专题25:绝对值与二次根式

合集下载

中考专题分式二次根式绝对值

中考专题分式二次根式绝对值

分式题型训练一、利用等式或分式的性质变形化简1.已知12a a +=,求:(1)221a a +;(2)441a a+.2.已知2210a a --=,求:241a a +;3.已知222a a +=,求:23112a a a a a -+--+的值.4.已知2112a a a =-+,求:2421a a a ++的值.5.已知210a a --=,求4323a a -的值.(提示:用降次法)6.已知22320a ab b +-=(ab ≠ 0),求:22a b a b b a ab+--的值.7.已知2220x y xy --=(xy >0),求:221y x x y x y xy +++-的值.(xy 整体考虑)二、设K 法求值11.已知23a b =,求:a b b a +-的值.12.已知345a b c ==,求:22252a b c ab bc ac ++++的值.13.已知94a b b a =,求:22ab a b -的值.14.已知a b b c a c c a b +++==,求:2a b c a c +++的值.15.已知a b c d b c d a ===,求:a b c d a b c d -+-+-+的值.二次根式一、知识概要1. 二次根式的概念 概念: 一样地,0)a ≥叫做二次根式.”叫做二次根号,二次根号下的“a ”叫做被开方数. 提示: 被开方数a 能够是数,也能够是单项式、分式等代数式,0a ≥条件.2. 二次根式的意义: 由算术平方根的性质可知,当0a ≥时,当0a <时,因为负数没有平方根,因此.3. 如何确信二次根式中被开方数所含字母的取值范围(1) a ≥成心义:(2) a <无心义.4. 二次根式的性质: (1) ; (2) 2(0).a a =≥二、例题精讲例1. ,那么x 应知足的条件是( ).A. 2x ≠的实数B. 2x <的实数C. 2x >的实数D. 2x ≥的实数例2. 若是a 是任意实数,那么以下各式中必然成心义的是( ).A.B. C. D.例3. 已知6,y y x =求的值.例4. 化简以下各式. (1)(2)例5. 计算以下各题.(1) 2 (2)0)x >例6. 在实数范围内分解因式. 4425x -=_______________.例7. 若x y 、为实数,且21,y x xy x y =+++求的值例8.已知实数1992,a a a -=满足那么21992a -的值是( ).A. 1991B. 1992C. 1993D. 1994例9. 若2440,y y xy ++=则的值等于( ).A. -6B. -2C. 2D. 6例10. 若a b 、为实数,且a +例11. +.化简4x -++2.x -例12. 已知211024a b c a b c c -+-+=、、满足求()a b c +的值.三、练习1. 以下各式中不必然是二次根式的是( ).A. B. C. D.2. 当a 知足( )时231aa ++成心义. A. 113a a ≤≠-且 B. 1a ≤ C. 13a ≠- D. 113a a ≤≠且3. 若01,x <<那么以下各式中是二次根式的是( ).A. B. C. D.4. =化简252x x -+-等于().A. -8B. 8C. 23x -D. 32x -5. 成心义,则x 的取值范围是( ).A. 2x ≤B. 1x ≥C. 21x x ≤≥或D. 12x ≤≤6. ,则x 的取值范围是____________.7. 在实数范围内分解因式223x -=_____________.8. 21,4y y =-=_____________.9. 21x =-成立的条件是___________.10. 0,x y =+=则__________.11. 10,3bb ab a +-=+=则___________.12. 在实数范围内分解因式: (1)44221025a b a b -+ (2) 4244x x -+-(3) 42710x x -+ (4) 2(2(x x x ---13. 已知11x x x x +=-求的值.14. 当a 取什么值时3的值最小求出那个最小值.15. 用代数式表示: (1) 面积为a 的正方形的边长;(2) 面积为S 且两条邻边之比为3 : 2的矩形边长.16. 如图,甲、乙、丙三村别离位于等边ABC 的三个极点,此刻要架设电线线路,变压室位于ABC 的三条角平分线的交点O 处,从变压室别离引线到各村,已知两村之间的距离为2000米,请计算所用电线大约多少米17. 在,90,30,Rt ABC C A AC ∠=︒∠=︒=中求AB BC 、的长和ABC 的面积.18. 已知:如图,90,B D BC AD ∠=∠=︒==135,BAD ∠=︒求四边形ABCD 的面积19. 写出一个二次根式,使它的最小值为2.20.a b 和之间,,a b <<那么,a b 的值别离是____________.21. 已知12,P <<+22. x 为如何的实数时,以下式子在实数范围内成心义(1) 24x - (2)二次根式与分式的化简求值一、选择题。

二次根式及经典习题与答案

二次根式及经典习题与答案

二次根式及经典习题与答案二次根式的知识点汇总二次根式的概念是指形如√a的式子,其中被开方数可以是数、单项式、多项式、分式等代数式。

需要注意的是,因为负数没有平方根,所以当a<0时,二次根式无意义。

为了使二次根式有意义,只需要满足被开方数大于或等于零,即a≥0.此外,二次根式的非负性也是一个重要的知识点,即√a表示a的算术平方根,且当a≥0时,√a是一个非负数。

二次根式的性质包括:一个非负数的算术平方根的平方等于这个非负数;一个数的平方的算术平方根等于这个数的绝对值。

需要注意的是,当被开方数是负数时,需要先将其化为绝对值形式,再根据绝对值的意义进行化简。

综上所述,二次根式的知识点包括概念、取值范围、非负性、性质等。

在解题时,需要注意化简时的符号变化和取值范围的限制。

4.当x满足什么条件时,(1-x)²是一个二次根式。

5.在实数范围内分解因式:x⁴-9=(x²+3)(x²-3),x²-22x+2=(x-11-√119)(x-11+√119)。

6.若4x²=2x,则x的取值范围是x=0或1/2.7.已知(x-2)²=2-x,则x的取值范围是x=1-√2或1+√2.8.化简:x²-2x+1÷(x-1),结果是x-1.9.当1≤x≤5时。

10.把a-√a的根号外的因式移到根号内,等于√a(a-1)。

11.使等式(x-1)²+x-5=。

成立的根号外的因式是x-1.12.若a-b+1和a+2b+4互为相反数,则(a-b)²=4.13.在式子x²,2,y+1(y=-2),-2x(x²+1),x+y中,二次根式有3个。

14.下列各式一定是二次根式的是a²+1.15.若2/a-7/a³=2/a²-a,则(2-a)²-(a-3)等于1-2a。

16.若A=√(a²+4)/2,则A=(a+2)/2.17.若a≤1,则(1-a)³化简后为1-a³。

二次根式计算专题——30题(教师版含答案)

二次根式计算专题——30题(教师版含答案)
21.计算:(1) (1)2012 5 ( 1 )1 3 27 ( 2 1)0 2
(2) 3 12 3 1 1 48 27 32
【答案】(1)0;(2) 4 3 .
【解析】
试题分析:(1)原式=1 5 2 3 1 0 ;
(2)原式= 6 3 3 2 3 3 3 4 3 .
试题解析:原式=1 3 3 2 1 3 2 2 3
考点:1.实数的运算;2.零指数幂;3.分母有理化. 20.计算:

8
2



1 2
0

6 3 2
1 3
48
12

3a2 3
a 2


1 2
2a 3
【答案】① 2 1;② 14 ;③ a .
考点:二次根式化简.
14.计算 (3 2 24 8) 12 3
【答案】 -
2+
6
.
23
试卷第 4 页,总 10 页
【解析】 试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案. 试题解析:
(3 2 - 24 + 8) ¸ 12 = ( 6 - 2 6 +2 2) ¸ 2 3 = (2 2 - 6) ¸ 2 3 3
5
3
3 2 1;
(2) (6 x 2x 1 ) 3 x
4xBiblioteka (6 x 2x x ) 3 x 2x
(3 x 2 x ) 3 x
x 3 x
试卷第 1 页,总 10 页
1. 3
考点: 二次根式的混合运算.
3.计算: 3 12 2

(完整版)八年级下册数学--二次根式知识点整理

(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。

2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。

如:-2x>4,不等式两边同除以-2得x<-2。

不等式组的解集是两个不等式解集的公共部分。

如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。

★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。

如25 可以写作 5 。

(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。

(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。

其中a≥0是 a 有意义的前提条件。

(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。

(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。

要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。

练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。

二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。

(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。

二次根式知识点归纳及题型总结

二次根式知识点归纳及题型总结

二次根式知识点及题型归纳1. 二次根式的概念二次根式的定义: 形如)0(≥a a 的式子叫二次根式,其中a 叫被开方数,只有当a 是一个非负数时,a 才有意义.2. 二次根式的性质1. 非负性:)0(≥a a 是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2.)0()(2≥=a a a注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:)0()(2≥=a a a3. ⎩⎨⎧<-≥==)0()0(2a a a a a a 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.4. 二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。

3. 最简二次根式和同类二次根式1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;分母中不含根号.2、同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式4. 二次根式计算——分母有理化1.分母有理化定义:把分母中的根号化去,叫做分母有理化。

2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。

有理化因式确定方法如下:①单项二次根式:利用a a a =⋅来确定,如:a 与a ,b a +与b a +,b a -与b a -等分别互为有理化因式。

②两项二次根式:利用平方差公式来确定。

如b a +与b a -,b a +与b a -,y b x a +与y b x a -分别互为有理化因式。

3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;5. 二次根式计算——二次根式的乘除1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。

《二次根式》专题练习(含答案)

《二次根式》专题练习(含答案)

初二数学专题练习《二次根式》一.选择题1.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥12.若1<x<2,则的值为() A.2x﹣4 B.﹣2 C.4﹣2x D.2 3.下列计算正确的是()A.=2B.=C.=x D.=x4.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b5.化简+﹣的结果为() A.0 B.2 C.﹣2 D.26.已知x<1,则化简的结果是() A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x 7.下列式子运算正确的是()A. B.C. D.8.若,则x3﹣3x2+3x的值等于()A. B. C. D.二.填空题9.要使代数式有意义,则x的取值范围是.10.在数轴上表示实数a的点如图所示,化简+|a﹣2|的结果为.11.计算:= .12.化简:= .13.计算:(+)= .14.观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:an= ;(2)a1+a2+a3+…+an= .15.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= .16.已知:a<0,化简= .17.设,,,…,.设,则S= (用含n的代数式表示,其中n为正整数).三.解答题18.计算或化简:﹣(3+);19.计算:(3﹣)(3+)+(2﹣)20.先化简,再求值:,其中x=﹣3﹣(π﹣3)0.21.计算:(+)×.22.计算:×(﹣)+|﹣2|+()﹣3.23.计算:(+1)(﹣1)+﹣()0.24.如图,实数a、b在数轴上的位置,化简:.25.阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;(2)猜想与|a|的大小关系.26.已知:a=,b=.求代数式的值.27.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.28.化简求值:,其中.参考答案与解析一.选择题1.(2016•贵港)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥1【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得x的取值范围.【解答】解:依题意得:x﹣1>0,解得x>1.故选:C.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零.2.(2016•呼伦贝尔)若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2【分析】已知1<x<2,可判断x﹣3<0,x﹣1>0,根据绝对值,二次根式的性质解答.【解答】解:∵1<x<2,∴x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a小于0时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.3.(2016•南充)下列计算正确的是()A.=2B.=C.=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解:A、=2,正确;B、=,故此选项错误;C、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选:A.【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.4.(2016•潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.5.(2016•营口)化简+﹣的结果为()A.0 B.2 C.﹣2D.2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3+﹣2=2,故选:D.【点评】本题考查了二次根式的加减,先化简,再加减运算.6.已知x<1,则化简的结果是()A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x【分析】先进行因式分解,x2﹣2x+1=(x﹣1)2,再根据二次根式的性质来解题即可.【解答】解:==|x﹣1|∵x<1,∴原式=﹣(x﹣1)=1﹣x,故选D.【点评】根据完全平方公式、绝对值的运算解答此题.7.下列式子运算正确的是()A.B.C. D.【分析】根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.【解答】解:A、和不是同类二次根式,不能计算,故A错误;B、=2,故B错误;C、=,故C错误;D、=2﹣+2+=4,故D正确.故选:D.【点评】此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.8.若,则x3﹣3x2+3x的值等于()A.B.C.D.【分析】把x的值代入所求代数式求值即可.也可以由已知得(x﹣1)2=3,即x2﹣2x﹣2=0,则x3﹣3x2+3x=x(x2﹣2x﹣2)﹣(x2﹣2x﹣2)+3x﹣2=3x﹣2,代值即可.【解答】解:∵x3﹣3x2+3x=x(x2﹣3x+3),∴当时,原式=()[﹣3()+3]=3+1.故选C.【点评】代数式的三次方不好求,就先提取公因式,把它变成二次方后再代入化简合并求值.二.填空题9.(2016•贺州)要使代数式有意义,则x的取值范围是x≥﹣1且x≠0 .【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解.【解答】解:根据题意,得,解得x≥﹣1且x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.10.(2016•乐山)在数轴上表示实数a的点如图所示,化简+|a﹣2|的结果为 3 .【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得:a﹣5<0,a﹣2>0,则+|a﹣2|=5﹣a+a﹣2=3.故答案为:3.【点评】此题主要考查了二次根式的性质以及绝对值的性质,正确掌握掌握相关性质是解题关键.11.(2016•聊城)计算:= 12 .【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12.故答案为:12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.12.(2016•威海)化简:= .【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式=3﹣2=.故答案为:.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.13.(2016•潍坊)计算:(+)= 12 .【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式=•(+3)=×4=12.故答案为12.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.(2016•黄石)观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:an= =﹣;;(2)a1+a2+a3+…+an= ﹣1 .【分析】(1)根据题意可知,a1==﹣1,a2==﹣,a3==2﹣,a4==﹣2,…由此得出第n个等式:an==﹣;(2)将每一个等式化简即可求得答案.【解答】解:(1)∵第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,∴第n个等式:an==﹣;(2)a1+a2+a3+…+an=(﹣1)+(﹣)+(2﹣)+(﹣2)+…+(﹣)=﹣1.故答案为=﹣;﹣1.【点评】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.15.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5 .【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.16.已知:a<0,化简= ﹣2 .【分析】根据二次根式的性质化简.【解答】解:∵原式=﹣=﹣又∵二次根式内的数为非负数∴a﹣=0∴a=1或﹣1∵a<0∴a=﹣1∴原式=0﹣2=﹣2.【点评】解决本题的关键是根据二次根式内的数为非负数得到a的值.17.设,,,…,.设,则S= (用含n的代数式表示,其中n为正整数).=1++===,求【分析】由Sn,得出一般规律.【解答】解:∵S=1++===,n∴==1+=1+﹣,∴S=1+1﹣+1+﹣+…+1+﹣=n+1﹣==.故答案为:.变形,得出一般规律,寻找抵消规律.【点评】本题考查了二次根式的化简求值.关键是由Sn三.解答题(共11小题)18.(2016•泰州)计算或化简:﹣(3+);【分析】先化成最简二次根式,再去括号、合并同类二次根式即可;【解答】解:(1)﹣(3+)=﹣(+)=﹣﹣=﹣;【点评】本题考查了二次根式的加减法以及分式的混合运算,正确化简是解题的关键.19.(2016•盐城)计算:(3﹣)(3+)+(2﹣)【分析】利用平方差公式和二次根式的乘法法则运算.【解答】解:原式=9﹣7+2﹣2=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(2016•锦州)先化简,再求值:,其中x=﹣3﹣(π﹣3)0.【分析】先根据分式混合运算的法则把原式进行化简,再把化简后x的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=×4﹣﹣1,=2﹣﹣1,=﹣1.把x=﹣1代入得到:==.即=.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.21.计算:(+)×.【分析】首先应用乘法分配律,可得(+)×=×+×;然后根据二次根式的混合运算顺序,先计算乘法,再计算加法,求出算式(+)×的值是多少即可.【解答】解:(+)×=×+×=1+9=10【点评】此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.22.计算:×(﹣)+|﹣2|+()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8,然后化简后合并即可.【解答】解:原式=﹣+2+8=﹣3+2+8=8﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数整数幂、23.计算:(+1)(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣1+2﹣1,然后进行加减运算.【解答】解:原式=3﹣1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.24.如图,实数a、b在数轴上的位置,化简:.【分析】本题综合性较强,不仅要结合图形,还需要熟悉算术平方根的定义.【解答】解:由数轴知,a<0,且b>0,∴a﹣b<0,∴,=|a|﹣|b|﹣[﹣(a﹣b)],=(﹣a)﹣b+a﹣b,=﹣2b.【点评】本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.观察数轴确定a、b及a﹣b的符号是解答本题的关键,本题巧用数轴给出了每个数的符号,渗透了数形结合的思想,这也是中考时常考的知识点.本题考查算术平方根的化简,应先确定a、b及a﹣b的符号,再分别化简,最后计算.25.阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;(2)猜想与|a|的大小关系.【分析】应用二次根式的化简,首先应注意被开方数的范围,再进行化简.【解答】解:(1)由题意可得=;(2)由(1)可得:=|a|.【点评】本题主要考查二次根式的化简方法与运用:①当a>0时,=a;②当a<0时,=﹣a;③当a=0时,=0.26.已知:a=,b=.求代数式的值.【分析】先求得a+b=10,ab=1,再把求值的式子化为a与b的和与积的形式,将整体代入求值即可.【解答】解:由已知,得a+b=10,ab=1,∴===.【点评】本题关键是先求出a+b、ab的值,再将被开方数变形,整体代值.27.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.28.化简求值:,其中.【分析】由a=2+,b=2﹣,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式=+,约分后得+,接着分母有理化和通分得到原式=,然后根据整体思想进行计算.【解答】解:∵a=2+>0,b=2﹣>0,∴a+b=4,ab=1,∴原式=+=+=+=,当a+b=4,ab=1,原式=×=4.【点评】本题考查了二次根式的化简求值:先把各二次根式化为最简二次根式,再合并同类二次根式,然后把字母的值代入(或整体代入)进行计算.。

