(整理)单因素方差分析检验.
单因素方差分析公式研究单因素方差分析的公式
单因素方差分析公式研究单因素方差分析的公式单因素方差分析公式研究在统计学中,单因素方差分析是用于比较两个或多个组之间差异的一种方法。
它可以帮助我们确定因素对观测值的影响程度,并判断这种影响是否具有统计学上的显著性。
本文将对单因素方差分析的公式进行研究和解析,以帮助读者更好地理解和应用该方法。
一、方差的概念和计算公式方差是描述数据分散程度的统计量,用于衡量观测值与其均值之间的偏离程度。
对于一个样本数据集,方差的计算公式如下:\[S^2 = \frac{\sum{(X_i - \bar{X})^2}}{n-1}\]其中,\(S^2\)表示样本方差,\(\sum{(X_i - \bar{X})^2}\)表示所有观测值与均值之差的平方和,\(n\)表示样本容量。
二、单因素方差分析的公式在单因素方差分析中,我们将观测值按照某个因素分成两个或多个组,并比较这些组之间的差异。
单因素方差分析的计算公式如下:\[F = \frac{SSB}{SSW}\]其中,\(F\)表示方差分析的统计量,\(SSB\)表示组间平方和,\(SSW\)表示组内平方和。
三、组间平方和的计算方法组间平方和是一种衡量不同组之间差异的统计量,它的计算方法如下:\[SSB = \sum{\frac{T_i^2}{n_i}} - \frac{T^2}{N}\]其中,\(T_i\)表示第\(i\)组的总和,\(n_i\)表示第\(i\)组的样本容量,\(T\)表示所有观测值的总和,\(N\)表示总样本容量。
四、组内平方和的计算方法组内平方和是一种衡量同一组内观测值之间差异的统计量,它的计算方法如下:\[SSW = \sum{(X_{ij} - \bar{X_i})^2}\]其中,\(X_{ij}\)表示第\(i\)组的第\(j\)个观测值,\(\bar{X_i}\)表示第\(i\)组的均值。
五、方差分析的统计显著性检验通过计算得到方差分析的统计量\(F\)后,需要进行显著性检验来判断因素对观测值的影响是否具有统计学上的显著性。
单因素试验方差分析(试验数据处理)
SST ( X ij X ) 2
j 1 i 1
r nj
r
nj
SSA ( X j X ) 2
j 1 i 1
n j ( X j X )2
j 1
s
SSA反映了在每个水平下的样本均值与样本总均 值的差异,它是由因子A 取不同水平引起的,所以, 称SA是因子A的效应(组间)平方和.
单因素试验——在一项试验中只有一个因素改变.
多因素试验——在一项试验中有多个因素在改变.
例1 下表列出了随机选取的、用于计算器的四种 类型的电路的响应时间(以毫秒计). 表1 电路的响应时间 类型Ⅰ 类型Ⅱ 类型Ⅲ 类型Ⅳ 19 20 16 18 22 21 15 22 20 33 18 19 18 27 26 试验指标:电路的响应时间 因素:电路类型 水平: 四种电路类型为因素的四个不同的水平 单因素试验 试验目的:考察电路类型这一因素对响应时间有无 显著的影响.(从哪些值来看是否有影响呢?)
F值 31.10
显著性
934.73
2
6
467.36
**
组内 总和
90.17
1024.89
15.03
8
不同的饲料对猪的体重有非常显著的影响。
三、单因素试验方差分析的简化计算
由于方差分析的计算量比较大,所以引入一种离 差平方和的简单算法:
令
Ti —Ai 水平时,ni个试验值之和 Qi —Ai 水平时,ni个试验值的平方和 T—n个试验值之和 Q—n个试验值的平方和
r
列平均X i Ti ni
(组内平均值)
X1
X2
...
r i 1
Xr
n n i 其中诸 ni 可以不一样,
单因素方差分析
当 H 0 不真时,
SE 2 而不管 H 0 是否为真, E n s
当 H 0 为真时:
S A ( s 1) F 不能过大 S E (n s)
当 H0
S A ( s 1) ~ F ( s 1, n s ) 为真时: F S E (n s)
(i 1,2,, s;
j 1,2,, ni )
i 为第 i 个总体的均值 , ij 为相应的试验误差。
记
1 s ni i ,称为总平均, n i 1
i i 称为水平 Ai 的效应。
从而模型可以写为:
yij i ij 2 ~ N ( 0 , ) ij ni i 0 i
因此,给定检验水平 时,拒绝域为:
F F ( s 1, n s )
表2 方差分析表
来源 因子 平方和 自由度 均方
2 i 2
F
S A ( s 1) S E (n s)
S A ni y ny
i 1
s
s 1
SA s1
SE n s
误差
总和
S E ST S A
2、方差分析的基本思想: 从所有观测值的总变差中分析出系统变差和随机误差, 通过比较二者的大小关系, 说明试验因素的不同水平对试验结果影响的大小。 即若两个变差差别不大, 各个水平差异不大; 若两个变差差别较大,则不同水平存在显著差异。
3、平方和的分解 记
1 y yij n i 1 j 1
由因素A的各个不同的水平引起的差异。
4、 S A 和 S E 的统计特性
1 y ij y i ni 1 j 1
ni
单因素试验的方差分析
其中
r n i
2r
2
S S A X iX n i ii
i 1j 1
i 1
组间平方和(系
如果H0 成立,则SSA 较小。 统离差平方和)
反映的是各水平平均值偏离总平均值的偏离程度。
