北京大学数学科学学院【数学分析 I】课程习题集(参考 谢惠民 数学分析习题课讲义)
北京大学2019年数学分析试题及解答

=
l, lim xn n→+∞
=
L,
知
{xn}
中有无穷项小于等于
l+c 2
,
有无穷项
大于
c.
从而
|xn+1 − xn|
有无穷多项大于等于
c−l 2
,
矛盾.
类似地,
存在
n2
> n1
使得
xn1 +c 2
< xn2
⩽ c.
以
此类推可取一个子列
{xnk }
,|xnk
−
c|
⩽
c−l 2k
,
此时
{xnk }
nπ 4
+
sin
nπ 4
)np
,
∑ +∞
sin
nπ 4
np
在 p > 1 时绝对收敛, 在 0 < p ⩽ 1 时条件收敛.
n=1
sin2
nπ 4
(np
+
sin
nπ 4
)np
∼
sin2
nπ 4
n2p
=
1
− cos n2p
nπ 2
,
(n
→
+∞),
∑ +∞
sin2
nπ 4
因此 n=1
(np +sin
nπ 4
∫ +∞
这与
f ′(x) dx 有意义的 Cauchy 收敛原理矛盾.
1
注 裴礼文的《数学分析中的典型问题与方法》第二版第 249 页例 3.3.11 与本题几乎完全相同, 那里有另外一
种证明方法. 我写的这个解法是源于一个很经典的题目, 可以见《数学分析习题课讲义》上册第 396 页命题
北京大学2017年数学分析试题及解答

4 ∑ ∞ f (x) ∼
1
sin(2n − 1)x.
π 2n − 1
n=1
记该 Fourier 级数的前 n 项和为 Sn(x), 则 ∀x ∈ (0, π), Sn(x)
Sn(x)
的最大值点是
π 2n
且
lim
n→∞
Sn
(
π 2n
)
=
2∫ π π0
sin t dt. t
=
2 π
∫x
0
sin 2nt sin t
lim
3
t2
t→+∞
e−tϕ(X)dX = 0.
Uδ \Uδ′
设 A 的特征值为 λ1, λ2, λ3, 并且 λ1 ⩾ λ2 ⩾ λ3 > 0. 对于任意事先给定的 ε ∈ (0, λ3), ∃δε′ 使得对于任意属 于球形邻域 Uδ′ε 的 X 有
(X − X0)T A (X − X0)−ε (X − X0)T (X − X0) < ϕ(X) < (X − X0)T A (X − X0)+ε (X − X0)T (X − X0)
x2 − x1
7. (20 分) 设 f 是 (0, +∞) 上的凹 (或凸) 函数且 lim f (x) 存在有限, 证明 lim xf ′(x) = 0 (仅在 f 可导
x→+∞
x→+∞
的点考虑极限过程).
8.
(20
分)
设
ϕ
∈
C 3 (R3 ), (
ϕ
及其各个偏导数 )
∂iϕ(i
=
1, 2, 3)
故 e ( ) −t (X−X0)TA(X−X0)+ε|X−X0|2 < e−tϕ(X) < e ( ) −t (X−X0)TA(X−X0)−ε|X−X0|2
北京大学1998年数学分析试题及解答

√ lim |f (x, y) − f (0, 0)| = 0. x2 +y 2 →0
这就说明 f (x, y) 在 (0, 0) 处连续.
4
D. 在点 (0, 0) 处不可微
二、 (24 分) 计算下列极限 (写出演算过程):
√ 1. lim n 1 + an (a > 0)
2.
n→∞( lim 1 x→0 x2
−
cot x ) x
∑ ∞ 3. lim
1
x→0+
2nnx
n=1
三、 (10 分) 求下列积分值:
∫∫
1.
x3 dy dz + x2y dz dx + x2z dx dy, 其中 S 为 z = 0, z = b 和 x2 + y2 = a2 围成的区域的外表面.
1
∑ ∞ 1
=
= 1.
x→0+
2nnx
x→0+ 2nnx
2n
n=1
n=1
n=1
三、
1. 只考虑 b > 0 的情况, 设 V 表示 S 的内部. 利用 Gauss 公式, 再做极坐标变换得:
∫∫∫ (
)
原式 =
3x2 + x2 + x2 dx dy dz
∫
V b
∫ 2π
∫a
= 5 dz
dθ r (r cos θ)2 dr
lim
exp ( ln (1 + an) ) = exp ( lim
谢惠民上册答案

7.3 对于教学的建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8 微分学的应用
136
8.1 函数极限的计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
2.6 由迭代生成的数列 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 对于教学的建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4 一致连续性与 Cantor 定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.5 单调函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.6 周期 3 蕴涵混沌 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.7 对于教学的建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3 实数系的基础定理
37
3.1 确界的概念和确界的存在定理 . . . . . . . . . . . . . . . . . . . . . . . . . 37
(完整版)北大数学系本科课程

另外一个版本:北大数学科学学院本科生课程课程号 00130011 课程名数学分析(一)课程号 00130012 课程名数学分析(二)课程号 00130013 课程名数学分析(三)课程号 00130031 课程名高等代数(上)课程号 00130032 课程名高等代数(下)课程号 00130051 课程名解析几何课程号 00130061 课程名解析几何习题课课程号 00130072 课程名初等数论课程号 00130081 课程名常微分方程课程号 00130091 课程名计算机原理与算法语言课程号 0013010. 课程名计算机实习课程号 00130110 课程名复变函数课程号 00130120 课程名微分几何学课程号 00130130 课程名抽象代数(A)课程号 00130140 课程名实变函数论课程号 00130150 课程名偏微分方程课程号 00130161 课程名拓朴学(一)课程号 00130162 课程名拓朴学(二)课程号 00130170 课程名泛函分析课程号 00130180 课程名数学模型学课程号 00130190 课程名微分流形课程号 00130201 课程名高等数学(B)(一)课程号 00130202 课程名高等数学(B)(二)课程号 00130203 课程名高等数学(B)(三)课程号 00130221 课程名高等数学(C)(一)课程号 00130222 课程名高等数学(C)(二)课程号 00130241 课程名高等数学(D)(一)课程号 00130242 课程名高等数学(D)(二)课程号 00130250 课程名高等数学(E)课程号 00130260 课程名线性代数(B)课程号 00130270 课程名线性代数(C)课程号 00130280 课程名计算方法课程号 00130290 课程名汇编语言课程号 00130300 课程名数理逻辑及其在人工智能中的应用课程号 00130310 课程名数据结构课程号 00130320 课程名计算机图形学课程号 00130330 课程名数字信号处理课程号 00130340 课程名编译原理课程号 00130350 课程名抽象代数(B)课程号 00130360 课程名代数数论基础课程号 00130370 课程名有限群课程号 00130380 课程名代数选讲课程号 00130390 课程名图论课程号 00230010 课程名概率统计(A)课程号 00230020 课程名概率统计(B)课程号 00230030 课程名概率统计(C)课程号 00230040 课程名普通统计学课程号 00230050 课程名概率论课程号 00230060 课程名数理统计课程号 00230070 课程名测度论和概率论基础课程号 00230080 课程名应用多元统计分析课程号 00230090 课程名应用随机过程课程号 00230100 课程名应用时间序列分析课程号 00230110 课程名保险统计学课程号 00230120 课程名决策分析课程号 00230130 课程名抽样调查课程号 00230140 课程名试验设计课程号 00230150 课程名统计计算课程号 00230160 课程名算法分析与数据结构课程号 00230170 课程名图论( 离散数学 ) 课程号 00230180 课程名保险风险模型课程号 00230190 课程名运筹学课程号 00230200 课程名复变函数课程号 00230210 课程名 FORTRAN课程号 00230220 课程名热力学与统计物理。
谢惠民数学分析习题课讲义部分题目解答