专题25 含特殊角三角函数值的混合运算中考最新模拟30道(解析版)

专题25 含特殊角三角函数值的混合运算中考最新模拟30道(解析版)

专题25 含特殊角三角函数值的混合运算中考最新模拟30道1.计算:()1013tan30132π-⎛⎫+︒--- ⎪⎝⎭;2()101 3.14tan 603π-⎛⎫---︒ ⎪⎝⎭.3.计算101(2)1tan602π-︒⎛⎫---- ⎪⎝⎭4.计算:1001()3tan 30(13π---+ 【答案】﹣55.计算:(1)sin45°·cos45°+tan60°·sin60°;(2)sin30°-tan 245°+34tan 230°-cos60°.6114cos 45()|2|2-︒++-7.计算:101()2cos 451(3.14)4π-︒-+-+-.8.计算:201345(20171)--- .45(2017-9.计算:201(24602sin π-⎛⎫-+︒ ⎪⎝⎭.10.计算:2022cos6012( 3.14)π--+--.11.计算:2sin45°0(2019)π+-【点睛】此题主要考查了实数运算,正确化简各数是解题关键.12.计算:011)6sin30-︒-13.计算 101(12cos302-︒⎛⎫++⋅ ⎪⎝⎭14.计算:04sin 60|1|1)︒--+15.计算:0212tan 60( 3.14)()2π--︒--+-16.计算:(12)﹣1﹣2tan45°+4sin60°17.计算:101()(1)2cos6092π-++-+2cos609+18.计算:140111 1.414)2sin 602-︒⎛⎫-++-- ⎪⎝⎭19101()2cos60(2π)2---︒+-.20.计算:0|3|(3)tan 45π-+-︒【答案】3.【分析】根据有理数的绝对值,特殊角的三角函数值,负整数指数幂,二次根式一一计算即可得出答案.【详解】原式31213=+-+=【点睛】本题考查实数的混合运算,解题关键是熟练掌握运算法则.21.计算:1145tan 603-⎛⎫+-- ⎪⎝⎭°°22.计算:021(2020)sin 45()2︒--+- 【答案】-2【分析】根据零次幂的定义,特殊角的三角函数值,负整数指数幂分别化简后再相加减.12sin 45(2︒-【点睛】此题考查计算能力,掌握零次幂的定义,特殊角的三角函数值,负整数指数幂是解题的关23.计算:222cos602sin 45tan 60sin 303︒-︒+︒-︒.24.计算:0112sin 45(2)()3π-︒+--.2520112cos30()2-+︒+-.26.计算:1201tan 452cos60(2)2π-⎛⎫︒-︒+--- ⎪⎝⎭27.计算:(13)﹣2﹣(π02|+4tan60°.28.计算)2013460.2cos -⎛⎫+--︒ ⎪⎝⎭29.计算()01cot 3012sin 60cos60tan 30︒--︒+︒+︒.30.计算:2tan 452sin60cot 302cos 45︒-︒︒-︒.。

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型一、二次根式的定义形如a (a ≥0)的式子叫做二次根式.其中“”叫做二次根号,a 叫做被开方数.(1)二次根式有意义的条件是被开方数为非负数.据此可以确定字母的取值范围; (2)判断一个式子是否为二次根式,应根据以下两个标准判断: ①是否含有二次根号“”;②被开方数是否为非负数.若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式.(3)形如a m (a ≥0)的式子也是二次根式,其中m 叫做二次根式的系数,它表示的是:a m a m ⋅=(a ≥0);(4)根据二次根式有意义的条件,若二次根式B A -与A B -都有意义,则有B A =. 二、二次根式的性质 二次根式具有以下性质:(1)双重非负性:a ≥0,a ≥0;(主要用于字母的求值) (2)回归性:()a a =2(a ≥0);(主要用于二次根式的计算)(3)转化性:⎩⎨⎧≤-≥==)0()0(2a a a a a a .(主要用于二次根式的化简)重要结论:(1)若几个非负数的和为0,则每个非负数分别等于0. 若02=++C B A ,则0,0,0===C B A . 应用与书写规范:∵02=++C B A ,A ≥0,2B ≥0,C ≥0∴0,0,0===C B A . 该性质常与配方法结合求字母的值. (2)()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2;主要用于二次根式的化简.(3)()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0; 该结论主要用于某些带系数的二次根式的化简:可以考虑把二次根号外面的系数根据符号以平方的形式移到根号内,以达到化简的目的. (4)()B A BA ⋅=22,其中B ≥0.该结论主要用于二次根式的计算. 例1. 式子11-x 在实数范围内有意义,则x 的取值范围是_________.分析:本题考查二次根式有意义的条件,即被开方数为非负数,注意分母不能为0. 解:由二次根式有意义的条件可知:01>-x ,∴1>x . 例2. 若y x ,为实数,且2111+-+-=x x y ,化简:11--y y .分析:本题考查二次根式有意义的条件,且有重要结论:若二次根式B A -与A B -都有意义,则有B A =. 解:∵1-x ≥0,x -1≥0 ∴x ≥1,x ≤1 ∴1=x ∴1212100<=++=y ∴11111-=--=--y yy y . 习题1. 如果53+a 有意义,则实数a 的取值范围是__________. 习题2. 若233+-+-=x x y ,则=y x _________. 习题3. 要使代数式x 21-有意义,则x 的最大值是_________. 习题4. 若函数xxy 21-=,则自变量x 的取值范围是__________. 习题5. 已知128123--+-=a a b ,则=b a _________.例3. 若04412=+-+-b b a ,则ab 的值等于 【 】(A )2- (B )0 (C )1 (D )2分析:本题考查二次根式的非负性以及结论:若几个非负数的和为0,则每个非负数分别等于0.解:∵04412=+-+-b b a ∴()0212=-+-b a∵1-a ≥0,()22-b ≥0∴02,01=-=-b a ∴2,1==b a∴221=⨯=ab .选择【 D 】.例4. 无论x 取任何实数,代数式m x x +-62都有意义,则m 的取值范围是__________. 分析:无论x 取任何实数,代数式m x x +-62都有意义,即被开方数m x x +-62≥0恒成立,所以有如下两种解法:解法一:由题意可知:m x x +-62≥0 ∵()93622-+-=+-m x m x x ≥0∴()23-x ≥m -9∵()23-x ≥0∴m -9≤0,∴m ≥9. 解法二:设m x x y +-=62∵无论x 取任何实数,代数式m x x +-62都有意义 ∴m x x y +-=62≥0恒成立即抛物线m x x y +-=62与x 轴最多有一个交点 ∴()m m 436462-=--=∆≤0解之得:m ≥9.例 5. 已知c b a ,,是△ABC 的三边长,并且满足c c b a 20100862=++-+-,试判断△ABC 的形状.分析:非负数的性质常和配方法结合用于求字母的值. 解:∵c c b a 20100862=++-+- ∴010020862=+-+-+-c c b a ∴()010862=-+-+-c b a∵6-a ≥0,8-b ≥0,()210-c ≥0∴010,08,06=-=-=-c b a ∴10,8,6===c b a∵10010,10086222222===+=+c b a ∴222c b a =+ ∴△ABC 为直角三角形.习题 6. 已知实数y x ,满足084=-+-y x ,则以y x ,的值为两边长的等腰三角形的周长为 【 】 (A )20或16 (B )20(C )16 (D )以上答案均不对习题7. 当=x _________时,119++x 取得最小值,这个最小值为_________.习题8. 已知24422--+-=x x x y ,则y x 的值为_________.习题9. 已知非零实数b a ,满足()()a b a b a a =++-+-++-415316822,求1-b a 的值.提示:由()()152+-b a ≥0,且012>+b 可得:5-a ≥0,∴a ≥5.例6. 计算:(1)()26; (2)()232+x ; (3)2323⎪⎪⎭⎫⎝⎛-. 分析:本题考查二次根式的性质: ()a a =2(a ≥0).该性质主要用于二次根式的计算.解:(1)()662=;(2)()32322+=+x x ;(3)()6329323323222=⨯=⎪⎪⎭⎫ ⎝⎛⨯-=⎪⎪⎭⎫ ⎝⎛-. 注意:()B A B A ⋅=22,其中B ≥0.该结论主要用于二次根式的计算.例7. 化简:(1)225; (2)2710⎪⎭⎫ ⎝⎛-; (3)962+-x x ()3<x .分析:本题考查二次根式的性质:⎩⎨⎧≤-≥==)0()0(2a a a a a a .该性质主要用于二次根式的化简.解:(1)2525252==;(2)7107107102=-=⎪⎭⎫ ⎝⎛-; (3)()339622-=-=+-x x x x∵3<x ∴原式x -=3.注意: 结论:()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2.该结论主要用于二次根式和绝对值的化简.例8. 当3-x 有意义时,化简:()()22125x x x -+-++.解:∵二次根式3-x 有意义 ∴3-x ≥0 ∴x ≥3 ∴()()22125x x x -+-++图(1)23125125+=-+-++=-+-++=x x x x x x x例9. 化简:()()2223-+-x x .分析:()222-=-x x ,继续化简需要x 的取值范围,而取值范围的获得需要挖掘题目本身的隐含条件:3-x 的被开方数3-x 为非负数. 解:由二次根式有意义的条件可知:3-x ≥0 ∴x ≥3 ∴()()2223-+-x x522323-=-+-=-+-=x x x x x 例10. 已知10<<a ,化简=-+-++2121aa a a __________. 解:∵10<<a ∴aa 1<∴2121-+-++aa a a aaa a a a a a a a a a a a a a a 21111111122=+-+=⎪⎭⎫⎝⎛--+=--+=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+= 例11. 已知直线()23-+-=n x m y (n m ,是常数), 如图(1),化简1442--+---m n n n m . 解:由函数()23-+-=n x m y 的图象可知:02,03<->-n m∴2,3<>n m∴1442--+---m n n n m()()()1121212122-=+-+--=-----=-----=-----=m n n m m n n m m n n m m n n m例12. 已知c b a ,,在数轴上的位置如图(2)所示,化简:()()222b a c c a a --++-.解:由数轴可知:b a c <<<0 ∴0<+c a ∴()()222b a c c a a --++-ba b c a c a a b a c c a a -=--+++-=--++--=习题10. 要使()()2222-=-x x ,x 的取值范围是__________.习题11. 若02=+a a ,则a 的取值范围是__________.习题12. 计算:=⎪⎪⎭⎫⎝⎛243_________. 习题13. 计算:=⎪⎭⎫⎝⎛-2221_________. 习题14. 若()332-=-x x 成立,则x 的取值范围是__________.习题15. 下列等式正确的是 【 】 (A )()332= (B )()332-=-(C )333= (D )()332-=-习题16. 下列各式成立的是 【 】图(2)(A )21212-=⎪⎭⎫ ⎝⎛- (B )()ππ-=-332(C )21212=⎪⎪⎭⎫ ⎝⎛ (D )74322=+ 习题17. 计算:()=-272_________.习题18. 化简:()=+-22x x_________.习题19. 若=-+=++++-b a a b b a a 22221,01213则________. 习题20. 已知01<<-a ,化简414122+⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛+a a a a 得__________. 习题21. 实数c b a ,,在数轴上对应的点如图(3)所示,化简代数式:222212b ab a c b a a +---++-的结果为 【 】 (A )12--c b (B )1- (C )12--c a (D )1+-c b习题22. 化简:()2232144--+-x x x .例13. 把aa 1-中根号外的因式移到根号内,结果是 【 】 (A )a - (B )a - (C )a (D )a --分析:本题实为二次根式的化简:某些二次根式在化简时,把根号外的系数移到根号内,可以达到化简的目的,但要注意根号外面系数的符号.有如下的结论:()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0. 图(3)解:由二次根式有意义的条件可知:01>-a∴0<a ∴a a a a a --=⎪⎭⎫⎝⎛-⋅-=-112.选择【 D 】. 习题23. 化简()212--a a 得__________. 三、二次根式的乘法 一般地,有:ab b a =⋅(a ≥0,b ≥0)(1)以上便是二次根式的乘法公式,注意公式成立的条件:a ≥0,b ≥0.即参与乘法运算的每个二次根式的被开方数均为非负数;(2)二次根式的乘法公式用于二次根式的计算;(3)两个带系数的二次根式的乘法为:ab mn b n a m =⋅(a ≥0,b ≥0); (4)二次根式的乘法公式可逆用,即有:b a ab ⋅=(a ≥0,b ≥0)公式的逆用主要用于二次根式的化简.注意公式逆用的条件不变.例14. 若()66-=-⋅x x x x 成立,则 【 】 (A )x ≥6 (B )0≤x ≤6 (C )x ≥0 (D )x 为任意实数分析:本题考查二次根式乘法公式成立的条件:ab b a =⋅(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥060x x解之得:x ≥6. 选择【 A 】.例15. 若1112-⋅+=-x x x 成立,则x 的取值范围是__________.分析:本题考查二次根式乘法公式逆用成立的条件:b a ab ⋅=(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥+0101x x解之得:x ≥1. 例16. 计算:a a 812⋅(a ≥0). 解:a a a a a a a 21214181281222=⎪⎭⎫ ⎝⎛==⋅=⋅(a ≥0). 习题24. 计算:=⨯2731_________. 习题25. 已知()21233-⨯⎪⎪⎭⎫⎝⎛-=m ,则有 【 】 (A )65<<m (B )54<<m (C )45-<<-m (D )56-<<-m 习题26. 化简12的结果是_________. 四、二次根式的除法 一般地,有:baba =(a ≥0,0>b ) (1)以上便是二次根式的除法公式,要特别注意公式成立的条件; (2)二次根式的除法公式用于二次根式的计算;(3)二次根式的除法公式可写为:b a b a ÷=÷ (a ≥0,0>b ); (4)二次根式的除法公式可逆用,即有:ba b a =(a ≥0,0>b ) 公式的逆用主要用于二次根式的化简,注意公式逆用的条件不变. 五、最简二次根式符合以下条件的二次根式为最简二次根式: (1)被开方数中不含有完全平方数或完全平方式; (2)被开方数中不含有分母或小数.注意:二次根式的计算结果要化为最简二次根式.六、分母有理化把分母中的根号去掉的过程,叫做分母有理化. 如对21进行分母有理化,过程为:2222221=⨯=;对321+进行分母有理化,过程为:()()723232323321-=-+-=+. 由举例可以看出,分母有理化是借助于分数或分式的性质实现的.例17. 计算:(1)654; (2)3223238÷; (3)()22728y xy -÷. 解:(1)39654654===; (2)24338169388323383823383832383223238=⨯==⨯⨯=÷⨯=÷=÷; (3)()x x y xy y xy 247287282222-=-=÷-=-÷.例18. 化简: (1)65; (2)4.0; (3)a a a 9623+-(3>a ). 解:(1)63066656565=⨯⨯==; (2)51052524.0===; (3)∵3>a ∴()()()a a a a a a a a a a 3396962223-=-=+-=+- 注意:随着学习的深入,在熟练时某些计算或化简的环节可以省略,以简化计算. 例19. 式子2121-+=-+x x x x 成立的条件是__________.分析:本题求解的是x 的取值范围,考查了二次根式除法公式逆用成立的条件:ba b a = (a ≥0,0>b ). 解:由题意可得:⎩⎨⎧>-≥+0201x x 解之得:2>x .例20. 计算:(1)7523⨯; (2)5120-; (3)2832-. 解:(1)5225275237523==⨯=⨯; (2)552515205120-=-=-; (3)解法1:224416282322832=-=-=-=-. 解法2:()2248216642228322832=-=-=⨯⨯-=-. 二次根式的乘除混合运算例21. 计算:(1)⎪⎪⎭⎫ ⎝⎛-÷⨯21223222330; (2)182712⨯÷. 解:(1)原式⎪⎪⎭⎫ ⎝⎛-÷⨯=252382330 232443216435238302123-=⨯⨯-=⨯⨯-=⨯⨯⨯⎪⎭⎫ ⎝⎛-⨯=(2)原式228324182712===⨯=.习题27. 下列计算正确的是 【 】(A )3212= (B ) (C ) (D )x x =2习题28. 计算:=÷⨯213827_________. 习题29. 计算:=÷32643x x _________. 习题30. 直线13-=x y 与x 轴的交点坐标是_________.习题31. 如果0,0<+>b a ab ,那么下面各式:①ba b a =; ②1=⋅a b b a ; ③b b a ab -=÷. 其中正确的是_________(填序号).习题32. 若0<ab ,则化简2ab 的结果是_________.习题33. 计算:(1)⎪⎪⎭⎫ ⎝⎛-⨯÷7225283212; (2)⎪⎪⎭⎫ ⎝⎛÷⨯2143236181841.例22. 先化简,再求值:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ,其中22-=x . 解:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ()()()()()()2221122211111322+--=++⋅+-+-=++⋅⎥⎦⎤⎢⎣⎡+-+-+=x x x x x x x x x x x x x 2323=x x x -=-3当22-=x 时 原式122242222222-=--=+----=.习题34. 先化简,再求值:11121122-+÷+-+--a a a a a a ,其中12+=a .习题35. 先化简,再求值:2222221y xy x y x x x yx +--÷⎪⎭⎫ ⎝⎛---,其中6,2==y x .习题36. 下列根式中是最简二次根式的是【】 (A )32(B )3 (C )9 (D )12例23. 观察下列各式: ()()()()()().;34434343431;23323232321;12212121211 -=-+-=+-=-+-=+-=-+-=+ (1)请利用上面的规律直接写出100991+的结果;(2)请用含n (n 为正整数)的代数式表示上述规律,并证明;(3)计算:()20171201720161431321211+⨯⎪⎭⎫ ⎝⎛++++++++ . 分析:本题考查分母有理化.解:(1)1131099100100991-=-=+; (2)n n n n -+=++111; (3)原式()()2017120162017342312+⨯-++-+-+-= ()()2016120171201712017=-=+-= 习题37. 化简:891231121++++++ .七、同类二次根式 如果几个最简二次根式的被开方数相同,那么它们是同类二次根式. 同类二次根式的判断方法:(1)先化简二次根式;(2)看被开方数是否相同;(3)定结果:若相同,则它们是同类二次根式;若不相同,则不是.同类二次根式的合并方法:几个同类二次根式相加减,将它们的系数相加减,二次根式保持不变.八、二次根式的加减二次根式相加减,先把各个二次根式化简,再合并同类二次根式.二次根式加减运算的步骤:(1)化简参与运算的二次根式;(2)合并同类二次根式;(3)检查结果.例24. 计算:(1)12188++; (2)451227+-. 解:(1)原式3225322322+=++=;(2)原式533533233+=+-=.注意:不是同类二次根式不能合并.例25. 计算:1832225-+.解:原式232425-+=2272225=+=例26. 计算:(1)⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛+32233223;(2)()()()23225775-++-.解:(1)原式223223⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=36199243=-=(2)原式364875+-+-=649-=.。

