张力控制器原理
张力控制器的原理及应用
张力控制器的原理及应用张力控制器简介张力控制器是一种用于测量和控制物体表面或物体内部受力情况的装置。
它通过传感器和控制系统的配合,实时监测和调整物体的张力,以保证物体在运动或操作过程中保持稳定的受力状态。
张力控制器广泛应用于各个工业领域,包括纺织、造纸、印刷、包装等行业。
张力控制器的原理张力控制器的原理主要基于力学和电子技术。
在使用过程中,张力控制器通常由以下几个部分组成:1.传感器:用于实时检测物体的张力。
传感器常常采用应变片或扭簧等装置,通过测量变形量来间接测量物体的张力。
2.信号处理器:传感器检测到的信号会经过信号处理器进行放大和滤波,以确保信号的准确性和稳定性。
信号处理器通常由模拟电路或数字电路组成。
3.控制系统:根据传感器检测到的张力信号,控制系统会采取相应的控制策略来调整物体的张力。
控制系统通常由微处理器、PLC或其他类似的设备组成。
4.执行机构:根据控制系统的指令,执行机构会对物体施加或减小相应的张力,以达到预期的受力状态。
执行机构可以是电机、液压或气动系统等。
张力控制器的应用张力控制器在工业生产中的应用非常广泛,具有如下几个主要的应用领域:1. 纺织行业在纺织行业中,张力控制器能够实时监测和控制纱线或织带的张力,确保纱线在整个生产过程中保持稳定的状态。
通过精确地控制纱线的张力,可以避免纱线断裂、搭绞和团结等问题的发生,提高纺织品的质量。
2. 造纸行业在造纸行业中,张力控制器可以控制纸张或纸卷的张力,以确保纸张在运输和印刷过程中保持平整。
通过有效地控制纸张的张力,可以减少纸张因张力不均匀而产生的起皱、起翘等问题,提高纸张的质量。
3. 印刷行业在印刷行业中,张力控制器能够监测和控制印刷网或印刷版的张力,以确保印刷过程中的精确和一致性。
通过精确地控制印刷网或印刷版的张力,可以避免印刷品因张力不均匀而产生的色差、印刷模糊等问题,提高印刷品的质量。
4. 包装行业在包装行业中,张力控制器能够监测和控制包装材料或包装带的张力,确保包装过程中的稳定性和安全性。
张力控制原理介绍
第二章 张力控制原理介绍 2.1 典型收卷张力控制示意图22.2 张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。
1、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。
转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。
根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。
MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。
2、与开环转矩模式有关的功能模块:1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。
张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。
2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。
3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。
摩3擦补偿可以克服系统阻力对张力产生的影响。
3、闭环速度控制模式闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F控制三种方式中的任何一种。
张力控制原理
张力控制原理
张力控制原理是一种常用于控制系统中的原理,通过对控制对象的张力进行测量和调节,实现对系统的稳定控制。
张力控制原理广泛应用于纺织、印刷、包装、造纸等行业中的连续生产线中,以确保产品在生产过程中的牵引力、张力等参数控制在合适的范围内。
张力控制原理的基本思想是通过传感器对物体的张力进行实时测量,将测量结果反馈给控制器,再根据设定的控制算法进行调节,以实现对张力的精确控制。
其中的关键是如何准确地测量物体的张力。
常见的测量方法包括压力传感器、应变测量、光电传感器等。
在控制系统中,控制器根据测量到的张力数值与设定值之间的差异,通过控制执行机构的工作状态来调节张力,使其趋近或保持在设定值范围内。
控制器通常采用PID控制算法,即按照比例、积分、微分三个因素对误差进行调节。
这样可以快速响应、稳定控制系统,保证生产线的正常运行。
除了控制算法外,张力控制原理还需要配备合适的执行机构和传动装置。
常见的执行机构有电机、气缸等,通过调节工作状态来改变物体的张力。
而传动装置则用于将执行机构的动力传递给受控对象,主要包括传动带、链条、轮轴等。
在实际应用中,张力控制原理需要根据具体的控制对象和工作环境进行参数调整和优化。
同时,还需要考虑到系统的响应速度、稳定性、负载变化、环境扰动等因素,以保证控制效果和
系统性能的优良。
综上所述,张力控制原理是一种用于控制系统中的重要原理,通过测量和调节张力,实现对系统的稳定控制,并被广泛应用于众多行业中的连续生产线。
直接法张力控制原理
直接法张力控制原理间接法张力控制系统,是通过针对现场的各种干扰因数,改变电动机的电气参数来达到张力恒定的目的的。