数学分析习题课讲义问题解答第一章引论1.3.2练习题1.关于Bernoulli 不等式的推广:(1)证明:当12-≤≤-h 时Bernoulli 不等式nh h n+≥+1)1(仍成立;(2)证明:当0≥h 时成立不等式2)1()1(2h n n h n-≥+,并推广之;(3)证明:若),,2,1(1n i a i =->且同号,则成立不等式∑∏==+≥+ni in i iaa 111)1(.2.阶乘!n 在数学分析以及其他课程中经常出现,以下是几个有关的不等式,它们都可以从平均不等式得到:(1)证明:当1>n 时成立nn n )21(!+<;【证明】利用平均值不等式,有n nk nk kk n ∏∑==≥111所以nn n )21(!+≤因为1>n ,所以取等号的条件n === 21不满足,故nn n 21(!+<.(2)利用)1(]2)1)[(1()!(2n n n n ⋅⋅-⋅= 证明:当1>n 时成立nn n 62(!+<;【证明】利用平均值不等式,有n nk nk k n k k n k n ∏∑==-+≥-+11)1()1(1所以nn n n n n 62(]6)2)(1([!+<++≤(3)比较(1)和(2)中两个不等式的优劣,并说明原因;(4)证明:对任意实数r 成立nn k r n rk n n )(1)!(1∑=≤.【证明】利用平均值不等式,有n nk rn k rkk n ∏∑==≥111所以nn k r n rk n n )(1)!(1∑=≤3.证明几何平均值-调和平均值不等式:若0>k a ,n k ,,2,1 =,则有∑∏==≥nk knnk k a n a 1111)(【证明】利用平均值不等式,有n nk kn k ka a n ∏∑==≥11111所以∑∏==≥nk knnk k a n a 1111)(4.证明:当c b a ,,为非负数时成立333cb a ca bc ab abc ++≤++≤.【证明】由于cabc ab c b a a c c b b a ++≥++⇒≥-+-+-2222220)()()(所以33)(3)(2cabc ab cb a ca bc ab c b a ++≥++⇒++≥++利用平均值不等式,有323)(33abc ca bc ab ca bc ab =⋅⋅≥++所以33abc ca bc ab ≥++5.证明下列不等式:(1)b a b a -≥-和b a b a -≥-;【证明】利用三点不等式,有ab b a b b a =+-≥+-)(由对称性知ba b a ≥+-所以ba ab b a b a -=--≥-),max((2)∑∑∑===≤≤-n k k nk knk ka aaa 1121;有问:左边可否为∑=-nk k a a 21?【证明】利用(1)的结论,有∑∑∑====-≤-nk knk knk kaa aaa 21111反复利用三点不等式,有∑∑∑∑∑=====≤≤++≤+≤+=nk knk knk knk k nk ka aa a aa a a a132121211再利用这个结论,有∑∑∑===≤≤-nk knk knk ka aaa 2211(3)bb aa ba b a +++≤+++111;【证明】显然函数x x x x f +-=+=1111)(是单调增加的,所以有bb aa ba b ba a ba b a ba b a +++≤+++++=+++≤+++111111(4)nnnna b a a b a -+≤-+)()(.【证明】利用三点不等式,有nnn n n n n n n b a b a b a a a b a a a b a )()()()(+≤+=+≤+-+=+-+第二章数列极限2.7.3参考题第一组参考题1.设}{12-k a ,}{2k a 和}{3k a 都收敛,证明:}{n a 收敛.【证明】设}{12-k a ,}{2k a 和}{3k a 分别收敛于数c b a ,,.取}{12-k a 的一个子列}{36-k a ,它收敛于数a ,同时它又是}{3k a 的子列,所以也收敛于数c ,所以c a =.取}{2k a 的一个子列}{6k a ,它收敛于数b ,同时它又是}{3k a 的子列,所以也收敛于数c ,所以c b =.于是有b a =.对任给的0>ε,存在正整数1N 与2N ,当1N n >时有εa a n <--12,当2N n >时有εa a n <-2.现取),max(221N N N =,当N n >时有εa a n <-,故}{n a 收敛于a .2.设}{n a 有界,且满足条件2+≤n n a a ,3+≤n n a a ,+∈N n ,证明:}{n a 收敛.【证明】由条件2+≤n n a a 知}{12-k a 与}{2k a 都是单调增加的数列,又有界,故都收敛.由条件3+≤n n a a 知}{3k a 单调增加,又有界,故收敛.利用1的结论知}{n a 收敛.3.设}{1++n n a a 和}{2++n n a a 都收敛,证明:}{n a 收敛.【证明】设}{1++n n a a 和}{2++n n a a 分别收敛于数b a ,.那么有ab a a a a a a n n n n n n n n -=+-+=-++∞→++∞→)]()[(lim )(lim 1212ba a a a a a a n n n n n n n n -=+-+=-+++∞→+∞→)]()[(lim )(lim 2211进而有)]()[(lim )(lim 1122=-+-=-+++∞→+∞→n n n n n n n n a a a a a a 故2)]()[(lim 21lim 22a a a a a a n n n n n n n =--+=++∞→∞→5.设∑=-+=nk n nka 12)11(,+∈N n ,计算n n a ∞→lim .【解】由于∑∑∑∑====++≤++=-+≤++nk n k n k n k nknn k n k n k n k n n 122122121221111111)11(111而2121lim lim 12=+=∞→=∞→∑n n n k n nk n 211111lim2=++∞→n n ,21111lim 2=++∞→nnn 故41lim =∞→n n a 7.设p a a a ,,,10 是1+p 个给定的数,且满足条件010=+++p a a a .求)1(lim 10p n a n a n a p n +++++∞→ 【解】)1(lim 10p n a n a n a p n +++++∞→ 1)[(lim 121p n a n a n a a a p p n +++++----=∞→()1([lim 1n p n a n n a p n -+++-+=∞→ 01(lim 1=++++++=∞→np n pa n n a p n 8.证明:当10<<k 时,0])1[(lim =-+∞→kkn n n 【证明】(这里用到后面将要学习的等价无穷小知识)0lim ]1)11[(lim ])1[(lim 1==-+=-+-∞→∞→∞→k n k k n k k n n k nn n n 12.证明:nnn n n)2(e !)e(<<.【证明】利用数列})11{(nn+单调增加趋于e ,有!)e(!!)1()11()211()111(e 21n nn n n n n n n n n n<⇒>+=+++> 利用1.3.2中题2的结论:nn n )21(!+<,有nn n n n n n n n n n n n )2(e !!2)1()11(e <⇒>+=+>14.设n na n 2131211-++++= ,+∈N n ,证明:}{n a 收敛.【证明】一方面,有01211212111<++-+=++-+=-+nn n n n n a a n n 另一方面,有n n n a n 2124323221-++++++++> n n n 21(2)34(223(21--+++-+-+= 221212221->-++-=n n 根据单调有界定理知}{n a 收敛.15.设已知存在极限na a a n n +++∞→ 21lim ,证明:0lim =∞→n an n .【证明】设T T na a a n n→=+++ 21,∞→n ,于是1)1(---=n n n T n nT a ,2≥n ,由此得0])11([lim lim1=-=--=-∞→∞→T T T nT n a n n n n n 17.设对每个n 有1<n x 和41)1(1≥-+n n x x ,证明}{n a 收敛,并求其极限.【证明】显然有0>n x ,2≥n .所以有1211)21()1(41+++≤⇒+-≤-≤n n n n n n x x x x x x 根据单调有界定理知}{n a 收敛,且可设收敛于数10≤≤A ,于是有41)1(≥-A A ,解得21=A .18.设b a =1,c a =2,在3≥n 时,221--+=n n n a a a ,证明}{n a 收敛,并求其极限.【证明】由于)(21211-----=-n n n n a a a a ,所以)(21()()21(21221b c a a a a n n n n --=--=----,进而有b bc a b c a n n n n +-----=+-++-+--=---)()21(1)21(1]21()21()21)[((11032 ,于是32lim c b a n n +=∞→.第二组参考题1.设n a n +++= 21,+∈N n ,证明:}{n a 收敛.【证明】利用不等式1111211+-=+-+-≤+-n n n n n ,+∈N n 以及221-≤-n n ,3≥n 有2213411231+≤≤+-+-++≤+-+-++≤ n n n n a n 又因为}{n a 是单调增加的数列,利用单调有界定理知}{n a 收敛.2.证明:对每个正整数n ,成立不等式n k n nk n 2e!1)11(0->+∑=.【证明】利用1.3.2中题1的结论:∑∏==+≥+ni in i iaa 111)1(,),,2,1(1n i a i =->且同号,当2≥n 时有∑∑∑===---++=-==+nk n k k n k k k n n n k n k n k n n k n C n 200)11()11(!111)!(!!11)11(∑∑==--++=----++>nk nk n k k k n k n k 22)2)1(1(!111111(!111 n k k n k nk n k nk 2e !1)!2(121!1020->--=∑∑∑===当1=n 时,2e22->显然成立.3.求极限)e !π2sin(lim n n n ∞→.【解】利用命题2.5.4,有1(π21!!(π2e !π2)11!!(π211(π200n N n k n n n k n n N nk n k +=+<<++=++∑∑==所以nn n n n n π2sin e)!π2sin(1π2sin<<+,4≥n 利用夹逼准则知π2)e !π2sin(lim =∞→n n n 4.记n S n 1211+++= ,+∈N n .用n K 表示使得n S k ≥的最小下标,求极限nn n K K 1lim +∞→.【解】由条件知n K K n S n n 1+≤≤与01lim=∞→nn K 因为γn S n n =-∞→)ln (lim 而nn n K n K K n K S K n n 1ln ln ln +-≤-≤-所以)ln (lim )ln (lim n n n n K n γK n -≥≥-∞→∞→于是γK n n n =-∞→)ln (lim 所以11)]ln 1()ln [(lim lnlim 11=+-+--=+∞→+∞→n n n nn n K n K n K K 故elim 1=+∞→nn n K K 5.设∑==nk k n n Cnx 02ln 1,+∈N n ,求n n x ∞→lim .【解】利用Stolz 定理,有220112)1(ln ln lim ln 1limlim n n C CCn x nk kn n k k n n nk k nn n n -+-==∑∑∑=+=+∞→=∞→∞→1211ln lim 12)ln (ln lim 01+-++=+-=∑∑=∞→=+∞→n kn n n C Cnk n nk k nk n n )12()32(11ln 22ln lim 01+-+-++--++=∑∑=+=∞→n n k n n k n n nk n k n 11ln 12ln (lim 2110∑∑==∞→-++--++=n k n k n k n n k n n 2112ln lim 21)12ln 12(ln lim 211=++=+++++=∞→=∞→∑n n n n n n n n n k n 6.将二项式系数⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛n n n n ,,1,0 的算术平均值和几何平均值分别记为n A 和n G .证明:(1)2lim =∞→n n n A ;(2)e lim =∞→n n n G .【证明】由于n nnA n n n n =⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+ 10)11(,所以有22lim 2lim lim ===∞→∞→∞→n n n nn nn n nn A 因为)!(!!k n k n k n -=⎪⎪⎭⎫ ⎝⎛,所以21)!!1!0()!(n n G n nn ⨯⨯⨯=+ ,所以有)!!2!1ln(2!ln )1(exp(lim ])!!2!1()!([lim lim 21212n n n n n n G n n n n n n n ⨯⨯⨯-+=⨯⨯⨯=∞→+∞→∞→ 12!ln )1ln(exp(lim )12)!1ln(2!ln )1()!1ln()2(exp(lim +-+=++-+-++=∞→∞→n n n n n n n n n n n n )21exp(212ln)1(exp(lim =+++=∞→n n n n 7.设∑==nk kn aA 1,+∈N n ,数列}{n A 收敛.又有一个单调增加的正数数列}{n p ,且为正无穷大量.证明:lim2211=+++∞→nnn n p a p a p a p【证明】利用Stolz 定理,有nn n n n n n n n p A A p A A p A p p a p a p a p )()(lim lim 1122112211-∞→∞→-++-+=+++ nnn n n n n p A p A p p A p p A p p +-++-+-=--∞→11232121)()()(lim 0lim lim lim )(lim11=+-=+--=∞→∞→∞→++∞→n n n n n n nn nn n n A A A p p A p p 8.设}{n a 满足1)(lim 12=∑=∞→ni i n n aa ,证明:13lim 3=∞→n n a n .【证明】令∑==ni in aS 12.因为1)(lim 12=∑=∞→ni i nn aa ,所以}{n a 不会恒为零,故}{n S 当n 足够大时是单调增加的正数列.若+∞=∞→n n S lim ,则01limlim 12==∑=∞→∞→ni i n n n a a ;若}{n S 收敛,则0lim 0lim 2=⇒=∞→∞→n n n n a a ;即总有0lim =∞→n n a .所以1lim )(lim lim 11211111==-=++∞→++++∞→+∞→n n n n n n n n n n n S a a a S a S a 以及+∞=∞→n n S lim ,故31)(1lim )1(lim lim )(lim lim 2121213313333=++=--+==⋅=+++∞→+∞→∞→∞→∞→n n n n n n n n n n n n n n n nn S S S S a S S n n S n S S a n na 所以13lim 3=∞→n n a n 12.设10<<λ,}{n a 收敛于a .证明:λa a λa λa λa n n n n n -=++++--∞→1)(lim 0221 【证明】令a a b n n -=,那么)]()()[(lim )(lim 010221a b λa b λa b a λa λa λa n n n n n n n n n ++++++=++++-∞→--∞→ λa b λb λb λλa b λb λb n n n n n n n n n n -++++=+++++++=-∞→∞→-∞→1)(lim )1(lim )(lim 0101 故只需要证明)(lim 01=+++-∞→b λb λb n n n n 存在正数M 使得M b n <恒成立.对任给的0>ε,存在正整数N ,当N n >时有εb n <.所以当N n >时有估计11101b λb λb λb λb b λb λb n N N n N N n n n n n n ++++++≤+++-+---- M λλελλn N n N n )()1(1++++++≤--- M λN ελN n -++-≤)1(11因为0lim =-∞→Nn n λ,所以存在正整数N N >1,当1N n >时有εMN λN n )1(1+<-,此时有估计ελb λb λb n n n )111(01+-≤+++- 故)(lim 01=+++-∞→b λb λb n n n n 17.令20≥y ,221-=-n n y y ,+∈N n .设nn y y y y y y S 10100111+++=.证明:24lim 200--=∞→y y S n n 【证明】令10-+=a a y ,1≥a .可归纳得出nna ay n 22-+=,+∈N n ,即12211++=n na a y n .当1=a ,即20=y 时有2≡n y ,于是24121212120012--=→+++=+y y S n n ,∞→n ,命题成立;当1>a 时,有)1111(111)1()1)(1(121211211022222222222210+++++----=--=+++=n n n n n n aa a a a a a a a a a a a a y y y n 于是a a a a a a a a a S n k k n nk n n n 1)1111(lim 1)1111(lim 1lim 2212220222=----=----=+++∞→=∞→∞→∑而aa a a a y y 12)()(2411200=--+=----.第三章实数系的基本定理第四章函数极限4.5.2参考题7.对一般的正整数n 计算极限30sin sin limxxn nx x -→.【解】31030)sin )1sin((sin lim sin sin lim x x x k kx x x n nx nk x x ∑=→→---=-31031021sin 2sin 2sin 4lim ]2cos )21[cos(2sin 2lim x xk x k x x x x k x n k x n k x ∑∑=→=→--=--=6)1()1(2121--=--=∑=n n k k n k 11.设函数f 在),0(+∞上单调增加,且有1)()2(lim =+∞→x f x f x .证明:对每个0>a ,成立1)()(lim =+∞→x f ax f x .【证明】当1>a 时,存在正整数k 使得k k a 221≤≤-,于是)2()(lim )2()()2()2()()2(lim )()(lim 112x f ax f x f ax f x f x f x f x f x f ax f k x k x x -+∞→-+∞→+∞→==)2()(lim )2()()2()2(lim )2()(lim 11x f ax f x f ax f x f x f x f ax f k x k k k x k x +∞→-+∞→-+∞→==由于f 单调增加,所以1)2()(1≥-x f ax f k ,1)2()(≤x f ax f k,所以有)()(lim1)()(limx f ax f x f ax f x x +∞→+∞→≤≤故1)()(lim=+∞→x f ax f x 当10<<a 时,利用上述结果,有1)((1lim )()(1lim )()(lim ===+∞→=+∞→+∞→t f atf ax f x f x f ax f t t ax x x 当1=a 时显然,故对每个0>a ,成立1)()(lim =+∞→x f ax f x .第五章连续函数第六章导数与微分6.1.4练习题6.2.4练习题6.3.4练习题6.4.2参考题第一组参考题1.利用导数的定义计算极限xx x x sin )sin 1()tan 1(lim 10100--+→.【解】利用导数的定义,有xx x x sin )sin 1()tan 1(lim 10100--+→x x x x x x x x sin 1)sin 1(lim sin tan tan 1)tan 1(lim 100100---+-+=→→20))1((1))1((010010='++⨯'+===x x x x 2.设231)(2++=x x x f ,计算)0()100(f ,要求相对误差不超过1%.【解】由于2111)2)(1(1)(+-+=++=x x x x x f 所以101101)100()2(!100)1(!100)(+-+=x x x f 所以)211(!100)0(101)100(-=f 取!100)0()100(≈f,则相对误差为01.0121211(!100)211(!100!100101101101<-=---.3.设f 在点a 处可导,0)(≠a f .计算n n a f n a f ])()1([lim +∞→.【解】)()1(ln exp(lim ])()1([lim a f n a f n a f n a f n n n +=+∞→∞→由于)()(exp(1)()1()(1exp(lim ))()1(ln exp(lim a f a f xa f x a f a f a f x a f x x x '=-+=++∞→+∞→利用Heine 归结原则,有))()(exp()()1([lim a f a f a f n a f n n '=+∞→5.设0)0(=f ,)0(f '存在.定义数列)()2(1(222nn f n f n f x n +++= ,+∈N n ,试求n n x ∞→lim .【解】由于xx f x f x f f x x )(lim 0)0()(lim)0(00→→=--=',所以对任给的0>ε,存在0>δ,当δx <<0时有])0([)(])0([εf x x f εf x +'<<-'取11[+=δN ,当N n >时有δnn<<20,所以有])0()[21(])0(21(222222εf nnn n x εf n n n n n +'+++<<-'+++ 而n n n n n n 2121222+=+++ 所以εf x n nn <'-+)0(12故2)0(lim )0(lim 2)]0(12[lim 0f x f x f x n n n n n n n n '=⇒'-='-+=∞→∞→∞→6.求下列数列极限:(1))sin 2sin 1(sinlim 222n nn n n +++∞→ ;【解】运用上题的结论,考虑函数x x f sin )(=,即得21)0(21)sin 2sin 1(sinlim 222='=+++∞→f n n n n n (2))]1()21)(11[(lim 222n nn n n +++∞→ .【解】运用上题的结论,考虑函数)1ln()(x x f +=,即得e ))0(21exp(1(2111[(lim 222='=+++∞→f n n n n n 7.设xx y -+=11,计算)()(x y n ,+∈N n .【解】由于x xx x y ---=---=1121)1(2,通过求导找规律直接可得2122121)()1(2!)!32()1(2!)!12()(--+----+--=n nn n n x n x n x y ,2≥n 以及xx y -+-='-121)1(238.设f 在R 上有任意阶导数,证明:对每个正整数n 成立)(1)(1)]1([)1()1(1n n n n n xf x x f x -+-=【证明】用数学归纳法,当1=n 时,右式='='-=)1(1])1([2xf x xf 左式;假设当n k =时成立)(1)(1)]1([)1()1(1k k k k k xf x x f x -+-=;当1+=n k 时有)1(11)1(11([)1()]1([)1(+-+++⋅-=-n n n n n n x f x x x f x ∑+=-+-+⎪⎪⎭⎫ ⎝⎛+-=10)1(1)(11([1)1(n k k n n k n x f x x k n })]1()[1()]1([{)1()(1)1(11n n n n n x f x n x f x x -+-+++⋅-=)1(1])1(1[)(1)(1xf x n x f x x n n n n +++-'⋅-=)1(1)]1(1)1(1[)(1)1(3)(2xf x n x f x x f x n x n n n n n n +++++--+-⋅-=1(1)1(2xf x n n ++=由归纳原理知命题成立.10.证明组合恒等式:(1)112-=⋅=⎪⎪⎭⎫ ⎝⎛∑n nk n k n k ,+∈N n ;【证明】考虑恒等式∑=⎪⎪⎭⎫ ⎝⎛=+nk k nx k n x 1)1(,对x 求导得∑=--⎪⎪⎭⎫ ⎝⎛=+nk k n x k n k x n 111)1(,再令1=x 即得112-=⋅=⎪⎪⎭⎫ ⎝⎛∑n nk n k n k (2)2122)1(-=⋅+=⎪⎪⎭⎫ ⎝⎛∑n nk n n k n k ,+∈N n .【证明】由(1)可知∑=-⎪⎪⎭⎫ ⎝⎛=+n k kn x k n k x nx 11)1(,对x 求导得∑=---⎪⎪⎭⎫ ⎝⎛=+-++nk k n n x k n k x x n x n 11221])1()1()1[(再令1=x 即得2122)1(-=⋅+=⎪⎪⎭⎫ ⎝⎛∑n nk n n k n k 第二组参考题1.(1)求∑=n k kx 1sin 和∑=nk kx 1cos ;【解】利用积化和差公式)cos()cos(sin sin 2y x y x y x --+=-可知2cos)21cos(])21cos()21[cos(sin 2sin 211x x n x k x k kx x nk n k -+=--+=-∑∑==于是有2sin2)21cos(2cos sin 1x xn x kx nk +-=∑=,π2k x ≠,Z ∈k 当π2k x =时有0sin 1=∑=nk kx ;同样地,利用公式)sin()sin(cos sin 2x y y x y x --+=可知2sin)21sin(])21sin()21[sin(cos 2sin 211x x n x k x k kx x nk n k -+=--+=∑∑==于是有2sin22sin )21sin(cos 1x xx n kx nk -+=∑=,π2k x ≠,Z ∈k 当π2k x =时∑=nk kx 1cos 发散;(2)求∑=nk kx k 1sin 和∑=n k kx k 1cos .【解】利用(1)的结论,对结果求导即知4.证明:Legendre 多项式nnn n n x xn x P )1(d d !21)(2-=满足方程)()12()()(11x P n x P x P n n n +='-'-+【证明】直接计算可得])1()1(2[d d )!1(21)1(d d )!1(21)(2111122211nn n n n n n n n x x n xn x x n x P -++=-+='++++++++])1(2)1[(d d !21])1([d d !211222211-++-+-=-=n n n n n n n n n x nx x x n x x x n ])1)(11[(d d )!1(21)(1221---+--+=n nn n n x x x n x P ])1[(d d )!1(21)()12(121----++=n nn n n x x n x P n )()()12(1x P x P n n n -'++=5.证明:Legendre 多项式满足方程)()1()(2)()1(2=++'-''-x P n n x P x x P x n n n 【证明】考虑函数nx y )1(2-=,求导得12)1(2--='n x nx y ,即nxy y x 2)1(2='-,两边求1+n 次导数,利用Leibniz 公式,有∑∑+=-+++=-++='-1)1()(11)1()(21)()(2)()1(n k k n k k n n k k n k k n y x C n y x C即])1([2)1()1(2)1()()1()()1()2(2n n n n n y n xy n y n n xy n y x ++=++++-+++整理得)()1()2(2)1(2)1(n n n y n n xy y x +=+-++故0)1(2)1()()1()2(2=++--++n n n y n n xy y x 所以)()1()(2)()1(2=++'-''-x P n n x P x x P x n n n 第七章微分学的基本定理7.2.4练习题10.设f 在]1,1[-上有任意阶导数,0)0()(=n f,+∈∀N n ,且存在常数0≥C ,使得对所有+∈N n 和]1,1[-∈x 成立不等式n n C n x f !)()(≤.证明:0)(≡x f .【证明】写出nn n n n n x n ξf x n ξf x n f x f f x f !)(!)()!1()0()0()0()()()(1)1(=+-++'+=-- ,x ξ≤,所以有nn n Cxξf n x x f ≤=)(!)()(若10<≤C ,那么0)(→≤n C x f ,∞→n 此时有0)(≡x f ,]1,1[-∈x ;若1≥C ,那么当Cx C 2121<<-时有021)(→≤nx f ,∞→n 此时有0)(≡x f ,]21,21[CC x -∈,在这之上有0)0()(=n f ,+∈∀N n ,故以此类推可知分别在]22,21[C C ,]21,22[CC --,…等区间上都有0)(≡x f ,从而有0)(≡x f ,]1,1[-∈x .11.设f 在],[b a 上二阶可微,且0)()(='='b f a f .证明:存在),(b a ξ∈,使得成立)()()(4)(2a fb f a b ξf --≥''.【证明】写出2121))((21)())((21))(()()(a x ξf a f a x ξf a x a f a f x f -''+=-''+-'+=2222))((21)())((21))(()()(b x ξf b f b x ξf b x b f b f x f -''+=-''+-'+=其中b ξx ξa <<<<21.取2ba x +=,则分别有4)(2)()()2(21a b ξf a f b a f -''+=+,4)(2)()(2(22a b ξf b f b a f -''+=+以上两式相减可得4)()]()([21)()(0212a b ξf ξf a f b f -''-''+-=移项后,由三点不等式可得)(])()([21)()()(4122ξf ξf ξf a f b f a b ''≤''+''≤--其中))(,)(max()(21ξf ξf ξf ''''=''.13.设f 在),[+∞a 上二阶可微,且0)(≥x f ,0)(≤''x f ,证明:在a x ≥时0)(≥'x f .【证明】假设存在),[0+∞∈a x 使得0)(0<'x f ,那么当0x x ≥时)()(0x f x f '≤',进而有)()()()()()(0000x f x x ξf x x x f x f '-≤'-=-,x ξx ≤≤0,只需再令)()(000x f x f x x '->便得0)(<x f ,这与0)(≥x f 矛盾,所以在a x ≥时0)(≥'x f .14.设f 在)1,1(-上1+n 阶可微,0)0()1(≠+n f,+∈N n ,在10<<x 上有n n n n x n x θf x n f x f f x f !)()!1()0()0()0()()(1)1(+-++'+=-- ,其中10<<θ,证明:11lim 0+=→n θx .【证明】由导数定义可知xθf x θf fn n x n )0()(lim)0()()(0)1(-=→+1)(1)1(0)0(!])!1()0()0()0()([lim +--→----'--=n nn n n x x θx f n x n f x f f x f 而其中又有1)(1)1(0)0(!])!1()0()0()0()([lim +--→----'--n nn n n x x x f n x n f x f f x f 1)0()0()(lim 11)!1(!)0(!)(lim )1()()(0)()(0+=-+=+-=+→→n f x f x f n x n n f n x f n n n x n n x 所以11lim 1lim 1)0()0(00)1()1(+=⇒+=→→++n θθn f fx x n n 15.证明:在1≤x 时存在)1,0(∈θ,使得2)(1arcsin x θx x -=,且有31lim 0=→θx .【证明】利用Lagrange 中值定理知存在ξ介于0与x 之间使得210arcsin arcsin ξx x -=-当0=x 时任取)1,0(∈θ;当10≤<x 时有10<<x ξ,令xξθ=,故存在)1,0(∈θ使得2)(1arcsin x θx x -=所以31))(arcsin (arcsin lim arcsin arcsin lim arcsin 1lim lim 4022220222020=+-=-=-=→→→→x x x x x x x x x x x x θx x x x 故31lim 0=→θx 16.设f 在)(0x O δ上n 阶可微,且0)()(0)1(0===''-x fx f n ,0)(0)(≠x f n .证明:当δh <<0时,成立h h θx f x f h x f )()()(000+'=-+,10<<θ,且成立11lim -→=n h nθ.【证明】利用Lagrange 中值定理知存在ξ介于0x 与h x +0之间使得hξf x f h x f )()()(00'=-+因而有100<-<h x ξ,令hx ξθ0-=,则成立h h θx f x f h x f )()()(000+'=-+,10<<θ.所以有1100000)()()()()()(--⋅'-+'='--+n n n θh θx f h θx f h h x f x f h x f 而!)(!)(lim )()()(lim 0)(0)1(00000n x f h n h x f h h x f x f h x f n n h n h =+='--+-→→)!1()()!1()(lim )()(lim )()()(lim 0)(0)1(010001000-=-+='-+'='-+'-→-→-→n x f t n t x f t x f t x f h θx f h θx f n n t n t n h 故10101lim 1lim -→-→=⇒=n h n h nθn θ7.3.2参考题第一组参考题1.设有n 个实数n a a a ,,,21 满足12)1(31121=--++--n a a a n n 证明:方程0)12cos(3cos cos )(21=-+++=x n a x a x a x f n 在区间2π,0(中至少有一个根.【证明】构造辅助函数x n n a x a x a x F n )12sin(123sin 3sin )(21--+++= 则可见0)2π()0(==F F .对F 在区间]2π,0[上用Rolle 定理,就知道)()(x f x F ='在区间)2π,0(中有零点.2.设0≠c ,证明:方程0345=+++c bx ax x 至少有两个根不是实根.【证明】设c bx ax x x f +++=345)(,那么22234)345(345)(x b ax x bx ax x x f ++=++='若03452=++b ax x 有两个相同实根,那么0≥'f ,此时f 严格单调增加,故方程只有一个实根,还有四个根不是实根;若03452=++b ax x 无实根,那么f 严格单调增加,同上;若03452=++b ax x 有两不同实根21x x <,那么f 在),(1x -∞,),(2+∞x 上严格单调增加,在),(21x x 上严格单调减少,此时方程至多有3个实根,还有两个根不是实根.3.设0≠a ,证明:方程n n na x a x 222)(+=+只有一个实根0=x .【证明】设n n na x a xx f 222)()(+-+=,那么])([2)(1212--+-='n n a x x n x f 当0>a 时,0)(<'x f ;当0<a 时,0)(>'x f .总之f 是严格单调的,故至多有一个实根,而0=x 是它的一个实根,所以方程只有一个实根0=x .4.设f 在],[b a 上连续,在),(b a 内可微,且满足条件0)()(>b f a f ,0)2()(<+ba f a f 证明:对每个实数k ,在),(b a 内存在点ξ,使成立0)()(=-'ξkf ξf .【证明】因为0)2()(<+b a f a f ,0)2()(<+b a f b f ,所以f 在)2,(b a a +和),2(b ba +上分别存在一个零点1x 与2x .构造辅助函数)(e )(x f x g kx-=,那么0)()(21==x g x g ,于是存在),(21x x ξ∈使得有0)(='ξg ,0)]()([e =-'-ξkf ξf ξk ,故0)()(=-'ξkf ξf .5.设∑==nk xλkk c x f 1e)(,其中n λλ,,1 为互异实数,n c c ,,1 不同时为0.证明:f 的零点个数小于n .【证明】用数学归纳法.当1=n 时xλc x f 1e )(1=,而01≠c ,此时f 没有零点;假设当n 时命题成立;当1+n 时,不妨令01≠+n c ,那么e )(0eee)(11)(11)(11111==⇒===∑∑∑+=-+=-+=n k x λλk n k xλλk xλn k xλk k k k c x g c c x f 而∑+=--='12)(11e )()(n k x λλk kk c λλx g 的零点个数至多有1-n 个,所以g 的零点个数至多有n 个,即f 的零点个数至多有n 个.根据归纳原理知命题成立.7.设f 在],[b a 上连续,在),(b a 内可微,但不是线性函数,证明:存在),(,b a ηξ∈,使成立)()()()(ηf ab a f b f ξf '>-->'【证明】构造辅助函数)()()()()()(a f a x ab a f b f x f x g -----=因为f 不是线性函数,所以g 不恒为零,而0)()(==b g a g ,所以存在),(b a c ∈使得0)(≠c g ,不妨设为0)(>c g .于是存在),(,b a ηξ∈,使成立0)()()(>'=--ξg a c a g c g ,0)()()(<'=--ηg bc b g c g 即有)()()()(ηf ab a f b f ξf '>-->'8.设f 在],[b a 上二阶可微,0)()(==b f a f ,且在某点),(b a c ∈处有0)(>c f ,证明:存在),(b a ξ∈,使0)(<''ξf .【证明】利用Lagrange 中值定理,存在),(1c a ξ∈与),(2b c ξ∈使得0)()()(1>'=--ξf a c a f c f ,0)()()(2<'=--ξf cb c f b f 再次利用此定理,存在),(21ξξξ∈使得)()()(1212<''=-'-'ξf ξξξf ξf 9.利用例题7.1.3的方法(或其他方法)解决以下问题:(1)设f 在],[b a 上三阶可微,且0)()()(=='=b f a f a f ,证明:对每个],[b a x ∈,存在),(b a ξ∈,使成立)()(!3)()(2b x a x ξf x f --'''=【证明】当),(b a x ∈时构造辅助函数)()()()()()()(22t f b t a t b x a x x f t g -----=那么有0)()()(===x g b g a g ,于是存在b ξx ξa <<<<21使得0)()(21='='ξg ξg ,又)())](()(2[)()()()(2t f a t a t b t b x a x x f t g '---+---='所以0)(='a g ,于是存在2211ξηξηa <<<<使得0)()(21=''=''ηg ηg ,最后存在21ηξη<<使得)()(3)()(0)()()()(60)(22b x a x ξf x f ξf b x a x x f ξg --'''=⇒='''---⇒='''当a x =或b x =时任取),(b a ξ∈等式都成立.(2)设f 在]1,0[上五阶可微,且0)1()1()1()32(31(=''='===f f f f f ,证明:对每个]1,0[∈x ,存在)1,0(∈ξ,使成立3)5()1)(32)(31(!5)()(---=x x x ξf x f 【证明】当}32,31{\)1,0[∈x 时构造辅助函数)()1)(3231()132)(31()()(33t f t t t x x x x f t g -------=重复(1)中的操作,最终存在)1,0(∈ξ使等式成立.当31=x 或32=x 或1=x 时任取),(b a ξ∈等式都成立.(3)设f 在],[b a 上三阶可微,证明:存在),(b a ξ∈,使成立)()(121)]()()[(21)()(3ξf a b b f a f a b a f b f '''--'+'-+=【证明】【法一】设2a b c +=,2a b h -=,待证等式化为)(32)]()([)()(3ξf x h c f h c f h h c f h c f '''-+'+-'+-=+令K x h c f h c f h h c f h c f 332)]()([)()(-+'+-'+-=+构造辅助函数K x x c f x c f x x c f x c f x g 332)]()([)()()(++'+-'---+=那么0)()0(==h g g ,利用Rolle 中值定理,存在),0(1h x ∈使得0)(1='x g ,而)(]2)()([)(x xh xK x c f x c f x x g =++''--''='所以0)()0(1==x h h ,于是存在),0(12x x ∈使得0)(2='x h ,而Kx c f x c f x h 2)()()(++'''--'''-='所以有)()(2)()(222ξf K ξf x c f x c f K '''=⇒'''=+'''+-'''=【法二】考虑函数)]()()[(21)()()(a f x f a x a f x f x F '+'---=,3)()(a x x G -=那么0)()()()(='=='=a G a G a F a F ,连续运用Cauchy 中值定理,知)(121)()()()()()()()()()()()()()(ξf ξG ξF a G c G a F c F c G c F a G b G a F b F b G b F '''-=''''='-''-'=''=--=其中b c ξa <<<.(4)设f 在],[b a 上二阶可微,证明:对每个),(b a c ∈,有),(b a ξ∈,使成立))(()())(()())(()()(21b c a c c f a b c b b f c a b a a f ξf --+--+--=''【证明】构造辅助函数)())(())()(())(())()(())(())()(()(x f b c a c b x a x c f a b c b a x c x b f c a b a c x b x a f x g -----+----+----=那么有0)()()(===c g b g a g ,于是存在c ξb ξa <<<<21使得0)()(21='='ξg ξg ,进而知存在),(21ξξξ∈使得0)(=''ξg ,即))(()())(()())(()()(21b c a c c f a b c b b f c a b a a f ξf --+--+--=''10.设b a <<0,f 在],[b a 上可微,证明:存在),(b a ξ∈,使成立)()()()(1ξf ξξf b f a f b a b a '-=-【证明】利用Cauchy 中值定理,知存在),(b a ξ∈,使成立)()(1)()(11)()()()()()(122ξf ξξf ξξξf ξf ξa b a a f b b f b a a bf b af b f a f b a b a '-=--'=--=--=-16.设f 在]2,0[上二阶可微,且1)(≤x f ,1)(≤''x f ,证明:2)(≤'x f .【证明】写出21))((21))(()()0(x ξf x x f x f f -''+-'+=22)2)((21)2)(()()2(x ξf x x f x f f -''+-'+=其中2021≤≤≤≤ξx ξ.两式相减得])()2)(([21)(2)0()2(2122x ξf x ξf x f f f ''--''+'=-所以2122)()2)((21)0()2()(2x ξf x ξf f f x f ''--''+-≤'])2[(21)0()2(22x x f f +-++≤44212=⨯+≤故2)(≤'x f 18.设当],0[a x ∈时有M x f ≤'')(.又已知f 在),0(a 中取到最大值.证明:Ma a f f ≤'+')()0(.【证明】设f 在点),0(a b ∈处取得最大值,由Fermat 定理知0)(='b f .写出))(()()(1a b ξf a f b f -''+'='bξf f b f )()0()(2''+'='其中),(1a b ξ∈,),0(2b ξ∈.由此有估计Mab ξf b a ξf a f f ≤''+-''='+')()()()()0(21第二组参考题5.设f 在],[b a 上可微,)()(b f a f '=',证明:存在),(b a ξ∈,使成立aξa f ξf ξf --=')()()(【证明】考虑函数x a f x f x g )()()('-=,那么0)()(='='b g a g ,待证式为aξa g ξg ξg --=')()()(.考虑辅助函数⎪⎩⎪⎨⎧=≤<--=ax b x a ax a g x g x G ,0,)()()(若)()(a g b g =,那么有0)()(==a G b G ,于是存在),(b a ξ∈使得0)(='ξG ,即aξa g ξg ξg a ξa g ξg a ξξg --='⇒=-+--')()()(0)()()())((2若)()(a g b g >,那么0)()()()()()())(()(22<--=-+--'='a b b g a g a b a g b g a b b g b G 以及0)(>b G ,所以在b x =的某个左邻域],[b δb -内有点c 使得0)()(>>b G c G ,从而)(x G 在),(b a 内取到最大值,故存在),(b a ξ∈使得0)(='ξG .若)()(a g b g <,同理.6.设f 在],[b a 上连续,在),(b a 内可微,又有),(b a c ∈使成立0)(='c f ,证明:存在),(b a ξ∈,满足ab a f ξf ξf --=')()()(【证明】构造辅助函数ab x a f x f x g ---=e)]()([)(那么ab xa b a f x f x f x g -----'='e ])()()([)(.如果0)(='c g ,那么取c ξ=即可.如果0)(>'c g ,那么)()(a f c f <,于是0)(<c g ,所以存在),(0c a x ∈使得0)()()(0<--='ac a g c g x g ,由达布定理知存在),(0c x ξ∈使得0)(='ξg .如果0)(<'c g ,同理.7.设f 在],[b a 上连续,在),(b a 上可微,0)(=a f ,0)(>x f ,],(b a x ∈∀,证明:对每个0>α,存在),(,21b a x x ∈,使成立)()()()(2211x f x f αx f x f '='【证明】只需考虑1>α的情形.构造辅助函数)(ln )(x f x F =,],(b a x ∈,则-∞=+→)(lim x F ax .记λb F =)(,可取),(b a c ∈使得1)(-=λc F ,由Lagrange 中值定理知)()()(11ξF cb c F b F c b '=--=-,),(1b c ξ∈再取),(c a d ∈使得cb ab αλd F ---=)(,由Lagrange 中值定理知)(1)()()(12ξF αcb αc b a b a b αd b d F b F ξF '>-=--->--=',),(2d a ξ∈由达布定理可知存在),(3b a ξ∈使得)()(13ξF αξF '='.8.设f 在),(+∞-∞上二阶连续可微,1)(≤x f ,且有4)]0([)]0([22='+f f ,证明:存在ξ,使成立0)()(=''+ξf ξf .【证明】在]2,0[上利用Lagrange 中值定理,知存在)2,0(1∈x 使得1)(2)0()2()(11≤'⇒-='x f f f x f 同理存在)0,2(2-∈x 使得1)(2)0()2()(22≤'⇒---='x f f f x f 构造辅助函数22)]([)]([)(x f x f x h '+=,]2,2[-∈x ,于是2)(1≤x h ,2)(2≤x h ,4)0(=h ,所以h 在)2,2(-∈ξ处取到最大值,于是0)(='ξh ,即有)()]()([2='''+ξf ξf ξf 由于3)]([4)]([22≥-≥'ξf ξf ,所以0)(≠'ξf ,故0)()(=''+ξf ξf .9.设f 在),(+∞-∞上二阶连续可微,且对所有R ,∈h x 成立。
北京大学数学科学学院考研参考书目汇总

