补偿装置结构与原理.

合集下载

无功补偿装置的工作原理与结构

无功补偿装置的工作原理与结构

无功补偿装置的工作原理与结构无功补偿装置是一种重要的电力设备,用于提高电网的功率因数,减少无功功率的损耗。

它在工业生产、电力系统中发挥着重要的作用。

本文将介绍无功补偿装置的工作原理和结构,以便读者更好地理解和应用。

一、工作原理:无功补偿装置的工作原理基于功率因数的概念和相位关系。

功率因数是指有功功率与视在功率之间的比值,通常用cosφ表示。

在电力系统中,发电机产生的功率可以分为有功功率和无功功率。

有功功率用来做实际的功率输出,而无功功率则是电能在传输和分配过程中的无效功率。

无功补偿装置通过将无功功率与有功功率的相位差调整到最小,从而减少无功功率的损耗。

它采用电容器或电感器进行补偿,根据电力系统的需求,在适当的时候引入或消除电容器或电感器,使得电压和电流的相位一致,功率因数接近1,达到无功补偿的效果。

无功补偿装置通常由控制器、电容器或电感器、断路器等组成。

控制器通过监测电流和电压的波形,实时判断无功功率和功率因数的大小,根据设定值控制电容器或电感器的引入或消除。

断路器用于保护电容器或电感器,防止过电流和短路等故障。

二、结构及组成部分:无功补偿装置的结构通常分为静态型和动态型两种。

静态型无功补偿装置主要由电容器组成。

电容器由多个电容单元串联或并联而成,具有较大的容量。

一般采用铝电解电容器或聚丙烯薄膜电容器,具有容量大、体积小、功耗低等优点。

静态型无功补偿装置在电力系统中安装方便,故障率低,适用于中小型电力负载。

动态型无功补偿装置主要由控制器、开关装置和电感器组成。

控制器负责监测和控制整个系统的运行。

开关装置用于控制电感器的引入和消除。

电感器由多个线圈组成,可以根据电力系统的需求来调整无功功率的补偿量。

三、应用场景:无功补偿装置广泛应用于电力系统、工矿企业以及特定负载场景中。

在电力系统中,无功补偿装置可以提高电压稳定性,减少线路损耗,降低电力设备的负荷率。

在工矿企业中,无功补偿装置可以提高设备的效率,减少电能损耗,节约能源。

补偿装置结构与原理

补偿装置结构与原理
未来展望
随着新材料和新工艺的不断涌现,气压补偿装置的性能将得到进一步提升。未来,气压 补偿装置有望实现更低的成本、更高的可靠性和更长的使用寿命,更好地满足工业生产 的需求。同时,气压补偿装置还将进一步实现智能化控制,提高其自动化和智能化水平。
THANKS FOR WATCHING
感谢您的观看
未来展望
随着液压技术的不断进步,液压补偿装置的 性能将得到进一步提升。未来,液压补偿装 置有望实现更高的压力和流量、更低的能耗 和更好的环保性能,更好地满足工业生产的
需求。
气压补偿装置的发展趋势与未来展望
发展趋势
气压补偿装置正朝着低成本、高可靠性和智能化的方向发展。为了降低生产成本和提高 生产效率,气压补偿装置需要具备更高的可靠性和更长的使用寿命。
未来展望
随着新材料、新工艺的不断涌现,机械补偿装置的性能将得到进一步提升。未 来,机械补偿装置有望实现更高的精度、更短的响应时间和更长的使用寿命, 更好地满足工业生产的需求。
电子补偿装置的发展趋势与未来展望
发展趋势
电子补偿装置正朝着数字化、集成化和智能 化的方向发展。随着电子技术和控制理论的 不断进步,电子补偿装置的精度和稳定性得 到了显著提高,同时其体积和重量也得到了 有效减小。
液压补偿装置的性能特点
功率密度大
液压补偿装置具有较大的功率密度,能够在 较大的负载下实现稳定的补偿效果。
对负载敏感
液压补偿装置对负载的变化较为敏感,需要 进行相应的控制和调节。
响应速度快
液压补偿装置的响应速度较快,能够满足许 多快速响应的应用需求。
需要专业维护
液压补偿装置需要专业的维护和保养,以保 证其正常工作和延长使用寿命。
适用范围广
机械补偿装置能够适应各种不同的工作环境和条件,如高温、低温、 高压、真空等。