然而实际运行环境中,张力控制的现场是十分恶劣的,各种干扰因数对系统的影响比较严重,因而就造成了间接法张力控制不能对这些干扰要素动态的做出补偿,调整输出力矩,从而使控制精度不高,系统构建也显得复杂,昂贵。
相比之下,采用直接法进行控制,能够取得比较好的控制效果。
应用到张力控制中,就是通过张力检测元件,将现场织物的张力转化与之相应的电信号,并作为反馈信号接入到输入端,与设定的张力信号进行比较,运算,调节张力执行部件,从而构成张力闭环的控制系统,这样能够对现场总的干扰因数做出电气上的补偿,因而这类张力控制系统能够运行稳定,控制精度高,能显著提高织物产品的质量,在现实的工业生产中,此类控制系统得到了广泛的应用。
下图是直接法张力控制系统的典型框架,该系统利用张力传感器直接测量现场织物的承受张力,输入到控制器中,进行运算,直接输出控制信号,控制磁粉制动器,调节转动力矩,从而实现张力的恒值控制。
系统总体的原理框图如下张力控制系统中张力的检测在目前的张力检测中,广泛应用的是一种三辊式的张力测量结构。
其中一个叫做测量辊,另外两个叫做辅助辊。
被测量的织物绕于三个辊上,如图所示。
图三辊张力测量结构图图中,为测量辊自重,为缠绕于测量辊上的织物张力,为施加于张力测量期间上的总的合力。
由图,我们可以得到其中测量辊的自重我们可以通过调节压力传感器的调零功能加以消除,因而当A=60的时候F=T。
图中,将张力转化为压力,因而我们可以想到,只要能够测量压力的传感器,一般都可以用来测量张力。
恒流供桥。
张力控制器工作原理
张力控制器工作原理
张力控制器是一种用于控制连续柔性物料(如纸、膜、钢带等)张力的设备,其工作原理主要包括张力传感器、控制系统和执行器三个部分。
1. 张力传感器:张力传感器通常安装在物料传送路径上,通过测量物料在传送过程中的张力变化来获取实时的张力信号。
常用的张力传感器有压力传感器、光电传感器等。
传感器将测量到的张力信号转换为电信号,输入给控制系统。
2. 控制系统:控制系统接收到张力传感器传来的电信号后,进行信号处理和计算,并根据设定的张力目标值进行比较。
根据比较结果,控制系统会通过补偿设计好的控制算法,调节执行器的输出,以实现对物料张力的控制。
常用的控制器有PID
控制器等。
3. 执行器:执行器根据控制系统的指令,调节张力控制设备的工作状态来实现对物料张力的调节。
常用的执行器有电机、气缸等。
执行器通过改变传送物料的速度、张力轮的压力等方式,调节张力控制设备的工作状态,从而实现对物料张力的控制。
通过不断调节执行器的输出,控制系统可以实时监控和调节物料的张力,保持其在一个可控的范围内。
这种张力控制器工作原理通过不断反馈和调节的方式,可以有效地保证连续柔性物料的拉伸、切割、卷取等工艺过程中的张力稳定性,提高生产质量和效率。
张力器工作原理
张力器工作原理
张力器是一种用于调节绷带或绳索等松紧度的装置,其工作原理基于两个主要因素:滑轮的运动和张力的平衡。
滑轮是张力器的核心组件之一,通常由金属或塑料材料制成。
滑轮通常呈圆盘状,其周围有凹槽,以便绷带或绳索可以沿着滑轮表面滑动。
滑轮一般连接到一个轴上,并保持在一个固定的位置。
当绷带或绳索被穿过张力器的滑轮后,两端会被连接到需要调节的物体上。
通过增加或减小绷带或绳索的长度,张力器可以改变绷带或绳索的张力。
当滑轮开始旋转时,即使绷带或绳索两端的长度不同,它们所受的张力也是平衡的。
这是因为滑轮的旋转引起了绷带或绳索两端的受力变化。
当滑轮旋转时,较短一端的绷带或绳索会受到更大的张力,而较长一端则受到较小的张力,从而实现张力的平衡。
通过调整滑轮的位置或旋转速度,可以实现绷带或绳索张力的微小调节。
这使得张力器成为广泛应用于各种场合中的一种实用装置,例如体育训练、医疗康复和物体悬挂等。
第二章张力控制原理介绍
第二章 张力控制原理介绍 2.1 典型收卷张力控制示意图22.2 张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。
1、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。
转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。
根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。
MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。
2、与开环转矩模式有关的功能模块:1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。
张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。
2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。
3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。
摩3擦补偿可以克服系统阻力对张力产生的影响。
3、闭环速度控制模式闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F控制三种方式中的任何一种。
张力控制器原理
张力控制器原理
张力控制器的原理是利用控制电动机的工作电流来实现对张力的精确控制。