北京大学数学科学学院考研参考书目汇总考试科目编号:01 数学分析 02 高等代数03 解析几何 04 实变函数05 复变函数 06 泛函分析07 常微分方程 08 偏微分方程09 微分几何 10 抽象代数11 拓扑学 12 概率论13 数理统计 14 数值分析15 数值代数 16 信号处理17 离散数学 18 数据结构与算法01 数学分析( 150 分)考试参考书:1. 方企勤等,数学分析(一、二、三册)高教出版社。
2. 陈纪修、於崇华、金路,数学分析(上、下册),高教出版社。
02 高等代数( 100 分)考试参考书:1. 丘维声,高等代数(第二版) 上册、下册,高等教育出版社,2002年, 2003年。
高等代数学习指导书(上册),清华大学出版社,2005年。
高等代数学习指导书(下册),清华大学出版社,2009年。
2. 蓝以中,高等代数简明教程(上、下册),北京大学出版社,2003年(第一版第二次印刷)。
03 解析几何( 50 分)考试参考书:1. 丘维声,解析几何(第二版),北京大学出版社,(其中第七章不考)。
2. 吴光磊,田畴,解析几何简明教程,高等教育出版社, 2003年。
04 实变函数( 50 分)考试参考书:1. 周民强,实变函数论,北京大学出版社, 2001年。
05 复变函数( 50 分)考试参考书:1. 方企勤,复变函数教程,北京大学出版社。
06 泛函分析( 50 分)考试参考书:1. 张恭庆、林源渠,泛函分析讲义(上册),北京大学出版社。
07 常微分方程( 50 分)考试参考书:1. 丁同仁、李承治,常微分方程教程,高等教育出版社。
2. 王高雄、周之铭、朱思铭、王寿松,常微分方程(第二版),高等教育出版社。
3. 叶彦谦,常微分方程讲义(第二版)人民教育出版社。
08 偏微分方程( 50 分)考试参考书:1. 姜礼尚、陈亚浙,数学物理方程讲义(第二版),高等教育出版。
2. 周蜀林,偏微分方程,北京大学出版社。
数学分析

(周课时5加习题课时2)(共80课时)(1)集合与函数 (6课时)实数概述,绝对值不等式,区间与邻域,有界集,确界原理,函数概念。
(2)数列极限 (12课时)数列。
数列极限的N -∑定义。
收敛数列的性质:唯一性、有界性、保号性、不等式性质、迫敛性、有理运算。
子列。
数列极限存在的条件;单调有限定理、柯西收敛原理。
⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+n n 11、STOLZ 定理。
(3)函数极限 (10课时)函数极限概念(x x x →∞→与。
瞬时函数的极限。
δ-∑定义、M -∑定义)函数极限的性质:唯一性、局部有界性、局部保号性、不等式性质、迫敛性、有理运算。
函数极限存在的条件:归结原则、柯西准则。
两个重要极限:1sin lim ,)11(lim 0==+→∞→xx e x x x x 无穷小量与无穷大量及其阶的比较。
(4)函数的连续性 (14课时)函数在一点的连续性。
单侧连续性。
间断点及其分类。
在区间上连续的函数。
连续函数的局部性质:有界性、保号性、连续函数的有理运算、复合函数的连续性。
闭区间上连续函数的性质:有界性、取得最大最小值性、介值性、一致连续性。
初等函数的连续性。
(5)极限与连续性(续)(15课时)实数完备性的基本定理:区间套定理、数列的柯西收敛准则、聚点原理、致密性定理、有限覆盖定理、实数完备性基本定理的等价性。
闭区间上连续函数性质的说明。
实数系。
压缩映射原理。
(6)导数与微分 (8课时)引入问题(切线问题与瞬时速度问题)。
导数的定义。
单侧导数。
导函数。
导数的几何意义。
和、积、商的导数。
反函数的导数。
复合函数的导数。
初等函数的导数。
微分概念。
微分的几何意义。
微分的运算法则。
一阶微分形式的不变性。
微分在近似计算中的应用。
高阶导数与高阶微分。
由参量方程所表示的曲线的斜率。
(7)中值定理与导数的应用 (15课时)费马(Fermat)定理。
罗尔(Rolle )中值定理。
拉格朗日(Lagrange )中值定理。
北京大学2009年数学分析试题及解答

因此 又因为 故
∫A
∫A
f (x) dx
1
dx
⩾
A2 ,
A
A f (x)
4
2
2
1 A2
∫A f (x) dx
0
⩾
1 A2
∫A
f (x) dx
A 2
⩾
1
4
∫
A
A
f
(x)
dx
,
2
∫A
lim
f (x) dx = 0,
A→+∞ A
2
lim
A→+∞
1 A2
∫A
0
f (x)
dx
=
+∞.
注 此题与北京大学 2011 年数学分析第 9 题本质上相同.
SN (x)
=
a0 2
+
∑ N an
cos nx
+ bn
sin nx,
lim SN (x) = g(x).
N →+∞
n=1
则
lim σn(x)
n→+∞
=
1 n
∑ n−1 Sk(x)
=
g(x),
k=0
由 Fejér 定理, {σn(x)} 一致收敛于 f (x), 故
因此
lim σn(x) = f (x),
n→∞
hn = c − an > 0, F (c − hn) > m, 同时 F (c + hn) ⩽ m, 于是 F (c + hn) − F (c − hn) < 0, 故 D+F (c) ⩽ 0.
3
下面来证明原命题.
∀ε > 0, F (x) = f (x)+εx 在 (a, b) 上应该单调不减. 事实上, 若前一句话不成立, 则 ∃x1, x2 ∈ (a, b), x1 < x2, 但 F (x1) > F (x2). 由上面证得的引理, ∃ξ ∈ (x1, x2), 使得 D+F (ξ) ⩽ 0. 而 D+F (ξ) = D+f (ξ) + ε > 0, 矛 盾.
北京大学2007年数学分析试题及解答

注 此处的证明手法与我写的北京大学 2016 年数学分析第一题相同. 其中找到的那个数叫做 Lebesgue 数, 与 之相关的定理在谢惠民等人的《数学分析习题课讲义》上册 82 页例题 3.5.3 (加强形式的覆盖定理), 书上 那个证明借助了几何直观, 但是我更喜欢上面这种证明方式.
2. 设有界区间为 I. 若 I 不是闭区间, 由于 f (x) 在 I 上一致连续, 利用 Cauchy 收敛原理可知 f (x) 在 I 的 两个端点处的单侧极限均存在, 从而我们可以把 f (x) 连续延拓到 I 的闭包 I 上, 对 g(x) 也是一样的, 这时 f (x)g(x) 在有界闭集 I 上连续, 从而 f (x)g(x) 在有界闭集 I 上一致连续, 故 f (x)g(x) 在 I 上一致连续. 若 I 是闭区间, 则不延拓, 然后用前面一样的方法就能证明原命题.
注 其实只是对一道经典的题目进行了一下包装, 相关的题目见林源渠、方企勤编的《数学分析解题指南》第 44 页例 11, 裴礼文的《数学分析中的典型问题与方法》第二版第 151 页例 2.2.6, 谢惠民等人的《数学 分析习题课讲义》上册第 140 页例题 5.4.5. 另外一种做法是先证明 f (x) 和 g(x) 有界, 然后用不等式 |f (x)g(x) − f (y)g(y)| ⩽ |f (x)g(x) − f (x)g(y)| + |f (x)g(y) − f (y)g(y)|.
当0<p⩽
1 2
时, g(x),
h(x) 在 [1, +∞) 上的广义积分收敛, i(x) 在
[1, +∞) 上的广义积分发散,
从而 f (x)
在 [1, +∞) 上的广义积分发散.
独具特色 内容丰富 视角新颖--《数学分析习题课讲义》(谢惠民等编)序言