二次根式的有关概念和性质

二次根式的有关概念和性质

专题01二次根式的概念和性质(知识点考点串编)【思维导图】◎考点1:二次根式的值例.(2022·浙江·九年级专题练习)当0x =的值等于( )A .4B .2CD .0【答案】B【解析】【分析】把0x =解题即可【详解】◉知识点一:二次根式的定义知识点技巧:二次根式概念:一般地,我们把形如(a ≥0)的式子叫做二次根式,“”称为二次根号。

【注意】1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。

2.二次根式是一个非负数。

3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。

解:把0x =2=故选:B .【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.练习1.(2021·全国·八年级专题练习)当a 为实数时,下列各式中是二次根式的是( )个A .3个B .4个C .5个D .6个【答案】B 【解析】【分析】0)a >的代数进行分析得出答案.【详解】共4个.故选:B .【点睛】0)a >的代数式,正确把握定义是解题关键.练习2.(2021·河北·结果相同的是( ).A .321-+B .321+-C .321++D .321--【答案】A【解析】【分析】根据有理数运算和二次根式的性质计算,即可得到答案.【详解】2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.练习3.(2021·河南林州·八年级期末)已知当12a <<a -的值是( )A .3-B .12a -C .32a -D .23a -【答案】C【解析】【分析】由题意直接根据二次根式的性质以及去绝对值的方法,进行分析运算即可.【详解】解:∵12a <<,212132a a a a a a -=---=-+-=-.故选:C.【点睛】本题考查二次根式和去绝对值,熟练掌握二次根式的性质以及去绝对值的方法是解题的关键.◎考点2:求二次根式中的参数例.(2021·n 的最小值是( )A .2B .4C .6D .8【答案】C【解析】【分析】=,则6n 是完全平方数,满足条件的最小正整数n 为6.【详解】解:=∴6n 是完全平方数;∴n 的最小正整数值为6.【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答练习1.(2020·甘肃·酒泉市第二中学八年级期中)若x 、y 为实数,且0x +=,则2019x y æöç÷èø的值( )A .-2B .1C .2D .-1【答案】D【解析】【分析】根据非负数的性质可求出x 、y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵0x +=,∴x +2=0,y -2=0,∴x =﹣2,y =2,∴220190192=12x y -æöæöç÷è=-ç÷èøø.故选:D .【点睛】本题主要考查了非负数的性质,明确实数绝对值和二次根式的非负性以及﹣1的奇次幂的性质是解题关键.练习2.(2020·江苏·丰县欢口镇欢口初级中学八年级阶段练习)如果3y ,则2x y -的平方根是( )A .-7B .1C .7D .±1【答案】D【解析】【分析】根据二次根式的性质求出x 、y 的值,再代入求解即可.解:由题意可得:24020x x -+¹=,,解得:2x =,故3y =,则21x y -=,故2x y -的平方根是:±1.故选:D .【点睛】本题考查了关于二次根式的运算问题,掌握二次根式的性质、平方根的性质是解题的关键.练习3.(2021·全国·n 的值是( )A .0B .1C .2D .5【答案】D【解析】【分析】首先化简二次根式进而得出n 的最小值.【详解】=∴最小正整数n 的值是5.故选D .【点睛】本题考查了二次根式的定义,正确化简二次根式得出是解题的关键.例.(2022·全国·九年级专题练习)在函数1y =中,自变量x 的取值范围是( )A .x <2B .x ≥2C .x >2D .x ≠2【答案】C 【解析】◉知识点二:二次根式有意义的条件知识点技巧:二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

八年级数学下学期《二次根式》易错题集

八年级数学下学期《二次根式》易错题集

《二次根式》易错题集易错题知识点1.忽略二次根式有意义的条件,只有被开方数a≥0时,式子a才是二次根式;若a<0,则式子a就不能叫二次根式,即a无意义。

2.易把2a与2)(a混淆。

3.二次根式的乘除法混合运算的顺序,一般从左到右依次进行或先把除法统一成乘法后,再用乘法运算法则计算。

4.对同类二次根式的定义理解不透。

5.二次根式的混合运算顺序不正确。

典型例题选择题1.当a>0,b>0时,n是正整数,计算的值是()A.(b﹣a)B.(a n b3﹣a n+1b2)C.(b3﹣ab2)D.(a n b3+a n+1b2)考点:二次根式的性质与化简。

分析:把被开方数分为指数为偶次方的因式的积,再开平方,合并被开方数相同的二次根式.解答:解:原式=﹣=a n b3﹣a n+1b2=(a n b3﹣a n+1b2).故选B.点评:本题考查的是二次根式的化简.最简二次根式的条件:被开方数中不含开得尽方的因式或因数.2.当x取某一范围的实数时,代数式的值是一个常数,该常数是()A.29 B.16 C.13 D.3考点:二次根式的性质与化简。

分析:将被开方数中16﹣x和x﹣13的取值范围进行讨论.解答:解:=|16﹣x|+|x﹣13|,(1)当时,解得13<x<16,原式=16﹣x+x﹣13=3,为常数;(2)当时,解得x<13,原式=16﹣x+13﹣x=29﹣2x,不是常数;(3)当时,解得x>16;原式=x﹣16+x﹣13=2x﹣29,不是常数;(4)当时,无解.故选D点评:解答此题,要弄清二次根式的性质:=|a|,分类讨论的思想.3.当x<﹣1时,|x﹣﹣2|﹣2|x﹣1|的值为()A.2 B.4x﹣6 C.4﹣4x D.4x+4考点:二次根式的性质与化简。

分析:根据x<﹣1,可知2﹣x>0,x﹣1<0,利用开平方和绝对值的性质计算.解答:解:∵x<﹣1∴2﹣x>0,x﹣1<0∴|x﹣﹣2|﹣2|x﹣1|=|x﹣(2﹣x)﹣2|﹣2(1﹣x)=|2(x﹣2)|﹣2(1﹣x)=﹣2(x﹣2)﹣2(1﹣x)=2.故选A.点评:本题主要考查二次根式的化简方法与运用:a>0时,=a;a<0时,=﹣a;a=0时,=0;解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.4.化简|2a+3|+(a<﹣4)的结果是()A.﹣3a B.3a﹣C.a+D.﹣3a考点:二次根式的性质与化简;绝对值。