补偿式微压计工作原理

补偿式微压计工作原理

补偿式微压计工作原理一、引言补偿式微压计是一种常用的压力测量设备,广泛应用于工业控制、仪表仪器和自动化系统等领域。

它通过测量压力对传感器产生的位移进行补偿,从而实现准确的压力测量。

本文将详细介绍补偿式微压计的工作原理。

二、补偿式微压计的结构补偿式微压计主要由两个部分组成:感应器和补偿装置。

感应器通常采用压阻式传感器,其结构简单,灵敏度高。

补偿装置则通过对感应器产生的位移进行补偿,从而实现对压力的测量。

三、感应器的工作原理感应器中的压阻式传感器是补偿式微压计的核心部件。

它由一块弹性薄膜和一层薄膜电阻组成。

当外部压力作用于薄膜上时,薄膜会产生微小的变形,从而导致电阻值的改变。

这种电阻值的变化可以通过电路进行测量和处理,从而得到压力的准确数值。

四、补偿装置的工作原理补偿装置通过对感应器产生的位移进行补偿,实现对压力的准确测量。

补偿装置一般由两个部分组成:补偿腔和参考腔。

补偿腔与感应器相连,接受来自感应器的压力信号;参考腔则通过一个参考压力源与补偿腔相连,提供一个已知的参考压力。

在补偿装置中,感应器和参考腔之间的压力差会导致补偿腔中的气体发生位移。

而这个位移会通过传动装置传递给测量装置,从而实现对压力的测量。

传动装置通常由一根针杆和一个测量装置组成,针杆与补偿腔相连,测量装置则用于测量针杆的位移。

五、补偿式微压计的工作过程当外部压力作用于感应器时,感应器中的薄膜会产生微小的变形,从而改变电阻值。

这个电阻值的变化通过电路进行测量和处理,得到压力的数值。

感应器和参考腔之间的压力差也会导致补偿腔中的气体发生位移。

位移通过传动装置传递给测量装置,测量装置测量针杆的位移,并将其转化为压力数值。

通过对比感应器测得的压力数值和补偿装置测得的压力数值,可以得到准确的压力测量结果。

补偿装置对感应器产生的位移进行补偿,提高了测量的准确性。

六、总结补偿式微压计通过感应器和补偿装置的协同工作,实现对压力的准确测量。

感应器中的压阻式传感器通过测量电阻值的变化,得到压力的数值。

无功补偿装置的作用及工作原理

无功补偿装置的作用及工作原理

无功补偿装置的作用及工作原理无功补偿装置是用于改善电力系统无功功率的设备,其作用是提高电力系统的功率因数,降低无功功率的流动以减少电力系统的无用能量损耗、提高系统的供电质量以及稳定运行。

无功补偿装置通常是由无功补偿电容器或者无功补偿电抗器构成,根据电力系统需要的补偿类型安装相应的补偿装置。

无功补偿装置的工作原理主要基于电流和电压之间的相位差。

功率因数是电流和电压之间相位差的函数,当电流和电压的相位差为零时,功率因数为1,这时电力系统处于纯阻性负载状态,所有的电能都被有效地转换为有用功。

然而,在现实情况下,电力系统中通常存在着诸如感性负载和容性负载等非纯阻性负载,导致电流和电压之间存在一定的相位差,功率因数小于1、当电流的相位落后于电压相位时,这被称为感性载荷,而当电流的相位超前于电压相位时,这被称为容性负载。

1.无功补偿电容器补偿:电容器具有存储能量的特性,当电容器与电力系统并联时,它可以吸收电流中的无功功率。

当系统的功率因数较低时,通过将无功补偿电容器与系统并联,可以吸收电流中的无功功率,并提高功率因数。

电容器通过补偿无功功率,降低系统中的无功损耗,提高电力系统的效率。

2.无功补偿电抗器补偿:电抗器和电容器相反,它消耗无功功率。

当系统的功率因数过高时,通过将无功补偿电抗器与系统并联,可以消耗电流中的无功功率,并提高功率因数。

电抗器通过消耗无功功率,减少系统中的无功损耗,提高电力系统的效率。

无功补偿装置通常使用自动补偿装置来监测系统的功率因数,并根据实际需求控制补偿装置的投入和退出。

当系统的功率因数较低时,自动补偿装置会投入补偿电容器来提高功率因数;当系统的功率因数较高时,自动补偿装置会退出补偿电容器,防止系统过补偿,从而实现自动无功补偿。

总而言之,无功补偿装置通过调整电流和电压之间的相位差来提高功率因数,降低系统的无功功率流动,减少无用能量损耗,并保证电力系统的稳定运行。

无功补偿装置的应用可以提高电力系统的供电质量,减少系统的能耗,对于提高电力系统的效率和可靠性具有重要作用。

补偿装置结构与原理.

补偿装置结构与原理.

、要求 半补偿时,接触线带补偿器,多采用两滑轮组结构, 滑轮组的传动比为1:2,即坠砣块的重力为接触线标称张 力的一半。
全补偿时,接触线与承力索两端均带补偿器,接触线 补偿器的安设与半补偿相同。承力索补偿器则采用三滑 轮组式,传动比为1:3。
2020/4/23
7
3、补偿器的a、b值
概念
a值:坠陀杆耳环孔中心至补偿(定)滑轮下沿的距离 为a值。 b值:坠陀串最下一块坠陀的底面至地面(或基础面) 的距离称为补偿器的b值。
径是鼓轮直径的4倍,鼓轮直径
从126~137变化,形成一个由
中间向两端缩小的锥度,图中
A、B向标示出了鼓轮的几何尺
寸。滑轮外廓曲线为阿基米德
曲线,半径由263逐渐增大至
269,275。平均每30度增大
1mm,补偿绳在滑轮沟槽内转
动。由于采用了阿基米得螺线
形滑轮沟部轮廓,当补偿鼓轮
转动时,鼓轮的传动比随回转
式中:
2020/4/23
amin ——设计时规定的最小值(mm);
bmin ——设计时规定的最小值(mm); tmin ——设计时采用的最低气温( C);
tx ——安装或调整作业时的温度(C );
tmax ——设计时采用的最高气温( C );
n ——补偿滑轮传动系数(即传动比的倒
数);
L
——锚段内中心锚结至补偿器间距离
复杂,轮径大,薄壁部位多,对生产制造设备和
工艺要求较高,价格偏贵。
2020/4/23
13
三、横承力索张力补偿
由于气温变化悬殊,对软横跨进行补偿,采用软横跨定位 绳补偿装置,即弹性补偿器。
2020/4/23
14
2020/4/23