其内部包含了传感器、控制电路和执行器三个主要部分。
首先,传感器用于测量被控制物体上的张力。
常用的传感器包括张力传感器和压力传感器。
张力传感器可以通过测量被控制物体或张力传送装置上的位移、应变或压力信号来间接测量张力的大小。
压力传感器则直接测量受力物体上的压力。
其次,控制电路负责处理传感器传递过来的信号,并根据预设的控制策略计算出控制电机需要的工作电流。
控制电路通常由微处理器或者专用的控制芯片组成,可以实现对张力的精确控制和调节。
最后,执行器通过控制电路输出的工作电流来驱动电动机,从而实现对被控制物体的张力调节。
电动机的运动会改变传送装置或张力装置的位置或形态,进而改变被控制物体上的张力。
张力控制器的工作原理可以简单归纳为:传感器测量张力信号→控制电路处理信号并计算出控制电机需要的工作电流→执行器根据工作电流驱动电动机调整被控制物体上的张力。
通过不断地采集和处理张力信号并输出相应的控制电流,控制器可以实现对张力的精确和稳定的控制。
张力控制原理介绍
第二章 张力控制原理介绍 2.1 典型收卷张力控制示意图22.2 张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。
1、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。
转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。
根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。
MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。
2、与开环转矩模式有关的功能模块:1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。
张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。
2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。
3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。
摩3擦补偿可以克服系统阻力对张力产生的影响。
3、闭环速度控制模式闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F控制三种方式中的任何一种。
张力控制器的工作原理
张力控制器的工作原理张力控制器(Tension Controller)是一种用于调节张力的控制设备,广泛应用于纺织、包装、印刷、塑料制造等行业中的张力控制过程。
它通过监测张力的变化,并通过相应的反馈机制来控制张力,从而实现对材料的稳定张力控制。
本文将详细介绍张力控制器的工作原理,并分点列出如下内容:1. 张力的定义:张力是指材料在受到外力作用下的拉力或拉伸程度。
在张力控制过程中,我们通常关注的是材料的线性密度和应变变化等因素。
2. 张力控制器的组成部分:张力控制器主要由传感器、控制器和执行器组成。
其中,传感器用于测量材料的张力,控制器通过处理传感器输入的数据并生成控制信号,执行器则根据控制信号来调节张力。
3. 传感器的工作原理:传感器通过不同的原理来测量材料的张力。
常见的传感器包括压电传感器、光电传感器和尺寸传感器等。
以光电传感器为例,它通过测量材料上的光反射量来间接反映张力的大小。
4. 控制器的工作原理:控制器接收传感器传输的信号,并根据设定的控制策略来生成控制信号。
其中,控制策略可以基于PID(比例-积分-微分)控制算法或者其他自适应控制算法。
通过不断地与传感器数据进行比较和调整,控制器能够实现精确的张力控制。
5. 执行器的工作原理:执行器根据控制器发送的控制信号来调节张力。
常见的执行器包括电机、液压缸和气动缸等。
以电机为例,控制器通过调整电机的转速和扭矩,来控制驱动轮的张力,从而影响材料的张力状态。
6. 张力控制器的应用:张力控制器在工业生产中有着广泛的应用。
在纺织行业,张力控制器可用于控制纱线、织物等在纺织过程中的张力,从而确保产品的质量。
在包装行业,张力控制器能够稳定调节包装材料的张力,保证产品在包装过程中的平整度。
在印刷行业,张力控制器能够有效地控制印刷材料的张力,提高印刷品的精度和品质。
7. 张力控制器的优势和挑战:张力控制器具有调节范围广、响应速度快、精度高等优点,在工业应用中得到了广泛的认可。
张力控制器原理
张力控制器原理张力控制器(Tension controller)是一种用于控制张力的自动化设备。
它广泛地应用在纺织、印刷、拉伸、包装以及造纸等行业中。
张力控制器的主要作用是通过检测被控物体的张力并根据预设的参数进行调节,以达到所需的张力控制。
1.传感器检测:系统通过安装在张力控制线路上的传感器来检测被控物体的张力。
传感器通常采用负载细微压变法、压电效应、电感效应等原理,能够实时测量张力信号并转化为电信号。
2.电信号放大与调理:传感器输出的电信号需要经过放大和调理的处理,以便使得信号能够被控制器读取并进行后续的计算和分析。
通常,放大和调理的方法包括滤波、放大、线性化等。
3.控制器计算:张力控制器通过对传感器输出的信号进行计算和比较,得出当前实际张力与预设张力之间的差异。