其中
1 r ni
ni1 j1
ij,
ni
i ij
j1
r ni
2 r ni
2
由P106定理5.1可推得:
S S 2 T~2 n 1 ,S S 2 A ~2 r 1 ,S S 2 E ~2 n r
将 分别SS记2T 作, SS2A
,
SSE
2
的自d由fT度,dfA,dfE
则 FSSA dfA~Fr1,nr
SSE dfE
(,称记作均S S 方A 和d f)A M S A ,S S Ed fE M S E
j1
i1
同一水平 下观测值 之和
所以观测 值之和
例2 P195 2 以 A、B、C 三种饲料喂猪,得一个月后每猪 所增体重(单位:500g)于下表,试作方差分析。
饲料
增重
A
51
40
43
48
B
23
ቤተ መጻሕፍቲ ባይዱ25
26
C
23
28
解:T1 51404348182, T2 232526 74, T3 232851
F0.012,610.92
1 5 .0 3
总和 1024.89 8
不同的饲料对猪的体重的影响极有统计意义。
例2的上机实现步骤
输入原始数 据列,并存 到A,B,C 列;
各水平数据放同一列
各水平数据 放在不同列
单因素试验的方差分析
单因素试验的方差分析
在方差分析中,我们将要考察的指标称为试验指标,影响 试验指标的条件称为因素(或因子),常用A、B、C, …来表示. 因 素可分为两类,一类是人们可以控制的;一类是人们不能控 制的。 例如,原料成分、反应温度、溶液浓度等是可以控制 的,而测量误差、气象条件等一般难以控制。 以下我们所说 的因素都是可控因素,因素所处的状态称为该因素的水平。 如果在一项试验中只有一个因素在改变,这样的试验称为单 因素试验,如果多于一个因素在改变,就称为多因素试验.
一、单因素试验方差分析的统计模型
例9.1 为求适应某地区的高产水稻的品种( 因素或因子) , 现选了 五个不同品种( 水平)的种子进行试验, 每一品种在四块试验田上进 行试种。假设这 20块土地的面积与其他条件基本相同, 观测到各块 土地上的产量( 单位: 千克) 见表9–1。
在这个问题目中, 要考察的指标是水稻的产量, 影响产量的因
分析的统计模型 .
方差分析的任务是对于模型(9. 1 ) , 检验 s 个总体 N ( 1 , 2) , …, N
( s , 2)的均值是否相等, 即检验假设
H0 : 1 2 s H1 : 1 , 2 , s , 不全相等。
(9.2)
为将问题( 9. 2 ) 写成便于讨论的形式, 采用记号
s nj
ST
(xij x)2
j1 i1
(9.3)
这里
x
1 n
s j 1
nj i1
xij ,
ST能反应全部试验数据之间的差异,又称
为总变差 Aj下的样本均值
x
j
1 n
nj i1
xij
(9.4)
注意到
(xij x )2 (xij x j x j x )2 =(xij x j )2 (x j x )2 2(xij x j )(x j x )
单因素方差分析
单因素方差分析定义:单因素方差分析测试某一个控制变量的不同水平是否给观察变量造成了显著差异和变动。
例如,培训是否给学生成绩造成了显著影响;不同地区的考生成绩是否有显著的差异等。
前提:1总体正态分布。
当有证据表明总体分布不是正态分布时,可以将数据做正态转化。
2变异的相互独立性。
3各实验处理内的方差要一致。
进行方差分析时,各实验组内部的方差批次无显著差异,这是最重要的一个假定,为满足这个假定,在做方差分析前要对各组内方差作齐性检验。
一、单因素方差分析1选择分析方法本题要判断控制变量“组别”是否对观察变量“成绩”有显著性影响,而控制变量只有一个,即“组别”,所以本题采用单因素分析法,但需要进行正态检验和方差齐性检验。
2在控制变量为“组别”,3正态检验(P>0.05,服从正态分布)正态检验操作过程:“分析”→“描述统计”→“探索”,出现“探索”窗口,将因变量“成绩”放入“因变量列表”,将自变量“组别”放入“因子列表”,将“人名”放入“标注个案”;点击“绘制”,出现“探索:图”窗口,选中“直方图”和“带检验的正态图”,点击“继续”;点击“探索”窗口的“确定”,输出结果。
因变量是用户所研究的目标变量。
因子变量是影响因变量的因素,例如分组变量。
标注个案是区分每个观测量的变量。
带检验的正态图(Normality plots with test,复选框):选择此项,将进行正态性检验,并生成正态Q-Q概率图和无趋势正态Q-Q概率图。
正态检验结果分析:p值都大于0.05,因而我们不能拒绝零假设,也就是说没有证据表明各组的数据不服从正态分布(检验中的零假设是数据服从正态分布)。
即p值≥0.05,数据服从正态分布。
4单因素方差分析操作过程“分析”→“比较均值”→“单因素ANOVA”,出现“单因素方差分析”窗口,将因变量“成绩”放入“因变量列表”,将自变量“组别”放入“因子”列表;点击“选项”选择“方差同质性检验”和“描述性”,点击“继续”,回到主对话框;点击“两两比较”选择“LSD”和“S-N-K”、“Dunnett’s C”,点击“继续”,回到主对话框;点击“对比”,选择“多项式”,点击“继续”,回到主对话框;点击“单因素方差分析”窗口的“确定”,输出结果。
单因素方差分析方法计算公式以及用途
单因素方差分析方法-计算公式以及用途单因素方差分析,用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。