无功补偿装置的分类及原理

无功补偿装置的分类及原理

无功补偿装置的分类及原理无功补偿装置是电力系统中的重要设备,可以通过对无功功率的调整来提高电力系统的功率因数,提高供电质量。

本文将对无功补偿装置的分类及原理进行详细介绍。

一、无功补偿装置的分类根据无功补偿装置的工作原理和结构特点,可以将其分为以下几类:静态无功补偿装置、动态无功补偿装置、谐波滤波无功补偿装置和电容式无功补偿装置。

1. 静态无功补偿装置静态无功补偿装置是通过电子元件,如电容器、电抗器等,来实现无功补偿的装置。

根据无功补偿的方式,静态无功补偿装置可以进一步细分为并联补偿和串联补偿。

并联补偿装置主要是通过并联连接电容器来补偿电路中的无功功率,这样可以提高功率因数,提高电网的稳定性。

而串联补偿装置则是通过串联连接电抗器来调整电路中的无功功率,来实现无功补偿的效果。

2. 动态无功补偿装置动态无功补偿装置主要是通过控制器来控制电容器的连接和断开,以实现对无功功率的补偿。

具有响应速度快、调节范围大等优点,适用于电网无功功率变化较大的情况。

3. 谐波滤波无功补偿装置谐波滤波无功补偿装置主要用于滤除电网中的谐波成分,以提高电网的谐波污染程度,保证电网的供电质量。

常见的谐波滤波无功补偿装置主要包括谐波滤波器和无功发生器。

4. 电容式无功补偿装置电容式无功补偿装置是一种通过电容器来实现无功补偿的装置。

通过控制电容器的容量和连接方式,可以实现对电网的无功功率进行精确调节。

二、无功补偿装置的原理无功补偿装置的原理主要是通过改变电路的电流和电压之间的相位差,来实现对电流中的无功功率的补偿。

当电力系统中存在导致无功功率的负荷或设备时,会导致电流与电压之间的相位差,从而产生无功功率。

无功补偿装置通过调整系统中的无功补偿元件(如电容器或电抗器)的连接和断开方式,来改变电路中的相位差,从而实现对无功功率的补偿。

在静态无功补偿装置中,通过控制无功补偿元件的连接或断开来改变相位角。

对于串联补偿装置,通过增加或减少串联电抗器的容值,来改变电路的无功功率。

方形补偿器的结构及原理

方形补偿器的结构及原理

方形补偿器的结构及原理方形补偿器是一种用于消除热膨胀和收缩引起的应力的装置,常用于管道系统中。

它的主要结构包括方形金属波纹管、管法兰、法兰密封垫片和管道连接件等。

方形金属波纹管是方形补偿器的核心部件,通常由不锈钢材料制成。

它的形状类似于波纹管,具有较好的弹性和伸缩性能,可以承受较大的压力和温度变化。

方形金属波纹管的外壳是一个方形的结构,内部由波纹形成,可以吸收管道系统中由于热膨胀和收缩引起的应力,从而保护管道系统的安全运行。

方形金属波纹管的两端通过管法兰与管道连接件相连接,形成封闭的管路系统。

管法兰通常由碳钢或不锈钢制成,具有较高的强度和耐腐蚀性能。

在管法兰之间,还需要使用法兰密封垫片进行密封,以防止泄漏。

根据实际工程需求,方形补偿器可以选择单法兰、双法兰或多法兰结构,以适应不同的管道连接方式。

方形补偿器的工作原理主要基于金属波纹管的伸缩性能。

当管道系统受到温度变化引起的热膨胀和收缩时,方形金属波纹管可以自由地伸缩,从而吸收热应力,避免对管道系统的损害。

当系统温度升高时,方形金属波纹管会收缩;而当系统温度降低时,方形金属波纹管会伸展。

通过这种伸缩运动,方形补偿器可以保持管道系统的相对稳定,使其能够适应温度变化,延长系统的使用寿命。

在实际应用中,方形补偿器还需要考虑到其他因素,如压力承受能力、抗震性能等。

为了确保方形补偿器的安全和可靠运行,还需要进行相应的设计计算和制造工艺控制。

此外,方形补偿器还可以根据用户需求进行定制,包括尺寸、材料和连接方式等。

总之,方形补偿器是一种用于消除管道系统中热膨胀和收缩引起的应力的装置。

它的主要结构包括方形金属波纹管、管法兰、法兰密封垫片和管道连接件等。

方形补偿器的工作原理基于金属波纹管的伸缩性能,通过吸收热应力,保护管道系统的安全运行。

方形补偿器的设计和制造需要考虑到多种因素,以确保其安全和可靠运行。

空间电荷补偿装置的原理

空间电荷补偿装置的原理

空间电荷补偿装置的原理空间电荷效应是由束流中的电子和离子的相互作用引起的。

当粒子束通过加速器管道时,由于束流的粒子数密度不均匀以及粒子之间的库伦相互作用,形成了一个不均匀的电荷分布。

这个电荷分布会产生电场,进而对粒子束的质心产生力的修正。

这种力的修正可以改变粒子束的发散度和均匀性,从而影响粒子束的传输性能。

为了减小或消除空间电荷效应,空间电荷补偿装置采用了多种原理和方法。

以下是几种常见的空间电荷补偿装置的原理:1.空间电荷补偿电源:通过在真空室内引入电子束或离子束,使其与粒子束中的电子和离子相互作用,从而平衡空间电荷效应。

这种方法可以通过控制引入电子束或离子束的能量和质量来实现对空间电荷效应的补偿。

2.相应变频结构(RFQ)加速器:相应变频结构是一种用于加速带电粒子束的加速器。