中考数学复习题绝对值算术根

中考数学复习题绝对值算术根

绝对值与算术平方根一、绝对值1.定义 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.在数轴上,一个实数的绝对值表示这一实数对应的点到原点的距离,恒有︱a ︱≥0. 数(式)a 的绝对值记作︱a ︱,用算式表示,即 ⎩⎨⎧<-≥=.0,,0,||a a a a a2.绝对值的性质(1)︱a ︱=︱-a ︱(2)-︱a ︱≤a ≤︱a ︱(3)若︱a ︱=︱b ︱,则a = ±b(4)若︱a ︱+︱b ︱= 0,则a = b = 03.解含绝对值的数式的化简、求值、证明,以及方程、不等式等问题时,基本思路是:根据绝对值的定义,先设法去掉绝对值符号,再进行变形运算解答.有时需要针对题目的具体数值或结构特征,如采用平方法、数形结合或整体思想等特殊策略常常能够简捷求解.二、算术平方根1.定义 正数a 的正的平方根叫做a 的算术平方根;0的算术平方根是0.记作a (a ≥0).2.算术平方根的性质(1)当a ≥0时,有a a =2)((2)对任意实数a ,有||2a a =3.算术平方根a 的实质是它的双重非负性:a ≥0和0≥a4.利用||2a a ==⎩⎨⎧<-≥)0(),0(a a a a 可以将算术平方根问题转化为绝对值问题,再按照绝对值的意义讨论,是处理算术平方根问题的重要方法.这种方法可划分为三个步骤:(1)运用公式把被开方式配方成一个数(或式)的平方;(2)根据已知条件判定这个代数式的正负性(或分情况讨论);(3)利用上述关系式进行化简.例1 如果在数轴上表示a ,b 两个实数的点的位置如图所示, 那么化简︱a -b ︱+︱a + b ︱的结果是( ).A .2aB .-2aC .0D .2b分析 观察图形,理理题意,可知a <0,b >0,且数a 对应的点到原点O 的距离大于数b 对应的点到原点O 的距离(这点容易被忽视!).∴ a -b <0,a + b <0.故︱a -b ︱+︱a + b ︱=-(a -b )-(a + b )= -2a ,选B .例2 若 x <-2,则xx ++-2||1|1|的值为 . 分析 ∵ x <-2, ∴ 1 + x <0,x + 2<0, 于是 ︱1 + x ︱=-(1 + x ),∴ 分式的分子 =︱1 + 1 + x ︱=︱2 + x ︱=-(2 + x ),故分式的值为-1.例3 若21≤a ,化简|12|4412-++-a a a . 分析 注意到a 的取值范围,可得 2a -1≤0. 于是 |12|4412-++-a a a =|12|)21(2-+-a a=︱1-2a ︱+︱2a -1︱= 2︱2a -1︱= 2-4a .说明 解答绝对值或二次根式的化简问题时,基本思路是化根式为绝对值,说明或讨论绝对值符号中代数式的正、负脱去绝对值符号.例4 解方程:︱x -︱3x + 1︱︱= 4.分析 这是一个由分类定义的概念给出的绝对值方程,绝对值的概念是分三类定义的,所以本题应分3x + 1>0,3x + 1 = 0,3x + 1<0三种情况讨论.解 (1)当3x + 1>0,即31->x 时,原方程化为︱x -3x -1︱= 4, ∴ 2x + 1 = 4,或 2x + 1 =-4. 解得 23=x ,25-=x (舍去). (2)当 3x + 1 = 0,即31-=x 时,原方程左边=31,右边= 4,矛盾,故原方程无解. (3)当3x + 1<0,即31-<x 时,原方程化为︱x + 3x + 1︱= 4. ∴ 4x + 1 = 4,或 )3114(414-<+-=+x x . 解得 45-=x . 综上所述,原方程的解是45-=x ,或23=x .例5 设A 是锐角三角形ABC 的一个内角.试化简:A A A A cos sin 21cos sin 21-++. 分析 首先设法把被开方式配成一个完全平方式利用公式||2a a =化去根号,于是联想到 1 = sin 2A + cos 2A ,得 1 + 2sin A cos A = sin 2A + cos 2A + 2sin A cos A =(sin A + c os A )2;同理1-2sin A c os A =(sin A -c os A )2.因而,原式 =︱sin A + cos A ︱+︱sin A -c os A ︱.∵ A 是锐角三角形ABC 的一个内角, ∴ 0︒<A <90︒,因此分两类讨论如下:(1)当0︒<A ≤45︒时,22sin 0≤<A ,1cos 22<≤A , 从而 sin A + cos A >0,sin A -cos A ≤0,故原式 = sin A + cos A -(sin A -c os A )= 2 c os A .(2)当45︒<A <90︒ 时,1sin 22<<A ,22cos 0<<A , 从而 sin A + cos A >0,sin A -cos A >0,故原式 = sin A + cos A + sin A -cos A = 2 sin A .例6 解方程:1|2|3--=+x x .分析 由算术平方根的定义知,x 首先应满足x + 3≥0即x ≥-3.又2是︱x -2︱的零点,故本题应分-3≤x <2和x ≥2两类求解.(1)当-3≤x <2时,原方程化为13+-=+x x , 解得2173-=x (另一根2173+=x 舍去). (2)当x ≥2时,原方程化为33-=+x x ,解得 x = 6(另一根x = 1舍去). 说明 本题一开始就挖掘出算术平方根这一隐含条件,简化了分类.不然解答起来或运算量太大或过程繁杂,均不可取.例7 当a 在什么范围内取值时,方程︱x 2-5x ︱= a 有且只有相异二实数根?分析 数学问题中含有参变量,这些参变量的不同取值会导致不同结果.解 (1)当a <0时,方程显然无实数根.(2)当a = 0时,原方程变为x 2-5x = 0,解之,得 x 1 = 0,x 2 = 5。

绝对值与二次根式-

绝对值与二次根式-

第二讲 绝对值与二次根式【基础知识】 一、绝对值1、绝对值代数定义:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数; 0的绝对值是0。

有时也可以记为:(0)(___0)||(0)(___0)a a a a a a a a a ≥⎧⎧=⎨⎨-<-⎩⎩或者 2、绝对值几何定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离,记作|a|.如:|-2|表示-2的点到原点的距离;|x|则是在数轴上表示x 的点到原点的距离。

那么|x-1|表示在数轴上(x-1)的点到原点的距离.显然绝对值是非负数,即||0a ≥ 3、绝对值的基本性质:(1)任何一个数的绝对值一定是非负数,即 |a|≥0;(2)若干个非负数的和为零,则每个非负数为零;|a|+|b|+|c|=0,则a=0且b=0且c=0 (3)互为相反数的绝对值相等,即|a|=|-a|(4)任何一个数的绝对值都大于或等于它本身,即|a|≥ a ;|x||-2||x-1|1O-1-2x-1x(5)任何一个数都有唯一的绝对值; (6)绝对值最小的数是零;(7)两个互为相反数的数的绝对值相等,即 |a|=|-a|;(8)绝对值为某一正数的数有两个,它们互为相反数。

绝对值为零的数只有一个零;(9)若两个数的绝对值相等,则这两个数相等或互为相反数.即||||0a b a b a b =⇒=+=或二、二次根式1、二次根式的定义:式子(0)a a ≥叫做二次根式。

2、二次根式的性质: (1)2(0)||(0)a a a a a a≥⎧==⎨-<⎩ (2)0a ≥(3)2()(0)a a a =≥(4)(0,0)ab a b a b =≥≥;(0,0)a a a b b b=≥> (5)0a b a b >⇔>≥ 【典型例题】 一、化简求值例1计算下列各式的值:①|3|π-;②02(1sin 60)-;③2|1|x x -+;解: ①∵3<π,即3-π<0,∴|3|π-=π-3;②02(1sin 60)-=033|1sin 60||1|122-=-=-.③22131()44x x x x -+=-++213()024x =-+> 所以22|1|1x x x x -+=-+注: ①化简主要是去绝对值符号, 要去绝对值符号,就得讨论绝对值里面的数或式是正还是负.②对于含有字母的代数式不一定要分类讨论,二次三项式往往采用“配方法”来判断是不是一个非负数. “配方法”是一种重要的数学方法. 例2 化简2||2x x +-解:当x<0时, 2||2x x +-=22x x -- 当x>0时, 2||2x x +-=22x x +-所以2222(0)||22(0)x x x x x x x x ⎧--<+-=⎨+-≥⎩注:x 的符号可“+”可“-”,还可以为“0”,因此,应该对x 进行分类讨论;最后应该有小结,就是把两种结果写在一起,使书写规范.例3 化简222692144x x x x x x +++-++-+ 解:原式=222(3)(1)(2)x x x +++--|3||1||2|x x x =++-+-以下利用零点区间讨论法,显然零值点有-3,1,2三点. 当x ≤-3时,原式=(-x-3)+(1-x)+(2-x)=-3x 当-3<x ≤1时, 原式=(x+3)+(1-x)+(2-x)=-x+6当1<x ≤2时, 原式=(x+3)+(x-1)+(2-x)=x+4 当x>2时, 原式=(x+3)+(x-1)+(x-2)=3x综上所述,原式= 3(3)6(31)4(12)3(2)x x x x x x x x -≤-⎧⎪-+-<≤⎪⎨+<≤⎪⎪>⎩注: 零点区间讨论法是一种重要的数学方法.例4 化简 ||x-1|-2|+|x+1|解:先找零点:|1|01 |1|201|1|01x xx xx x-==⎧⎧⎪⎪--=⇒=-⎨⎨⎪⎪+==-⎩⎩或3所以零值点有-1,1,3三点,因此,我们应将数轴分成4部分.当x<-1时,原式=|-(x-1)-2|+[-(x+1)]=|-x-1|-x-1=-x-1-x-1=-2x-2当-1≤x≤1时,原式=|-(x-1)-2|+x+1=|-x-1|+x+1=x+1+x+1=2x+2当1≤x<3时,原式=||x-1|-2|+x+1=|x-3|+ x+1=3-x+x+1=4 当x≥3时,原式=|x-1-2|+x+1=|x-3|+x+1=x-3+x+1=2x-2综上所述,原式=22(1) 22(11) 4(13) 22(3)x xx xxx x--<-⎧⎪+-≤<⎪⎨≤<⎪⎪-≥⎩注: ①本题条件没有给出绝对值符号内的代数式的正负性,应采用零点区间讨论法.须注意的是本题含双重绝对值,应注意考虑||x-1|-2|的零点.②“分类讨论”是一种非常重要的数学思想, 绝对值问题经常采用这种数学思想.二、条件化简求值例5 化简2(3)|4|(34) x x x-+-<<解:因为3<x<4,所以x-3>0,x-4<0,所以原式= x-3+4-x=1.例6已知x<-3,化简:|3+|2-|1+x|||.解 :原式=|3+|2+(1+x)|| (因为1+x<0)=|3+|3+x||=|3-(3+x)| (因为3+x<0)=|-x|=-x.注: ①这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号;②充分利用已知条件,是解决例5例6的关键,正确运用绝对值的概念是解决例5例6根本.例7 已知有理数a ,b ,c 在数轴上的对应点如图1-1所示,化简|b-a |+|a+c |+|c-b |.解:观察数轴得:a<0,b<0,c>0且|a|>|b|>|c|, 所以b-a>0,a+c<0,c-b>0 故|b-a |+|a+c |+|c-b | =(b-a)+(-a-c)+(c-b) =-2a注:解决本题充分利用了“数”与“形”的结合.“数形结合”又是数学中的重要数学思想. 例8 已知24|34|0:x x y x y -+-+=,求值.解:由非负数的意义得:2402:1:13402x x x y x y y -==⎧⎧⇒⇒=⎨⎨-+==⎩⎩.例9 已知212005|1|04x y x ++-+=,求2008200520052y x +⨯的值. 解: 212005|1|04x y x ++-+=20051()2005|1|02x y ⇒-++=10210x y ⎧-=⎪⇒⎨⎪+=⎩ 121x y ⎧=⎪⇒⎨⎪=-⎩20082005200520082005200512(1)2()1122y x ⇒+⨯=-+⨯=+=注:非负数的和为0,那么每个非负数都应为0,你能证明吗?初中常见的非负数有哪些?例10 方程|||1|0xy x y +-+=的图象是( )(A )三条直线:x=0,y=0,x-y+1=0 (B )两条直线: x=0,x-y+1=0 (C )一点和一条直线:(0,0),x-y+1=0 (D )两个点:(0,1),(-1,0)Ob ac解:由已知,根据非负数的性质,得010xy x y =⎧⎨-+=⎩即010x x y =⎧⎨-+=⎩或010y x y =⎧⎨-+=⎩解之得:01x y =⎧⎨=⎩或10x y =-⎧⎨=⎩故原方程的图象为两个点:(0,1),(-1,0).注:利用非负数的性质,可以将绝对值符号去掉,从而将问题转化为其它的问题来解决.例11 实数a 满足||01a a a +=≠-,, 那么||1|1|a a -=+ .解:由||01a a a +=≠-,, 可得 0a ≤且1a ≠- 当1a <- 时,||111|1|(1)a a a a ---==+-+;当10a -<≤ 时,||111|1|1a a a a ---==-++.所以1(1)||11(10)|1|a a a a <-⎧-=⎨--<≤+⎩注: ①有的题目中,含绝对值的代数式不能直接确定其符号,这就要求分情况对字母涉及的可能取值进行讨论.②若|a|=a ,则a 0;若|a|=-a,则a 0;如果2(2)2x x -=-,则x 0. ③在解决有关数学问题时,经常采用“逆向思维”. 三、求最大(小)值例12 式子|1||2||3|x x x ++-+-的最小值是_________。

二次根式与绝对值综合专题训练(有解析)

二次根式与绝对值综合专题训练(有解析)

C.2a﹣1
D.
1﹣2a
5、已知实数 m、n 在数轴上的对应点的位置如图,则|m﹣n|+=( Nhomakorabea)
A.
m﹣1
B.m+1
C.2n﹣m+1
D.
2n﹣m﹣1
【解答】解:原式= m n n 1 =n﹣m+n﹣1 =2n﹣m﹣1, 故选:D. 6、若 a、b、c 是 ABC的三 边,化简:
(a b c)2 (a b c)2 (b a c)2 (c b a )2
M+n=1+(-2) =-1 故选:A 2、若 x 2 y
x 2 0 ,则 ( x y ) 2017 =

【解答】解:由题意得:
x 2 y 0 x 2 0
解得:
x 2 y 1
( x y ) 2017 (2 1) 2017 (1) 2017 1
2
( a 1) 2 1 a a 1 a 1 2a 2
例 2、已知 x 2017 2016 x 2018 x ,求 x 【解答】解:由题意得: 2016 x 0, x 2017 2017 x;
2017 x 2016 x 2018 x 2016 x 1 2016 x 1 x 2015
【解答】解:由数轴可得:a﹣5<0,a﹣2>0, 则 +|a﹣2|
= a 5 a 2
=5﹣a+a﹣2 =3. 故答案为:3. 2、已知:1<x<3,则 A.﹣3 B. 3 【解答】解:∵1<x<3, ∴x﹣1>0,3﹣x>0, ∴4﹣x>1>0, ∴原式= C.2x﹣5 =( D.5﹣2x )