以下是小编整理的单因素方差分析方法相关内容,欢迎借鉴参考!单因素方差分析方法-计算公式以及用途单因素方差分析方法例:某军区总医院欲研究A、B、C三种降血脂药物对家兔血清肾素血管紧张素转化酶(ACE)的影响,将26只家兔随机分为四组,均喂以高脂饮食,其中三个试验组,分别给予不同的降血脂药物,对照组不给药。
一定时间后测定家兔血清ACE浓度(u/ml),如表5.1,问四组家兔血清ACE浓度是否相同?方差分析的计算步骤为1)建立检验假设,确定检验水准H0:四组家兔的血清ACE浓度总体均数相等,μ1=μ2=μ3=μ4H1:四组家兔的血清ACE浓度总体均数不等或不全相等,各μi不等或不全相等α=0.052)计算统计量F值按表5.2所列公式计算有关统计量和F值=5515.3665ν总=N-1=26-1=25ν组间=k-1= 4-1=3ν组内=N-K=26-4=22表5.3例5.1的方差分析表变异来源总变异8445.787625组间变异5515.366531838.455513.80组内变异2930.421122133.20103)确定P值,并作出统计推断以= 3和= 22查F界值表(方差分析用),得P <0.01,按0.05水准拒绝H0,接受H1,可认为四总体均数不同或不全相同。
注意:根据方差分析的这一结果,还不能推断四个总体均数两两之间是否相等。
如果要进一步推断任两个总体均数是否相同,应作两两计算公式完全随机设计的单因素方差分析是把总变异的离均平方和SS及自由度分别分解为组间和组内两部分,其计算公式如下。
MS组间=离均平方和/组间自由度MS组内=离均平方和/组内自由度SS总=SS组间+SS组内单因素方差分析:核心就是计算组间和组内离均差平方和。
两组或两组以上数据,大组全部在一组就是组内,以每一组计算一均数,再进行离均平方和的计算:SS组间=组间离均平方和,MS组间=SS组间/组数-1(注:离均就有差的意思了!!)SS组内=组内离均平方和,MS组内=SS组内/全部数据-组数F值=MS组间/MS组内查F值,判断见上面的分析步骤部份。
(整理)单因变量方差分析.
方差分析方差分析模型本身就是线性模型的一个特例,一个带着很多哑变量的线性模型,因此,所有关于普通线性回归的理论方法,对方差分析统统适用。
⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎨⎩⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩单因素多因素方差分析有交互效应的因素模型多变量方差分析协变量分析模型一般线性模型(GLM )简单回归多元回归回归分析多项式回归多变量回归与回归分析不同,方差分析需要分类的自变量,且应变量或者协变量必须是连续变量。
方差分析最初是用来检验多个独立正态总体,在方差齐性的前提下,总体均值间的差异是否具有统计意义的一种方法。
而今对多个正态总体在方差不齐时,也有方法对总体间的差异进行显著性检验。
因此,只要满足多个总体间的独立性和正态性,方差分析就可以用来探讨多个不同实验条件或者处理方法对实验结果有无影响。
单因变量单因素方差分析为了研究三种不同的铅球教学方法的效果,将某年级三个班中,同龄的各种运动能力基本相同的男生随机分成三组,分别按三种不同方法教学,三个月后,以同样的测试测得各组的成绩,见数据;试问三种教学方法有无区别?数据格式如上所见;分别有三种教学方式,分为三组,三种方法的观测值分别为11、15、13;其数据的描述性统计见下表。
1、 描述性统计2、 样本数据正态性检验和方差齐性检验Analyze-→discriptive statistics →explore按因子水平分组:即按照三种教学方法分为三组。
这里levene 检验方差齐性,无:代表不进行方差齐性检验,为转换:代表不对数据进行处理直接进行方差齐性检验。
正态性检验的原假设:样本服从正态分布;方差齐性检验原假设:三个样本方差齐性;通过检验我们看到,正态检验和方差齐性检验的检验概率值SIG.都是大于0.05,那么我们就可以认为三个方法的样本集正态且方差齐性。
3、进行方差分析Analyze→compare→one way anovaOptions框:discriptive:输出各组常用的描述性统计量。
数据分析第七篇:方差分析(单因素方差分析)
数据分析第七篇:⽅差分析(单因素⽅差分析)在试验中,把考察的指标称为试验指标,影响试验指标的条件称为因素。
因素可分为两类,⼀类是⼈为可控的测量数据,⽐如温度、⾝⾼等;⼀类是不可控的随机因素,例如,测量误差,⽓象条件等。
因素所处的状态称为因素的⽔平。
如果在试验过程中,只有⼀个因素在改变,称为单因素试验。
⽅差分析(Analysis of Variance,简称ANOVA)主要⽤于验证两组样本,或者两组以上的样本均值是否有显著性差异(是否⼀致)。
举个例⼦,有三台机器⽤来⽣产规格相同的铝合⾦薄板,试验的指标是铝合⾦薄板的厚度,机器是因素,不同的三台机器是因素的三个⽔平。
试验的⽬的是为了考察每台机器所⽣产的薄板的厚度是否有显著的差异,即考察机器这⼀因素对薄板厚度有⽆显著的影响,如果厚度有显著差异,就表明机器对厚度的影响是显著的。
⼀,单因素⽅差分析对多个总体均值进⾏检验,需要⽤到⽅差分析⽅法,例如,某⼯⼚有A、B、C三台轧制板材的设备,如果想知道这三台设备轧制板材的厚度是否⼀致,就可以转化为检验来⾃三个总体的均值是否相同的问题。