控制器通常采用微处理器或者PLC等计算设备,能够根据设定的参数对实际张力进行调整。
4.控制信号产生:根据计算得出的实际张力差异,控制器会产生相应的控制信号。
这些信号可以是电流、电压、气体或者液体等形式,用于调节被控张力装置的运动或者力度。
5.被控张力装置调节:根据控制信号,被控张力装置会作出相应的调整,以达到所需的张力水平。
常见的张力装置包括张力滚筒、张力传动装置等。
通过控制这些装置的运动或者力度,可以实现对被控物体的张力控制。
6.反馈调整:在实际应用中,为了更好地控制张力,通常会添加反馈机制。
控制器可以通过反馈传感器实时监测被控物体的张力,并根据实时的反馈信号进行调整,以实现更加精确的张力控制。
张力控制器的工作原理基本上可以概括为传感器检测、电信号调理、控制器计算、控制信号产生、被控张力装置调节和反馈调整等步骤。
通过对这些步骤的协调和控制,张力控制器能够实现对被控物体的张力精确控制,以满足不同应用领域的需求。
张力控制器操作说明
张力控制器操作说明1.张力控制器的基本原理2.张力控制器的主要构成张力控制器主要由控制器、感应器和执行器三个部分组成。
其中,控制器负责接收感应器的信号,并根据设定值计算出控制信号;感应器负责检测被处理材料的张力,并将信号传输给控制器;执行器根据控制信号调整卷取或放线装置的工作状态,从而实现对材料张力的控制。
3.张力控制器的操作步骤(1)接通电源并设置参数:将张力控制器连接到电源,根据实际需要设置相关参数,例如材料类型、材料宽度、张力范围等。
(2)安装感应器:根据设备的不同,感应器可以安装在卷取装置或放线装置上。
确保感应器与材料接触良好,并调整感应器的灵敏度,使其能够准确检测到材料的张力。
(3)调整控制器:根据实际情况,调整控制器的工作模式,例如手动模式或自动模式。
手动模式下,操作人员可以通过调节控制器上的按钮或旋钮来实时调整张力;自动模式下,控制器将根据设定值自动调整张力。
(4)监测和调整:在操作过程中,持续监测材料的张力,并根据实际需要进行调整。
如果张力偏高,可以适当减小卷取或放线速度;如果张力偏低,可以适当增加速度或调整卷取或放线装置的工作方式。
(5)记录和分析:定期记录张力控制器的工作参数和材料的张力情况,并进行分析。
根据分析结果,优化操作参数和设备设置,以提高生产效率和产品质量。
4.张力控制器的维护和保养(1)定期检查感应器和控制器的连接线路,确保其正常工作,避免出现松动或短路的情况。
(2)保持操作环境的清洁和干燥,避免灰尘或湿气对设备的影响。
(3)定期进行润滑,确保张力控制器的机械部件正常运转。
(4)定期清洁传感器,以确保其能够准确检测材料的张力。
(5)定期校正控制器,以保证其工作的准确性和可靠性。
总结:张力控制器是一种用于控制张力的设备,在印刷、纺织、电子、包装等行业具有广泛的应用。
其操作相对简单,只需按照步骤进行设置和调整即可。
同时,良好的维护和保养也能够延长设备的使用寿命,提高工作效率和产品质量。
张力控制器的原理
张力控制器的原理
张力控制器是一种用来稳定传送带或缆绳上的张力的装置。
其原理基于力学和电控技术,通过实时监测和调节传送带或缆绳上的张力,以达到系统稳定运行的目的。
张力控制器通常包括传感器、控制器和执行器三个部分。
传感器用于检测传送带或缆绳上的张力,常见的传感器有压力传感器、应变传感器等。
控制器则接收传感器传来的信号,并根据设定的目标张力值对系统进行调节。
控制器中的算法可以根据实际需求进行设计,常见的控制算法有PID控制算法、模糊
控制算法等。
执行器根据控制器的指令,通过调节阀门、电机或液压缸等设备,对传送带或缆绳上的张力进行调节。
具体工作时,传感器会不断地监测传送带或缆绳上的张力,并将监测结果传输给控制器。
控制器会对实际张力与目标张力之间的差异进行计算,并根据设定的控制算法生成控制信号。
这些控制信号通过执行器作用于传送带或缆绳上的张力调节装置,以调整张力至目标值。
通过不断的反馈和调节,控制器可以实现对传送带或缆绳上的张力实时稳定的控制。
总而言之,张力控制器利用传感器不断监测传送带或缆绳上的张力,并通过控制器和执行器对系统进行控制和调节,以实现对张力的稳定控制。
全自动张力控制器原理
全自动张力控制器原理
张力控制器对在两个加工设备之间作连续运动或静止的被加工材料所受的张力进行自动控制的技术。
在各种连续生产线上,各种带材、线材、型材及其再制品,在轧制、拉拔、压花、涂层、印染、清洗以及卷绕等工序中常需要进行张力控制。
张力控制可以是恒张力控制,也可以是变张力控制。
自动恒张力控制器的工作原理为两只张力检测器测量到实际目标(即测量张力),与人为设定设定所需的工作张力(即设定张力)相比较,如果两个比较的张力相等时,张力控制仪不调节输出比例,而两个比较的张力不等时,张力控制器将判断测定张力大于或小于设定而相应的减小或增大输出比例,从而使测量张力与设定张力保持动态平衡来实现恒张力。
张力控制器的作用包括如下几点:
①保证连续生产加工过程能正常进行,即保证被加工材料在连续生产线的各部位上秒流量相等,从而达到既不堆料也不拉断的要求;
②保证被加工产品的质量,如尺寸精度(厚度、宽度、截面形状等)、平直度、卷绕松紧、外形以及材质性能等达到标准要求。
张力控制系统往往是张力传感器和张力控制器的一种系统集成,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。