它的工作原理是利用电场和磁场加速带电粒子,并通过调整电场和磁场的相位和幅度来补偿空间电荷效应。

通过适当的设计和优化,RFQ加速器可以减小或消除粒子束中的空间电荷效应。

3.直线无储存环:直线无储存环是一种用于加速粒子束的装置,主要用于研究和优化空间电荷效应的控制方法。

在直线无储存环中,粒子束被连续地加速和聚束,以维持粒子束的稳定性和传输性能。

通过对粒子束的加速器结构和参数进行优化,可以减小或消除空间电荷效应。

4.空间电荷效应探测器:空间电荷补偿装置还可以通过使用空间电荷效应探测器来实时监测和反馈控制空间电荷效应的变化。

这种探测器可以测量粒子束中的电子和离子的分布和密度,并根据测量结果调整补偿装置的参数,以实现对空间电荷效应的补偿和控制。

综上所述,空间电荷补偿装置利用不同的原理和方法,通过引入其他粒子束或调整加速器结构和参数来减小或消除粒子束中的空间电荷效应。

这些装置为研究和优化粒子束的传输性能和加速器的性能提供了重要手段。

磁控式动态无功补偿装置技术原理、优势及适用行业

磁控式动态无功补偿装置技术原理、优势及适用行业

磁控式动态无功补偿装置技术原理、优势及适用行业摘要无功补偿有多种形式,基于MCR的动态无功补偿是其中较为先进的一类,磁控电抗器(MCR)利用直流励磁原理,采用小截面磁饱和技术通过调节磁控电抗器的磁饱和度,改变其输出的感性无功功率,中和电容器组的容性无功功率,实现无功功率的连续可调。

该系统装置具有较高的安全性,运行稳定可靠。

与其他类型的无功补偿装置对比。

此类补偿装置与其它类型的无功补偿装置的区别主要在于磁控电抗器(MCR),因此,该文重点讲述了MCR的基本原理和技术优势,与它类型的无功补偿装置做了技术比较,预测了MSVC技术的发展前景。

关键词:MCR;直流励磁;可控硅;无功功率引言目前,无功补偿的主要装置是电容器、电抗器和少量的动态无功补偿装置。

开关(断路器)投切电容器的调节方式是离散的,不能取得理想的补偿效果。

开关投切电容器所造成的涌流和过电压对系统和设备本身都十分有害。

20世纪80年代以来,基于相控电抗器(TCR)的静止型动态无功补偿器(SVC)在电力系统中投入实际运行。

但由于其投资昂贵,难以推广。

20世纪末,因具有价格便宜、维护方便等优点,基于磁阀式可控电抗器(MCR)的SVC,相继在一些国家电网投入运行,并展示了它的优越性。

磁控电抗器(MCR)型SVC(简称MSVC)装置利用直流励磁原理,采用小截面磁饱和技术通过调节磁控电抗器的磁饱和度,改变其输出的感性无功功率,中和电容器组的容性无功功率,实现无功功率的连续可调。

一、MSVC装置的基本结构:MSVC装置由补偿(滤波)支路和磁控电抗器(MCR)并联支路组成,其中补偿(滤波)支路经隔离开关固定接于母线,通过调节磁控电抗器的输出容量(感性无功功率)实现无功的柔性补偿。

因与其它各类补偿装置的主要区别在于磁控电抗器,故下面集中对磁控电抗器(MCR)作介绍。

图1动态无功补偿装置(MSVC)一次系统图二、磁控电抗器(MCR)2.1基本工作原理磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁芯,改变铁芯磁导率,实现电抗值的连续可调,其内部为全静态结构,无运动部件,工作可靠性高。

补偿器的原理

补偿器的原理

补偿器的原理补偿器是一种常见的机械装置,它能够在机械系统中起到很重要的作用。

补偿器的原理是通过一定的机械结构和工作原理,来实现对机械系统中的不平衡力或者不平衡力矩进行补偿,从而使机械系统能够更加平稳地运行。

在本文中,我们将详细介绍补偿器的原理以及其在机械系统中的应用。

首先,补偿器的原理是基于力的平衡原理。

在一个机械系统中,如果存在不平衡的力或者力矩,就会导致系统产生振动或者不稳定运行的情况。

补偿器通过一定的结构设计和工作原理,能够对这些不平衡力或者力矩进行有效地补偿,从而使机械系统能够保持平稳运行。

这种原理的应用范围非常广泛,可以应用在各种不同的机械系统中。

其次,补偿器的原理是基于动力学平衡原理。

在机械系统中,如果存在不平衡的动力,就会导致系统产生振动或者不稳定运行的情况。

补偿器通过一定的结构设计和工作原理,能够对这些不平衡动力进行有效地补偿,从而使机械系统能够保持平稳运行。

这种原理的应用也非常广泛,可以应用在各种不同的机械系统中。

另外,补偿器的原理还包括了能量平衡原理。

在机械系统中,能量的不平衡会导致系统运行不稳定,甚至损坏机械结构。

补偿器通过一定的结构设计和工作原理,能够对这些能量不平衡进行有效地补偿,从而使机械系统能够保持平稳运行。

这种原理的应用同样非常广泛,可以应用在各种不同的机械系统中。

总的来说,补偿器的原理是基于力的平衡、动力学平衡和能量平衡原理,通过一定的结构设计和工作原理,对机械系统中的不平衡力或者不平衡力矩进行补偿,从而使机械系统能够更加平稳地运行。