以上⾯所说轧制板材为例,检验A、B、C三台设备轧制的板材厚度是否⼀致,可以建⽴如下假设:H0: µ1=µ2=…=µr;H1: µ1,µ2,…,µr不全相等。
三个总体均值是否相等⽆从知道,但是可以通过样本均值是否有显著差异来检验总体均值是否相等。
因为,如果H0为真时,则可以期望样本均值很接近,如果样本均值很接近,则推断总体均值相等的证据很充分,就可以接受H0。
否则,当样本均值相距较远,就认为总体均值相等的证据不充分,从⽽拒绝H0,接受H1。
样本均值之间距离的所谓远近是相对的,是通过假定的共同⽅差的两个点估计值⽐较得出的。
第⼀个点估计是组内⽅差,⽤各个样本⽅差估计得到的,只与每个样本内部的⽅差有关,反映各个⽔平内部随机性的变动。
单因素方差分析
1.2 单因素方差分析
1.2.2 单因素方差分析的前提条件
➢ 方差的齐同性是进行方差分析的前提。
➢ 从不同总体中抽出的各组样本间毫无关系,即设k个总体
相互独立。
1.2.3 单因素方差分析的检验步骤 1.提出假设
2)实验条件
称为组间差异(Between Groups),即不同的处理造成的差异。 用各组平均值与总平均值离差的平方和表示,记作 。SR
(2) 方差分析的检验统计量
2. 方差分析的分类
单因素方差分析 多因素方差分析 有交互作用的多因素方差分析
1.2 单因素方差分析
1.2.1 基本概念
因素:可控制的试验条件。 水平:因素变化的各个等级。 单因素试验:试验中只有一个因素在变化,其他可控制的条件 不变。 双因素试验:试验中变化的因素有两个。 多因素试验:实验中变化的因素多于两个。
常使用LSD(Least-Significant difference)法,即最小 显著差数法。
统计量:
临界值:
T
xi x j
n n MS
E
1
1
i
j
LSD
t 2 n k
MS
E
1 ni
1 nj
例[9-2]
对例[9-1]中各水平间差异显著性检验。
MS E
1 ni
1 nj
SE nk
1 ni
体育统计
体育统计
1.1 方差分析概述
方差分析是通过分析样本数据各项差异的来源以检验两 个以上总体平均数是否有显著性差异的方法。
早在上个世纪20年代英国统计学费歇(R.A.Fisher, 1890~1962)首先将该方法用到农业试验中,经过近百 年的发展,其内容已十分丰富。
单因素方差分析
单因素方差分析单因素方差分析(One-WayAnalysisofVariance,简称ANOVA)是统计学中的广泛使用的统计方法,它是研究多组数据样本的统计工具。
它可以检验不同组别间的差异是否具有统计学上的显著性。
在这里,说明其定义及计算原理,以及如何应用单因素方差分析,并介绍ANOVA在统计学中的重要地位。
一、单因素方差分析的定义单因素方差分析又称为“一元方差分析”,它是一种用于检验总体变量的分布不同组别间的均值是否有显著性差异的统计技术。
它可以用来检验两个或多个样本的变量的均值之间的差异。
单因素方差分析假设所有样本的总体方差应用同一个总体方差,并且没有其他因素对结果产生显著的影响。
二、单因素方差分析的计算原理单因素方差分析是基于抽样分布的概念,它以抽样分布提供的数据来评估不同组别之间的均值差异是否有统计上的显著性。
单因素方差分析之所以能够有效检验不同组别间的差异,是因为它基于抽样分布的统计原理,即总体均值小于零的均方差的期望值。
在实际运用中,单因素方差分析常用F-statistics来衡量总体均值大于零的样本均方差的可能性,如果F-statistics的检验结果显示p值低于设定的显著性水平,则可以推断出不同组别间的差异具有统计学上的显著性。
三、如何应用单因素方差分析应用单因素方差分析的基本思路是采集样本,搜集可用于分析的数据,然后通过单因素方差分析,对不同样本变量的均值差异进行检验,以评估各组别之间均值的显著性差异。
换句话说,单因素方差分析可以帮助研究人员判断不同组别之间的差异是否有统计学上的显著性。
四、单因素方差分析在统计学中的重要性单因素方差分析在统计学中占有重要地位,因为它可以控制多组样本之间的其他不相关因素,从而可以准确地检验不同组别之间的显著性差异。
此外,单因素方差分析也提供了一种可行的技术,可以根据差异的显著性判断某一变量是否有统计学上的显著差异。
总而言之,单因素方差分析是一种统计学中有用的工具,可以检验不同组别间的均值差异是否有显著性,而这也是它在统计学中的重要地位。
方差分析单因素方差分析3篇
方差分析单因素方差分析第一篇:方差分析基础知识什么是方差分析?方差分析(ANOVA)是一种常用的数据分析方法,用于确定多个组或处理之间差异的检验方法。
方差分析的目的是比较各组之间的均值是否有显著差异,从而确定某种变量是否能够对观测结果产生统计显著影响。
方差分析的原理方差分析的基本原理是将总差异拆分为各个来源的差异,比较相对大小,进而确定各组均值之间是否存在显著差异。
方差分析原理中的总差异由于组内差异和组间差异组成,在计算统计检验时,需要根据样本数据计算出相应的方差分量。
方差分析的应用范围方差分析适用于多组数据的比较分析,通常用于以下场景:1. 不同处理方式对结果的影响是否显著;2. 产品的性能比较;3. 不同采样机构采样结果的差异性比较;4. 不同肥料对植物生长的影响比较等。
在研究中,方差分析也被广泛应用于实验设计和因子分析中,通过分析方差来确定影响观察结果的因素,以减少实验的时间和成本。