张力控制器 原理
张力控制器原理张力控制器是一种用于控制张力的装置,广泛应用于纺织、印刷、包装等行业中的生产线。
它的主要原理是通过感应张力信号,并通过控制系统对张力进行实时调节,以确保生产线上的物料保持稳定的张力状态。
我们来了解一下张力的概念。
张力是指物体受到的拉力或拉伸力,是一个物体内部各点相互作用的结果。
在生产线上,物料在传送过程中会受到张力的作用,如果张力不稳定,会导致物料的变形、断裂或产生皱纹,从而影响生产线的正常运行和产品的质量。
张力控制器的原理是基于张力传感器和控制系统的配合工作。
张力传感器通常安装在生产线上的张力滚筒或张力辊上,通过测量滚筒上物料的张力信号来实时监测张力的变化情况。
张力传感器将测量到的张力信号转化为电信号,并传送给控制系统。
控制系统是张力控制器的核心部分,它接收来自张力传感器的信号,并根据预设的张力设定值进行比较和计算。
控制系统通过调节驱动装置(如电机或气缸)的输出信号来改变滚筒的转动速度,从而调节物料的张力。
当测量到的张力信号与设定值有偏差时,控制系统会根据一定的算法进行计算和调整,使滚筒上物料的张力保持在预设范围内。
在实际应用中,张力控制器还可以根据不同的物料特性和生产需求进行参数设置。
例如,对于薄膜类物料,由于其本身的柔软性,需要较小的张力控制范围;而对于纸张类物料,由于其较大的刚性,需要较大的张力控制范围。
因此,根据不同的物料特性,可以通过调整张力设定值和控制算法来实现最佳的张力控制效果。
张力控制器的应用可以提高生产线的稳定性和效率,减少物料的浪费和损坏。
例如,在印刷行业中,张力控制器可以保证印刷机上的印刷纸张在传送过程中保持稳定的张力,从而避免纸张的变形和印刷质量的下降。
在包装行业中,张力控制器可以确保包装材料在封装过程中的张力恒定,避免包装袋的破裂和产品的损坏。
张力控制器是一种通过感应张力信号并实时调节的装置,可以保持生产线上物料的稳定张力状态。
它的原理是基于张力传感器和控制系统的配合工作,通过调节驱动装置的输出信号来改变滚筒的转动速度,从而实现对张力的调控。
张力控制器原理
1.什么是张力控制:所谓的张力控制,通俗点讲就是要能控制电机输出多大的力,即输出多少牛顿。
反应到电机轴即能控制电机的输出转距。
2.真正的张力控制不同于靠前后两个动力点的速度差形成张力的系统,靠速度差来调节张力的实质是对张力的PID控制,要加张力传感器。
而且在大小卷启动、停止、加速、减速、停车时的调节不可能做到象真正的张力控制的效果,张力不是很稳定。
肯定会影响生产出产品的质量。
用变频器做恒张力控制的实质是死循环矢量控制,即加编码器反馈。
对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。
同时在不同的操作过程,要进行相应的转距补偿。
即小卷启动的瞬间,加速,减速,停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。
二.张力控制变频收卷在纺织行业的应用及工艺要求1.传统收卷装置的弊端纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。
传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。
而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。
尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。
在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。
2.张力控制变频收卷的工艺要求* 在收卷的整个过程中都保持恒定的张力。
张力的单位为:牛顿或公斤力。
* 在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。
* 在加速、减速、停止的状态下也不能有上述情况出现。
* 要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。
3.张力控制变频收卷的优点* 张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿.* 使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等.* 卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。
张力器工作原理
张力器工作原理
张力器的工作原理是基于杠杆原理和弹簧力的原理。
张力器通常由一个固定的支撑点和一个可移动的支撑点组成,在两点之间拉伸一根弹性杆或带子。
当张力器处于初始状态时,弹性杆或带子处于松弛状态,没有受到外界的拉力。
当外力作用于拉伸杆或带子上时,它们会产生一定的拉力。
根据杠杆原理,外力越大,张力器的可移动支撑点所受到的力越大,反之亦然。
这是因为可移动支撑点与固定支撑点之间的距离固定,根据杠杆原理,力的大小与力臂的长度成反比。
同时,拉伸杆或带子的内部弹簧也起到了重要作用。
弹簧会受到拉伸的变形,并产生一定的弹性力。
根据胡克定律,弹性力与弹簧的变形成正比,而变形又与外力的大小成正比。
因此,外力越大,拉伸杆或带子受到的弹性力越大。