独具特色内容丰富视角新颖--《数学分析习题课讲义》(谢惠
民等编)序言
李大潜
【期刊名称】《大学数学》
【年(卷),期】2003(019)003
【摘要】@@ 数学教育本质上是一种素质教育.学习数学的目的,不仅仅在于学到一些数学的概念、公式和结论,更重要的是要了解数学的思想方法和精神实质,真正掌握数学这门学科的精髓.只有这样,所学的数学知识才不致沦为一堆僵死的教条,变得似乎毫无作用,相反,能做到触类旁通,在现实世界中提出的种种问题面前显示出无穷无尽的威力,终生受用不尽.
【总页数】2页(P1-2)
【作者】李大潜
【作者单位】复旦大学,数学系,上海,200433
【正文语种】中文
【中图分类】G4
因版权原因,仅展示原文概要,查看原文内容请购买。
国内数学分析主要参考书目_数学分析书籍

国内数学分析主要参考书⽬_数学分析书籍花了半天时间,对国内部分⼤学所编数学分析(/⾼等数学/微积分)教材做了个汇总,发于此,肯定有很多遗漏,(期待有兴趣的⾍友帮我⼀起补充,补充格式:⼤学名,精确书名,编写作者....)。
国内部份⼤学常⽤数学分析(⾼数,微积分)教材总汇清华⼤学《数学分析教程》常庚哲.史济怀.《数学分析》(三册).何琛史济怀徐森林《数学分析》(三册).徐森林,.⾦亚东,.薛春华《数学分析讲义》(三册).陈天权《数学分析习题课讲义》谢惠民等北京⼤学《数学分析》沈燮昌著第⼀册,⽅企勤著第⼆册,廖可⼈、李正元著第三册《数学分析习题课教材》(第⼀版)《数学分析解题指南》(第⼆版)林源渠,⽅企勤《数学分析习题集》林源渠,⽅企勤等《数学分析新讲》张筑⽣(三册)《数学分析简明教程》邓东翱,尹⼩铃著《数学分析上、下册》彭⽴中、谭⼩江著复旦⼤学《数学分析》《数学分析》陈传璋,⾦福临,朱学炎,欧阳光中著第⼆版《数学分析》欧阳光中,朱学炎,⾦福临,陈传璋著第三版《数学分析》陈纪修等著《数学分析》欧阳光中,姚允龙著同济⼤学《⾼等数学》(同济⼤学数学系第六版,上、下册)《⾼等数学讲义》樊映川等编..华东师范⼤学《数学分析》华东师范⼤学数学系著《数学分析精读讲义》华东师范⼤学数学系著《数学分析习题精解》吴良森,⽑⽻辉等?中国科学技术⼤学《数学分析教程》常庚哲,史济怀著《简明微积分》龚昇《⾼等数学引论》华罗庚《数学分析》徐森林著《数学分析的⽅法及例题选讲》徐利治南开⼤学《数学分析上、下册》李成章,黄⽟民《在南开⼤学的演讲》陈省⾝南京⼤学《数学分析讲义》梅加强《数学分析教程》许绍浦等北京师范⼤学《简明数学分析(第⼀版)》王昆扬《简明数学分析(第⼆版)》郇中丹,刘永平,王昆扬《微积分学讲义(第⼆版)》邝荣⾬武汉⼤学《⾼等数学上、下册》(⾼等教育出版社,齐民友主编)《重温微积分》齐民友著吉林⼤学《数学分析》东北师范⼤学《数学分析讲义》刘⽟琏,傅沛仁著天津⼤学《⾼等数学上、下册》蔡⾼厅叶宗泽《⾼等数学试题精选与解答》(蔡⾼厅等编)内蒙古⼤学《微积分学简明教程》曹之江等著[ Last edited by hylpy on 2014-9-15 at 12:38 ]国内数学分析主要参考书⽬[1].刘⽟琏,傅沛仁,林玎,苑德馨,刘宁编.数学分析讲义(上),第四版.北京:⾼等教育出版社,2003.[2].刘⽟琏,傅沛仁,林玎,苑德馨,刘宁编.数学分析讲义(下),第四版.北京:⾼等教育出版社,2003.[3].刘⽟琏,扬奎元,吕风编.数学分析讲义学习辅导书(上),第⼆版,北京:⾼等教育出版社.2003.[4].刘⽟琏,扬奎元,吕风编.数学分析讲义学习辅导书(下),第⼆版,北京:⾼等教育出版社.2003.[5].华东师范⼤学数学系编.数学分析(上),第三版.北京:⾼等教育出版社,2002.[6].华东师范⼤学数学系编.数学分析(下),第三版.北京:⾼等教育出版社,2002.[7].吴良森,⽑⽻辉,韩⼠安,吴畏编著.数学分析学习指导书(上).北京:⾼等教育出版社.2004.[8].吴良森,⽑⽻辉,韩⼠安,吴畏编著.数学分析学习指导书(下).北京:⾼等教育出版社.2004.[9].吴良森,⽑⽻辉编著.数学分析习题精解(单变量部分).北京:科学出版社.2002.[10].吴良森,⽑⽻辉编著.数学分析习题精解(多变量部分).北京:科学出版社.2003.[11].薛宗慈,曾昭著,邝荣⾬,陈平尚编.数学分析习作课讲义(上).北京:北京师范⼤学出版社,1985.[12].薛宗慈,曾昭著,邝荣⾬,陈平尚编.数学分析习作课讲义(下).北京:北京师范⼤学出版社,1987.[13].谢惠民,恽⾃求,易法槐,钱定边编.数学分析习题课讲义(上).北京:⾼等教育出版社,2004.[14].谢惠民,恽⾃求,易法槐,钱定边编.数学分析习题课讲义(下).北京:⾼等教育出版社,2004.[15].徐利治,王兴华.数学分析的⽅法与例题选讲.北京:⾼等教育出版社,2002.[16].钱吉林等主编.数学分析解题精粹.武汉:崇⽂书局,2003.[17].裴礼⽂.数学分析中的典型问题与⽅法,第⼆版.北京: ⾼等教育出版社,2006.[18].周民强编著.数学分析习题演练(第⼀册).北京:科学出版社,2006.[19].周民强编著.数学分析习题演练(第⼆册).北京:科学出版社,2006.[20].裘兆泰.王承国,章仰⽂编.数学分析学习指导.北京:科学出版社,2004.[21].孙涛编.数学分析经典习题解析.北京:⾼等教育出版社,2004.[22].胡晓敏,李承家编著.数学分析考研教案,第⼆版.西安:西北⼯业⼤学出版社, 2006.[23].孙本旺,汪浩主编.数学分析中的典型例题和⽅法.长沙:湖南科学技术出版社,1983.[24].⽑⽻辉编著.数学分析选论.北京:科学出版社,2003.[25].王昆扬编.数学分析专题研究.北京:⾼等教育出版社,2001.[26].胡适耕,姚云飞编著.数学分析:定理问题⽅法.北京:科学出版社,2007.[27].徐利治编著.数学分析的⽅法及例题选讲:分析学的思想、⽅法与技巧.⼤连:⼤连理⼯⼤学出版社,2007.[28].沈燮昌.数学分析纵横谈.北京:北京⼤学出版社,1991.[29].G.波利亚.数学分析中的问题和定理(第⼀卷).上海:上海科技出版社,1981.[30].舒斯会编著.数学分析选讲.北京:北京⼤学出版社,2007.[31].刘三阳,于⼒,李⼴民编.数学分析选讲.北京:科学出版社,2007.[32].李克典,马云苓编著.数学分析选讲.厦门:厦门⼤学出版社,2007.[33].⾟钦著.数学分析⼋讲.武汉:武汉⼤学出版社,1999.[34].[美]克莱鲍尔著.数学分析.上海:上海科技出版社,1981.[35].朱时编著.数学分析札记.贵阳:贵州教育出版社,1994.[36].[苏]B.Π.吉⽶多维奇.数学分析习题集.北京:⾼等教育出版社,1985.[37].林源渠.数学分析习题集.北京:⾼等教育出版社,1986.[38].吕通庆编.数学分析中⼀些重要概念及其⽭盾概念.北京:⼈民教育出版社,1979.[39].赵显曾著.数学分析拾遗.南京:东南⼤学出版社,2006.[40].强⽂久,李元章,黄雯荣.数学分析的基本概念与⽅法.北京:⾼等教育出版社,1989.[41].⽅企勤,林源渠编著.数学分析习题课教材.北京:北京⼤学出版社,1990.[42].王向东主编.数学分析的概念与⽅法(上).上海:上海科学技术⽂献出版社,1989.[43].王向东主编.数学分析的概念与⽅法(下).上海:上海科学技术⽂献出版社,1989.[44].朱匀华,周健伟.数学分析选讲.⼴州:⼴东科技出版社,1995.[45].明清河.数学分析的思想与⽅法.济南:⼭东⼤学出版社,2004.[46].李惜雯.数学分析例题解析及难点注释(上).西安:西安交通⼤学出版社,2004.[47].李惜雯.数学分析例题解析及难点注释(下).西安:西安交通⼤学出版社,2004.[48].宋国柱编.分析中的基本定理和典型⽅法.北京:科学出版社,2004.[49].周忠群主编.数学分析⽅法选讲.重庆:西南师范⼤学出版社,1990.[50].王⼽平编.数学分析选讲.徐州:中国矿业⼤学出版社,2002.[51].林安浩,张国杰,王智青编演.数学分析(1983-1984全国⾼等院校硕⼠研究⽣⼊学试题解答).天津:天津科学技术出版社,1985.[52].皱节铣,陈强编.数学试题选解(1980-1985全国招考研究⽣).长沙:湖南科学技术出版社,1986.[53].庄亚栋,⽅洪锦,姚林编.基础数学试题选解(研究⽣⼊选考试).苏州:江苏科技术学出版社,1986.[54].蔡林,张继昌编著.研究⽣数学⼊学考试精编,第三版.杭州:浙江⼤学出版社,1999.[55].牟俊霖,李青吉主编.洞穿考研数学.北京:航空⼯业出版社,2003.[56].刘光祖,卢恩双主编.⼤学数学辅导与考研指导.北京:科学出版社,2002.[57].西安交通⼤学⼗教授考研班主编.考研数学成功指南,第三版.西安:世界图书出版公司西安公司,2004.[58].余长安主编.⼤学数学考研题型精讲与解题技巧集粹.北京:科学出版社,2005.[59].邵剑,陈维新,张继昌,何勇编著.⼤学数学考研专题复习.北京:科学出版社,2001.[60].李沛恒主编.考研数学新编考试参考书.北京:中国⼈民⼤学出版社,2004.[61].龚冬宝(保)主编.数学考研教程,第三版.西安:西北交通⼤学出版社,2004.[62].龚怀云,胡清徽,杨泽⾼,张可村.研究⽣⾼等数学⼊学考试指南.西安:西北交通⼤学出版社,1985.[63].陈⽂灯,莫先开主编.数学复习指南.北京:世界图书出版公司北京公司,2002.[64].齐民友主编.微积分学习指导.武汉:武汉⼤学出版社,2004.[65].汪林.数学分析中的问题和反例.昆明:云南科技出版社,1990.[66].汪林,戴正徳,杨富春,郑喜印.数学分析问题与研究评注.北京:科学出版社,1995.[67].陈纪修,於崇华,⾦路.数学分析(上).北京:⾼等教育出版社,2000.[68].陈纪修,於崇华,⾦路.数学分析(下).北京:⾼等教育出版社,2000[69].王晓敏,李晓奇,惠兴杰主编.数学分析学习⽅法与解题指导.沈阳:东北⼤学出版社,2005.[70].赵焕光,林长盛编著.数学分析(上).成都:四川⼤学出版社,2006.[71].赵焕光,林长盛编著.数学分析(下).成都:四川⼤学出版社,2006.[72].陈传章,⾦福临,朱学炎,欧阳光中.数学分析(上),第⼆版.北京:⾼等教育出版社,1983.[73].陈传章,⾦福临,朱学炎,欧阳光中.数学分析(下),第⼆版.北京:⾼等教育出版社,1983.[74].⽅企勤编.数学分析(1).北京:⾼等教育出版社,1986.[75].沈燮昌编.数学分析(2).北京:⾼等教育出版社,1986.[76].廖可⼈,李正元编.数学分析(3).北京:⾼等教育出版社,1986.[77].许绍溥,姜东平,宋国柱,任福贤.数学分析教程(上).南京:南京⼤学出版社,1990.[78].宋国柱,任福贤,许绍溥,姜东平.数学分析教程(下).南京:南京⼤学出版社,1990.[79].武汉⼤学数学系编.数学分析(上).北京:⼈民教育出版社,1978.[80].武汉⼤学数学系编.数学分析(下).北京:⼈民教育出版社,1978.[81].吉林⼤学数学系编.数学分析(上).北京:⾼等教育出版社,1979.[82].吉林⼤学数学系编.数学分析(中).北京:⾼等教育出版社,1979.[83].吉林⼤学数学系编.数学分析(下).北京:⾼等教育出版社,1979.[84].常庚哲,史济怀编.数学分析教程(上).北京:⾼等教育出版社,2003.[85].常庚哲,史济怀编.数学分析教程(下).北京:⾼等教育出版社,2003.[86].复旦⼤学数学系编.数学分析(上).上海:上海科学技术出版社,1978.[87].复旦⼤学数学系编.数学分析(下).上海:上海科学技术出版社,1978.[88].邓东皋,尹⼩玲编著.数学分析简明教程(上).北京:⾼等教育出版社,1999.[89].邓东皋,尹⼩玲编著.数学分析简明教程(下).北京:⾼等教育出版社,1999.[90].欧阳光中编.数学分析(上).上海:上海科学技术出版社,1982.[91].欧阳光中编.数学分析(下).上海:上海科学技术出版社,1982.[92].周性伟.数学分析(上).天津:南开⼤学出版社,1982.[93].周性伟.数学分析(下).天津:南开⼤学出版社,1982.[94].彭⽴中,谭⼩江编著.数学分析(第1册).北京:⾼等教育出版社,2005.[95].严⼦谦,尹景学,张然编著.数学分析(第⼀册).北京:⾼等教育出版社,2004.[96].马富明,⾼⽂杰编著.数学分析(第⼆册).北京:⾼等教育出版社,2005.[97].徐森林,薛春华编著.数学分析(第⼆册).北京:清华⼤学出版社,2006.[98].王慕三,庄亚栋.数学分析(上).北京:⾼等教育出版社,1990.[99].王慕三,庄亚栋.数学分析(中).北京:⾼等教育出版社,1990.[100].王慕三,庄亚栋.数学分析(下).北京:⾼等教育出版社,1990.[101].邓东皋,尹⼩玲编撰.数学分析简明教程.北京:⾼等教育出版社,1997.[102].李成章,黄⽟明编.数学分析(上).北京:科学出版社,2004.[103].李成章,黄⽟明编.数学分析(下).北京:科学出版社,2004.[104].张筑⽣.数学分析新讲(第⼀册).北京:北京⼤学出版社,1999.[105].张筑⽣.数学分析新讲(第⼆册).北京:北京⼤学出版社,1999.[106].张筑⽣.数学分析新讲(第三册).北京:北京⼤学出版社,1999.[107].朱永庚.数学分析(上).西安:陕西师范⼤学出版社,1989.[108].朱永庚.数学分析(下).西安:陕西师范⼤学出版社,1989.[109].东北师⼤等校数学系编.数学分析(上).北京:⾼等教育出版社,1983.[110].东北师⼤等校数学系编.数学分析(下).北京:⾼等教育出版社,1983.[111].吴传⽣,张⼩柔主编.数学分析(下册)习题精解.合肥:中国科学技术⼤学出版社,2007. [112].吴传⽣,张⼩柔主编.数学分析(下册)习题精解).合肥:中国科学技术⼤学出版社,2007. [113].郑英元.数学分析习题课教程(上).北京:⾼等教育出版社,1991.[114].郑英元.数学分析习题课教程(下).北京:⾼等教育出版社,1991.[115].郑美元.数学分析中的习题课教程(上).北京:⾼等教育出版社,1991.[116].郑美元.数学分析中的习题课教程(下).北京:⾼等教育出版社,1991.[117].邵漪漪.⾼等数学选择题集.上海:上海科学技术出版社,1989.[118].孟繁铎.微积分标准化试题库.⼤连:⼤连理⼯⼤学出版社,1989.[119].李承家,胡晓敏编.数学分析导教•导学•导考.西安:西北⼯业⼤学出版社,2003. [120].贺⾃树等编.数学分析习题课选讲.重庆:重庆⼤学出版社,2007.[ Last edited by hylpy on 2018-9-2 at 18:39 ][121].李忠⽅丽萍编.数学分析教程上,2008.[122].李忠⽅丽萍编.数学分析教程下,2008.[123].梅加强编.《数学分析》⾼等教育出版社,2011.07.[124].邹应编.数学分析.上册.⾼等教育出版社.1995.[125].邹应编.数学分析.下册.⾼等教育出版社.1995.[126].郭⼤钧等编著.数学分析(上册)(第2版),2002.[127].郭⼤钧等编著.数学分析(下册)(第2版),2002.[128].沐定夷.数学分析(上),1993.[129].沐定夷.数学分析(下),1993.[130].欧阳光中,姚允龙,周渊编著.数学分析(上册),2003.[131].欧阳光中,姚允龙,周渊编著.数学分析(下册),2003.[132].数学分析-卷I-秦曾复、朱学炎-⾼等教育出版社1991.[133].数学分析-卷Ⅱ-秦曾复、朱学炎-⾼等教育出版社1991.[134].数学分析-卷Ⅲ-秦曾复、朱学炎-⾼等教育出版社1991.[ Last edited by hylpy on 2018-9-5 at 19:19 ][135].数学分析1-徐森林,.薛春华.清华⼤学出版社,2005.[136].数学分析2-徐森林,薛春华.清华⼤学出版社,2007.[137].数学分析3-徐森林,⾦亚东,薛春华.清华⼤学出版社,2007.[138].数学分析精选习题全解(上)-薛春华,徐森林,2009.[139].数学分析精选习题全解(下)-薛春华,徐森林,2010.[ Last edited by hylpy on 2018-9-7 at 18:06 ][140].伍胜健.数学分析第⼆版,(第⼀册),北京⼤学数学教学系列丛书,2009.[141].伍胜健.数学分析第⼆版,(第⼆册),北京⼤学数学教学系列丛书,2009.[142].伍胜健.数学分析第⼆版,(第三册),北京⼤学数学教学系列丛书,2009.国内数学分析主要参考书⽬本帖隐藏的内容[1].刘⽟琏,傅沛仁,林玎,苑德馨,刘宁编.数学分析讲义(上),第四版.北京:⾼等教育出版社,2003.[2].刘⽟琏,傅沛仁,林玎,苑德馨,刘宁编.数学分析讲义(下),第四版.北京:⾼等教育出版社,2003.[3].刘⽟琏,扬奎元,吕风编.数学分析讲义学习辅导书(上),第⼆版,北京:⾼等教育出版社.2003.[4].刘⽟琏,扬奎元,吕风编.数学分析讲义学习辅导书(下),第⼆版,北京:⾼等教育出版社.2003.[5].华东师范⼤学数学系编.数学分析(上),第三版.北京:⾼等教育出版社,2002.[6].华东师范⼤学数学系编.数学分析(下),第三版.北京:⾼等教育出版社,2002.[7].吴良森,⽑⽻辉,韩⼠安,吴畏编著.数学分析学习指导书(上).北京:⾼等教育出版社.2004.[8].吴良森,⽑⽻辉,韩⼠安,吴畏编著.数学分析学习指导书(下).北京:⾼等教育出版社.2004.[9].吴良森,⽑⽻辉编著.数学分析习题精解(单变量部分).北京:科学出版社.2002.[10].吴良森,⽑⽻辉编著.数学分析习题精解(多变量部分).北京:科学出版社.2003.[11].薛宗慈,曾昭著,邝荣⾬,陈平尚编.数学分析习作课讲义(上).北京:北京师范⼤学出版社,1985.[12].薛宗慈,曾昭著,邝荣⾬,陈平尚编.数学分析习作课讲义(下).北京:北京师范⼤学出版社,1987.[13].谢惠民,恽⾃求,易法槐,钱定边编.数学分析习题课讲义(上).北京:⾼等教育出版社,2004.[14].谢惠民,恽⾃求,易法槐,钱定边编.数学分析习题课讲义(下).北京:⾼等教育出版社,2004.[15].徐利治,王兴华.数学分析的⽅法与例题选讲.北京:⾼等教育出版社,2002.[16].钱吉林等主编.数学分析解题精粹.武汉:崇⽂书局,2003.[17].裴礼⽂.数学分析中的典型问题与⽅法,第⼆版.北京: ⾼等教育出版社,2006.[18].周民强编著.数学分析习题演练(第⼀册).北京:科学出版社,2006.[19].周民强编著.数学分析习题演练(第⼆册).北京:科学出版社,2006.[20].裘兆泰.王承国,章仰⽂编.数学分析学习指导.北京:科学出版社,2004.[21].孙涛编.数学分析经典习题解析.北京:⾼等教育出版社,2004.[22].胡晓敏,李承家编著.数学分析考研教案,第⼆版.西安:西北⼯业⼤学出版社, 2006.[23].孙本旺,汪浩主编.数学分析中的典型例题和⽅法.长沙:湖南科学技术出版社,1983.[24].⽑⽻辉编著.数学分析选论.北京:科学出版社,2003.[25].王昆扬编.数学分析专题研究.北京:⾼等教育出版社,2001.[26].胡适耕,姚云飞编著.数学分析:定理问题⽅法.北京:科学出版社,2007.[27].徐利治编著.数学分析的⽅法及例题选讲:分析学的思想、⽅法与技巧.⼤连:⼤连理⼯⼤学出版社,2007.[28].沈燮昌.数学分析纵横谈.北京:北京⼤学出版社,1991.[29].G.波利亚.数学分析中的问题和定理(第⼀卷).上海:上海科技出版社,1981.[30].舒斯会编著.数学分析选讲.北京:北京⼤学出版社,2007.[31].刘三阳,于⼒,李⼴民编.数学分析选讲.北京:科学出版社,2007.[32].李克典,马云苓编著.数学分析选讲.厦门:厦门⼤学出版社,2007.[33].⾟钦著.数学分析⼋讲.武汉:武汉⼤学出版社,1999.[34].[美]克莱鲍尔著.数学分析.上海:上海科技出版社,1981.[35].朱时编著.数学分析札记.贵阳:贵州教育出版社,1994.[36].[苏]B.Π.吉⽶多维奇.数学分析习题集.北京:⾼等教育出版社,1985.[37].林源渠.数学分析习题集.北京:⾼等教育出版社,1986.[38].吕通庆编.数学分析中⼀些重要概念及其⽭盾概念.北京:⼈民教育出版社,1979.[39].赵显曾著.数学分析拾遗.南京:东南⼤学出版社,2006.[40].强⽂久,李元章,黄雯荣.数学分析的基本概念与⽅法.北京:⾼等教育出版社,1989.[41].⽅企勤,林源渠编著.数学分析习题课教材.北京:北京⼤学出版社,1990.[42].王向东主编.数学分析的概念与⽅法(上).上海:上海科学技术⽂献出版社,1989.[43].王向东主编.数学分析的概念与⽅法(下).上海:上海科学技术⽂献出版社,1989.[44].朱匀华,周健伟.数学分析选讲.⼴州:⼴东科技出版社,1995.[45].明清河.数学分析的思想与⽅法.济南:⼭东⼤学出版社,2004.[46].李惜雯.数学分析例题解析及难点注释(上).西安:西安交通⼤学出版社,2004.[47].李惜雯.数学分析例题解析及难点注释(下).西安:西安交通⼤学出版社,2004.[48].宋国柱编.分析中的基本定理和典型⽅法.北京:科学出版社,2004.[49].周忠群主编.数学分析⽅法选讲.重庆:西南师范⼤学出版社,1990.[50].王⼽平编.数学分析选讲.徐州:中国矿业⼤学出版社,2002.[51].林安浩,张国杰,王智青编演.数学分析(1983-1984全国⾼等院校硕⼠研究⽣⼊学试题解答).天津:天津科学技术出版社,1985.[52].皱节铣,陈强编.数学试题选解(1980-1985全国招考研究⽣).长沙:湖南科学技术出版社,1986.[53].庄亚栋,⽅洪锦,姚林编.基础数学试题选解(研究⽣⼊选考试).苏州:江苏科技术学出版社,1986.[54].蔡林,张继昌编著.研究⽣数学⼊学考试精编,第三版.杭州:浙江⼤学出版社,1999.[55].牟俊霖,李青吉主编.洞穿考研数学.北京:航空⼯业出版社,2003.[56].刘光祖,卢恩双主编.⼤学数学辅导与考研指导.北京:科学出版社,2002.[57].西安交通⼤学⼗教授考研班主编.考研数学成功指南,第三版.西安:世界图书出版公司西安公司,2004.[58].余长安主编.⼤学数学考研题型精讲与解题技巧集粹.北京:科学出版社,2005.[59].邵剑,陈维新,张继昌,何勇编著.⼤学数学考研专题复习.北京:科学出版社,2001.[60].李沛恒主编.考研数学新编考试参考书.北京:中国⼈民⼤学出版社,2004.[61].龚冬宝(保)主编.数学考研教程,第三版.西安:西北交通⼤学出版社,2004.[62].龚怀云,胡清徽,杨泽⾼,张可村.研究⽣⾼等数学⼊学考试指南.西安:西北交通⼤学出版社,1985.[63].陈⽂灯,莫先开主编.数学复习指南.北京:世界图书出版公司北京公司,2002.[64].齐民友主编.微积分学习指导.武汉:武汉⼤学出版社,2004.[65].汪林.数学分析中的问题和反例.昆明:云南科技出版社,1990.[66].汪林,戴正徳,杨富春,郑喜印.数学分析问题与研究评注.北京:科学出版社,1995.[67].陈纪修,於崇华,⾦路.数学分析(上).北京:⾼等教育出版社,2000.[68].陈纪修,於崇华,⾦路.数学分析(下).北京:⾼等教育出版社,2000[69].王晓敏,李晓奇,惠兴杰主编.数学分析学习⽅法与解题指导.沈阳:东北⼤学出版社,2005.[70].赵焕光,林长盛编著.数学分析(上).成都:四川⼤学出版社,2006.[71].赵焕光,林长盛编著.数学分析(下).成都:四川⼤学出版社,2006.[72].陈传章,⾦福临,朱学炎,欧阳光中.数学分析(上),第⼆版.北京:⾼等教育出版社,1983.[73].陈传章,⾦福临,朱学炎,欧阳光中.数学分析(下),第⼆版.北京:⾼等教育出版社,1983.[74].⽅企勤编.数学分析(1).北京:⾼等教育出版社,1986.[75].沈燮昌编.数学分析(2).北京:⾼等教育出版社,1986.[76].廖可⼈,李正元编.数学分析(3).北京:⾼等教育出版社,1986.[77].许绍溥,姜东平,宋国柱,任福贤.数学分析教程(上).南京:南京⼤学出版社,1990.[78].宋国柱,任福贤,许绍溥,姜东平.数学分析教程(下).南京:南京⼤学出版社,1990.[79].武汉⼤学数学系编.数学分析(上).北京:⼈民教育出版社,1978.[80].武汉⼤学数学系编.数学分析(下).北京:⼈民教育出版社,1978.[81].吉林⼤学数学系编.数学分析(上).北京:⾼等教育出版社,1979.[82].吉林⼤学数学系编.数学分析(中).北京:⾼等教育出版社,1979.[83].吉林⼤学数学系编.数学分析(下).北京:⾼等教育出版社,1979.[84].常庚哲,史济怀编.数学分析教程(上).北京:⾼等教育出版社,2003.[85].常庚哲,史济怀编.数学分析教程(下).北京:⾼等教育出版社,2003.[86].复旦⼤学数学系编.数学分析(上).上海:上海科学技术出版社,1978.[87].复旦⼤学数学系编.数学分析(下).上海:上海科学技术出版社,1978.[88].邓东皋,尹⼩玲编著.数学分析简明教程(上).北京:⾼等教育出版社,1999.[89].邓东皋,尹⼩玲编著.数学分析简明教程(下).北京:⾼等教育出版社,1999.[90].欧阳光中编.数学分析(上).上海:上海科学技术出版社,1982.[91].欧阳光中编.数学分析(下).上海:上海科学技术出版社,1982.[92].周性伟.数学分析(上).天津:南开⼤学出版社,1982.[93].周性伟.数学分析(下).天津:南开⼤学出版社,1982.[94].彭⽴中,谭⼩江编著.数学分析(第1册).北京:⾼等教育出版社,2005.[95].严⼦谦,尹景学,张然编著.数学分析(第⼀册).北京:⾼等教育出版社,2004.[96].马富明,⾼⽂杰编著.数学分析(第⼆册).北京:⾼等教育出版社,2005.[97].徐森林,薛春华编著.数学分析(第⼆册).北京:清华⼤学出版社,2006.[98].王慕三,庄亚栋.数学分析(上).北京:⾼等教育出版社,1990.[99].王慕三,庄亚栋.数学分析(中).北京:⾼等教育出版社,1990.[100].王慕三,庄亚栋.数学分析(下).北京:⾼等教育出版社,1990.[101].邓东皋,尹⼩玲编撰.数学分析简明教程.北京:⾼等教育出版社,1997.[102].李成章,黄⽟明编.数学分析(上).北京:科学出版社,2004.[103].李成章,黄⽟明编.数学分析(下).北京:科学出版社,2004.[104].张筑⽣.数学分析新讲(第⼀册).北京:北京⼤学出版社,1999.[105].张筑⽣.数学分析新讲(第⼆册).北京:北京⼤学出版社,1999.[106].张筑⽣.数学分析新讲(第三册).北京:北京⼤学出版社,1999.[107].朱永庚.数学分析(上).西安:陕西师范⼤学出版社,1989.[108].朱永庚.数学分析(下).西安:陕西师范⼤学出版社,1989.[109].东北师⼤等校数学系编.数学分析(上).北京:⾼等教育出版社,1983.[110].东北师⼤等校数学系编.数学分析(下).北京:⾼等教育出版社,1983.[111].吴传⽣,张⼩柔主编.数学分析(上册)习题精解.合肥:中国科学技术⼤学出版社,2007.[112].吴传⽣,张⼩柔主编.数学分析(下册)习题精解).合肥:中国科学技术⼤学出版社,2007.[113].郑英元.数学分析习题课教程(上).北京:⾼等教育出版社,1991.[114].郑英元.数学分析习题课教程(下).北京:⾼等教育出版社,1991.[115].郑美元.数学分析中的习题课教程(上).北京:⾼等教育出版社,1991.[116].郑美元.数学分析中的习题课教程(下).北京:⾼等教育出版社,1991.[117].邵漪漪.⾼等数学选择题集.上海:上海科学技术出版社,1989.[118].孟繁铎.微积分标准化试题库.⼤连:⼤连理⼯⼤学出版社,1989.[119].李承家,胡晓敏编.数学分析导教•导学•导考.西安:西北⼯业⼤学出版社,2003. [120].贺⾃树等编.数学分析习题课选讲.重庆:重庆⼤学出版社,2007.[121].李忠⽅丽萍编.数学分析教程上,2008.[122].李忠⽅丽萍编.数学分析教程下,2008.[123].梅加强编.《数学分析》⾼等教育出版社,2011.07.[124].邹应编.数学分析.上册.⾼等教育出版社.1995.[125].邹应编.数学分析.下册.⾼等教育出版社.1995.[126].郭⼤钧等编著.数学分析(上册)(第2版),2002.[127].郭⼤钧等编著.数学分析(下册)(第2版),2002.[128].沐定夷.数学分析(上),1993.[129].沐定夷.数学分析(下),1993.[130].欧阳光中,姚允龙,周渊编著.数学分析(上册),2003.[131].欧阳光中,姚允龙,周渊编著.数学分析(下册),2003.[132].数学分析-卷I-秦曾复、朱学炎-⾼等教育出版社1991.[133].数学分析-卷Ⅱ-秦曾复、朱学炎-⾼等教育出版社1991.[134].数学分析-卷Ⅲ-秦曾复、朱学炎-⾼等教育出版社1991.[135].数学分析1-徐森林,.薛春华.清华⼤学出版社,2005.[136].数学分析2-徐森林,薛春华.清华⼤学出版社,2007.[137].数学分析3-徐森林,⾦亚东,薛春华.清华⼤学出版社,2007.[138].数学分析精选习题全解(上)-薛春华,徐森林,2009.[139].数学分析精选习题全解(下)-薛春华,徐森林,2010.[140].伍胜健.数学分析第⼆版,(第⼀册),北京⼤学数学教学系列丛书,2009.[141].伍胜健.数学分析第⼆版,(第⼆册),北京⼤学数学教学系列丛书,2009.[142].伍胜健.数学分析第⼆版,(第三册),北京⼤学数学教学系列丛书,2009.这⾥列的参考书,本论坛⼤部分都有电⼦版分享。
数学分析与习题课 教学大纲