补偿器在工程领域中有着广泛的应用,可以应用在各种不同的机械系统中,对系统的稳定运行起到了至关重要的作用。

在实际的工程应用中,补偿器的原理需要根据具体的机械系统和工作条件进行合理的设计和选择,以确保系统能够获得最佳的补偿效果。

因此,在进行补偿器的设计和选择时,需要充分考虑机械系统的特点和工作条件,以及补偿器的结构设计和工作原理,从而实现对不平衡力或者不平衡力矩的有效补偿,保证机械系统的稳定运行。

接触网的补偿装置

接触网的补偿装置

调整接触线和承力 索的驰度和弹性
当温度变化时,接触线承力索受温 度变化的影响热胀冷缩会出现伸张或缩 短。由于在锚段两端线索下锚处安装了 补偿装置,在其坠砣串重力的作用下, 能够自动调整线索的张力并保持线索驰 (高)度满足标准的技术要求,从而使 接触悬挂的稳定性与弹性得到了改善, 提高了接触网运营质量。
正常状态下, 由于补偿绳与坠砣 串拉力相平衡,使 补偿棘轮处于悬空 状态。当接触网出 现松弛时,补偿绳 与坠砣可以自动调 整。
当接触网断线时, 连接接触线线索的补 偿绳失去了对棘轮轴 的拉力,此时由于坠 砣串的重力将棘轮下 拉,补偿棘轮就会在 转动的瞬间被制动卡 块卡住,防止了接触 网设备的大面积损坏.
接触网的补偿装置
哈 尔 滨 供 电 段 关长喜
复习:
支持与定位装置 接触悬挂
其作用是 固定接触线的 位置,在受电 弓滑板运行轨 迹范围内,保 证接触线与受 电弓不脱离, 使接触线磨耗 均匀,同时将 接触网的水平 负荷传给支柱。
支持装置包括:
斜腕臂
直腕臂
定位管
定位器
接触线
吊弦和承力索
接触网补偿装置是自动调节接触线和承力索张力的补偿器 及制动装置的总称。它是接触网上的重要设备。
利用上述公式,以不同的温度和 不同的中心锚结至补偿器间距,可以 算出许多a、b值,以此绘出补偿装置 的安装曲线图。 横轴为半锚长度 纵轴为a值
结构和工 作原理 3.如何确定补偿a、b的值
作业
1.接触网补偿装置的作用是什么? 2.接触网补偿装置的结构和工作原理是 怎样的? 3.补偿装置a、b值的是如何确定的?
a、b值的计算公式 在不同温度时,补偿器a、b值不同, 其计算方法如下:
a=amin+nLα (tx-tmin)

低压无功功率补偿及补偿装置1209

低压无功功率补偿及补偿装置1209

断路器)、5.KFJ智能快速复合开关、6.电力电容器等关键元件构成。
三、工作原理 1、(1,2,4)+4n控制原则
(1,2,4)+4n控制原则相对市场通用的循环控制方式,不但可以使 电网所需的补偿容量一步到位,而且还可以使无功补偿装置的快速开 关的投切次数大为减少,提高产品寿命,补偿精度可以大幅提高。
接触器(或者继电器)也是用的很差的,实际使用时大部分都很容易坏,而 且都是先坏晶闸管,只能冲当接触器(或者继电器)使用,继而接触器(或 者继电器)也会损坏。假如复合开关要完全满足实际运行需要,必须使用符 合设计规范的晶闸管和接触器(或者继电器),这样一来复合开关的体积会 很大,价格也会比单纯的晶闸管和单纯的接触器贵很多。目前国内还没有这 种真正意义上的(成熟的)复合开关,因为价格是主导,懂行的人不多(没
开关或复合开关投切的装置,其动态响应时间应不大于1 s。”的指标。 过零投切,投切无涌流、飞弧,无高次谐波,补偿电容器寿命长。
具有过流、过热、短路、断相、过压保护,自动/手动投切方式可以互换。
产品通过国家3C及CQC认证,快速开关电寿命大于100万次。 电磁抗干扰达到A级(4kV)。 产品于2011年11月通过省级科技成果鉴定
统中,实现无功功率分相、三相混合智能动态补偿,达到提高功率因 数,降低线损,节约电能的目的。
产品符合GB7251.1-1997、GB/T15576-2008标准要求。
二、装置构成
DJHK系列低压无功功率动态补偿装置主要由:1.GGD柜(SMC或不 锈钢箱)2.JKWDF控制器、3.刀熔开关(或断路器)、4.熔断器(或
合开关及晶闸管的优点,同时克服了三者的缺点。所以,快速开关是当前较为理
想的动态补偿投切开关。 动态补偿的特点为补偿速度快,补偿效果好。其优点为: 1、能更好地保证电压质量 动态无功补偿装置能在电压下降时迅速进行补偿,使电网电压快速回升,有利于 保持电压稳定。而使用静态补偿装置,响应速度慢,稳压的效果有较大差异。 2、能更好地降低线路无功电流及有功电流造成的线损 采用无功功率动态(快速)补偿,可及时降低流过线路的无功功率。从而更 好地降低有功和无功线损。