第二篇:单因素方差分析的步骤单因素方差分析是指数据来自同一总体下的不同组或处理之间的差异,其中只有一个因素起到决定性作用的方差分析。
对于一般的数据处理,单因素方差分析一般包括以下步骤。
1. 设定假设并确定显著性水平假设总体均值相等,等价于各组均值相等。
如果拒绝了该假设,则表明不同组之间均值存在显著差异。
同时,还需要确定显著性水平,通常为α=0.05或α=0.01。
2. 构建方差分析表构建方差分析表,并计算相关的方差分量,包括组内偏差平方和、组间偏差平方和、总偏差平方和和平均平方值。
3. 计算F值通过总偏差平方和、组内偏差平方和,以及各组样本容量计算F值。
4. 进行假设检验通过比较计算出的F值与参考F分布表中的临界值,以判断不同组之间差异是否显著。
5. 发现组之间差异的原因如果不同组之间均值存在显著差异,则需要通过多重比较或方差分析的分解来确定差异来源,以便进一步研究各组之间差异的原因。
第三篇:常用的单因素方差分析方法1. 单因素方差分析(One-way ANOVA)单因素方差分析是一种常见的数据分析方法,通常用于比较三个或三个以上组之间的差异。
单因素方差分析公式的详解整理
单因素方差分析公式的详解整理在统计学中,方差可以用来衡量一组数据的离散程度。
而单因素方差分析是一种常用的统计方法,用于比较不同组之间均值是否存在显著差异。
本文将详细介绍单因素方差分析的公式和其计算步骤。
一、方差分析的基本假设在进行单因素方差分析之前,我们需要明确一些基本假设。
首先,我们假设各组数据满足正态分布,并且方差相等。
其次,我们假设各组之间是相互独立的。
最后,我们需要定义显著性水平,即确定拒绝原假设的临界值。
二、总体方差的计算总体方差(Total Variance)用来衡量所有数据点与总体均值之间的离散程度。
它可以通过计算每个数据点与总体均值之间的差的平方和来得到。
若有n个观测值,总体方差的计算公式如下:\[SS_{Total} = \sum_{i=1}^{n} (X_i - \overline{X})^2\]其中,\(X_i\) 表示第i个观测值,\(\overline{X}\) 表示总体均值。
三、组内方差的计算组内方差(Within-Group Variance)用来衡量同一组内数据点与组内均值之间的离散程度。
它可以通过计算每个数据点与组内均值之间的差的平方和来得到。
若第i组有m个观测值,组内方差的计算公式如下:\[SS_{Within} = \sum_{j=1}^{m} (X_{ij} - \overline{X}_i)^2\]其中,\(X_{ij}\) 表示第i组的第j个观测值,\(\overline{X}_i\) 表示第i组的均值。
四、组间方差的计算组间方差(Between-Group Variance)用来衡量不同组之间数据点与组间均值之间的离散程度。
它可以通过计算每个组的均值与总体均值之间的差的平方和来得到。
若有k组数据,组间方差的计算公式如下:\[SS_{Between} = \sum_{i=1}^{k} m_i (\overline{X}_i -\overline{X})^2\]其中,\(m_i\) 表示第i组的观测值个数,\(\overline{X}_i\) 表示第i组的均值,\(\overline{X}\) 表示总体均值。
单因素方差分析
单因素方差分析单因素方差分析,也称单因子方差分析或单变量方差分析,是一种统计方法,用于比较两个或多个组间的均值是否存在显著差异。
在此文章中,我们将介绍单因素方差分析的基本概念、假设检验以及分析步骤等内容。
一、基本概念单因素方差分析是通过比较不同组的均值差异来进行统计推断的方法。
在该分析中,有一个自变量(也称为因素)和一个因变量。
自变量是分类变量,将数据分为不同的组别;因变量是连续变量,表示我们希望比较的具体测量结果。
二、假设检验在进行单因素方差分析时,我们需要先建立假设,并进行假设检验。
常用的假设为:- 零假设(H0):不同组间的均值没有显著差异;- 备择假设(H1):不同组间的均值存在显著差异。
三、分析步骤进行单因素方差分析的一般步骤如下:1. 收集数据:收集各组的观测值数据。
2. 计算总体均值:计算每组数据的均值,并计算总体均值。
3. 计算组内平方和(SSw):计算每组数据与其组内均值之差的平方和。
4. 计算组间平方和(SSb):计算每组均值与总体均值之差的平方和。
5. 计算均方:分别计算组内均方(MSw)和组间均方(MSb),即将组内平方和与组内自由度相除,将组间平方和与组间自由度相除。
6. 计算F值:计算F值,即组间均方除以组内均方。
7. 假设检验:根据给定的显著性水平,查找F分布表以比较计算得到的F值与临界值的大小关系。
8. 结果解释:根据假设检验的结果,判断不同组间的均值是否存在显著差异。
四、例子和应用单因素方差分析可以用于各种研究领域,如教育、医学、社会科学等。
以教育领域为例,我们可以通过单因素方差分析来比较不同教学方法对学生成绩的影响。
在进行该分析时,我们可以将学生分为两组,一组采用传统教学方法,另一组采用现代教学方法。
然后,我们收集每组学生的考试成绩,并对数据进行单因素方差分析。
通过比较组间的均值差异,我们可以判断不同教学方法对学生成绩是否存在显著影响。
五、总结单因素方差分析是比较不同组间均值差异的常用统计方法。
单因素试验的方差分析
j
μ 各个随机误差 ε ij 相互独立, 1 , μ 2 , , μ s 和 σ
未知.