《数学分析I》课程教学大纲(本课程周课时数为5,共85课时,此外每周还有2课时的习题课)课程编号:MAAB1101课程类别:大类基础课授课对象:数学与应用数学基地、数学与应用数学师范、信息与计算科学、统计专业开课学期:秋季,第1学期学分:5学分指定教材:1、华东师范大学数学系,《数学分析(下)》(第三版),高等教育出版社,2003年2、谢惠民,《数学分析讲义》(第一册),自编一、教学目的数学分析课程是是数学专业最重要的基础课,对学生数学思想的形成,后继课程的学习都有着重要的意义。
课程的其特点是:学习时间的跨度很大,一般是三个学期,内容极为丰富。
《数学分析I》课程是基础,其基本的内容为极限和连续理论、一元微分学。
课程的教学目的是通过系统的数学训练,使学生进一步提高数学修养,特别是分析的修养,积累从事进一步学习所需要的数学知识,掌握数学的基本思想方法,最终使学生的数学思维能力得到根本的提高。
二、课程内容第一章、引论(5 课时)1. 集合;2. 实数的连续性实数的一些描述方法。
3. 数集与确界确界的描述、确界原理及其应用;4. 逻辑记号的对偶法则逻辑记号的对偶法则;用逻辑记号叙述否命题;5. 常用不等式三角不等式、Bernoulli不等式、平均值不等式、Cauchy不等式。
.第二章、数列极限(20课时)1. 数列极限的定义数列极限的ε-N语言和邻域语言。
2. 数列极限的计算适当放大法;发散数列;一些重要例子;Cauchy命题和Stolz定理。
3. 单调数列的极限单调有界定理、闭区间套定理及其应用;4. Cauchy收敛准则用Cauchy收敛准则描述极限存在和不存在;5. 子列及其应用.子列的概念、它与收敛发散的关系及其应用。
第三章、映射与函数(2课时)1.映射;2. 一元实函数;3. 函数的几何特性草图的画法(如两个函数和的草图等);有界函数、单调函数、反函数、奇偶函数和周期函数的特性。
第四章、函数极限与连续性(10课时)1. 函数极限的定义与性质,函数极限的定义、性质和几个重要的函数极限;三种存在性条件(Heine归结原则;单调有界函数的收敛定理;Cauchy准则),能有选择地应用。
524 《数学分析(一)》作业参考答案