无功补偿装置的作用及工作原理

无功补偿装置的作用及工作原理

无功补偿的工作原理、结构及作用一、无功补偿的简称是无功补偿电源,是指为满足电力网和荷端电压水平及经济运行要求,须在电力网内和负荷端设置无功电源。

电力系统的负载多数是电感性的,电力系统会消耗无功电力,使负载电流相位滞后于电压,相角差越大,无功电力需求就会相对增大,供给固定的有功功率,提高电流而产生的线路损耗。

电力网络中所使用电设备消耗的无功功率,必须从网络中某个地方获得,如果由发电机提供并经过长距离传送这些无功功率是不合理的,通常也是不可能的。

应该是在需要无功功率的地方产生无功功率。

所以在配电系统里大多数都是使用电容器来补偿负载所需的无功功率,以改善功率因数。

无功补偿可以收到的效果:一、改善供电品质,提高功率因数。

二、减少电力的损失,工厂动力配线依据不同的线路及负载情况,使用电容提高功率因数后,总电流降低,可降低供电端与用电端的电力损失。

三、延长设备寿命。

改善功率因数后线路总电流减少,使接近或已经饱和的变压器、开关等机器设备和线路容量负荷下降,可以降低温度增加寿命。

四、满足电力系统对无功补偿的监测要求,消除功率因数过低而产生的罚款。

近年来静止无功补偿装置获得了较大的发展,[类似于谐波治理]已广泛用于负载无功补偿。

静止无功无功补偿装置的重要特性就是它能连续调节补偿装置的无功功率。

而这种连续调节是依靠调节TCR中的晶闸管的触发延迟角得到实现的。

TSC只能分组投切,不能连续调节无功功率,它和TCR配合使用,才能整体调整无功功率的连续调节。

二、静止无功功率补偿滤波装置补偿器的工作原理及结构静止无功功率补偿滤波装置补偿器又称SVC,传统补偿用断路器或接触器投切电容,SCV用可控硅等电子开关,没有机械运动部分,所以叫静态补偿装置。

通常的SVC组成部分为1.固定电容器和固定电抗器组成的一个补偿加滤波支路ﻫ该部分适当选择电抗器和电容器容量,可滤除电网谐波,并补偿容性,将电网补偿到容性状态。

2.固定电抗器3.可控硅电子开关ﻫ可控硅用来调节电抗器导通角,改变感性输出来抵消补偿滤波支路容性,并保持在感性较高功率因数。

无功补偿装置技术和原理

无功补偿装置技术和原理

无功补偿装置技术和原理
电容器是无功补偿装置的主要组成部分,其作用是提供无功功率补偿。

当电力系统的功率因数低于1时,装置通过连接并断开电容器来改变系统
的电流相位,从而减小无功功率。

在理想情况下,电容器通过提供与负载
所需相反的电流来补偿无功功率。

电感器是另一个重要的组件,其作用是提供有功功率。

当系统功率因
数高于1时,装置通过连接并断开电感器来改变系统的电流相位,从而提
供额外的有功功率。

电感器通过存储电流并在电源电压变为零时释放电流,以增加有功功率。

开关器件用于控制电容器和电感器的连接和断开。

常见的开关器件包
括继电器、晶体管和可控硅等。

这些开关器件能够根据控制信号来切换电
容器和电感器的连接状态,从而实现无功功率的补偿。

控制器是无功补偿装置的智能中枢,通过对电网参数的实时监测和分析,确定所需的补偿方式和补偿量,并生成相应的控制信号。

控制器可以
根据系统需求自动调整无功补偿装置的工作状态,实现动态无功补偿。

此外,无功补偿装置还包括过滤器、接触器、保护装置等组件,用于
实现对电网中的谐波和并联故障的处理和保护。

总之,无功补偿装置通过电容器和电感器的有序连接和断开,利用电
力电子技术和控制原理对电流进行调节,将系统中的无功功率转换为有功
功率,以提高电力系统的功率因数。

它在电力系统中具有重要的应用价值,可以提高电网的功率质量,降低能耗,提高系统的稳定性和可靠性。

接触网设备与结构—补偿装置

接触网设备与结构—补偿装置
出,使软横跨定位绳的张力保持在一定范围内。
定位绳弹簧补偿装置
弹簧补偿装置主要用于软横
跨上下部固定绳的张力补偿,
隧道内有时也用弹簧补偿器。
定位绳弹簧补偿装置
对软横跨定位绳进行张力补偿,
防止温度变化导致的定位绳松弛。
在我国哈大线采用。
鼓轮补偿装置
鼓轮补偿采用鼓轮平衡板将接触线
和承力索并行下锚,无中心锚结,张力
制成,每块约重25kg,重量误差不大于
3%,呈中间开口的圆饼状。
铸铁坠砣
圆形铸铁坠砣
方形铸铁坠砣
铸铁坠砣从形状上分圆型铁坠砣和方形铸铁坠砣, 铸铁坠砣一般使用于高速铁路以
及大型桥梁隧道中。圆形铁坠砣用于隧道外,方形铁坠砣主要用于隧道内。
补偿滑轮的结构
补偿滑轮的结构
1:2传动比补偿滑轮组
为满足不同标准张力要求,滑轮
H型(C型)钢支柱时的坠砣限制架结构。安装坠砣限制框架后,在坠砣上加装坠砣
抱箍,使坠砣只能沿着坠砣限制导管方向上下移动。增强了坠砣稳定性,但是要注意防止
坠砣抱箍卡滞限制导管的发生。
H型钢支柱限制架
坠砣限制导管下端可以采用混凝土浇筑的埋入式基础和角钢固定
式限制框架两种类型。
补偿器的a、b值
a值:坠陀杆耳环孔中心至补偿(定)滑轮下沿的距离。
补偿绳与轮体的缠绕关系
理顺补偿绳与轮体之间的缠绕
关系,并使其正确入槽,防止绳股
之间交错、重叠。
大、小轮绕绳圈数应遵循以下
大轮补偿绳缠绕
圈数大于0.5圈
原则:大轮最少缠绕半圈,最多缠
绕三圈半;小轮最少缠绕半圈,最
小轮补偿绳缠绕圈
多缠绕三圈半,缠绕时注意两边对
数大于0.5圈

