运动学中的研究中是十分重要的。

3.1 描述流体流动的方法在流体力学的研究中,描述流体的运动一般有两种方法,即拉格朗日法与欧拉法。

3.1.1 拉格朗日法拉格朗日法着眼于单个流体质点是怎样运动的,以及流体质点的特性是如何随时间变化的。

为了区别流体质点,使用某特定质点在某瞬时的坐标(a, b, c)是比较方便的,坐标(a, b, c)描述的只是某一特定的质点。

在任何瞬时质点的位置可表示为(3.1)对于一给点的坐标(a, b, c),上述方程组代表的是一特定流体质点的轨迹。

此时,质点是速度可以通过将质点是位置矢量对时间求导数得到。

在笛卡尔坐标系中,质点的速度可表示为(3.2)加速度为(3.3)3.1.2欧拉法流体是由无数流体质点组成的连续介质,充满流动流体的空间称为流场。

表示流体速度的一种方法就是着眼于空间的某一点,观察流经该点的流体质点随时间的运动。

这种研究流体质点运动的方法称为欧拉法。

在更一般的意义上,欧拉法可以通过以下方面描述整个流场:(1)在空间某一点流动参数,如速度、压强等,随时间的变化;(2)这些参数相对于空间邻近点的变化。

此时,流动参数是空间点的坐标与时间的函数:(3.4)或(3.4a)(3.5)流体质点随时间将从一点运动到另一点,这意味着流体质点的位置也是时间的函数。

利用多元函数的微分连锁律,可将流体质点在x方向的加速度表示为:(3.6a)同样(3.6b)(3.6c)或写成矢量的形式(3.7)式中称为梯度,或∇运算符。

方程(3.6)右端包含两种不同类型的两项:速度关于位置的变化与速度关于时间的变化。

流体运动的连续性方程

流体运动的连续性方程

在流场中取微小直角六面体空间为控制体,正交
三个边dx,dy,dz分别平行于x,y,z轴,如图所示。
首先计算dt时间x方向流出和流入控制体的质量差,
即x方向净流出质量为:
M x
(ux
(ux )
x
dx)dydzdt
uxdydzdt
(ux ) dxdydzdt
同理,y、x z方向的净流出质量如下:
x
M
y
少的质量,即
(ux
x
)
(uy
y
)
(uz
z
)
dxdydzdt
(ux ) (uy ) (uz ) 0
t
dxdydzdt (4-17)
t x
y
z
流体运动的连续性方程
1.1 连续性微分方程
式(4-17)即为可压缩流体非恒定流的连续性微分方程,它表 达了任何可实现的流体运动所必须满足的连续性条件。其物理意 义是:流体在单位时间流经单位体积空间时,流出与流进的质量 差与其内部质量变化的代数和为零,即流体质量守恒。
流体运动的连续性方程
1.1 连续性微分方程
对于均匀不可压缩流体,ρ为常数,则
ux uy uz 0 x y z
(4-18)
式(4-18)即为不可压缩流体的连续性微分方程。该式说明:
对于均匀不可压缩流体来说,单位时间流出与流进单位体积空间的
流体体积之差等于零,即流体体积守恒。
上述形式的连续性微分方程是1755年欧拉首先建立的,是质量
1A1 2 A2
1 A2 2 A1
(4-20)
该式表明,在不可压缩流体的恒定流动中,总流沿程通
过各过流断面的体积流量都相等,因而总流过任意两流断
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 流体动力学基本方程式
X方向
( ux ) dxdydz x
同理可得:
在dt时间内因密度变化而减少的 质量为:
3
y方向:
z方向:
( u y ) y dxdydz ( u z ) dxdydz z
dxdydz ( ) dxdydz t t dxdydz
0 t
适用范围:理想、实际、可压缩、不可压缩的恒定流。
(2)不可压缩流体的连续性微分方程
当为不可压缩流时