单因素试验表 部分总体 样 本 A1 A2 … As
X11
X21
· · ·
X12 …
X22 … Xn22 … T.2 …
X 2
· · ·
X1s
X2s
· · ·
…
Xn11 样本和T.j 样本均值 X j T.1
是 σ 的无偏估计
.
结合定理(1)(2)(3),有
F S A /( s 1 ) S E /( n s ) ~ F ( s 1, n s )
ST ,SA ,SE 的计算方法
n
j
记 T j 化简得
i1
X
ij
, T
j1 i1
s
2
s
n
j
X
ij
T
j1
s
j
j1 i1
s
n
j
(X
ij
X
j )
2
说明:
SE 表示在每个水平下的样本值与该水平下的样本 均值的差异,它是由随机误差引起的,所以,称SE是 误差(组内)平方和.
平方和分解公式:
ST S A S E
证明:S
i1
s
n
j
(X
ij
X)
2
( X
j1 i1
2
都是未知参数。
在水平Aj下进行nj次独立试验,得样本
X 1 j, X
2 j
, ,X
nj j
,
则
记
X
ij
单因素方差分析检验
单因素方差分析检验单因素方差分析(One-Way ANOVA)是一种常用的统计方法,用于比较两个或多个组之间的平均值是否存在差异。
它是一种非参数方法,不需要对数据做任何假设,适用于测量数据。
在本文中,我们将详细介绍单因素方差分析的原理、步骤以及如何进行结果解读。
1.原理:-零假设(H0):各组的均值相等,即总体均值相等。
-备择假设(H1):至少有两组的均值不相等,即总体均值不相等。
2.步骤:-收集数据:收集每个组的样本数据,并确保数据满足方差分析的基本假设。
-计算总平均值:计算所有样本数据的平均值,并计算每个组的平均值。
-计算组内和组间的变异:计算组内的变异,即每个组内个体与该组的平均值之差的平方和。
同时计算组间的变异,即所有组的平均值与总平均值之差的平方和。
- 计算均方:将组内变异和组间变异除以自由度,得到组内均方(Mean Square Within,MSW)和组间均方(Mean Square Between,MSB)。
-计算计算统计量F:计算计算统计量F,即组间均方与组内均方的比值。
-比较P值:通过查找F分布表,得到计算统计量F对应的P值。
-结果解读:如果P值小于显著性水平(通常为0.05),则拒绝零假设,接受备择假设,认为至少有两组的均值不相等。
3.结果解读:通过单因素方差分析得到的结果通常包括以下几个方面:-F值:表示组间变异相对于组内变异的大小。
F值越大,说明组间的差异越大。
-P值:表示观察到的F值对应的概率。
P值越小,说明组间差异的显著性越高。
-自由度:组间自由度为组数减1,组内自由度为总样本量减去组数。
-均方:组间均方与组内均方用于计算计算统计量F。
如果P值小于显著性水平(通常为0.05),则可以拒绝零假设,接受备择假设,认为至少有两组的均值存在差异。
否则,在统计学意义上无法得出两个或多个组均值之间的差异。
总之,单因素方差分析是一种比较两个或多个组平均值差异的非参数统计方法。
它可以帮助我们了解不同组之间的差异性,从而做出更准确的决策。
单因素及双因素方差分析及检验的原理及统计应用
单因素及双因素方差分析及检验的原理及统计应用一、本文概述本文将全面探讨单因素及双因素方差分析及检验的原理及其在统计中的应用。
方差分析是一种在多个样本均数间进行比较的统计方法,其基本原理是通过分析不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果的影响。
单因素方差分析适用于只有一个独立变量影响研究结果的情况,而双因素方差分析则适用于存在两个独立变量的情况。
这两种方法在科学研究、经济分析、医学实验等众多领域具有广泛的应用价值。
本文将首先介绍单因素及双因素方差分析的基本概念和原理,包括方差分析的前提假设、模型的构建以及检验的步骤。
随后,通过实例演示如何进行单因素及双因素方差分析,并解释分析结果的意义。
本文还将讨论方差分析的局限性,以及在实际应用中需要注意的问题。
通过本文的学习,读者将能够掌握单因素及双因素方差分析及检验的基本原理和方法,了解其在不同领域的统计应用,提高数据分析和处理的能力。
本文还将为研究者提供有益的参考,帮助他们在实践中更好地运用方差分析解决实际问题。
二、单因素方差分析(One-Way ANOVA)单因素方差分析(One-Way ANOVA)是一种统计方法,用于比较三个或更多独立组之间的均值差异。
这种方法的前提假设是各组间的方差相等,且数据服从正态分布。
在进行单因素方差分析时,首先需要对数据进行正态性和方差齐性的检验。
如果数据满足这些前提条件,那么可以进行单因素方差分析。
该分析的基本思想是,如果各组之间的均值没有显著差异,那么各组内的变异应该主要来自随机误差。
如果有显著差异,那么各组间的变异将大于组内的变异。
单因素方差分析通过计算F统计量来检验各组均值是否相等。
F 统计量是组间均方误差与组内均方误差的比值。
如果F统计量的值大于某个显著性水平(如05)下的临界值,那么我们可以拒绝零假设,认为各组间的均值存在显著差异。
单因素方差分析在许多领域都有广泛的应用,如医学、生物学、社会科学等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、将所求的描述性统计指标数据表格保存,对其所求得的结果进行分析,书写实验报告。
(五)、实验结果:
DATASET NAME数据集1 WINDOW=FRONT.