综上所述,张力器的工作原理在于,外界施加力后,拉伸杆或带子会产生一定的拉力,同时内部的弹簧也会产生一定的弹性力,这两个力的合力使得张力器发挥其拉伸或支撑的作用。
张力控制原理介绍
第二章张力控制原理介绍2.1 典型收卷张力控制示意图浮动辊F牵引辊收卷图2 带浮动辊张力反馈收卷F牵引辊图1 无张力反馈32.2 张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330 设计了两种张力控制模式。
1、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。
转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。
根据公式F=T/R(其中F 为材料张力,T 为收卷轴的扭矩,R 为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。
MD 系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG 卡)。
2、与开环转矩模式有关的功能模块:1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。
张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。
2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。
3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。
摩4擦补偿可以克服系统阻力对张力产生的影响。
3、闭环速度控制模式闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F 控制三种方式中的任何一种。
塑料收丝机张力控制器
塑料收丝机张力控制器[提要]本文详细介绍了塑料收丝机张力控制器的工作原理及其应用。
该控制器具有结构简单、可靠性高、调试和维修方便等优点。
一、前言我厂研制的塑料收丝机是根据奥地利SAHM公司生产的同类产品设计制造的,经有关单位在原生产线上替代使用,完全符合要求。
我们采用国产集成相控元件与线性霍尔元件为主设计而成的具有较高精度的张力控制器,电路集成度高,输出功率大,抗干扰能力强,调试简便。
二、工艺要求在塑料丝生产线上,喷丝机喷丝速度为一定住(忽略电源被动及原料成份、温度等造成的变化)。
收丝机随卷绕直径的增大,要求卷绕速度降低,以保共张力恒定和线速度不变。
塑料丝把喷丝机与收丝机连成一体,相关量是张力。
作为调节参数,对于张力而言,卷径的变化造成收卷线速度的变化是一种外扰作用。
线速度变化影响张力调节,这个调节过程又是一个双参数调节过程。
按卷绕工艺,挂丝动态响应应能满足挂丝工艺要求。
塑料丝挂上瞬间,即能迅速跟踪喷丝速度建立一定张力,又要求瞬间建立的张力不超过塑料丝抗拉强度,并能由此而稳定地工作。
由图1可知,喷丝机喷出的塑科长丝通过摆轮,在力矩电动机M的转动下,源源不断地箍向收卷轮。
收卷过程中的张力变化,通过摆轮长臂的转动转化为角度变化α,再利用线性霍尔集成电路CS3501与磁钢的相对转角变化,将转角α转换成与之相对应的电信号。
该电信号的大小就表征着塑料长丝的张力大小,将此信号送入张力控制器,可获得性能良好的调速系统,实现张力控制。
三、电路工作原理1.霍尔张力传感器CS3501线性霍尔电路是一种高灵敏的磁敏器件,可以准确跟踪微弱的磁场变化。
它的线性度好,工作温度范围宽。
其磁电转换灵敏度为700mV/KGS,静态输出电压3.6V。
把一非磁性材料圆盘的圆周上开一豁口,将磁钢粘在其豁口处。
豁口两端对应磁钢的N、S极。
磁钢多余部分以圆盘外径为准磨圆。
霍尔电路安装在距磁钢1mm的固定位置上(见图1),保证磁钢与霍尔电路间的转角变化使位于霍尔电路中心线处的磁场强度增加或减少。
张力控制_精品文档
张力控制方法一.控制原理下图是PV800H 所用的钢丝线走线原理图,从右侧放线电机4——> 右侧排线电机6——>通过导论到张力调节电机8——>主辊电机1主辊电机2——>通过导论到张力调节电机7——> 左侧收线侧排线电机5——>左侧收线电机1张力控制基本方案, 电机1,电机2,电机3,电机4伺服工作在速度模式。
电机7,电机8工作在扭矩模式。
电机2,电机5,电机6,工作在位置模式 保持电机1,电机2所带的主辊和电机4,电机3收放线电机的线速度一致。
当线速度绝对一致的情况下张力控制电机7电机8保持抱匝不动,则钢线上的张力T 为0。
假设线速度一致:通过张力调节电机施加一个扭矩M 通过力臂L 转换到导轮上的力就是线的张力T 。
(忽略摩擦力、导轮的大小、摆杆的重量和电机自身的惯量),设作用在滚轮3上的力F 。
L=0.3m (测量得) M=0~30nm (电机输出扭矩)则F=M/L=0~100(n )(力矩:力臂(L)和力(F )的叉乘(M)。
物理学上指使物体转动的力乘以到转轴的距离) 作用在线上的张力T=F/2=0~50(n )计算所得数据和PV800H 所查询的钢线扭矩可设定的范围0~50n 吻合。
FANUC 系统参数查看电机7电机8也工作在扭矩控制模式下。
可以肯定PV800H 是用这个控制方式。