二次根式

二次根式

知识点归纳:1、理解二次根式的概念.2、理解a (a ≥0)是一个非负数,(a )2=a (a ≥0),2a =a (a ≥0).3、掌握a ·b =ab (a ≥0,b ≥0),ab =a ·b ;a b =a b (a ≥0,b>0),a b =ab(a ≥0,b>0).重点:1、二次根式a (a ≥0)的内涵.a (a ≥0)是一个非负数;(a )2=a (a ≥0);2a =a(a ≥0)•及其运用.2、二次根式乘除法的规定及其运用.3、最简二次根式的概念.4、二次根式的加减运算. 难点:1、对a (a ≥0)是一个非负数的理解;对等式(a )2=a (a ≥0)及2a =a (a ≥0)的理解及应用.2、二次根式的乘法、除法的条件限制.3、利用最简二次根式的概念把一个二次根式化成最简二次根式. 知识梳理:1 ,二次根式的概念:1)二次根式:式子a (0a ≥)叫做二次根式。

2) 最简二次根式:满足下列两个条件的二次根式是最简二次根式: (1) 被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式。

3)同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式4) 把分母中的根号化去,叫分母有理化。

2,二次根式的性质1)(0)2(0){a a a a a a≥-<==2)(0,0)ab a b a b =≥≥3)(0,0)a a a b b b=≥> 4)()2(0)a a a =≥考点一:二次根式的概念例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x (x>0)、0、42、-2、1x y+、x y +(x ≥0,y•≥0).例2.当x 是多少时,31x -在实数范围内有意义?例3.当x 是多少时,(1)23x ++11x +在实数范围内有意义? 考点二:二次根式的非负性初中阶段满足非负性的共有三类: (1)绝对值:a (2)平方:2a(3)二次根式:a 以上三种情况满足:0a ≥例题1 已知:3324x x y -+--=,求yx的值。

绝对值-二次根式-分式

绝对值-二次根式-分式

(一)绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.例1、 解不等式:|x |1≥ 例2、 解不等式:|1|2x -≤ 你自己能总结出一般性的结论吗?例3、解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3, ∴x >4.综上所述,原不等式的解为 x <0,或x >4.解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|.所以,不等式13x x -+->4的几何意义即为|P A |+|PB |>4. 由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧.x <0,或x >4.练习1.填空题:(1)若5=x ,则x =_________;若4-=x ,则x =_________.(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________A B C P |x -1||x -3|图1.1-12.选择题:下列叙述正确的是 ( )(A )若a b =,则a b = (B )若a b >,则a b > (C )若a b <,则a b < (D )若a b =,则a b =± 3.化简:|x -5|-|2x -13|(x >5).4.解下列不等式: (1)3233x x ++-≥(2)134x x +-->-(二)二次根式(1)0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如 32a b21x +,22x y + 1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,等等. 一般地,与b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩例1 将下列式子化为最简二次根式:(1 (20)a ≥; (30)x <.解: (1=(20)a ==≥;(3220)x x x =-<.例2 计算:(3.解法一: (3=393-=1)6=12.解法二: (3. 例3 试比较下列各组数的大小:(1 (2解: (1===,===,>(2)∵=== 又 4>22,∴6+4>6+22,练习:1.将下列式子化为最简二次根式:(1 (22.3.例4 化简:20042005⋅-.解:20042005+⋅=20042004⋅-⋅-=2004⎡⎤+⋅⋅-⎣⎦=20041⋅.例 5 化简:(1; (21)x <<.解:(1)原式===2=2=.(2)原式1x x =-,∵01x <<, ∴11x x>>, 所以,原式=1x x-.例 6 已知x y ==22353x xy y -+的值 .解: ∵2210x y +==+=,1xy ==, ∴22223533()1131011289x xy y x y xy -+=+-=⨯-=.练习1.填空题: (1=__ ___;(2(x =-x 的取值范围是_ _ ___;(3)=__ ___; (4)若x ==______ __. (5)=成立的条件是 。

二次根式专题(含答案详解)

二次根式专题(含答案详解)

数学专题 第六讲:二次根式【基础知识回顾】一、 二次根式式子a ( )叫做二次根式提醒:①次根式a 必须注意a___o 这一条件,其结果也是一个非数即:a ___o ②二次根式a (a ≥o )中,a 可以表示数,也可以是一切符合条件的代数式 二、 二次根式的性质:①(a )2= (a ≥0)③= (a ≥0 ,b ≥0)④= (a ≥0, b ≥0)提醒:二次根式的性质注意其逆用:如比较23和可逆用(a )2=a(a ≥0)将根号外的整数移到根号内再比较被开方数的大小 三、最简二次根式:最简二次根式必须同时满足条件:1、被开方数的因数是 ,因式是整式2、被开方数不含 的因数或因式 四、二次根式的运算:1、二次根式的加减:先将二次根式化简,再将 的二次根式进行合并,合并的方法同合并同类项法则相同2、二次根式的乘除:= (a ≥0 ,b ≥0)(a ≥0,b >0) 3、二次根式的混合运算顺序:先算 再算 最后算提醒:1、二次根式除法运算过程一般情况下是用将分母中的根号化去这一方法进行:如:= = 2、二次根式混合运算过程要特别注意两个乘法公式的运用 3、二次根式运算的结果一定要化成 重点考点例析考点一:二次根式有意义的条件A .x ≠3B .x <3 C .x >3 D .x ≥3(a ≥o )(a <o )思路分析:根据二次根式的意义得出x-3≥0,根据分式得出x-3≠0,即可得出x-3>0,求出即可. 解:要使代数式43x -有意义, 必须x-3>0, 解得:x >3. 故选C .点评:本题考查了二次根式有意义的条件,分式有意义的条件的应用,注意:分式B A中A ≠0,二次根式a 中a ≥0. 对应训练 1.使代数式21xx -有意义的x 的取值范围是( ) A .x≥0 B .x≠12C .x≥0且x≠12 D .一切实数 解:由题意得:2x-1≠0,x≥0,解得:x≥0,且x≠12,故选:C .考点二:二次根式的性质例2 实数a 、b 在轴上的位置如图所示,且|a|>|b|,则化简2||a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b思路分析:现根据数轴可知a <0,b >0,而|a|>|b|,那么可知a+b <0,再结合二次根式的性质、绝对值的计算进行化简计算即可. 解:根据数轴可知,a <0,b >0,原式=-a-[-(a+b )]=-a+a+b=b .故选C .点评:二次根式的化简和性质、实数与数轴,解题的关键是注意开方结果是非负数、以及绝对值结果的非负性. 对应训练2.实数a ,b 在数轴上的位置如图所示,则2()a b a ++的化简结果为 .解:∵由数轴可知:b <0<a ,|b|>|a|, ∴2()a b a ++=|a+b|+a =-a-b+a=-b , 故答案为:-b .考点三:二次根式的混合运算思路分析:利用二次根式的分母有理化以及分数指数幂的性质和负整数指数幂的性质,分别化简,进而利用有理数的混合运算法则计算即可.=3.二次根式的混合运算以及负整数指数幂的性质,将各式进行化简是解题关键. 对应训练=4=+考点四:与二次根式有关的求值问题222)(1)(x x x ++-思路分析:先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.2(1)1)4x x x+0, 1+, (1)11)44x x x+=考查的是二次根式及分式的化简求值,解答此题的关键是当1,此题难度不大.对应训练A .0B .25C .50D .80分析:根据平方差公式求出1142-642=(114+64)×(114-64)=178×50,再提出50得出50×(178-50)=50×128,分解后开出即可. 解:2221146450-- =2(11464)(11464)50+-- =1785050⨯- =50(17850)⨯- =50128⨯=222582⨯⨯⨯=2×5×8,=80, 故选D .考查了平方差公式,因式分解,二次根式的运算等知识点的应用,解此题的关键是能选择适当的方法进行计算 【聚焦中考】1.下列运算正确的是( )B .A 2(5)5-=- B .21()164--= C .x 6÷x 3=x 2 D .(x 3)2=x 52.计算:182= .0 3.计算:0(3)123-+⨯= .7【备考真题过关】 一、选择题1.要使式子2x -有意义,则x 的取值范围是( D )A .x >0B .x≥-2C .x≥2 D.x≤2 2.计算102÷=( A )A 5B .5C .52D .1023.计算:322-=( )4.已知3()(221)3m =-⨯-,则有( ) A .5<m <6 B .4<m <5 C .-5<m <-4 D .-6<m <-5 解:3()(221)3m =-⨯- 23213=⨯ 2373=⨯ 2728==,∵252836<<,∴5286<<,即5<m <6, 故选A .5.下列计算正确的是( D ) A .x 3+x 3=x 6B .m 2•m 3=m 6C .3223-=D .14772⨯=6.下列等式一定成立的是( B )A .945-=B .5315⨯=C .93=±D .2(9)9--=7.使式子有意义的x 的取值范围是( ) A . x≥﹣1 B . ﹣1≤x≤2C . x≤2D . ﹣1<x <2解:根据题意,得,解得,﹣1≤x≤2; 故选B .8.在下列各式中,二次根式的有理化因式是( )A .B .C .D .解:∵×=a ﹣b ,∴二次根式的有理化因式是:.故选:C .主要考查了二次根式的有理化因式的概念,熟练利用定义得出是解题关键. 9.下列计算错误的是( )A.B.C.D.分析:根据二次根式的乘法对A、B进行判断;根据二次根式的除法对C进行判断;根据二次根式的性质对D进行判断.解:A、=,所以A选项的计算正确;B、与不是同类二次根式,不能合并,所以B选项的计算错误;C、÷===2,所以C选项的计算正确;D、==×=2,所以D选项的计算正确.故选B.10.下列计算正确的是()A.B.C.D.分析:根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D 进行判断.解:A、与不能合并,所以A选项不正确;B、×=,所以B选项不正确;C、﹣=2=,所以C选项正确;D、÷=2÷=2,所以D选项不正确.故选C.11.下列计算或化简正确的是()A.a2+a3=a5B.C.D.分析:A、根据合并同类项的法则计算;B、化简成最简二次根式即可;C、计算的是算术平方根,不是平方根;D、利用分式的性质计算.解:A、a2+a3=a2+a3,此选项错误;B、+3=+,此选项错误;C、=3,此选项错误;D、=,此选项正确.故选D.考查了合并同类项、二次根式的加减法、算术平方根、分式的性质,解题的关键是灵活掌握有关运算法则,并注意区分算术平方根、平方根.12.下列计算正确的是()A.B.C.D.分析:根据二次根式的乘除法则,及二次根式的化简结合选项即可得出答案.解:A、•=1,故本选项正确;B、﹣≠1,故本选项错误;C、=,故本选项错误;D、=2,故本选项错误;故选A.二、填空题解:∵20n=22×5n. ∴整数n 的最小值为5. 故答案是:5.∴222a <-<,即22b <<.故答案为:22b <<.1205的结果是22的结果是2)222+⨯⨯1。

专题 二次根式求值的常用方法(解析版)

专题 二次根式求值的常用方法(解析版)