静态无功补偿装置原理

静态无功补偿装置原理

静态无功补偿装置原理静态无功补偿装置(STATCOM)是一种用来补偿电力系统中的无功功率的装置。

静态无功补偿装置的原理基于电力系统中的无功功率是电压和电流之间的乘积,因此通过控制电压和电流之间的相位差,可以实现无功功率的补偿。

静态无功补偿装置通常由一个功率电子器件(如IGBT或GTO等)和一个控制系统组成。

该装置可以通过调整其输出的电压的相位和幅值来改变电力系统中的无功功率。

具体来说,静态无功补偿装置的原理如下:1. 电压控制:静态无功补偿装置通过测量电力系统中的电压,并与设定值进行比较,然后调整输出电压的幅值和相位以实现电压的控制。

当电力系统中的电压下降或偏离设定值时,装置将通过增加输出电压的幅值来补偿电力系统中的无功功率。

2. 电流控制:静态无功补偿装置还通过测量电力系统中的电流,并与设定值进行比较,然后调整输出电流的相位以实现电流的控制。

当电力系统中的电流偏离设定值时,装置将通过改变输出电流的相位来补偿电力系统中的无功功率。

3. 动态响应:静态无功补偿装置具有快速响应的特点,可以在很短的时间内调整输出电压和电流的相位和幅值。

这使得它能够在电力系统中快速补偿无功功率的变化,以提高电力系统的稳定性和可靠性。

4. 多功能性:静态无功补偿装置不仅可以用来补偿电力系统中的无功功率,还可以用来改善电压的稳定性、提高电力系统的功率因数,以及减少电力系统中的谐波等。

它可以根据实际需要进行调整,并与其他装置(如静态有功补偿装置)进行协调运行。

总之,静态无功补偿装置通过控制输出电压和电流的相位和幅值,能够快速、灵活地补偿电力系统中的无功功率。

它在电力系统中具有重要的作用,能够提高电力系统的稳定性和可靠性,提高电能的质量,并减少能源的消耗。

随着电力系统对无功功率补偿需求的增加,静态无功补偿装置将在电力系统中发挥越来越重要的作用。

电梯结构及原理补偿装置

电梯结构及原理补偿装置

电梯结构及原理补偿装置一、电梯结构电梯是一种垂直运输设备,用于在建筑物内部或附近的楼层之间运送乘客或货物。

它由一个电动机驱动,通过牵引系统将电梯提升或下降。

除了电动机和牵引系统之外,电梯还由许多其他组件组成。

1. 电动机电梯的电动机通常是交流感应电动机或直流电动机。

电动机的功率和转速取决于电梯的载重量和速度要求。

2. 牵引系统牵引系统包括钢丝绳和滑轮组件。

钢丝绳将电梯舱连接到驱动装置。

驱动装置由一个或多个滑轮组成,它们通过绳索反复穿过并支持电梯舱。

3. 电梯舱电梯舱是乘客或货物的运输区域。

它通常由钢质或玻璃制成,并具有适当的容量和尺寸来满足不同的需求。

4. 装载门和控制系统装载门用于进出电梯舱。

控制系统负责监控电梯状态,并确保平稳、安全地运行。

控制系统还可以响应外部请求,并根据乘客的选择选择正确的楼层。

5. 安全装置为了保证电梯的安全性,电梯还配备了一些安全装置,如紧急制动器、限速器和超载保护装置。

这些装置可以保护乘客和电梯设备免受危险的影响。

二、原理补偿装置原理补偿装置是电梯中一个重要的组件,它可以调整电梯的速度和位置,以确保乘客在进出电梯时感到平稳。

1. 原理补偿装置的工作原理原理补偿装置由液压系统组成,它使用一个液压缸和一个液体储存器来调整电梯的速度。

当电梯上升时,液压缸内的液压油被压缩,从而阻止电梯过速运行。

当电梯下降时,液压缸内的液压油被释放,从而防止电梯下降得太快。

2. 原理补偿装置的优点原理补偿装置具有以下优点:•平稳性:原理补偿装置可以根据需要调整电梯的速度和位置,使乘客在乘坐电梯时感到平稳。

这可以避免因电梯运行不稳定而引起的不适或危险。

•节能性:原理补偿装置可以减少电梯电动机的负载,从而降低能源消耗和运行成本。

•安全性:原理补偿装置可以确保电梯在运行过程中保持稳定,避免突发的速度变化或冲击。

3. 原理补偿装置的应用场景原理补偿装置广泛应用于高速电梯和大容量电梯。

这些电梯通常需要更高的平稳性和安全性,原理补偿装置可以满足这些要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