以上是假设线速度一致,张力控制的精度就取决于伺服电机输出的扭矩精度(需要咨询张力检测4张力检测2张力检测1 张力检测3伺服厂家)。
但实际上线速度不可能控制到完全的一致,由于左右收放线桶通过绕线其外径会随时变化。
也就是说收放电机需要跟随外径的变化而变化。
此时如何控制其线速度的统一。
1.通过张力伺服电机的绝对值编码器反馈张力摆杆的实时位置,调整收放线电机的速度。
右侧放线侧:当摆杆往左摆动时,张力过大,电机4线速度太慢。
当摆杆往右摆动时,张力过小,电机4线速度过快。
左侧收线侧:当摆杆往左摆动时,张力过大,电机3线速度太快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.什么是张力控制:所谓的张力控制,通俗点讲就是要能控制电机输出多大的力,即输出多少牛顿。
反应到电机轴即能控制电机的输出转距。
2.真正的张力控制不同于靠前后两个动力点的速度差形成张力的系统,靠速度差来调节张力的实质是对张力的PID控制,要加张力传感器。
而且在大小卷启动、停止、加速、减速、停车时的调节不可能做到象真正的张力控制的效果,张力不是很稳定。
肯定会影响生产出产品的质量。
用变频器做恒张力控制的实质是死循环矢量控制,即加编码器反馈。
对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。
同时在不同的操作过程,要进行相应的转距补偿。
即小卷启动的瞬间,加速,减速,停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。
二.张力控制变频收卷在纺织行业的应用及工艺要求1.传统收卷装置的弊端纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。
传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。
而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。
尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。
在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。
2.张力控制变频收卷的工艺要求* 在收卷的整个过程中都保持恒定的张力。
张力的单位为:牛顿或公斤力。
* 在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。
* 在加速、减速、停止的状态下也不能有上述情况出现。
* 要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。
3.张力控制变频收卷的优点* 张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿.* 使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等.* 卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。
并且在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。
* 因为收卷装置的转动惯量是很大的,卷径由小变大时。
如果操作人员进行加速、减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。
而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒定。
而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施,使得收卷的性能更好。
* 在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本上不需对原有机械进行改造。
改造周期小,基本上两三天就能安装调试完成。
* 克服了机械收卷对机械磨损的弊端,延长机械的使用寿命。
方便维护设备。
三.变频收卷的控制原理及调试过程* 卷径的计算原理:根据V1=V2来计算收卷的卷径。
因为V1=ω1*R1,V2=ω2*Rx.因为在相同的时间内由测长辊走过的纱的长度与收卷收到的纱的长度是相等的。
即L1/Δt=L2/Δt,Δn1*C1=Δn2*C2/i(Δn1---单位时间内牵引电机运行的圈数、Δn2---单位时间内收卷电机运行的圈数、C1---测长辊的周长、C2---收卷盘头的周长、i---减速比) Δn1*π*D1=Δn2*π*D2/iD2=Δn1*D1*i/Δn2,因为Δn2=ΔP2/P2(ΔP2---收卷编码器产生的脉冲数、P2---收卷编码器的线数). Δn1=ΔP1/P1取Δn1=1,即测长辊转一圈,由霍尔开关产生一个信号接到PLC.那么D2=D1*i*P2/ΔP2,这样收卷盘头的卷径就得到了.* 收卷的动态过程分析:要能保证收卷过程的平稳性,不论是大卷、小卷、加速、减速、激活、停车都能保证张力的恒定.需要进行转矩的补偿.整个系统要激活起来,首先要克服静摩擦力所产生的转矩,简称静摩擦转矩,静摩擦转矩只在激活的瞬间起作用;正常运行时要克服滑动摩擦力产生地滑动摩擦转矩,滑动摩擦转矩在运行当中一直都存在,并且在低速、高速时的大小是不一样的。