八年级下册数学《第十六章二次根式》专题二次根式求值的常用方法【例题1】(2022春•|x﹣6|+【分析】先根据二次根式有意义的条件求出x的值,再将x代入化简即可求值.【解答】解:由题意得,5−x≥0x−3>0,∴3<x≤5,∴|x﹣6|+=4.【点评】此题考查了二次根式有意义的条件,熟记二次根式有意义的条件是解题的关键.【变式1-1】(2022秋•海陵区校级期末)如图,a,b,c【分析】先根据数轴判断b,b+c,c﹣a的正负性,再根据二次根式的性质进行化简即可求解.【解答】解:由题意可知:∵a<c,b<0,c>0,|b|>|c|,∴b+c<0,c﹣a>0,=|b|﹣|b+c|﹣|c﹣a|=﹣b+(b+c)﹣(c﹣a)=﹣b+b+c﹣c+a=a,【点评】本题主要考查了数轴和二次根式,理解题意掌握二次根式的性质是解题的关键.【变式1-2】(2022秋•农安县期中)已知,如图所示,实数a、b、c在数轴上的位置.化简++|b+c|.【分析】先根据数轴判断a,b,c的正负数,再根据绝对值的意义化简求解.【解答】解:根据数轴可得:c<b<0<a,∴a﹣b>0,c﹣a<0,b+c<0,++|b+c|=a﹣(a﹣b)﹣(c﹣a)﹣(b+c)=a﹣a+b﹣c+a﹣b﹣c【点评】本题考查了二次根式的化简与求值,绝对值的化简是解题的关键.【变式1-3】先化简,再求值:2n−m mn ÷m 2n 2−5n 2mn ⋅(m 2n )22mn,其中(n−3)2=0.【分析】直接利用非负数的性质得出m ,n 的值,再把m ,n 的值代入,再利用二次根式的混合运算法则计算得出答案.【解答】解:2n−m mn ⋅=2n−m mn ÷m 2n 2−5n 2mn ⋅m 24n 24mn2mn=2n−m mn ⋅mn m 2−4n 2⋅(m 2n)22mn=2n−m mn ⋅mn (m−2n)(m 2n)=−m 2n2mn,(n−3)2=0,∴m +1=0,n ﹣3=0,∴m =﹣1,n =3.∴原式=−m 2n 2mn=−−12×32×3×(−1)=56.【点评】此题主要考查了二次根式的化简求值,正确掌握相关运算法则是解题关键.【变式1-4】(2022秋•如东县期末)x ,y 为实数,且y,化简:|y−3|−【分析】x ﹣1≥0,1﹣x ≥0,解可求x =1,再把x =1代入y+3中,易求y <3,从而可对所求式子化简,并合并即可.【解答】解:∵x ﹣1≥0,1﹣x ≥0,∴x ≥1,x ≤1,∴x =1,又∵y +3,∴|y﹣3|3﹣y﹣(4﹣y)=﹣1.故答案为﹣1.【点评】本题考查了二次根式的性质、二次根式的化简求值.解题的关键是注意被开方式是≥0的.【变式1-5】(2022秋•崇川区校级月考)已知:y+25−3x的值.【分析】根据被开方数是非负数且分母不等于零,以此即可得到结果.【解答】解:由y+2可得,3x−2≥02−3x≥0,∴x=2 3,∴y>2,+5−3x=5−3×2 3=y−22−y+5−2=﹣1+5﹣2=2.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数且分母不等于零得出x=23,y>2是解题关键.【变式1-6】(2021春•睢县期中)已知a、b=0,求2a 【分析】根据非负数性质可得关于a、b的方程组,求得a、b的值代入计算即可.+1=0b−4a−3=0,解得:a=−1b=−3,故2a=2×(﹣1)×=﹣2×=﹣2×3=﹣6.【点评】本题主要考查二次根式的求值及非负数的性质,根据非负数性质列出方程组是解题的前提,代入求值是关键.【变式1-7】(2021秋•|x﹣4|++|x﹣2|.【分析】根据题意求出x=|a|化简,根据绝对值的性质化简即可.【解答】解:根据题意得:3x+1≥0,2﹣x≥0,∴−13≤x≤2,∴x﹣4<0,x﹣2≤0,∴原式=|x﹣4|++|x﹣2|=|x﹣4|+|3x+1|+|x﹣2|=4﹣x+3x+1+2﹣x=x+7.|a|是解题的关键.【变式1-8】(2022春•藁城区校级期中)求代数式aa=1011,如图所示的是小亮和小芳的解答过程.(1) 的解法是错误的;(2)求代数式a a=﹣2022.【分析】(1)先将被开方式进行因式分解,然后根据二次根式的性质进行化简,从而作出判断;(2)先将被开方式进行因式分解,然后根据二次根式的性质进行化简,最后代入求值.【解答】解:(1)小亮的解法是错误的,理由如下:原式=a+∵a=1011,∴1﹣a<0,∴原式=a+a﹣1=2a﹣1=2×1011﹣1=2021,故答案为:小亮;(2)原式=a∵a=﹣2022,∴a﹣3<0,∴原式=a+2(3﹣a)=a+6﹣2a=6﹣a=6﹣(﹣2022)=6+2022=2028.【点评】本题考查二次根式的化简求值,理解二次根式的性质,掌握利用完全平方公式分解因式的技巧是解题关键.【例题2】(2022秋•青浦区校级期中)先化简再求值1x,其中x=13,y=1.【分析】根据平方差公式、完全平方公式把原式的分子、分母变形,再根据约分法则化简,利用分母有理化法则把x、y化简,代入计算即可.【解答】解:原式=2•+=x ﹣y ,当x =13=(3=3﹣y =1原式=(3﹣【点评】本题考查的是二次根式的化简求值,掌握二次根式的乘法法则、平方差公式、完全平方公式是解题的关键.【变式2-1】(2022秋•长泰县期中)先化简,再求值:+,其中:a =+1.【分析】先算乘法,再合并同类项,最后代入求出答案即可.【解答】解:=a 2﹣3﹣a 2+4a =4a ﹣3,当a =+1时,原式=4×+1)﹣3=4﹣3=1.【点评】本题考查了二次根式的化简求值,能正确根据二次根式的运算法则进行计算是解此题的关键.【变式2-2】(2022春•谷城县期末)已知x =2x 2+(+x ﹣1的值【分析】先求出x 2的值,代入后先根据二次根式的乘法法则进行计算,再根据二次根式的加减法则进行计算即可.【解答】解:∵x =2∴x 2=(22=4﹣3=7﹣∴(x 2+(x ﹣1=(×(7﹣+(×(21=49﹣1=【点评】本题考查了二次根式的化简求值,能正确根据二次根式的运算法则进行计算是解此题的关键.【变式2-3】(2022春•范县期中)先化简,再求值.(64x =1,y 1.【分析】首先把二次根式进行化简,然后再去括号合并同类二次根式,再代入xy 的值即可.【解答】解:原式=(=+=当x =1,y =1时,xy =12−1=1,则原式=﹣1.【点评】此题主要考查了二次根式的化简求值,关键是正确化简二次根式.【变式2-4】(2021春•连山区期中)给出以下式子:(x 2−4x 2−4x 4−1x−2)÷x 1x 2,先简化,然后从﹣1,2,【分析】先算括号里面的减法,再根据发送到除法法则把除法变成乘法,算乘法,根据分式有意义的条件求出x 不能为2,﹣2,﹣1,取x =【解答】解:(x 2−4x 2−4x 4−1x−2)÷x 1x 2=[(x 2)(x−2)(x−2)2−1x−2]•x 2x 1=(x 2x−2−1x−2)•x 2x 1=x 2−1x−2•x 2x 1 =x 1x−2•x 2x 1 =x 2x−2,由题意得,x ﹣2≠0,x +2≠0,x +1≠0,则x ≠2,x ≠﹣2,x ≠﹣1,∴当x =2+原式21+【点评】本题考查了分式和二次根式的化简求值,能灵活运用分式和二次根式的运算法则进行计算是解此题的关键,注意运算顺序.【变式2-5】(2022秋•宝山区期中)已知a ,求12a a 2a 1−【分析】先利用分母有理化可得a =2【解答】解:∵a=2∴a ﹣2<0,∴12a a 2a 1−=(1a )2a 1−=a +1−2−aa(a−2)=a +1+1a=21+(2+=21+2+=5【点评】本题考查了二次根式的化简求值,分式的化简求值,分母有理化,准确熟练地进行计算是解题的关键.【变式2-6】(2022春•曹县期中)先化简,再求值.(64,其中x =32,y =27.【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再将x 、y 的值代入计算可得.【解答】解:原式=(6x+3y •4y +=+=当x =32、y =27时,原式==【点评】本题主要考查二次根式的混合运算﹣化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.【变式2-7】(2022秋•虹口区校级月考)先化简,再求值:4a−ba =1,b =2.【分析】利用二次根式的相应的法则对式子进行化简,再代入相应的值运算即可.【解答】解:4a−b +=4a−b===−2=∵a =1,b =2,∴原式2.【点评】本题主要考查了二次根式的化简求值,熟练掌握二次根式的化简求值的方法是解决本题的关键.【变式2-8】(2022秋•崇川区校级月考)当x 4x 3﹣2025x ﹣2022的值为( )A .3B .﹣3C .1D .﹣1【分析】求出2x =1+4x 3﹣2025x ﹣2022=(4x 2﹣2025)x ﹣2022,再依次代入,最后根据二次根式的运算法则进行计算即可.【解答】解:∵x∴2x =1+∴4x 3﹣2025x ﹣2022=(4x 2﹣2025)x ﹣2022=[(12﹣2025]x ﹣2022=(2025)x ﹣2022=(﹣x ﹣2022=2(﹣1+×2022=(﹣1+×(1+2022=2022﹣1﹣2022=﹣1,故选:D .【点评】本题考查了二次根式的化简求值,能正确根据二次根式的运算法则进行计算是解此题的关键.【例题3】(2022•峄城区校级模拟)已知a =b =5+a 2+b 2﹣3ab 的值为( )A .5B .65C .95D .135【分析】由已知可得a ﹣b =﹣ab =1,因为原式=(a ﹣b )2﹣ab ,再整体代入即可.【解答】解:∵a =b =5+∴a ﹣b =﹣ab =1,∴原式=(a ﹣b )2﹣ab =96﹣1=95.故选:C .【点评】本题考查了二次根式的计算,熟练掌握计算法则是关键.【变式3-1】(2021秋•邵阳县期末)若a =1b =1A .3B .±3C .5D .9【解答】解:原式==3.故选:A .【点评】本题考查了二次根式的化简求值,正确对所求的式子进行变形是关键.【变式3-2】(2022春•藁城区校级月考)已知a =+1,b =1,则b a −ab 的值为( )A .B .C.D.【分析】由题意可得ab =2,a ﹣b =2,a +b =【解答】解:∵a 1,b =1,∴ab +1)×1)=2,a﹣b =+11)=2,a +b =+1+1=∴b a −a b =b 2−a 2ab=−(a b)(a−b)ab==故选:A .【点评】本题主要考查二次根式的化简求值,解答的关键是对相应的运算法则的掌握.【变式3-3】(2022秋•澧县期末)已知xy ,x y +yx−4= .【分析】先分母有理化,进一步得到xy ,x +y ,再将x y +yx −4变形后代入计算即可求解.【解答】解:∵x =1y =133﹣∴x +y =6,xy =9﹣8=1,∴x y +y x −4=x 2y 2xy −4=(x y )2−2xyxy −4=36−21−4=34﹣4=30.故答案为:30.【点评】本题考查了二次根式的化简求值,分式的化简求值,分母有理化,关键是求出xy ,x +y 的值.【变式3-4】(2022春•渝中区校级期中)已知:x +1,y 1,求下列各式的值.(1)x 2+2xy +y 2;(2)x 2+y 2.【分析】先计算出x +y 与xy 的值,再把代数式变形得到(1)x 2+2xy +y 2=(x +y )2;(2)x 2+y 2=(x +y )2﹣2xy ,然后分别利用整体代入的方法计算.【解答】解:∵x 1,y 1,∴x +y =xy =2﹣1=1,(1)x 2+2xy +y 2=(x +y )2=(2=8;(2)x 2+y 2=(x +y )2﹣2xy =8﹣2×1=6.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.利用整体代入的方法可简化计算.【变式3-5】计算求值 a ,b 为实数,且a +b =﹣8,ab =8,求+【分析】首先由a +b =﹣8,ab =8,求得a 2+b 2=48,然后化简二次根式,代入即可求得答案.【解答】解:∵a +b =﹣8,ab =8,∴a ,b 同号,且均为负数,∴a 2+b 2+2ab =64,∵ab =8,∴a 2+b 2=48,∴原式=﹣=(−b a −a b )−a 2b 2ab •−488×−【点评】此题考查了二次根式的化简.求得a 2+b 2=48是解题的关键.【变式3-7】已知x 2﹣3x +1=0【分析】把已知等式两边除以x 得到x +1x=3,再利用完全平方公式变形得到原式=后利用整体代入的方法计算.【解答】解:∵x 2﹣3x +1=0,∴x ﹣3+1x =0,即x +1x =3,∴原式===【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.也考查了代数式的变形能力.【变式3-8】(2022秋•=为  .+0a =25b ,然后代入式子中进行计算即可解答.【解答】解:=,∴2152,∴2﹣152=0,∴0,≠0,=0,∴a=25b,=50b3b5b 25b−b5b=58b 29b=2.【点评】本题考查了二次根式的化简求值,准确熟练地进行计算是解题的关键.【变式3-9】(1=2(2=2【分析】(1)根据平方差公式可以解答本题;(2)根据题目中的式子,进行变形建立与所求式子之间的关系,注意所求的式子的结果是正值.【解答】解:(12,2∴39+x2﹣15﹣x2=2+∴24=212;(2=2,2=4,∴29−x2+15+x2=4,20,2=29−x 2+15+x 244+2×20=84,==【点评】本题考查二次根式的化简求值,解答此类问题的关键是明确二次根式化简求值的方法.【例题4】已知a ,b 为实数,m ,n 分别表示5且am +bn =0,求代数式a2b +34的值.【分析】根据已知首先求出m ,n 的值,进而化简原式得出2a +3b =0,b =0,求出即可.【解答】解:∵m ,n 分别表示5∴m =2,n =52=3∴am +bn =a ×2+(3b =2a +(3b =0,∴a b∴a 2b +34=12+34【点评】本题考查了估算无理数的大小,解决本题的根据是求出m ,n 的值.【变式4-1】(2021秋•普陀区校级月考)如果52小数部分分别为a ,b ,那么ab +2=  .a 、b的值,再代值计算便可.【解答】解:∵23,∴7<5+8,02<1,∵52小数部分分别为a ,b ,∴a =5+72,b 2,∴ab +2+2=1+2=3,故答案为:3.【点评】本题考查了估算无理数的大小,二次根式除法运算,正确估算无理数的大小是解题的关键.【变式4-2】(2022秋•宛城区校级月考)已知x =y =(1)求x 2+y 2﹣xy 的值;(2)若x 的整数部分是a ,y 的小数部分是b ,求5a 2021+(x ﹣b )2﹣y 的值.【分析】(1)利用分母有理化化简x 和y ,并将所求式变形后代入可答案;(2)根据无理数的估算可知0<21,3<2+4,可得a 和b 的值,代入所求式可得答案.【解答】解:(1)∵x =12y =1==2+∴x 2+y 2﹣xy =(x +y )2﹣3xy=(2+2+2﹣3(22+=16﹣3=13;(2)∵12,∴0<21,3<2+4,∴a =0,b =2+3=1,∴5a 2021+(x ﹣b )2﹣y=5×0+(2+1)2﹣(2+=(3﹣2﹣2=9﹣+12﹣2=19﹣【点评】本题考查了分母有理化,二次根式的混合运算,掌握完全平方公式和分母有理化是解本题的关键.【变式4-3】(2022秋•滨江区校级期中)(17的小数部分是a ,7b ,求a +b 的值;(2)设5+a 表示,小数部分用b 表示,3c 表示,小数部分用d 表示,求ab ﹣cd 的值.【分析】(1)由4<7<9,得出237的小数部分,可得a 的值,然后确定用7小数部分,可得b 的值,把a 、b 值代入代数式a +b 中计算即可;(2a ,b ,c ,d 的值,代入所求式计算即可.【解答】解:(1)∵4<7<9,∴23,∴9+7<10,4<75,+7的整数部分是9,小数部分a=7﹣9=2,774=3∴a2,b=3∴a+b=2+31;(2)∵1<3<4,∴12,∴6<5+7,1<32,∴a=6,b=5+6=1,c=1,d=31=2∴ab﹣cd=61)﹣1×(26﹣2+8.【变式4-4】(2022秋•|b+3|=b+3,x y 小数部分.求2x﹣3y的值.|b+3|=b+3,可得a+b=33,再根据x y 部分,确定x、y的值,代入计算即可.+|b+3|=b+3,可得a+b=33,∵56,x y∴x=5,y=5,∴2x﹣3y=10﹣35)=25﹣答:2x﹣3y的值为25﹣【点评】本题考查估算无理数的大小,理解算术平方根的意义是解决问题的关键.【变式4-5】(2022春•大观区校级期末)阅读下列材料:12,11.请根据材料提示,进行解答:(1 ,小数部分是 .(2m n ,求2m +n ﹣(3)已知:10a +b ,其中a 是整数,且0<b <1,请直接写出a ,b 的值.【分析】(1(2m ,n 的值,再代入计算即可;(310+a ,b 的值即可.【解答】解:(1)34,33,故答案为:33;(2)∵23,45,∴m 2,n =4,∴2m +n ﹣=22)+4﹣=4+4﹣=0;(3)∵56,∴15<1016,∴10+15,小数部分是10+15=5,∵10+=a +b ,其中a 是整数,且0<b <1,∴a =15,b =5.【点评】本题考查估算无理数的大小,掌握算术平方根的定义是正确解答的前提,确定无理数的整数部分、小数部分是得出正确答案的关键.【变式4-6】(2022秋•232,小2.请你观察上述规律后解决下面的问题:(1)规定用符号[m ]表示实数m 的整数部分,例如:[23]=0,=2.按此规定,那么+1]的值为 .(2a ,小数部分为b ,|c |=c (a ﹣b ﹣6)+12的值.【分析】(11的大小即可;(2a、b的值,再根据绝对值的定义得出c的值,再代入计算即可.【解答】解:(1)34,∴41<5,1的整数部分为4,即1]=4,故答案为:4;(2)34,a=3,小数部分b=3,∵|c|∴c=当a=3,b=3,c=c(a﹣b﹣6)+1233﹣6)+12=﹣11+12=1;当a=3,b=3,c=c(a﹣b﹣6)+12=33﹣6)+12=11+12=23;答:c(a﹣b﹣6)+12的值为1或23.【点评】本题考查估算无理数的大小,掌握算术平方根的定义估算无理数的大小,进而确定整数部分、小数部分是正确解答的前提.。