u x u y u z 0 x y z
Const
物理意义:不可压缩流体单位时间内流入单位空间的流体体积(质量) , 与流出的流体体积(质量)之差等于零。 适用范围:理想、实际、恒定流或非恒定流的不可压缩流体流动。
1
第三章 流体动力学基础
第三节 流体动力学基本方程式
一、连续性微分方程 二、理想流体运动微分方程
三、粘性流体的运动微分方程
第四节 欧拉运动微分方程的积分
一、在势流条件下的积分
二、沿流线的积分
第三节 流体动力学基本方程式
一、连续性微分方程
2
在流场内取一微元六面体(如图),边长为dx,dy,dz,中心点O流速为 ( ux,uy,uz ) D' z C' ux dx ux dx A' dz u B' u z u x x 2 x x 2 o’ M uy ux N 以x轴方向为例: C D ux dx 1 dx dy u u 左表面流速 M A x 2 x B o u x x 1 右表面流速 u N u x dx 2 x y ∴ 单位时间内x方向流出流进的质量流量差: ( u x ) ( u x ) 1 1 M M [ u x dx]dydz [ u x dx]dydz 右 左 2 x 2 x ( u x ) x dxdydz
第三节 流体动力学基本方程式
2.质量力 单位质量力在各坐标轴上分量为X,Y,Z,∴质量力为Xdxdydz x方向(牛顿第二运动定律
9
F ma ):
du x p dx p dx (p )dydz ( p )dydz Xdxdydz dxdydz x 2 x 2 dt
( u x ) ( u y ) ( u z ) 0 t x y z
缩流体。(不可压 缩流体
0 ) t
第三节 流体动力学基本方程式
4 (1)可压缩流体恒定流动的连续性微分方程 当为恒定流时

( ux ) ( u y ) ( uz ) 0 x y z
D' M p(x,y,z) B' N
C'
p dx p x 2
dz dx D 2
B
x
∵理想流体,∴=0
左表面
y
p dx PM pM A ( p )dydz 2 x 右表面 P p A ( p dx p )dydz N N 2 x

10
适用范围:恒定流或非恒定流,可压缩流或不可压缩流体。 du x du y duz 若加速度 等于0,则上式就可转化为 , , dt dt dt
欧拉平衡微分方程
1 p 0 X x 1 p 0 Y y 1 p 0 Z z
u x u x u x p du x u x 1 X ux uy uz x dt t x y z

理想流体的运动微分方程(欧拉运动微分方程)
du x u x u x u x p 1 X ux uy u z u x z x dt t x y du y u y u y u y u y p 1 Y ux uy uz y dt t x y z du z u z u z u z u z p 1 Z ux uy uz z dt t x y z
第三节 流体动力学基本方程式
二、理想流体运动微分方程
理想流体的动水压强特性与静水压强的特性相同:
6
p x p y pz p
从理想流体中任取一(x,y,z)为
中心的微元六面体为控制体,边 长为dx,dy,dz,中心点压强为 p(x,y,z) 。 受力分析(x方向为例): 1.表面力
z
A'
第三节 流体动力学基本方程式
三、粘性流体的运动微分方程
1、粘性流体的特点
11
(1)实际流体的面积力包括:压应力和粘性引起的切应力。 该切应力由广义牛顿内摩擦定律确定: u y u x xy ( ) yx y x u y u z yz ( ) zy z y u x u z zx ( ) xz x z (2)实际的流动流体任一点的动压强,由于粘性切应力的存在,各向大小不
质量力 x向受力
'zy xy xz
dz
p'zzx
’z
12
左右向压力
前后面切力 上下向切力
pxx

等,即pxx pyy pzz。任一点动压强为:
p xx p 2
p 1 (p xx p yy p zz ) 3 u
x u y y u z z
x
p yy p 2 p zz p 2

第三节 流体动力学基本方程式
z
2、实际流体的运动微分方程式 同样取一微元六面体作为控制体。
质量守恒定律:单位时间内流出与流入六面体的流体质量差之总和应
等于六面体内因密度变化而减少的质量,即:
[

( u x ) x
( u y ) ( u z ) y ]dxdydz dxdydz z t
流体的连续性微分方程的一般形式:
适用范围:理想流体或实际流体;恒定流或非恒定流;可压
相关文档
最新文档