③ a、b值的计算及坠砣安装曲线
a amin nL (tx tmin )
b bmin nL (tmax t x )
式中:
amin ——设计时规定的最小值(mm);
bmin ——设计时规定的最小值(mm);
tmin ——设计时采用的最低气温(
tmax ——设计时采用的最高气温( C );
tx
n
); C ——安装或调整作业时的温度( C );
——补偿滑轮传动系数(即传动比的倒 数); L ——锚段内中心锚结至补偿器间距离 (mm); ——线索的线胀系数( C 1)。
二、棘轮式补偿装置
棘轮本体大轮直径为566mm,小轮直径为170mm, 传动比为1∶3,补偿绳为柔性不锈钢丝绳,比普 通不锈钢丝绳性能更好,工作荷重有30kN、36kN 两种. 主要优点是具有断线制动功能,棘轮可以自由转 动;当线索断裂后,棘轮和坠砣在重力作用下下 落,棘齿卡在制动卡块上, 从而可以有效地缩小 事故范围、防止坠砣下落侵入限界。 棘轮装置的棘轮与其它工作轮共为一体,可以解 决空间受限时的补偿问题。
弹簧补偿装置主要用于 软横跨上下部固定绳的张力 补偿,隧道内有时也用弹簧 补偿器。 特点是在弹簧补偿器内 部装有一个具有一定初始压 缩力的弹簧,当软横跨上下 部固定绳伸长时,弹簧被释 放,工作杆收回拉紧软横跨 上下部固定绳;当上下部固 定绳收缩时,弹簧被压缩, 工作杆伸出,使软横跨上下 部固定绳的张力保持在一定 范围内。
3、补偿器的a、b值
概念 a值:坠陀杆耳环孔中心至补偿(定)滑轮下沿的距离 为a值。 b值:坠陀串最下一块坠陀的底面至地面(或基础面) 的距离称为补偿器的b值。 要求 在最低温度时,a值应大于零。 在最低温度时,b值应小于零。 “接触网运行检修规程”规定,补偿器a、b值的最 小值不小于200mm,在进行接触网设计时,a、b值不 小于300mm。
棘 轮 式 补 偿 装 置 安 装 图
棘轮式补偿装置与滑轮式补偿装置相比,具 有占用空间少、转动灵活、传动效率高、防腐性 能好,使用寿命长等优点,但由于棘轮本体形状 复杂,轮径大,薄壁部位多,对生产制造设备和 工艺要求较高,价格偏贵。
三、横承力索张力补偿
由于气温变化悬殊,对软横跨进行补偿,采用软横来自定位 绳补偿装置,即弹性补偿器。
四、鼓轮并联补偿装置
鼓轮并联补偿装置的核心 部件为带滑轮的鼓轮,滑轮直 径是鼓轮直径的4倍,鼓轮直径 从126~137变化,形成一个由中 间向两端缩小的锥度,图中A、 B向标示出了鼓轮的几何尺寸。 滑轮外廓曲线为阿基米德曲线, 半径由263逐渐增大至269,275。 平均每30度增大1mm,补偿绳在 滑轮沟槽内转动。由于采用了 阿基米得螺线形滑轮沟部轮廓, 当补偿鼓轮转动时,鼓轮的传 动比随回转角度变化,从而使 施加于线索的张力产生变化。
2、补偿器的安设与要求 、安设 补偿器串接在锚段内线索两端与支柱固定处,根据接 触悬挂类型的不同有不同的补偿器结构。 、要求 半补偿时,接触线带补偿器,多采用两滑轮组结构, 滑轮组的传动比为1:2,即坠砣块的重力为接触线标称张 力的一半。 全补偿时,接触线与承力索两端均带补偿器,接触线 补偿器的安设与半补偿相同。承力索补偿器则采用三滑 轮组式,传动比为1:3。
补偿器作用
接触网补偿装置,又称张力自动补偿器,它 安装在锚段的两端,并且串接在接触线承力索内, 它的作用是补偿线索内的张力变化,使张力保持 恒定。
一、滑轮式补偿装置
1、主要组成部分
补偿滑轮(滑轮组) 补偿绳 杵环杆 坠砣杆 坠砣 连接零件
1:3传动比补偿滑轮组
补偿滑轮是滑轮补偿装置的核心设备,一般由铝合金 铸造而成,补偿滑轮的传动效率直接影响补偿装置的性能, 其传动效率应在98%以上 。
四、鼓轮并联补偿装置
鼓轮补偿装置有两 大特点:一是鼓轮的轮 曲线为阿基米德曲线; 二是用鼓轮平衡板将接 触线和承力索并行下锚, 以解决接触悬挂的来回 窜动。张力在接触线和 承力索之间的分配由绝 缘子串和平衡板之间的 联接点到平衡板与接触 线和承力索之间的联接 点的长度比例决定。
五、液压补偿装置
液压补偿装置是利用热胀冷缩原理进行工作的,在 装置的中心设有一个密封性极好的液压油缸,四周环绕 着一个充有一定气压的气囊。当温度变化时,气囊内的 气体发生热胀冷缩,推动油缸伸出或收缩,从而达到补 偿的目的,
相关文档
最新文档