绝对值与二次根式

绝对值与二次根式

翠外八年级数学B组专题学习(第三周)绝对值与二次根式一课时一、绝对值的知识是初中代数的重要内容,在中考和各类竞赛中经常出现,含有绝对值符号的数学问题又是学生遇到的难点之一,解决这类问题的方法通常是利用绝对值的意义,将绝对值符号化去,将问题转化为不含绝对值符号的问题,确定绝对值符号内部分的正负,借以去掉绝对值符号的方法大致有三种类型(一)、据题设条件例1 设化简的结果是()。

(A)(B)(C)(D)思路分析由可知可化去第一层绝对值符号,第二次绝对值符号待合并整理后再用同样方法化去.解∴应选(B).归纳点评只要知道绝对值内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路.如:已知a、b、c、d满足且,那么若,则有()。

(A)(B)(C)(D)(二)借助教轴例2 实数a、b、c在数轴上的位置如图所示,则代数式的值等于().(A)(B)(C)(D)思路分析由数轴上容易看出,这就为去掉绝对值符号扫清了障碍.解原式∴应选(C).归纳点评这类题型是把已知条件标在数轴上,借助数轴提供的信息让人去观察,一定弄清:1.零点的左边都是负数,右边都是正数.2.右边点表示的数总大于左边点表示的数.3.离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题请用本文例2介绍的方法解答3、4题如:有理数a、b、c在数轴上的位置如图所示,则式子化简结果为().(A)(B)(C)(D)有理数a、b在数轴上的对应点如图所示,那么下列四个式子,中负数的个数是().(A)0 (B)1 (C)2 (D)3(三)、采用零点分段讨论法例3 化简思路分析本类型的题既没有条件限制,又没有数轴信息,要对各种情况分类讨论,可采用零点分段讨论法,本例的难点在于的正负不能确定,由于x是不断变化的,所以它们为正、为负、为零都有可能,应当对各种情况—一讨论.解令得零点:;令得零点:,把数轴上的数分为三个部分(如图)①当时, ∴原式②当时,,∴原式③当时,,∴原式∴归纳点评 虽然 的正负不能确定,但在某个具体的区段内都是确定的,这正是零点分段讨论法的优点,采用此法的一般步骤是:1.求零点:分别令各绝对值符号内的代数式为零,求出零点(不一定是两个). 2.分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个绝对值符号内的部分的正负能够确定. 3.在各区段内分别考察问题.4.将各区段内的情形综合起来,得到问题的答案.误区点拨 千万不要想当然地把 等都当成正数或无根据地增加一些附加条件,以免得出错误的结果. 试一试:1、化简2、设x 是实数,下列四个结论中正确的是( )。

初二二次根式所有知识点总结和常考题提高难题压轴题练习含答案解析)

初二二次根式所有知识点总结和常考题提高难题压轴题练习含答案解析)

初二二次根式所有知识点总结和常考题知识点:1、二次根式: 形如)0(≥a a 的式子。

①二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。

②非负性2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。

3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数含能开得尽方的因数或因式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

3、二次根式有关公式(1))0()(2≥=a a a (2)a a =2(3)乘法公式)0,0(≥≥∙=b a b a ab(4)除法公式)0,0( b a ba b a ≥= 4、二次根式的加减法则:先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。

5、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。

常考题:一.选择题(共14小题)1.下列二次根式中属于最简二次根式的是( ) A .B .C .D .2.式子有意义的x 的取值范围是( )A .x ≥﹣且x ≠1B .x ≠1C .D .3.下列计算错误的是( )A .B .C .D .4.估计的运算结果应在( )A .6到7之间B .7到8之间C .8到9之间D .9到10之间5.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥6.若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.37.是整数,则正整数n的最小值是()A.4 B.5 C.6 D.78.化简的结果是()A.B.C.D.9.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n10.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定11.把根号外的因式移入根号内得()A.B.C.D.12.已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.313.若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限14.已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5二.填空题(共13小题)15.实数a在数轴上的位置如图所示,则|a﹣1|+= .16.计算:的结果是.17.化简:(﹣)﹣﹣|﹣3|= .18.如果最简二次根式与是同类二次根式,则a= .19.定义运算“@”的运算法则为:x@y=,则(2@6)@8= .20.化简×﹣4××(1﹣)0的结果是.21.计算:﹣﹣= .22.三角形的三边长分别为,,,则这个三角形的周长为cm.23.如果最简二次根式与能合并,那么a= .24.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是.(结果保留根号)25.实数p在数轴上的位置如图所示,化简= .26.计算:= .27.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= .三.解答题(共13小题)28.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.29.计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.30.先化简,再求值:,其中.31.先化简,再求值:,其中x=1+,y=1﹣.32.先化简,再求值:,其中.33.已知a=,求的值.34.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?35.一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.36.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.37.已知:,,求代数式x2﹣xy+y2值.38.计算或化简:(1);(2)(a>0,b>0).39.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.40.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若a+4=,且a、m、n均为正整数,求a的值?初二二次根式所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2005•岳阳)下列二次根式中属于最简二次根式的是()A.B.C. D.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.(2013•娄底)式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.(2007•荆州)下列计算错误的是()A.B.C.D.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.4.(2008•芜湖)估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.5.(2011•烟台)如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.6.(2009•荆门)若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.3【分析】先根据二次根式的性质,被开方数大于或等于0,可求出x、y的值,再代入代数式即可.【解答】解:∵=(x+y)2有意义,∴x﹣1≥0且1﹣x≥0,∴x=1,y=﹣1,∴x﹣y=1﹣(﹣1)=2.故选:C.【点评】本题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.(2012秋•麻城市校级期末)是整数,则正整数n的最小值是()A.4 B.5 C.6 D.7【分析】本题可将24拆成4×6,先把化简为2,所以只要乘以6得出62即可得出整数,由此可得出n的值.【解答】解:∵==2,∴当n=6时,=6,∴原式=2=12,∴n的最小值为6.故选:C.【点评】本题考查的是二次根式的性质.本题还可将选项代入根式中看是否能开得尽方,若能则为答案.8.(2013•佛山)化简的结果是()A.B.C.D.【分析】分子、分母同时乘以(+1)即可.【解答】解:原式===2+.故选:D.【点评】本题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.9.(2013•台湾)k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.10.(2011•菏泽)实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.11.(2013秋•五莲县期末)把根号外的因式移入根号内得()A.B.C.D.【分析】根据二次根式的性质及二次根式成立的条件解答.【解答】解:∵成立,∴﹣>0,即m<0,原式=﹣=﹣.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.12.(2009•绵阳)已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.3【分析】如果实数n取最大值,那么12﹣n有最小值;又知是正整数,而最小的正整数是1,则等于1,从而得出结果.【解答】解:当等于最小的正整数1时,n取最大值,则n=11.故选B.【点评】此题的关键是分析当等于最小的正整数1时,n取最大值.13.(2005•辽宁)若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据二次根式的被开方数为非负数和分母不为0,对a、b的取值范围进行判断.【解答】解:要使这个式子有意义,必须有﹣a≥0,ab>0,∴a<0,b<0,∴点(a,b)在第三象限.故选C.【点评】本题考查二次根式有意义的条件,以及各象限内点的坐标的符号.14.(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5【分析】原式变形为,由已知易得m+n=2,mn=(1+)(1﹣)=﹣1,然后整体代入计算即可.【解答】解:m+n=2,mn=(1+)(1﹣)=﹣1,原式====3.故选:C.【点评】本题考查了二次根式的化简求值:先把被开方数变形,用两个数的和与积表示,然后利用整体代入的思想代入计算.二.填空题(共13小题)15.(2004•山西)实数a在数轴上的位置如图所示,则|a﹣1|+= 1 .【分析】根据数轴上表示的两个数,右边的数总比左边的大,分别得出a﹣1与0,a﹣2与0的关系,然后根据绝对值的意义和二次根式的意义化简.【解答】解:根据数轴上显示的数据可知:1<a<2,∴a﹣1>0,a﹣2<0,∴|a﹣1|+=a﹣1+2﹣a=1.故答案为:1.【点评】本题主要考查了数轴,绝对值的意义和根据二次根式的意义化简.二次根式的化简规律总结:当a≥0时,=a;当a≤0时,=﹣a.16.(2013•南京)计算:的结果是.【分析】先进行二次根式的化简,然后合并同类二次根式即可.【解答】解:原式=﹣=.故答案为:.【点评】本题考查了二次根式的加减运算,属于基础题,关键是掌握二次根式的化简及同类二次根式的合并.17.(2013•泰安)化简:(﹣)﹣﹣|﹣3|= ﹣6 .【分析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可.【解答】解:(﹣)﹣﹣|﹣3|=﹣3﹣2﹣(3﹣),=﹣6.故答案为:﹣6.【点评】此题主要考查了二次根式的化简与混合运算,正确化简二次根式是解题关键.18.(2006•广安)如果最简二次根式与是同类二次根式,则a= 5 .【分析】根据最简二次根式和同类二次根式的定义,列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣8=17﹣2a,解得:a=5.【点评】此题主要考查最简二次根式和同类二次根式的定义.19.(2007•芜湖)定义运算“@”的运算法则为:x@y=,则(2@6)@8= 6 .【分析】认真观察新运算法则的特点,找出其中的规律,再计算.【解答】解:∵x@y=,∴(2@6)@8=@8=4@8==6,故答案为:6.【点评】解答此类题目的关键是认真观察新运算法则的特点,找出其中的规律,再计算.20.(2014•荆州)化简×﹣4××(1﹣)0的结果是.【分析】先把各二次根式化为最简二次根式,再根据二次根式的乘法法则和零指数幂的意义计算得到原式=2﹣,然后合并即可.【解答】解:原式=2×﹣4××1=2﹣=.故答案为:.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.21.(2014•广元)计算:﹣﹣= ﹣2 .【分析】分别进行分母有理化、二次根式的化简,然后合并求解.【解答】解:==﹣2.故答案为:﹣2.【点评】本题考查了二次根式的加减法,本题涉及了分母有理化、二次根式的化简等运算,属于基础题.22.(2013•宜城市模拟)三角形的三边长分别为,,,则这个三角形的周长为5cm.【分析】三角形的三边长的和为三角形的周长,所以这个三角形的周长为++,化简合并同类二次根式.【解答】解:这个三角形的周长为++=2+2+3=5+2(cm).故答案为:5+2(cm).【点评】本题考查了运用二次根式的加减解决实际问题.23.(2012秋•浏阳市校级期中)如果最简二次根式与能合并,那么a= 1 .【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【解答】解:根据题意得,1+a=4a﹣2,移项合并,得3a=3,系数化为1,得a=1.故答案为:1.【点评】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.24.(2006•宿迁)如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是2﹣2 .(结果保留根号)【分析】根据题意可知,两相邻正方形的边长分别是和,由图知,矩形的长和宽分别为+、,所以矩形的面积是为(+)•=2+6,即可求得矩形内阴影部分的面积.【解答】解:矩形内阴影部分的面积是(+)•﹣2﹣6=2+6﹣2﹣6=2﹣2.【点评】本题要运用数形结合的思想,注意观察各图形间的联系,是解决问题的关键.25.(2003•河南)实数p在数轴上的位置如图所示,化简=1 .【分析】根据数轴确定p的取值范围,再利用二次根式的性质化简.【解答】解:由数轴可得,1<p<2,∴p﹣1>0,p﹣2<0,∴=p﹣1+2﹣p=1.【点评】此题从数轴读取p的取值范围是关键.26.(2009•泸州)计算:= 2 .【分析】运用二次根式的性质:=|a|,由于2>,故=2﹣.【解答】解:原式=2﹣+=2.【点评】合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.27.(2011•凉山州)已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5 .【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.三.解答题(共13小题)28.(2009•邵阳)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.29.(2014•张家界)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.【分析】根据零指数幂、负整数指数幂和平方差公式得到原式=5﹣1﹣9+﹣1﹣1+2,然后合并即可.【解答】解:原式=5﹣1﹣9+﹣1﹣1+2=﹣7+3.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.30.(2009•广州)先化简,再求值:,其中.【分析】本题的关键是对整式化简,然后把给定的值代入求值.【解答】解:原式=a2﹣3﹣a2+6a=6a﹣3,当a=时,原式=6+3﹣3=6.【点评】本题主要考查整式的运算、平方差公式等基本知识,考查基本的代数计算能力.注意先化简,再代入求值.31.(2005•沈阳)先化简,再求值:,其中x=1+,y=1﹣.【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式===;当x=1+,y=1﹣时,原式=.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.32.(2010•莱芜)先化简,再求值:,其中.【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.本题注意x﹣2看作一个整体.【解答】解:原式====﹣(x+4),当时,原式===.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.33.(2008•余姚市校级自主招生)已知a=,求的值.【分析】先化简,再代入求值即可.【解答】解:∵a=,∴a=2﹣<1,∴原式=﹣=a﹣1﹣=a﹣1+=2﹣﹣1+2+=4﹣1=3.【点评】本题考查了二次根式的化简与求值,将二次根式的化简是解此题的关键.34.(2002•辽宁)对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?【分析】因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,故错误的是乙.【解答】解:甲的解答:a=时,﹣a=5﹣=4>0,所以=﹣a,正确;乙的解答:因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,错误;因此,我们可以判断乙的解答是错误的.【点评】应熟练掌握二次根式的性质:=﹣a(a≤0).35.(2011•上城区二模)一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.【分析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:(1)周长=++==,(2)当x=20时,周长=,(或当x=时,周长=等)【点评】对于第(2)答案不唯一,但要注意必须符合题意.36.(2005•台州)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.【分析】(1)代入计算即可;(2)需要在括号内都乘以4,括号外再乘,保持等式不变,构成完全平方公式,再进行计算.【解答】解:(1)s=,=;p=(5+7+8)=10,又s=;(2)=(﹣)=,=(c+a﹣b)(c﹣a+b)(a+b+c)(a+b﹣c),=(2p﹣2a)(2p﹣2b)•2p•(2p﹣2c),=p(p﹣a)(p﹣b)(p﹣c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)【点评】考查了三角形面积的海伦公式的用法,也培养了学生的推理和计算能力.37.(2009秋•金口河区期末)已知:,,求代数式x2﹣xy+y2值.【分析】观察,显然,要求的代数式可以变成x,y的差与积的形式,从而简便计算.【解答】解:∵,,∴xy=×2=,x﹣y=∴原式=(x﹣y)2+xy=5+=.【点评】此类题注意变成字母的和、差或积的形式,然后整体代值计算.38.(2010秋•灌云县校级期末)计算或化简:(1);(2)(a>0,b>0).【分析】(1)先化简,再运用分配律计算;(2)先化简,再根据乘除法的法则计算.【解答】解:(1)原式==6﹣12﹣6=6﹣18;(2)原式=﹣×=﹣3a2b2×=﹣a2b.【点评】熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.39.(2013秋•故城县期末)先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.【点评】解题关键是把根号内的式子整理为完全平方的形式.40.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= m2+3n2,b= 2mn ;(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2 =( 1+ 1 )2;(3)若a+4=,且a、m、n均为正整数,求a的值?【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.。