《数学分析(一)》作业参考答案一.选择1、A ;2、B ;3、D ;4、C ;5、B ;6、C ;二、填空题1、π62、2e3、x 2cos 8-;4、8x e 25、bA6、o y x ==,0三、判断对错1. ×; 2. √; 3. ×; 4. √; 5. ×; 6. ×; 7. √; 8. √; 9. ×; 10. ×; 11. √; 12. √; 13. √。
四.求极限1. 2; 2.;m n 3. ;21 4. 21; 5. ;31 6. a 2sin ; 7. 31-; 8. 31; 9. 1;10. π2; 11. 2-e .; 12. 1; 13. 2e ; 14. 3; 15. 81-。
16.解x xx 2cot 2sin lim 0→ =xxx 2tan 2sinlim0→ =xxx 22lim 0→=4117.解:)1(1321211+++⋅+⋅n n=)111()3121()211(+-++-+-n n =1-11+n ∴(lim ∞→n )1(1321211+++⋅+⋅n n ) =)111(lim +-∞→n n =118.解:502030)15()88()63(lim --+∞→x x x x= ∞→x lim502030)15()58()63(x x x --+ =502030)15(lim )58(lim )63(lim xx x x x x --⋅+∞→∞→∞→ =502030583⋅ 19.解:xx x x 11lim 20-+→=)11(1)1(lim220++-+→x x x x=11lim2++→x x x=0 20.解:))12)(12(1531311(lim +-++⋅+⋅∞→n n n =)]121121()5131()311[(21lim +--++-+-∞→n n n =)1211(lim 21+-∞→n n =2121.解:3)15()3)(2)(1(lim----∞→x x x x x=3)15()31)(21)(11(limxx x x x ----∞→ =1251513=五.计算导数或积分1. ;11'2x y += 2. ;)2(3)1(',3)1(',)1(3)('222-=-=+-=x x f x x f x x f3. []21''(ln )'(ln );y f x f x x ''=- 4. 2)ln 1(1'x x y -=; 5. xx y 4sin 12sin '-=6. xx x x x x x x x x y ++++++=8124'; 7. ⎪⎩⎪⎨⎧<-≥=;0,3,0,3)('22x x x x x f ;8. ;cos sin 6'222x x x y = 9. 3.2)1(3)('+=x x f , 2)2(3)1('+=+x x f , 23)1('x x f =- 10. 5)5()1(24)(x x f+=; 11.d y =; 12. '4csc2cot 2y x x =-; 13. 22''(sin )'(cos )sin 2y f x f x x ⎡⎤=-⎣⎦;14. ⎥⎦⎤⎢⎣⎡+-++-++-=)1(51)2(2134)1(2)3('54x x x x x x y 15.))1((ln(2'++='x x y=)1(1122'++++x x x x = )11(1122xx x x ++++=211x+16.)cos ('='x e y x=)(cos cos )('+'x e x e x x=x e x e x x sin cos -= )sin (cos x x e x -17.)312(432x x x x d dy +-+= =)()31()2(432x d x d x d dx +-+=dx x x x )441(32+-+ 18.解:)tan ('='xxy =22tan sec x xx x - 19.解:])[(sin 32'='x y=)(si n )(si n 3222'x x=)(cos )(sin 32222'⋅x x x=222)(sin cos 6x x x 20.解:)ln (x x x d dy -==dx x x d -)ln (=dx x d x xdx -⋅+)(ln ln =dx dx xx xdx -⋅+1ln =xdx ln六.计算1. 解:令,0)23(2)('2=-=x x x f 得驻点)1.1(;23,0-∈==x x x 当时,.0)('>x f )(x f ∴严格增,0=∴x 非极植点;又,09)23(''<-=f23=∴x 是极大值点,极大值1627)23(=f 。
北京大学2010年数学分析试题及解答

|Pn(x) − Pm(x)| < ε.
因为 I 为无穷区间, 因此当 n > m ⩾ Nε 时, |Pn(x) − Pm(x)| 为常数. 设
|PNε (x) − Pn(x)| = cn, n > N,
于是 {cn} 为有界数列, 必有收敛子列 {cnk }∞ k=1, 设
结合 |PNε (x) − Pnk (x)| = cnk , 令 k → ∞ 得
2ε
∫1
3 + |t − t0| η0
∫1
0
xt0+θ(t−t0)(ln x)2
η0
xa(ln x)2 · f (x) dx
· f (x) dx
η0
θ ∈ (0, 1)
因此存在正数 δ <
ε
{∫ 1 , 其中 M = max
3M
η0
xa(ln x)2 · f (x)
} dx, 1 . 当 |t − t0| < δ 时, 就有
ε
{∫ A0 , 其中 M = max
3M
0
xb(ln x)2 · f (x)
} dx, 1 . 当 |t − t0| < δ 时, 就有
|J2(t) − J2(t0)| < ε.
这说明 J2(t) 在 [a, b] 上连续, 由 [a, b] 的任意性知 J2(t) 在 (−1, 1) 上连续. 因此 J(t) = J1(t) + J2(t) 在 (−1, 1) 上连续.
ε <,
∀t ∈ [a, b].
A
3
于是 ∀t, t0 ∈ [a, b]
∫ +∞
∫ +∞
|J2(t) − J2(t0)| =
1、谢惠民习题解答-75页 文字版

23.2 含参量广义积分 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
24 曲线积分
65
目录
25 曲面积分 26 场论初步 参考文献
–III/68–
66 67 68
–IV/68–
6.2 高阶导数及其他求导法则 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 一阶微分及其形式不变性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
17 高维空间的点集与基本定理
54
18 多元函数的极限与连续
55
19 偏导数与全微分
56
20 隐函数存在定理与隐函数求导
57
21 偏导数的应用
58
22 重积分
59
23 含参量积分
60
23.1 含参量常义积分 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.3 第一组参考题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.4 第二组参考题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
谢惠民数学分析习题课讲义部分题目解答