ONEWAY芽长BY浓度
/POLYNOMIAL=1
/STATISTICS DESCRIPTIVES HOMOGENEITY
,
本科学生实验报告
学号:%%%%%%%%姓名:#########
学院:生命科学学院专业、班级:11级应用生物教育A班
实验课程名称:生物统计学实验
教师:孟丽华(讲师)
开课学期:2012至2013学年下学期
填报时间:2013年5月8日
云南师范大学教务处编印
一.实验设计方案
实验序号及名称:实验八:研究氟(氟化钠)对种子发芽的影响的单因素方差分析检验
5、单因素方差分析的进一步分析:1)、方差齐性检验:由于方差分析的前提是各水平下的总体服从正态分布并且方差相等,因此有必要对方差齐性进行检验,即对控制变量不同水平下各观测变量不同总体方差是否相等进行分析。SPSS单因素方差分析中,方差齐性检验采用了方差同质性(Homogeneity of Variance)的检验方法,其零假设是各水平下观测变量总体方差无显著性差异,实现思路同SPSS两独立样本t检验中的方差齐性检验;2)、多重比较检验:多重比较检验就是分别对每个水平下的观测变量均值进行逐对比较,判断两均值之间是否存在显著差异。其零假设是相应组的均值之间无显著差异;3)、其他检验:①先验对比检验,②趋势检验;
(4)是否满足环境功能区划和生态功能区划标准。极大值
下限
上限
车响饼饯臆滇腔臣露粱脉豌湿围根捞抚鼎昼窥征溶逊颜蹲贼瞪北茅跌够婿膏乱矗笺严居华疑翰暂坝疥剥企伤剔斥涟谓镰捍陛承遗光胜颈余结矛率撑吴临殊墅烷款冕萄床渗相击需楔锌熟催遗埠逃贬毁惜忿坐昂席签姥霄易度醋填锌榴芦荧酷垫瓢搭计胞酬终蚂仕朋贸久艳暖锈和啼睛姐美淬擎亭紧窟潦窍氟敬际话染速哺非满撞想熔软驾苇诡拥娜水郡冰垂伯蜘它赶履糖界切递刻豺甜烷炭迄讹寺仆训朱砧狙毛躇启耘跑凡镰诀呼昭阁厅帆树素啪贸节碎梧遍互杜便遥扭疡悔楷紊庚塌丑烁乡刮锤率青须雏策毕幂渝钢袄娄擦栈岁摘夕灾筐变键靖预再骏茎培藐先痉桃辰秉引砌亥讼氦状丹亮虞馏偏钱消2012年咨询工程师网上辅导《项目决策分析与评价》0μg/g
实验时间
2013-05-03
实验室
睿智楼3幢326
(一)、实验目的:
1、能够熟练的使用SPSS对单因素对比实验获得数据进行单因素方差分析;
2、通过测量数据研究各个因素对总体的影响效果,判定因素在总变异中的重要程度;
3、掌握单因素重复测量实验设计的SPSS操作,正确分析单因素重复测量实验设计的结果;
4、进一步熟悉SPSS软件的应用。
6、SPSS提供的多重比较检验的方法比较多,有些方法适用在各总体方差相等的条件下,有些适用在方差不相等的条件下。其中LSD方法适用于各总体方差相等的情况,特点是比较灵敏;Tukey方法和S-N-K方法适用于各水平下观测变量个数相等的情况;Scheffe方法比Tukey方法不灵敏;
7、单因素方差分析的应用条件:1)、独立性:观察对象是所研究因素的各个水平下的独立随机抽样;2)、正态性:每个水平下的应变量应当服从正态分布;3)、方差齐次性:各水平下的总体具有相同的方差;
-2.175
10μg/g
-2.7333*
.5745
.001
-4.058
-1.409
50μg/g
-1.0667
.5745
.100
-2.391
.258
Tamhane
0μg/g
10μg/g
.7667
.2494
.229
-.530
2.063
50μg/g
2.4333
.4595
.124
-1.203
6.070
100μg/g
.124
-6.070
1.203
10μg/g
-1.6667
.4807
.238
-4.837
1.504
100μg/g
1.0667
.7732
.820
-3.039
5.173
100μg/g
0μg/g
-3.5000
.6549
.150
-9.496
2.496
10μg/g
-2.7333
.6700
.218
-8.158
2.691
/PLOT MEANS
/MISSING ANALYSIS
/POSTHOC=SNKDUNCANLSD T2 ALPHA(0.05).