需要进行不同大小的补偿,系统在加速、减速、停车时为克服系统的惯量,也要进行相应的转矩补偿,补偿的量与运行的速度也有相应的比例关系.在不同车速的时候,补偿的系数是不同的。
即加速转矩、减速转矩、停车转矩、激活转矩;克服了这些因素,还要克服负载转矩,通过计算出的实时卷径除以2再乘以设定的张力大小,经过减速比折算到电机轴.这样就分析出了收卷整个过程的转矩补偿的过程。
总结:电机的输出转矩=静摩擦转矩(激活瞬间)+滑动摩擦转矩+负载转矩.<1>在加速时还要加上加速转矩;<2>在减速时要减去减速转矩.<3>停车时,因为是通过程控减速至设定的最低速,所以停车转矩的补偿同减速转矩的处理.* 转矩的补偿标准(1). 静摩擦转矩的补偿:因为静摩擦转矩只在激活的瞬间存在,在系统激活后就消失了.因此静摩擦转矩的补偿是以计算后电机输出转矩乘以一定的百分比进行补偿.(2). 滑动摩擦转矩的补偿:滑动摩擦转矩的补偿在系统运行的整个过程中都是起作用的.补偿的大小以收卷电机的额定转矩为标准.补偿量的大小与运行的速度有关系。
所以在程序中处理时,要分段进行补偿。
(3). 加减速、停车转矩的补偿:补偿硬一收卷电机的额定转矩为标准,相应的补偿系数应该比较稳定,变化不大。
* 计算当中的公式计算(1). 已知空芯卷径Dmin=200mm,Dmax=1200mm;线速度的最大值Vmax=90m/min,张力设定最大值Fmax=50kg(约等于500牛顿);减速比i=9;速度的限制如下:因为:V=π*D*n/i(对于收卷电机)=>收卷电机在空芯卷径时的转速是最快的.所以:90=3.14*0.2*n/9=>n=1290r/min;(2). 因为我们知道变频器工作在低频时,交流异步电机的特性不好,激活转矩低而且非线性.因此在收卷的整个过程中要尽量避免收卷电机工作在2HZ以下.因此:收卷电机有个最低速度的限制.计算如下:对于四极电机而言其同步转速为:n1=60f1/p=>n1=1500r/min.=>2HZ/5HZ=N/1500=>n=60r/min当达到最大卷径时,可以求出收卷整个过程中运行的最低速.V=π*D*n/i=>Vmin=3.14*1.2*60/9=25.12m/min.张力控制时,要对速度进行限制,否则会出现飞车.因此要限速.(3).张力及转矩的计算如下:如果F*D/2=T/i,=>F=2*T*i/D对于22KW的交流电机,其额定转矩的计算如下:T=9550*P/n=&gt;T=140N.m.所以Fmax=2*140*9/0.6=4200N.(其中P为额定功率,n为额定转速).* 调试过程:1.先对电机进行自整定,将电机的定子电感、定子电阻等参数读入变频器。
2.将编码器的信号接至变频器,并在变频器上设定编码器的线数。
然后用面板给定频率和启停控制,观察显示的运行频率是否在设定频率的左右波动。
因为运用死循环矢量控制时,运行频率总是在参考编码器反馈的速度,最大限度的接近设定频率,所以运行频率是在设定频率的附近震荡的。
3.在程序中设定空芯卷径和最大卷径的数值。
通过前面卷径计算的公式算出电机尾部所加编码器产生的最大脉冲量(P2)和最低脉冲量 ( P2).通过算出的最大脉冲量对收卷电机的速度进行限定,因为变频器用作张力控制时,如果不对最高速进行限定,一旦出现断纱等情况,收卷电机会飞车的。
最低脉冲量是为了避免收卷变频器运行在2Hz以下,因为变频器在2Hz以下运行时,电机的转距特性很差,会出现抖动的现象。
4.通过前面分析的整个收卷的动态过程,在不同卷径和不同运行速度的各个阶段,进行一定的转距补偿.补偿的大小,可以以电机额定转距的百分比来设定。
四.真正的张力控制.1.什么是张力控制:所谓的张力控制,通俗点讲就是要能控制电机输出多大的力,即输出多少牛顿。
反应到电机轴即能控制电机的输出转距。
2.真正的张力控制不同于靠前后两个动力点的速度差形成张力的系统,靠速度差来调节张力的实质是对张力的PID控制,要加张力传感器。
而且在大小卷启动、停止、加速、减速、停车时的调节不可能做到象真正的张力控制的效果,张力不是很稳定。
肯定会影响生产出产品的质量。
五.变频收卷对变频器性能的要求1. 变频收卷的实质是要完成张力控制,即能控制电机的运行电流,因为三相异步电机的输出转距T=CMφmIa,,与电流成正比.并且当负载有突变时能够保证电机的机械特性曲线比较硬.所以必须用矢量变频器,而且必须要加编码器死循环控制.2. 市场上能进行张力控制变频收卷的变频器主要有:安川,艾默生,伦次等.台达V系列的变频器是矢量型变频器,能够完成张力控制,但因为不属于收放卷专用型变频器,所以要配合外部其它接口设备才能完成收放卷的功能.艾默生TD3300就是一款收放卷专用的变频器,也许台达也会在不久的将来推出我们自己收放卷专用的变频器,我们拭目以待.六.使用台达产品做变频收卷的方案1.硬件构成:DOP-A57GSTD+DVP-20EH+DVP—4DA-H+VFD-V2.电气原理图:(以并轴机为例)七.结论通过以上的分析,使用台达V系列的矢量型变频器做张力控制变频收卷时,只要能对上述收卷的整个动态过程有比较清晰的认识,能在不同的过程中将转距补偿的量找到一个合适的数值,一定能保证恒张力的控制,满足客户的要求,但要提醒读者,这种控制方式也有一定的局限性,虽然实现了恒张力的控制要求,但如果控制张力的范围很小,比如:张力范围在0-200/300牛顿时,这种控制方式是不适用的。