数学分析习题课讲义问题解答第一章引论1.3.2练习题1.关于Bernoulli 不等式的推广:(1)证明:当12-≤≤-h 时Bernoulli 不等式nh h n+≥+1)1(仍成立;(2)证明:当0≥h 时成立不等式2)1()1(2h n n h n-≥+,并推广之;(3)证明:若),,2,1(1n i a i =->且同号,则成立不等式∑∏==+≥+ni in i iaa 111)1(.2.阶乘!n 在数学分析以及其他课程中经常出现,以下是几个有关的不等式,它们都可以从平均不等式得到:(1)证明:当1>n 时成立nn n )21(!+<;【证明】利用平均值不等式,有n nk nk kk n ∏∑==≥111所以nn n )21(!+≤因为1>n ,所以取等号的条件n === 21不满足,故nn n 21(!+<.(2)利用)1(]2)1)[(1()!(2n n n n ⋅⋅-⋅= 证明:当1>n 时成立nn n 62(!+<;【证明】利用平均值不等式,有n nk nk k n k k n k n ∏∑==-+≥-+11)1()1(1所以nn n n n n 62(]6)2)(1([!+<++≤(3)比较(1)和(2)中两个不等式的优劣,并说明原因;(4)证明:对任意实数r 成立nn k r n rk n n )(1)!(1∑=≤.【证明】利用平均值不等式,有n nk rn k rkk n ∏∑==≥111所以nn k r n rk n n )(1)!(1∑=≤3.证明几何平均值-调和平均值不等式:若0>k a ,n k ,,2,1 =,则有∑∏==≥nk knnk k a n a 1111)(【证明】利用平均值不等式,有n nk kn k ka a n ∏∑==≥11111所以∑∏==≥nk knnk k a n a 1111)(4.证明:当c b a ,,为非负数时成立333cb a ca bc ab abc ++≤++≤.【证明】由于cabc ab c b a a c c b b a ++≥++⇒≥-+-+-2222220)()()(所以33)(3)(2cabc ab cb a ca bc ab c b a ++≥++⇒++≥++利用平均值不等式,有323)(33abc ca bc ab ca bc ab =⋅⋅≥++所以33abc ca bc ab ≥++5.证明下列不等式:(1)b a b a -≥-和b a b a -≥-;【证明】利用三点不等式,有ab b a b b a =+-≥+-)(由对称性知ba b a ≥+-所以ba ab b a b a -=--≥-),max((2)∑∑∑===≤≤-n k k nk knk ka aaa 1121;有问:左边可否为∑=-nk k a a 21?【证明】利用(1)的结论,有∑∑∑====-≤-nk knk knk kaa aaa 21111反复利用三点不等式,有∑∑∑∑∑=====≤≤++≤+≤+=nk knk knk knk k nk ka aa a aa a a a132121211再利用这个结论,有∑∑∑===≤≤-nk knk knk ka aaa 2211(3)bb aa ba b a +++≤+++111;【证明】显然函数x x x x f +-=+=1111)(是单调增加的,所以有bb aa ba b ba a ba b a ba b a +++≤+++++=+++≤+++111111(4)nnnna b a a b a -+≤-+)()(.【证明】利用三点不等式,有nnn n n n n n n b a b a b a a a b a a a b a )()()()(+≤+=+≤+-+=+-+第二章数列极限2.7.3参考题第一组参考题1.设}{12-k a ,}{2k a 和}{3k a 都收敛,证明:}{n a 收敛.【证明】设}{12-k a ,}{2k a 和}{3k a 分别收敛于数c b a ,,.取}{12-k a 的一个子列}{36-k a ,它收敛于数a ,同时它又是}{3k a 的子列,所以也收敛于数c ,所以c a =.取}{2k a 的一个子列}{6k a ,它收敛于数b ,同时它又是}{3k a 的子列,所以也收敛于数c ,所以c b =.于是有b a =.对任给的0>ε,存在正整数1N 与2N ,当1N n >时有εa a n <--12,当2N n >时有εa a n <-2.现取),max(221N N N =,当N n >时有εa a n <-,故}{n a 收敛于a .2.设}{n a 有界,且满足条件2+≤n n a a ,3+≤n n a a ,+∈N n ,证明:}{n a 收敛.【证明】由条件2+≤n n a a 知}{12-k a 与}{2k a 都是单调增加的数列,又有界,故都收敛.由条件3+≤n n a a 知}{3k a 单调增加,又有界,故收敛.利用1的结论知}{n a 收敛.3.设}{1++n n a a 和}{2++n n a a 都收敛,证明:}{n a 收敛.【证明】设}{1++n n a a 和}{2++n n a a 分别收敛于数b a ,.那么有ab a a a a a a n n n n n n n n -=+-+=-++∞→++∞→)]()[(lim )(lim 1212ba a a a a a a n n n n n n n n -=+-+=-+++∞→+∞→)]()[(lim )(lim 2211进而有)]()[(lim )(lim 1122=-+-=-+++∞→+∞→n n n n n n n n a a a a a a 故2)]()[(lim 21lim 22a a a a a a n n n n n n n =--+=++∞→∞→5.设∑=-+=nk n nka 12)11(,+∈N n ,计算n n a ∞→lim .【解】由于∑∑∑∑====++≤++=-+≤++nk n k n k n k nknn k n k n k n k n n 122122121221111111)11(111而2121lim lim 12=+=∞→=∞→∑n n n k n nk n 211111lim2=++∞→n n ,21111lim 2=++∞→nnn 故41lim =∞→n n a 7.设p a a a ,,,10 是1+p 个给定的数,且满足条件010=+++p a a a .求)1(lim 10p n a n a n a p n +++++∞→ 【解】)1(lim 10p n a n a n a p n +++++∞→ 1)[(lim 121p n a n a n a a a p p n +++++----=∞→()1([lim 1n p n a n n a p n -+++-+=∞→ 01(lim 1=++++++=∞→np n pa n n a p n 8.证明:当10<<k 时,0])1[(lim =-+∞→kkn n n 【证明】(这里用到后面将要学习的等价无穷小知识)0lim ]1)11[(lim ])1[(lim 1==-+=-+-∞→∞→∞→k n k k n k k n n k nn n n 12.证明:nnn n n)2(e !)e(<<.【证明】利用数列})11{(nn+单调增加趋于e ,有!)e(!!)1()11()211()111(e 21n nn n n n n n n n n n<⇒>+=+++> 利用1.3.2中题2的结论:nn n )21(!+<,有nn n n n n n n n n n n n )2(e !!2)1()11(e <⇒>+=+>14.设n na n 2131211-++++= ,+∈N n ,证明:}{n a 收敛.【证明】一方面,有01211212111<++-+=++-+=-+nn n n n n a a n n 另一方面,有n n n a n 2124323221-++++++++> n n n 21(2)34(223(21--+++-+-+= 221212221->-++-=n n 根据单调有界定理知}{n a 收敛.15.设已知存在极限na a a n n +++∞→ 21lim ,证明:0lim =∞→n an n .【证明】设T T na a a n n→=+++ 21,∞→n ,于是1)1(---=n n n T n nT a ,2≥n ,由此得0])11([lim lim1=-=--=-∞→∞→T T T nT n a n n n n n 17.设对每个n 有1<n x 和41)1(1≥-+n n x x ,证明}{n a 收敛,并求其极限.【证明】显然有0>n x ,2≥n .所以有1211)21()1(41+++≤⇒+-≤-≤n n n n n n x x x x x x 根据单调有界定理知}{n a 收敛,且可设收敛于数10≤≤A ,于是有41)1(≥-A A ,解得21=A .18.设b a =1,c a =2,在3≥n 时,221--+=n n n a a a ,证明}{n a 收敛,并求其极限.【证明】由于)(21211-----=-n n n n a a a a ,所以)(21()()21(21221b c a a a a n n n n --=--=----,进而有b bc a b c a n n n n +-----=+-++-+--=---)()21(1)21(1]21()21()21)[((11032 ,于是32lim c b a n n +=∞→.第二组参考题1.设n a n +++= 21,+∈N n ,证明:}{n a 收敛.【证明】利用不等式1111211+-=+-+-≤+-n n n n n ,+∈N n 以及221-≤-n n ,3≥n 有2213411231+≤≤+-+-++≤+-+-++≤ n n n n a n 又因为}{n a 是单调增加的数列,利用单调有界定理知}{n a 收敛.2.证明:对每个正整数n ,成立不等式n k n nk n 2e!1)11(0->+∑=.【证明】利用1.3.2中题1的结论:∑∏==+≥+ni in i iaa 111)1(,),,2,1(1n i a i =->且同号,当2≥n 时有∑∑∑===---++=-==+nk n k k n k k k n n n k n k n k n n k n C n 200)11()11(!111)!(!!11)11(∑∑==--++=----++>nk nk n k k k n k n k 22)2)1(1(!111111(!111 n k k n k nk n k nk 2e !1)!2(121!1020->--=∑∑∑===当1=n 时,2e22->显然成立.3.求极限)e !π2sin(lim n n n ∞→.【解】利用命题2.5.4,有1(π21!!(π2e !π2)11!!(π211(π200n N n k n n n k n n N nk n k +=+<<++=++∑∑==所以nn n n n n π2sin e)!π2sin(1π2sin<<+,4≥n 利用夹逼准则知π2)e !π2sin(lim =∞→n n n 4.记n S n 1211+++= ,+∈N n .用n K 表示使得n S k ≥的最小下标,求极限nn n K K 1lim +∞→.【解】由条件知n K K n S n n 1+≤≤与01lim=∞→nn K 因为γn S n n =-∞→)ln (lim 而nn n K n K K n K S K n n 1ln ln ln +-≤-≤-所以)ln (lim )ln (lim n n n n K n γK n -≥≥-∞→∞→于是γK n n n =-∞→)ln (lim 所以11)]ln 1()ln [(lim lnlim 11=+-+--=+∞→+∞→n n n nn n K n K n K K 故elim 1=+∞→nn n K K 5.设∑==nk k n n Cnx 02ln 1,+∈N n ,求n n x ∞→lim .【解】利用Stolz 定理,有220112)1(ln ln lim ln 1limlim n n C CCn x nk kn n k k n n nk k nn n n -+-==∑∑∑=+=+∞→=∞→∞→1211ln lim 12)ln (ln lim 01+-++=+-=∑∑=∞→=+∞→n kn n n C Cnk n nk k nk n n )12()32(11ln 22ln lim 01+-+-++--++=∑∑=+=∞→n n k n n k n n nk n k n 11ln 12ln (lim 2110∑∑==∞→-++--++=n k n k n k n n k n n 2112ln lim 21)12ln 12(ln lim 211=++=+++++=∞→=∞→∑n n n n n n n n n k n 6.将二项式系数⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛n n n n ,,1,0 的算术平均值和几何平均值分别记为n A 和n G .证明:(1)2lim =∞→n n n A ;(2)e lim =∞→n n n G .【证明】由于n nnA n n n n =⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+ 10)11(,所以有22lim 2lim lim ===∞→∞→∞→n n n nn nn n nn A 因为)!(!!k n k n k n -=⎪⎪⎭⎫ ⎝⎛,所以21)!!1!0()!(n n G n nn ⨯⨯⨯=+ ,所以有)!!2!1ln(2!ln )1(exp(lim ])!!2!1()!([lim lim 21212n n n n n n G n n n n n n n ⨯⨯⨯-+=⨯⨯⨯=∞→+∞→∞→ 12!ln )1ln(exp(lim )12)!1ln(2!ln )1()!1ln()2(exp(lim +-+=++-+-++=∞→∞→n n n n n n n n n n n n )21exp(212ln)1(exp(lim =+++=∞→n n n n 7.设∑==nk kn aA 1,+∈N n ,数列}{n A 收敛.又有一个单调增加的正数数列}{n p ,且为正无穷大量.证明:lim2211=+++∞→nnn n p a p a p a p【证明】利用Stolz 定理,有nn n n n n n n n p A A p A A p A p p a p a p a p )()(lim lim 1122112211-∞→∞→-++-+=+++ nnn n n n n p A p A p p A p p A p p +-++-+-=--∞→11232121)()()(lim 0lim lim lim )(lim11=+-=+--=∞→∞→∞→++∞→n n n n n n nn nn n n A A A p p A p p 8.设}{n a 满足1)(lim 12=∑=∞→ni i n n aa ,证明:13lim 3=∞→n n a n .【证明】令∑==ni in aS 12.因为1)(lim 12=∑=∞→ni i nn aa ,所以}{n a 不会恒为零,故}{n S 当n 足够大时是单调增加的正数列.若+∞=∞→n n S lim ,则01limlim 12==∑=∞→∞→ni i n n n a a ;若}{n S 收敛,则0lim 0lim 2=⇒=∞→∞→n n n n a a ;即总有0lim =∞→n n a .所以1lim )(lim lim 11211111==-=++∞→++++∞→+∞→n n n n n n n n n n n S a a a S a S a 以及+∞=∞→n n S lim ,故31)(1lim )1(lim lim )(lim lim 2121213313333=++=--+==⋅=+++∞→+∞→∞→∞→∞→n n n n n n n n n n n n n n n nn S S S S a S S n n S n S S a n na 所以13lim 3=∞→n n a n 12.设10<<λ,}{n a 收敛于a .证明:λa a λa λa λa n n n n n -=++++--∞→1)(lim 0221 【证明】令a a b n n -=,那么)]()()[(lim )(lim 010221a b λa b λa b a λa λa λa n n n n n n n n n ++++++=++++-∞→--∞→ λa b λb λb λλa b λb λb n n n n n n n n n n -++++=+++++++=-∞→∞→-∞→1)(lim )1(lim )(lim 0101 故只需要证明)(lim 01=+++-∞→b λb λb n n n n 存在正数M 使得M b n <恒成立.对任给的0>ε,存在正整数N ,当N n >时有εb n <.所以当N n >时有估计11101b λb λb λb λb b λb λb n N N n N N n n n n n n ++++++≤+++-+---- M λλελλn N n N n )()1(1++++++≤--- M λN ελN n -++-≤)1(11因为0lim =-∞→Nn n λ,所以存在正整数N N >1,当1N n >时有εMN λN n )1(1+<-,此时有估计ελb λb λb n n n )111(01+-≤+++- 故)(lim 01=+++-∞→b λb λb n n n n 17.令20≥y ,221-=-n n y y ,+∈N n .设nn y y y y y y S 10100111+++=.证明:24lim 200--=∞→y y S n n 【证明】令10-+=a a y ,1≥a .可归纳得出nna ay n 22-+=,+∈N n ,即12211++=n na a y n .当1=a ,即20=y 时有2≡n y ,于是24121212120012--=→+++=+y y S n n ,∞→n ,命题成立;当1>a 时,有)1111(111)1()1)(1(121211211022222222222210+++++----=--=+++=n n n n n n aa a a a a a a a a a a a a y y y n 于是a a a a a a a a a S n k k n nk n n n 1)1111(lim 1)1111(lim 1lim 2212220222=----=----=+++∞→=∞→∞→∑而aa a a a y y 12)()(2411200=--+=----.第三章实数系的基本定理第四章函数极限4.5.2参考题7.对一般的正整数n 计算极限30sin sin limxxn nx x -→.【解】31030)sin )1sin((sin lim sin sin lim x x x k kx x x n nx nk x x ∑=→→---=-31031021sin 2sin 2sin 4lim ]2cos )21[cos(2sin 2lim x xk x k x x x x k x n k x n k x ∑∑=→=→--=--=6)1()1(2121--=--=∑=n n k k n k 11.设函数f 在),0(+∞上单调增加,且有1)()2(lim =+∞→x f x f x .证明:对每个0>a ,成立1)()(lim =+∞→x f ax f x .【证明】当1>a 时,存在正整数k 使得k k a 221≤≤-,于是)2()(lim )2()()2()2()()2(lim )()(lim 112x f ax f x f ax f x f x f x f x f x f ax f k x k x x -+∞→-+∞→+∞→==)2()(lim )2()()2()2(lim )2()(lim 11x f ax f x f ax f x f x f x f ax f k x k k k x k x +∞→-+∞→-+∞→==由于f 单调增加,所以1)2()(1≥-x f ax f k ,1)2()(≤x f ax f k,所以有)()(lim1)()(limx f ax f x f ax f x x +∞→+∞→≤≤故1)()(lim=+∞→x f ax f x 当10<<a 时,利用上述结果,有1)((1lim )()(1lim )()(lim ===+∞→=+∞→+∞→t f atf ax f x f x f ax f t t ax x x 当1=a 时显然,故对每个0>a ,成立1)()(lim =+∞→x f ax f x .第五章连续函数第六章导数与微分6.1.4练习题6.2.4练习题6.3.4练习题6.4.2参考题第一组参考题1.利用导数的定义计算极限xx x x sin )sin 1()tan 1(lim 10100--+→.【解】利用导数的定义,有xx x x sin )sin 1()tan 1(lim 10100--+→x x x x x x x x sin 1)sin 1(lim sin tan tan 1)tan 1(lim 100100---+-+=→→20))1((1))1((010010='++⨯'+===x x x x 2.设231)(2++=x x x f ,计算)0()100(f ,要求相对误差不超过1%.【解】由于2111)2)(1(1)(+-+=++=x x x x x f 所以101101)100()2(!100)1(!100)(+-+=x x x f 所以)211(!100)0(101)100(-=f 取!100)0()100(≈f,则相对误差为01.0121211(!100)211(!100!100101101101<-=---.3.设f 在点a 处可导,0)(≠a f .计算n n a f n a f ])()1([lim +∞→.【解】)()1(ln exp(lim ])()1([lim a f n a f n a f n a f n n n +=+∞→∞→由于)()(exp(1)()1()(1exp(lim ))()1(ln exp(lim a f a f xa f x a f a f a f x a f x x x '=-+=++∞→+∞→利用Heine 归结原则,有))()(exp()()1([lim a f a f a f n a f n n '=+∞→5.设0)0(=f ,)0(f '存在.定义数列)()2(1(222nn f n f n f x n +++= ,+∈N n ,试求n n x ∞→lim .【解】由于xx f x f x f f x x )(lim 0)0()(lim)0(00→→=--=',所以对任给的0>ε,存在0>δ,当δx <<0时有])0([)(])0([εf x x f εf x +'<<-'取11[+=δN ,当N n >时有δnn<<20,所以有])0()[21(])0(21(222222εf nnn n x εf n n n n n +'+++<<-'+++ 而n n n n n n 2121222+=+++ 所以εf x n nn <'-+)0(12故2)0(lim )0(lim 2)]0(12[lim 0f x f x f x n n n n n n n n '=⇒'-='-+=∞→∞→∞→6.求下列数列极限:(1))sin 2sin 1(sinlim 222n nn n n +++∞→ ;【解】运用上题的结论,考虑函数x x f sin )(=,即得21)0(21)sin 2sin 1(sinlim 222='=+++∞→f n n n n n (2))]1()21)(11[(lim 222n nn n n +++∞→ .【解】运用上题的结论,考虑函数)1ln()(x x f +=,即得e ))0(21exp(1(2111[(lim 222='=+++∞→f n n n n n 7.设xx y -+=11,计算)()(x y n ,+∈N n .【解】由于x xx x y ---=---=1121)1(2,通过求导找规律直接可得2122121)()1(2!)!32()1(2!)!12()(--+----+--=n nn n n x n x n x y ,2≥n 以及xx y -+-='-121)1(238.设f 在R 上有任意阶导数,证明:对每个正整数n 成立)(1)(1)]1([)1()1(1n n n n n xf x x f x -+-=【证明】用数学归纳法,当1=n 时,右式='='-=)1(1])1([2xf x xf 左式;假设当n k =时成立)(1)(1)]1([)1()1(1k k k k k xf x x f x -+-=;当1+=n k 时有)1(11)1(11([)1()]1([)1(+-+++⋅-=-n n n n n n x f x x x f x ∑+=-+-+⎪⎪⎭⎫ ⎝⎛+-=10)1(1)(11([1)1(n k k n n k n x f x x k n })]1()[1()]1([{)1()(1)1(11n n n n n x f x n x f x x -+-+++⋅-=)1(1])1(1[)(1)(1xf x n x f x x n n n n +++-'⋅-=)1(1)]1(1)1(1[)(1)1(3)(2xf x n x f x x f x n x n n n n n n +++++--+-⋅-=1(1)1(2xf x n n ++=由归纳原理知命题成立.10.证明组合恒等式:(1)112-=⋅=⎪⎪⎭⎫ ⎝⎛∑n nk n k n k ,+∈N n ;【证明】考虑恒等式∑=⎪⎪⎭⎫ ⎝⎛=+nk k nx k n x 1)1(,对x 求导得∑=--⎪⎪⎭⎫ ⎝⎛=+nk k n x k n k x n 111)1(,再令1=x 即得112-=⋅=⎪⎪⎭⎫ ⎝⎛∑n nk n k n k (2)2122)1(-=⋅+=⎪⎪⎭⎫ ⎝⎛∑n nk n n k n k ,+∈N n .【证明】由(1)可知∑=-⎪⎪⎭⎫ ⎝⎛=+n k kn x k n k x nx 11)1(,对x 求导得∑=---⎪⎪⎭⎫ ⎝⎛=+-++nk k n n x k n k x x n x n 11221])1()1()1[(再令1=x 即得2122)1(-=⋅+=⎪⎪⎭⎫ ⎝⎛∑n nk n n k n k 第二组参考题1.(1)求∑=n k kx 1sin 和∑=nk kx 1cos ;【解】利用积化和差公式)cos()cos(sin sin 2y x y x y x --+=-可知2cos)21cos(])21cos()21[cos(sin 2sin 211x x n x k x k kx x nk n k -+=--+=-∑∑==于是有2sin2)21cos(2cos sin 1x xn x kx nk +-=∑=,π2k x ≠,Z ∈k 当π2k x =时有0sin 1=∑=nk kx ;同样地,利用公式)sin()sin(cos sin 2x y y x y x --+=可知2sin)21sin(])21sin()21[sin(cos 2sin 211x x n x k x k kx x nk n k -+=--+=∑∑==于是有2sin22sin )21sin(cos 1x xx n kx nk -+=∑=,π2k x ≠,Z ∈k 当π2k x =时∑=nk kx 1cos 发散;(2)求∑=nk kx k 1sin 和∑=n k kx k 1cos .【解】利用(1)的结论,对结果求导即知4.证明:Legendre 多项式nnn n n x xn x P )1(d d !21)(2-=满足方程)()12()()(11x P n x P x P n n n +='-'-+【证明】直接计算可得])1()1(2[d d )!1(21)1(d d )!1(21)(2111122211nn n n n n n n n x x n xn x x n x P -++=-+='++++++++])1(2)1[(d d !21])1([d d !211222211-++-+-=-=n n n n n n n n n x nx x x n x x x n ])1)(11[(d d )!1(21)(1221---+--+=n nn n n x x x n x P ])1[(d d )!1(21)()12(121----++=n nn n n x x n x P n )()()12(1x P x P n n n -'++=5.证明:Legendre 多项式满足方程)()1()(2)()1(2=++'-''-x P n n x P x x P x n n n 【证明】考虑函数nx y )1(2-=,求导得12)1(2--='n x nx y ,即nxy y x 2)1(2='-,两边求1+n 次导数,利用Leibniz 公式,有∑∑+=-+++=-++='-1)1()(11)1()(21)()(2)()1(n k k n k k n n k k n k k n y x C n y x C即])1([2)1()1(2)1()()1()()1()2(2n n n n n y n xy n y n n xy n y x ++=++++-+++整理得)()1()2(2)1(2)1(n n n y n n xy y x +=+-++故0)1(2)1()()1()2(2=++--++n n n y n n xy y x 所以)()1()(2)()1(2=++'-''-x P n n x P x x P x n n n 第七章微分学的基本定理7.2.4练习题10.设f 在]1,1[-上有任意阶导数,0)0()(=n f,+∈∀N n ,且存在常数0≥C ,使得对所有+∈N n 和]1,1[-∈x 成立不等式n n C n x f !)()(≤.证明:0)(≡x f .【证明】写出nn n n n n x n ξf x n ξf x n f x f f x f !)(!)()!1()0()0()0()()()(1)1(=+-++'+=-- ,x ξ≤,所以有nn n Cxξf n x x f ≤=)(!)()(若10<≤C ,那么0)(→≤n C x f ,∞→n 此时有0)(≡x f ,]1,1[-∈x ;若1≥C ,那么当Cx C 2121<<-时有021)(→≤nx f ,∞→n 此时有0)(≡x f ,]21,21[CC x -∈,在这之上有0)0()(=n f ,+∈∀N n ,故以此类推可知分别在]22,21[C C ,]21,22[CC --,…等区间上都有0)(≡x f ,从而有0)(≡x f ,]1,1[-∈x .11.设f 在],[b a 上二阶可微,且0)()(='='b f a f .证明:存在),(b a ξ∈,使得成立)()()(4)(2a fb f a b ξf --≥''.【证明】写出2121))((21)())((21))(()()(a x ξf a f a x ξf a x a f a f x f -''+=-''+-'+=2222))((21)())((21))(()()(b x ξf b f b x ξf b x b f b f x f -''+=-''+-'+=其中b ξx ξa <<<<21.取2ba x +=,则分别有4)(2)()()2(21a b ξf a f b a f -''+=+,4)(2)()(2(22a b ξf b f b a f -''+=+以上两式相减可得4)()]()([21)()(0212a b ξf ξf a f b f -''-''+-=移项后,由三点不等式可得)(])()([21)()()(4122ξf ξf ξf a f b f a b ''≤''+''≤--其中))(,)(max()(21ξf ξf ξf ''''=''.13.设f 在),[+∞a 上二阶可微,且0)(≥x f ,0)(≤''x f ,证明:在a x ≥时0)(≥'x f .【证明】假设存在),[0+∞∈a x 使得0)(0<'x f ,那么当0x x ≥时)()(0x f x f '≤',进而有)()()()()()(0000x f x x ξf x x x f x f '-≤'-=-,x ξx ≤≤0,只需再令)()(000x f x f x x '->便得0)(<x f ,这与0)(≥x f 矛盾,所以在a x ≥时0)(≥'x f .14.设f 在)1,1(-上1+n 阶可微,0)0()1(≠+n f,+∈N n ,在10<<x 上有n n n n x n x θf x n f x f f x f !)()!1()0()0()0()()(1)1(+-++'+=-- ,其中10<<θ,证明:11lim 0+=→n θx .【证明】由导数定义可知xθf x θf fn n x n )0()(lim)0()()(0)1(-=→+1)(1)1(0)0(!])!1()0()0()0()([lim +--→----'--=n nn n n x x θx f n x n f x f f x f 而其中又有1)(1)1(0)0(!])!1()0()0()0()([lim +--→----'--n nn n n x x x f n x n f x f f x f 1)0()0()(lim 11)!1(!)0(!)(lim )1()()(0)()(0+=-+=+-=+→→n f x f x f n x n n f n x f n n n x n n x 所以11lim 1lim 1)0()0(00)1()1(+=⇒+=→→++n θθn f fx x n n 15.证明:在1≤x 时存在)1,0(∈θ,使得2)(1arcsin x θx x -=,且有31lim 0=→θx .【证明】利用Lagrange 中值定理知存在ξ介于0与x 之间使得210arcsin arcsin ξx x -=-当0=x 时任取)1,0(∈θ;当10≤<x 时有10<<x ξ,令xξθ=,故存在)1,0(∈θ使得2)(1arcsin x θx x -=所以31))(arcsin (arcsin lim arcsin arcsin lim arcsin 1lim lim 4022220222020=+-=-=-=→→→→x x x x x x x x x x x x θx x x x 故31lim 0=→θx 16.设f 在)(0x O δ上n 阶可微,且0)()(0)1(0===''-x fx f n ,0)(0)(≠x f n .证明:当δh <<0时,成立h h θx f x f h x f )()()(000+'=-+,10<<θ,且成立11lim -→=n h nθ.【证明】利用Lagrange 中值定理知存在ξ介于0x 与h x +0之间使得hξf x f h x f )()()(00'=-+因而有100<-<h x ξ,令hx ξθ0-=,则成立h h θx f x f h x f )()()(000+'=-+,10<<θ.所以有1100000)()()()()()(--⋅'-+'='--+n n n θh θx f h θx f h h x f x f h x f 而!)(!)(lim )()()(lim 0)(0)1(00000n x f h n h x f h h x f x f h x f n n h n h =+='--+-→→)!1()()!1()(lim )()(lim )()()(lim 0)(0)1(010001000-=-+='-+'='-+'-→-→-→n x f t n t x f t x f t x f h θx f h θx f n n t n t n h 故10101lim 1lim -→-→=⇒=n h n h nθn θ7.3.2参考题第一组参考题1.设有n 个实数n a a a ,,,21 满足12)1(31121=--++--n a a a n n 证明:方程0)12cos(3cos cos )(21=-+++=x n a x a x a x f n 在区间2π,0(中至少有一个根.【证明】构造辅助函数x n n a x a x a x F n )12sin(123sin 3sin )(21--+++= 则可见0)2π()0(==F F .对F 在区间]2π,0[上用Rolle 定理,就知道)()(x f x F ='在区间)2π,0(中有零点.2.设0≠c ,证明:方程0345=+++c bx ax x 至少有两个根不是实根.【证明】设c bx ax x x f +++=345)(,那么22234)345(345)(x b ax x bx ax x x f ++=++='若03452=++b ax x 有两个相同实根,那么0≥'f ,此时f 严格单调增加,故方程只有一个实根,还有四个根不是实根;若03452=++b ax x 无实根,那么f 严格单调增加,同上;若03452=++b ax x 有两不同实根21x x <,那么f 在),(1x -∞,),(2+∞x 上严格单调增加,在),(21x x 上严格单调减少,此时方程至多有3个实根,还有两个根不是实根.3.设0≠a ,证明:方程n n na x a x 222)(+=+只有一个实根0=x .【证明】设n n na x a xx f 222)()(+-+=,那么])([2)(1212--+-='n n a x x n x f 当0>a 时,0)(<'x f ;当0<a 时,0)(>'x f .总之f 是严格单调的,故至多有一个实根,而0=x 是它的一个实根,所以方程只有一个实根0=x .4.设f 在],[b a 上连续,在),(b a 内可微,且满足条件0)()(>b f a f ,0)2()(<+ba f a f 证明:对每个实数k ,在),(b a 内存在点ξ,使成立0)()(=-'ξkf ξf .【证明】因为0)2()(<+b a f a f ,0)2()(<+b a f b f ,所以f 在)2,(b a a +和),2(b ba +上分别存在一个零点1x 与2x .构造辅助函数)(e )(x f x g kx-=,那么0)()(21==x g x g ,于是存在),(21x x ξ∈使得有0)(='ξg ,0)]()([e =-'-ξkf ξf ξk ,故0)()(=-'ξkf ξf .5.设∑==nk xλkk c x f 1e)(,其中n λλ,,1 为互异实数,n c c ,,1 不同时为0.证明:f 的零点个数小于n .【证明】用数学归纳法.当1=n 时xλc x f 1e )(1=,而01≠c ,此时f 没有零点;假设当n 时命题成立;当1+n 时,不妨令01≠+n c ,那么e )(0eee)(11)(11)(11111==⇒===∑∑∑+=-+=-+=n k x λλk n k xλλk xλn k xλk k k k c x g c c x f 而∑+=--='12)(11e )()(n k x λλk kk c λλx g 的零点个数至多有1-n 个,所以g 的零点个数至多有n 个,即f 的零点个数至多有n 个.根据归纳原理知命题成立.7.设f 在],[b a 上连续,在),(b a 内可微,但不是线性函数,证明:存在),(,b a ηξ∈,使成立)()()()(ηf ab a f b f ξf '>-->'【证明】构造辅助函数)()()()()()(a f a x ab a f b f x f x g -----=因为f 不是线性函数,所以g 不恒为零,而0)()(==b g a g ,所以存在),(b a c ∈使得0)(≠c g ,不妨设为0)(>c g .于是存在),(,b a ηξ∈,使成立0)()()(>'=--ξg a c a g c g ,0)()()(<'=--ηg bc b g c g 即有)()()()(ηf ab a f b f ξf '>-->'8.设f 在],[b a 上二阶可微,0)()(==b f a f ,且在某点),(b a c ∈处有0)(>c f ,证明:存在),(b a ξ∈,使0)(<''ξf .【证明】利用Lagrange 中值定理,存在),(1c a ξ∈与),(2b c ξ∈使得0)()()(1>'=--ξf a c a f c f ,0)()()(2<'=--ξf cb c f b f 再次利用此定理,存在),(21ξξξ∈使得)()()(1212<''=-'-'ξf ξξξf ξf 9.利用例题7.1.3的方法(或其他方法)解决以下问题:(1)设f 在],[b a 上三阶可微,且0)()()(=='=b f a f a f ,证明:对每个],[b a x ∈,存在),(b a ξ∈,使成立)()(!3)()(2b x a x ξf x f --'''=【证明】当),(b a x ∈时构造辅助函数)()()()()()()(22t f b t a t b x a x x f t g -----=那么有0)()()(===x g b g a g ,于是存在b ξx ξa <<<<21使得0)()(21='='ξg ξg ,又)())](()(2[)()()()(2t f a t a t b t b x a x x f t g '---+---='所以0)(='a g ,于是存在2211ξηξηa <<<<使得0)()(21=''=''ηg ηg ,最后存在21ηξη<<使得)()(3)()(0)()()()(60)(22b x a x ξf x f ξf b x a x x f ξg --'''=⇒='''---⇒='''当a x =或b x =时任取),(b a ξ∈等式都成立.(2)设f 在]1,0[上五阶可微,且0)1()1()1()32(31(=''='===f f f f f ,证明:对每个]1,0[∈x ,存在)1,0(∈ξ,使成立3)5()1)(32)(31(!5)()(---=x x x ξf x f 【证明】当}32,31{\)1,0[∈x 时构造辅助函数)()1)(3231()132)(31()()(33t f t t t x x x x f t g -------=重复(1)中的操作,最终存在)1,0(∈ξ使等式成立.当31=x 或32=x 或1=x 时任取),(b a ξ∈等式都成立.(3)设f 在],[b a 上三阶可微,证明:存在),(b a ξ∈,使成立)()(121)]()()[(21)()(3ξf a b b f a f a b a f b f '''--'+'-+=【证明】【法一】设2a b c +=,2a b h -=,待证等式化为)(32)]()([)()(3ξf x h c f h c f h h c f h c f '''-+'+-'+-=+令K x h c f h c f h h c f h c f 332)]()([)()(-+'+-'+-=+构造辅助函数K x x c f x c f x x c f x c f x g 332)]()([)()()(++'+-'---+=那么0)()0(==h g g ,利用Rolle 中值定理,存在),0(1h x ∈使得0)(1='x g ,而)(]2)()([)(x xh xK x c f x c f x x g =++''--''='所以0)()0(1==x h h ,于是存在),0(12x x ∈使得0)(2='x h ,而Kx c f x c f x h 2)()()(++'''--'''-='所以有)()(2)()(222ξf K ξf x c f x c f K '''=⇒'''=+'''+-'''=【法二】考虑函数)]()()[(21)()()(a f x f a x a f x f x F '+'---=,3)()(a x x G -=那么0)()()()(='=='=a G a G a F a F ,连续运用Cauchy 中值定理,知)(121)()()()()()()()()()()()()()(ξf ξG ξF a G c G a F c F c G c F a G b G a F b F b G b F '''-=''''='-''-'=''=--=其中b c ξa <<<.(4)设f 在],[b a 上二阶可微,证明:对每个),(b a c ∈,有),(b a ξ∈,使成立))(()())(()())(()()(21b c a c c f a b c b b f c a b a a f ξf --+--+--=''【证明】构造辅助函数)())(())()(())(())()(())(())()(()(x f b c a c b x a x c f a b c b a x c x b f c a b a c x b x a f x g -----+----+----=那么有0)()()(===c g b g a g ,于是存在c ξb ξa <<<<21使得0)()(21='='ξg ξg ,进而知存在),(21ξξξ∈使得0)(=''ξg ,即))(()())(()())(()()(21b c a c c f a b c b b f c a b a a f ξf --+--+--=''10.设b a <<0,f 在],[b a 上可微,证明:存在),(b a ξ∈,使成立)()()()(1ξf ξξf b f a f b a b a '-=-【证明】利用Cauchy 中值定理,知存在),(b a ξ∈,使成立)()(1)()(11)()()()()()(122ξf ξξf ξξξf ξf ξa b a a f b b f b a a bf b af b f a f b a b a '-=--'=--=--=-16.设f 在]2,0[上二阶可微,且1)(≤x f ,1)(≤''x f ,证明:2)(≤'x f .【证明】写出21))((21))(()()0(x ξf x x f x f f -''+-'+=22)2)((21)2)(()()2(x ξf x x f x f f -''+-'+=其中2021≤≤≤≤ξx ξ.两式相减得])()2)(([21)(2)0()2(2122x ξf x ξf x f f f ''--''+'=-所以2122)()2)((21)0()2()(2x ξf x ξf f f x f ''--''+-≤'])2[(21)0()2(22x x f f +-++≤44212=⨯+≤故2)(≤'x f 18.设当],0[a x ∈时有M x f ≤'')(.又已知f 在),0(a 中取到最大值.证明:Ma a f f ≤'+')()0(.【证明】设f 在点),0(a b ∈处取得最大值,由Fermat 定理知0)(='b f .写出))(()()(1a b ξf a f b f -''+'='bξf f b f )()0()(2''+'='其中),(1a b ξ∈,),0(2b ξ∈.由此有估计Mab ξf b a ξf a f f ≤''+-''='+')()()()()0(21第二组参考题5.设f 在],[b a 上可微,)()(b f a f '=',证明:存在),(b a ξ∈,使成立aξa f ξf ξf --=')()()(【证明】考虑函数x a f x f x g )()()('-=,那么0)()(='='b g a g ,待证式为aξa g ξg ξg --=')()()(.考虑辅助函数⎪⎩⎪⎨⎧=≤<--=ax b x a ax a g x g x G ,0,)()()(若)()(a g b g =,那么有0)()(==a G b G ,于是存在),(b a ξ∈使得0)(='ξG ,即aξa g ξg ξg a ξa g ξg a ξξg --='⇒=-+--')()()(0)()()())((2若)()(a g b g >,那么0)()()()()()())(()(22<--=-+--'='a b b g a g a b a g b g a b b g b G 以及0)(>b G ,所以在b x =的某个左邻域],[b δb -内有点c 使得0)()(>>b G c G ,从而)(x G 在),(b a 内取到最大值,故存在),(b a ξ∈使得0)(='ξG .若)()(a g b g <,同理.6.设f 在],[b a 上连续,在),(b a 内可微,又有),(b a c ∈使成立0)(='c f ,证明:存在),(b a ξ∈,满足ab a f ξf ξf --=')()()(【证明】构造辅助函数ab x a f x f x g ---=e)]()([)(那么ab xa b a f x f x f x g -----'='e ])()()([)(.如果0)(='c g ,那么取c ξ=即可.如果0)(>'c g ,那么)()(a f c f <,于是0)(<c g ,所以存在),(0c a x ∈使得0)()()(0<--='ac a g c g x g ,由达布定理知存在),(0c x ξ∈使得0)(='ξg .如果0)(<'c g ,同理.7.设f 在],[b a 上连续,在),(b a 上可微,0)(=a f ,0)(>x f ,],(b a x ∈∀,证明:对每个0>α,存在),(,21b a x x ∈,使成立)()()()(2211x f x f αx f x f '='【证明】只需考虑1>α的情形.构造辅助函数)(ln )(x f x F =,],(b a x ∈,则-∞=+→)(lim x F ax .记λb F =)(,可取),(b a c ∈使得1)(-=λc F ,由Lagrange 中值定理知)()()(11ξF cb c F b F c b '=--=-,),(1b c ξ∈再取),(c a d ∈使得cb ab αλd F ---=)(,由Lagrange 中值定理知)(1)()()(12ξF αcb αc b a b a b αd b d F b F ξF '>-=--->--=',),(2d a ξ∈由达布定理可知存在),(3b a ξ∈使得)()(13ξF αξF '='.8.设f 在),(+∞-∞上二阶连续可微,1)(≤x f ,且有4)]0([)]0([22='+f f ,证明:存在ξ,使成立0)()(=''+ξf ξf .【证明】在]2,0[上利用Lagrange 中值定理,知存在)2,0(1∈x 使得1)(2)0()2()(11≤'⇒-='x f f f x f 同理存在)0,2(2-∈x 使得1)(2)0()2()(22≤'⇒---='x f f f x f 构造辅助函数22)]([)]([)(x f x f x h '+=,]2,2[-∈x ,于是2)(1≤x h ,2)(2≤x h ,4)0(=h ,所以h 在)2,2(-∈ξ处取到最大值,于是0)(='ξh ,即有)()]()([2='''+ξf ξf ξf 由于3)]([4)]([22≥-≥'ξf ξf ,所以0)(≠'ξf ,故0)()(=''+ξf ξf .9.设f 在),(+∞-∞上二阶连续可微,且对所有R ,∈h x 成立。
最新整理大学数学类基础课程.doc