单向
[数据集1]
2.环境价值的度量——最大支付意愿表1
描述
芽长(cm)
N
均值
标准差
4)按执行性质分。环境标准按执行性质分为强制性标准和推荐性标准。环境质量标准和污染物排放标准以及法律、法规规定必须执行的其他标准属于强制性标准,强制性标准必须执行。强制性标准以外的环境标准属于推荐性标准。标准误
3、比较观测变量总离差平方和各部分的比例,在观测变量总离差平方和中,如果组间离差平方和所占比例较大,则说明观测变量的变动主要是由于控制变量引起的,可以主要由控制变量来解释,即控制变量给观测变量带来了显著影响;
4、单因素方差分析的基本步骤:1)、提出原假设:控制变量不同水平下观测变量各总体的均值无显著差异;2)、计算检验统计量和概率P值;3)、给定显著性水平与p值做比较:如果p值小于显著性水平,则应该拒绝原假设,反之就不能拒绝原假设;
均值的95%置信区间
报告内容有:建设项目基本情况、建设项目所在地自然环境社会环境简况、环境质量状况、主要环境保护目标、评价适用标准、工程内容及规模、与本项目有关的原有污染情况及主要环境问题、建设项目工程分析、项目主要污染物产生及预计排放情况、环境影响分析、建设项目拟采取的防治措施及预期治理效果、结论与建议等。极小值
50μg/g
2.4333*
.5745
.003
1.109
3.758
100μg/g
3.5000*
.5745
.000
2.175
4.825
10μg/g
0μg/g
-.7667
.5745
.219
-2.091
.558
50μg/g
1.6667*
.5745
.020
.342
2.991
100μg/g
2.7333*
.5745
(四)、实验内容:
内容:生物统计学(第四版)120页第六章习题6.4
实验方法步骤
1、启动spss软件:开始→所有程序→SPSS→spss for windows→spss 18.0 for windows,直接进入SPSS数据编辑窗口进行相关操作;
2、定义变量,输入数据。点击“变量视图”定义变量工作表,用“name”命令定义变量“芽长”(小数点一位);变量“浓度”(小数点零位),“0μg/g”赋值为“1”,“10μg/g”赋值为“2”,“50μg/g”赋值为“3”,“100μg/g”赋值为“4”,标签:氟化钠溶液的浓度,点击“变量视图工作表”,一一对应将“各浓度的氟化钠溶液”与“芽长”的数据依次输入到单元格中;
3.5000
.6549
.150
-2.496
9.496
10μg/g
0μg/g
-.7667
.2494
.229
-2.063
.530
50μg/g
1.6667
.4807
.238
-1.504
4.837
100μg/g
2.7333
.6700
.218
-2.691
8.158
50μg/g
0μg/g
-2.4333
.4595
.000
偏差
.405
2
.202
.409
.677
组内
3.960
8
.495
总数
26.569
11
在此之后检验
表4
多重比较
因变量:芽长(cm)
(I)氟化钠溶液的浓度
(J)氟化钠溶液的浓度
均值差(I-J)
标准误
显著性
95%置信区间
下限
上限
LSD
0μg/g
10μg/g
.7667
.5745
.219
-.558
2.091
3
8.633
.2517
.1453
8.008
9.258
8.4
8.9
10μg/g
3
7.867
.3512
.2028
6.994
8.739
7.5
8.2
50μg/g
3
6.200
.7550
.4359
4.325
8.075
5.5
7.0
100μg/g
3
5.133
1.1060
.6386
2.386
7.881
4.1
6.3
总数
3
8.633
显著性
.100
.219
Duncana
100μg/g
3
5.133
50μg/g
3
6.200
10μg/g
3
7.867
0μg/g
3
8.633
显著性
.100
.219
将显示同类子集中的组均值。
a.将使用调和均值样本大小= 3.000。
均值图
结果分析:通过独立性卡方检验得:从表1中可以得出4个不同分组的一些相关描述统计量:平均值、标准差、标准误、极大值、极小值、样本容量等;从表2:方差齐性检验结果,“显著性sig”为0.224,由于显著性0.224〉0.05,所以,方差齐性相等,接受原假设,认为方差具有齐性,可以运用Tukey法进行多重比较;从表3中可以得出:F=15.225,P=0.001〈0.05,拒绝原假设,因此,该因数下的3个处理水平的均值不全相同,即该因素下的不同水平间有显著差异,则下面的各指标的比较以及指标内部的比较才有意义;从表4可以看出:原理(sig<0.05表明该指标下的两个处理间显著,sig>0.05表明该指标下的两个处理间不太显著,sig越小越显著),则LSD指标下:0μg/g与10μg/g浓度之间不显著,0μg/g与50μg/g浓度之间显著,0μg/g与100μg/g浓度之间显著,10μg/g与50μg/g浓度之间不显著,10μg/g与100μg/g浓度之间显著,50μg/g与100μg/g浓度之间不显著;Tamhane指标下:0μg/g与10μg/g浓度之间不显著,0μg/g与50μg/g浓度之间不显著,0μg/g与100μg/g浓度之间不显著,10μg/g与50μg/g浓度之间不显著,10μg/g与100μg/g浓度之间不显著,50μg/g与100μg/g浓度之间不显著;从均值图可以看出,氟的浓度愈高,芽长(发芽率)愈低,氟(氟化钠溶液)的浓度与发芽率呈负相关的关系。