xxx大学数学类基础课程《数学分析(I)习题课》教学大纲课程名称:数学分析(I)习题课英文名称:Mathematical Analysis-I 课程性质:必修课程代码:本大纲主笔人:黄勇面向专业:数学类各专业主讲课教材名称:数学分析(上)出版单位:高等教育出版社出版日期: 6月(第2版)编著:陈纪修於崇华金路习题课指导书名称:数学分析习题课讲义(上)出版单位:高等教育出版社出版日期:7月(第1版)编著:谢惠民恽自求等习题课讲义名称:自己编写一、课程学时学分课程总学时:80学时课程总学分:5学分习题课总学时:28学时习题课总学分:2学分二、习题课的地位、作用和目的数学分析是数学专业最重要的一门基础课,是许多后继课程如微分几何,微分方程,复变函数,实变函数与泛函分析,计算方法,概率论与数理统计等课程必备的基础,是数学专业本科一、二年级学生的必修课。
数学分析习题课是数学分析课程的重要组成部分,是学生学习这门课程的一个必要环节。
尤其是各位教师和学生们都应该充分地认识到习题课的重要性,习题课与主讲课同等重要。
数学分析习题课是通过学生自己严格的课堂和课外习题训练,再加上习题课教师对数学分析学习中各类习题的讲解,能使学生加深对课程内容的理解,全面系统地掌握数学分析的基本理论知识;培养严格的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用微积分这一工具解决实际应用问题的能力。
三、习题课的教学方式与教学要求教学方式:以课堂教学为主,充分利用现代化技术,结合计算机实习与多媒体辅助教学,提高教学效果。
教学要求:习题课的教学是通过学生在课后进行严格的习题训练、在课堂上由习题课老师和学生通过讲、练结合的方式进行。
每次主讲老师讲完教材内容后布置下习题由学生课后训练,并于下次课将所完成的作业本上交由习题课老师批改。
习题课教师通过批改学生的课后作业,可以及时发现学生作业中的问题。
习题课老师从学生完成的作业中所反馈的情况在课堂上为学生讲评习题,重点评讲一些常见的、典型的错误以及讲解一些典型的例子和问题(要求由学生先思考再讲评!)。
数学分析与习题课_谢惠民_第一学期第11讲

(∗)
,
f (a+ ) = A;
|f (x) − A| < ε.
∀ ε > 0, ∃ δ1 > 0, ∀ a < x < a + δ1 ,
|f (x) − A| < ε.
∀ ε > 0, ∃ δ2 > 0, ∀ a − δ2 < x < a, , a−δ < x < a+δ (p.57 3-7), ,
11
11 . . .
x→a
, , :
2007 . §4.1
10 .
24
, , Heine .
,2
. , . §4.2 , .
lim f (x) = A x → −∞. 4 . , .
,
x → a− , x → ∞, x → +∞, ,A −∞.
x→a 3
6
.
x → a+ , ∞, +∞, .
24
. 0 < |x − a| < δ : 0 < x − a < δ, x ∈ (a, a + δ ); − δ < x − a < 0, x ∈ (a − δ, a);
x→a+
f (x) > G. |f (x) − A| < ε. |f (x) − A| < ε.
lim f (x) = A ⇐⇒ ∀ ε > 0, ∃ δ > 0, ∀ 0 < x − a < δ,
x→+∞
lim f (x) = A ⇐⇒ ∀ ε > 0, ∃ M > 0, ∀ x > M, . 1 lim = +∞. x→0+ x ∀ G > 0, δ= 1 , G
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
或任意 n ≥ N 有 则仍有矛盾. 从而 c = 1.
1 ∈ (c − ϵ, c + ϵ) .
an
解. 取 M > 1 使得
[
]
1
a1, a2 ∈
,M M
.
则归纳易知任意
n
有
an
∈
[
1 M
,
M ],
从而
α = lim sup an, β = lim inf an
n→∞
n→∞
均为正数, 且 α ≥ β. 又从两个方向分别导出不等式, 可得出 αβ = 1. 取 {ank }∞ k=1 收敛于 α, 易证
4
证明. 只须证 α < c < β 的情形. 找 p1 < q1 < p2 < q2 < · · · 使得
xpl > c > xqm (l = 1, 2, . . . ; m = 1, 2, . . .). 又存在 pj ≤ rj < qj (j = 1, 2, . . .) 使得
此时
xrj ≥ c ≥ xrj+1.
lim
k→∞
ank −1
=
lim
k→∞
ank −2
=
β.
而 2
ank−3 = ank−1 − ank−2 (nk > 3).
左式关于 k 的上极限不大于 α, 但右式关于 k 的极限为 2α − β > α, 矛盾.
问题 4 (08 上期中). 设 {an}∞ n=1 为单调递增的正整数列. 证明: 数列
cn = max(bn+1, bn) (n = 1, 2, . . .).
则 {cn}∞ n=1 不增且有下界, 故其下确界 c 为其极限值 (显然 c ≥ 1), 从而任 意 ϵ > 0, 存在 N 使得任意 n ≥ N 有
bn < c + ϵ.
若存在
n
>
N
使得
bn
<
c − ϵ,
则
bn+1
≤
1 2
1 an ∈ (c − ϵ, c + ϵ) , an+1 ∈ (c − ϵ, c + ϵ) .
1 实数基本定理与数列
3
则
(
)
2
1
an+2 = an+1 + an ∈
, c−ϵ
c−ϵ
.
矛盾于 bn+2 ∈ (c − ϵ, c + ϵ). 同理可证, 若任意 n ≥ N 有
an ∈ (c − ϵ, c + ϵ)
an+1
− an
=0
n→∞ n + 1 + an+1 n + an
不必成立. 例如取 an = n + 2k+1 − k − 2 (2k ≤ n < 2k+1), 则
(
)
lim
k→∞
a2k 2k + a2k
−
2k
a2k −1 − 1 + a2k−1
1 = 12 ̸= 0.
解.
等价于证明数列
{
an n
的非负实根, 从而 α = β.
问题 3. 设正数列 {an}∞ n=1 满足 2
an+2 = an+1 + an (n = 1, 2, . . .).
证明: {an}∞ n=1 有极限值 1.
解. 记 易知 又令
(
)
bn = max
1 an, an
(n = 1, 2, . . .).
1 bn+2 ≤ 2 (bn+1 + bn).
{
an n+an
}∞ n=1
的极限点恰构成区间
(含退化情形).
解.
引理 1. 设 {xn}∞ n=1 的上下极限为 α, β (不必为有限数), 且 lim inf(xn+1 − xn) ≥ 0.
n→∞
则任意 α ≤ c ≤ β, 存在 {xn}∞ n=1 的子列以 c 为极限.
1 实数基本定理与数列
问题 2. 设非负数列 {bn}∞ n=1 满足
(
)
lim
n→∞
b2n+1 − bn
= a > 0.
证明: {bn}∞ n=1 收敛.
解. 记实数列
an = b2n+1 − bn
收敛于 a. 又记
√
1 + 1 + 4a
x=
>1
2
为 x2 − x − a = 0 的根, 则任意 ϵ > 0, 存在 N 使得 |an − x| < ϵ (n ≥ N ). 故
x|bn+1 − x| ≤ b2n+1 − x2 = |an + bn − a − x| < |bn − x| + ϵ (n ≥ N ).
即
(
)
ϵ1
ϵ
|bn+1 − x| − x − 1 ≤ x |bn − x| − x − 1 .
1
1 实数基本定理与数列
2
解. 易证 {bn}∞ n=1 有界, 设其上下极限分别为 α, β, 则 α, β 为方程 x2 − x − a = 0
}∞ n=1
的极限点恰构成区间
(含退化情形).
若不成
立, 则存在 c, ϵ 使得有无穷多个 n 满足
an ≥ c + ϵ, an+1 ≤ c − ϵ.
n
n+1
结合 an+1 > an 知 (2n + 1)ϵ < c, 矛盾.
问题 5. 设 {xn}∞ n=1 满足
0 ≤ xm+n ≤ xm + xn (m, n > 0).
证明:
{
xn n
}∞ n=1
有极限.
1 实数基本定理与数列
5
解.
{
x2k 2k
}∞ k=1
不增且有下界
0,
其下确界
α
为其极限.
任意
ϵ
>
0,
存在
K
使
得 k ≥ K 时总有0 ≤ x2ຫໍສະໝຸດ − 2kα < 2k−1ϵ.
若记
(
)(
)
T = x2K−1 − 2K−1α + x2K−2 − 2K−2α + · · · + (x2 − 2α) + (x1 − α) .
lim sup(c − xrj ) ≤ 0
j→∞
(
)
lim sup(c − xrj ) ≥ lim sup xrj+1 − xrj ≥ 0.
j→∞
j→∞
故 {xrj }∞ j=1 收敛于 c.
回到原题, 注意到
an+1
−
an
1 ≥− .
n + 1 + an+1 n + an
n
注 1. 下式
(
)
lim
2008–2009 学年 (上) 数学分析 I 习题
1 实数基本定理与数列
问题 1. 设实数列 {an}∞ n=0 满足
(
)
an = lim m→∞
a2n+1 + a2n+2 + · · · + a2n+m
.
且存在有限数
S = lim (a1 + a2 + · · · + an) . n→∞
证明: an = 0 (n = 0, 1, . . .).
(bn
+ bn−1)
<
c,
进而
cn = max(bn+1, bn) < c.
矛盾. 以上表明 {bn}∞ n=1 以 c 为极限值. 若 c > 1, 取充分小的 ϵ > 0, 则存 在充分大的 N 使得
bn ∈ (c − ϵ, c + ϵ) (n ≥ N ).
若存在 n ≥ N 使得 1
an ∈ (c − ϵ, c + ϵ), an+1 ∈ (c − ϵ, c + ϵ) 或