初二数学-绝对值与二次根式经典例题汇总

初二数学-绝对值与二次根式经典例题汇总

初二数学-绝对值与二次根式经典例题汇总1. 绝对值例1 (1986年扬州初一竞赛题)设T=|x-p|+|x-15|+|x-p-15|,其中0<p <15.对于满足p≤x ≤15的x 的来说,T 的最小值是多少?解由已知条件可得T=(x-p )+(15-x )+(p+15-x )=30-x.∵当p ≤x ≤15时,上式中在x 取最大值时T 最小;当x=15时,T=30-15=15,故T 的最小值是15.例2 若两数绝对值之和等于绝对值之积,且这两数都不等于0.试证这两个数都不在-1与-之间.证 设两数为a 、b ,则|a|+|b|=|a||b|.∴|b|=|a||b|-|a|=|a|(|b|-1).∵ab ≠0,∴|a|>0,|b|>0.∴|b|-1=a b >0,∴|b|>1.同理可证|a|>1.∴a 、b 都不在-1与1之间.例3 设a 、b 是实数,证明|a|-|b|≤|a+b|≤|a|+|b|.证明 当|a|-|b|≤0时,|a|-|b|≤|a+b|成立.当|a|-|b|>0时,由于(|a|-|b|)2-|a+b|2=(a 2+b 2-2|ab|)-(a 2+b 2+2ab )=-2(|ab|-ab )≤0,∴|a|-|b|≤|a+b|.同理可证|a+b|≤|a|+|b|.2. 根式在根式进行化简、求值和证明的过程中,常采用配方法、乘方法、比较系数法、设参法、公式法等等,现举例如下:(1)配方法:将二次根号内的式子配成完全平方式,将三次根号下的式子配成完全立方式.例4 (1981年宁波初中竞赛题)设3819 的整数部分为x,小数部分为y,试求y y x 1的值. 解 38192)34( =4-3=2+(2-3),故x=2,y=2-3,∴x+y+3213221 y=4-3+2+3=6.例5 化简.441296222 x x x x x x解 原式=222)2()1()3( x x x=|x+3|+|x-1|-|x-2|.令x+3=0,x-1=0,x-2=0.得x=-3,x=1,x=2,这些点把数轴划分成四个部分:当x <-3时原式=-(x+3)-(x-1)+(x-2)=-x-4;当-3≤x <1时,原式=(x+3)-(x-1)+(x-2)=x+2;当1≤x ≤2时,原式=(x+3)+(x-1)+(x-2)=3x ;当x >2时,原式=(x+3)+(x-1)-(x-2)=x+4.说明:将根号下含字母的式子化为带绝对值的式子来讨论,是解这类问题的一般技巧. 例6 化简2222222222b a b a b a a b a (a >b 2>0).解原式=222222)(a b a a b a222222)(b b a b b a =222222)()(b b a a b a =.||2222b b a a b a∵a >b 2>0. ∴a 2>2b 2,∴原式=.2222b a b b a a b a例7 求证:.4214202142033 证明:∵321420 =,221221283,2221420,22)22(333∴原式=4.(2)乘方法:由于乘方与开方互为逆运算,顺理成章地可以用乘方的方法去根号例8 已知,0313131 z y x 求证:(x+y+z)3=27xyz.证明:∵,0313131 z y x ∴.313131z y x 两边立方,)()(33133131z y x x+y+,)(331313131z y x y x 即).()(331313131z y x y x y x再边再立方得(x+y+z )3=27xyz.例9 已知.34223242a y x y y x x求证 .323232a y x证明 设,3242A y x x 则,23242A y x x即 .)(,2323234232342A y x x A y x x 同理可设,3422B y x y 则.)(2323234B y x y∴A+B=2132323221323232)()(y x y y x x =)()(3232213232y x y x =.)(233232y x由 A+B=a ,得 ,)(233232a y x ∴.322332a y x(2) 比较系数法例10 求满足条件y x a 62的自然数a 、x 、y.解 将等式两边平方得xy y x a 262∵x 、y 、a 都是自然数. ∴xy 只能是无理数,否则与等式左边是无理数相矛盾.∴x+y=a ,xy=6.由条件可知 x >y 且x 、y 是自然数.当x=6时,y=1,得a=7.当x=3时,y=2,得a=5.故x=6,y=1,a=7.或x=3,y=2,a=5.例11 化简).71)(51(211分析 被开方式展开后得13+2352725 ,含有三个不同的根式,且系数都是2,可看成是将z y x平方得来的.解 设 )71)(51(211 =z y x ,两边平方得 13+2352725 =x+y+z+2.22yz xz xy比较系数,得.35,7,5,13yz xz xy z y x 由②有y x 5 ,代入③,得y z z y 57,75 代入④,得y 2=52,∴y=5(x 、y 、z 非负), ∴y x 5 =1,,757 y z ∴原式=1+.75(4)设参法例12 (1986年数理化接力赛题) 设nn b a b a b a b a 332211(a 1,a 2,…,a n ,b 1,b 2,…,b n 都是正数).求证: ① ② ③ ④n n b a b a b a b a 332211 =,)()(32121n n b b b b a a a 证明 设,2211k b a b a b a nn且a 1=b 1k,a 2=b 2k,…,a n =b n k. 左边=k b k b k b n 22221 =),(21n b b b k右边=)(21k b k b k b n ·)(21n b b b =),(21n b b b k∴左边=右边(5)公式法、代数变换及其他 例13 已知x=,)15(4)15(433 求x 3+12x 的值. 解 由公式(a-b )3=a 3-b 3-3ab (a-b )可得 )15(4)15(43 x 3)15(4)15(43 · 33)15(4)15(4 =8-3334x=8-12x.∴x 3+12x=8.例14 设.3737,3737 y x求x 4+y 4+(x+y )4.解 由条件知,2215,2215 y x∴x+y=5,xy=1.∴原式=(x 2+y 2)2-2x 2y 2+(x+y)4 =[(x+y)2-2xy]2-2x 2y 2+(x+y)4=(25-2)2-2+54。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竞赛讲座25
-绝对值与二次根式
1.绝对值
例1 (1986年扬州初一竞赛题)设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15.对于满足p≤x≤15的x的来说,T的最小值是多少?
解由已知条件可得
T=(x-p)+(15-x)+(p+15-x)=30-x.
∵当p≤x≤15时,上式中在x取最大值时T最小;当x=15时,T=30-15=15,故T 的最小值是15.
例2 若两数绝对值之和等于绝对值之积,且这两数都不等于0.试证这两个数都不在-1与-之间.
证设两数为a、b,则|a|+|b|=|a||b|.
∴|b|=|a||b|-|a|=|a|(|b|-1).
∵ab≠0,∴|a|>0,|b|>0.
∴|b|-1=>0,∴|b|>1.
同理可证|a|>1.
∴a、b都不在-1与1之间.
例3 设a、b是实数,证明
|a|-|b|≤|a+b|≤|a|+|b|.
证明当|a|-|b|≤0时,|a|-|b|≤|a+b|成立.
当|a|-|b|>0时,由于
(|a|-|b|)2-|a+b|2
=(a2+b2-2|ab|)-(a2+b2+2ab)
=-2(|ab|-ab)≤0,
∴|a|-|b|≤|a+b|.同理可证|a+b|≤|a|+|b|.
2.根式
在根式进行化简、求值和证明的过程中,常采用配方法、乘方法、比较系数法、设参法、公式法等等,现举例如下:
(1)配方法:将二次根号内的式子配成完全平方式,将三次根号下的式子配成完全立方式.
例4 (1981年宁波初中竞赛题)设的整数部分为x,小数部分为y,试求的值.

=4-=2+(2-),
故x=2,y=2-,
∴x+y+ =4-+2+=6. 例5 化简
解原式=
=|x+3|+|x-1|-|x-2|.
令x+3=0,x-1=0,x-2=0.得x=-3,x=1,x=2,这些点把数轴划分成四个部分:
当x<-3时
原式=-(x+3)-(x-1)+(x-2)=-x-4;
当-3≤x<1时,
原式=(x+3)-(x-1)+(x-2)=x+2;
当1≤x≤2时,
原式=(x+3)+(x-1)+(x-2)=3x;
当x>2时,
原式=(x+3)+(x-1)-(x-2)=x+4.
说明:将根号下含字母的式子化为带绝对值的式子来讨论,是解这类问题的一般技巧.
例6 化简(a>>0).

原式=
= = ∵a>>0. ∴a2>2b2,
∴原式=
例7 求证:
证明:∵ = ∴原式=4.
(2)乘方法:由于乘方与开方互为逆运算,顺理成章地可以用乘方的方法去根号
例8 已知求证:
(x+y+z)3=27xyz.
证明:∵∴两边立方
x+y+

再边再立方得(x+y+z)3=27xyz.
例9 已知
求证
证明设则

同理可设则
∴A+B= = = 由 A+B=a,
得∴(2)比较系数法
例10 求满足条件的自然数a、x、y.
解将等式两边平方得
∵x、y、a都是自然数.
∴只能是无理数,否则与等式左边是无理数相矛盾.
∴x+y=a,xy=6.
由条件可知 x>y且x、y是自然数.
当x=6时,y=1,得a=7.
当x=3时,y=2,得a=5.
故x=6,y=1,a=7.
或x=3,y=2,a=5.
例11 化简
分析被开方式展开后得13+2,含有三个不同的根式,且系数都是2,可看成是将平方得来的.
解设
=,
两边平方得
13+2
=x+y+z+2
比较系数,得
①②③④由②有,代入③,得代入④,得y2=52,∴y=5(x、y、z非负),
∴=1,
∴原式=1+
(4)设参法
例12 (1986年数理化接力赛题)
设(a1,a2,…,an,b1,b2,…,bn都是正数).求证:
=
证明设
且a1=b1k,a2=b2k,…,an=bnk.
左边=
=
右边=
· = ∴左边=右边
(5)公式法、代数变换及其他
例13 已知x=求x3+12x的值.
解由公式(a-b)3=a3-b3-3ab(a-b)可得
· =8-3 =8-12x. ∴x3+12x=8. 例14 设
求x4+y4+(x+y)4.
解由条件知
∴x+y=5,xy=1.
∴原式=(x2+y2)2-2x2y2+(x+y)4
=[(x+y)2-2xy]2-2x2y2+(x+y)4
=(25-2)2-2+54
=1152.
例15 (1978年罗马尼亚竞赛题)对于a∈R,确定的所有可能的值.
解记y=. ①先假定a≥0,这时y≥0,把①两边平方得
②即③再平方,整理后得
④从而≥0.
由②知 y2<2a2+2-2=2.
再由⑤知y2≤1,∴0≤y<1.
反过来,对于[0,1]中的每一个y值,由⑤可以定出a,并且这时2a2+2-y2>0,故可由⑤逆推出②和①,因而在a≥0时,的值域为(0,1).
同样在a<0时,的值域为(-1,0),综上的值域是(-1,1).
练习十七
1.选择题
(1)若实数x满足方程|1-x|=1+|x|,那么等于().
(A)x-1(B)1-x(C)±(x-1)(D)1(E)-1
(2)方程x|x|-5|x|+6=0的最大根和最小根的积为().
(A)-6 (B)3 (C)-3 (D)6 (E)-18
(3)已知最简根式与是同类根式,则满足条件的a、b的值().
(A)不存在(B)有一组(C)有二组(D)多于二组
2.空题
(1)已知|x-8y|+(4y-1)2+则x+y+z=_________.
(2)若a>b>c>0,l1=乘积中最小的一个是__________.
(3)已知0<x<1,化简
(4)已知则
(5)(北京市1989年高一数学竞赛题)设x是实数,且f(x)=|x+1|+|x+2|+|x+3|+|x+4|+|x+5|.则f(x)的最小值等于__________.
3.化简(a>0).
4.已知ab<0,a2+b2=a2b2,化简
5.如果x>0,y>0,且试求的值.
6.(第8届美国教学邀请赛试题)
求的值.
7.求适合下列各式的x、y;
(1)若x、y为有理数,且
(2)若x、y为整数,
8.已知求证a2+b2=1.
9.已知A=求证
11<A3-B3<12<A3+B3<13.
10.(1985年武汉初二数学竞赛题)已知其中a、b都是正数.
(1)当b取什么样的值时,的值恰好为b?
(2)当b取什么样的值时,的值恰好为?
练习十七
1.略
2.(1)3 (2)l (3)2x (4)a2-2 (5)6.
3.当时,y=a,当x>2a2时,y=
4.∵ab<0,∴|ab|=-ab,若a>0>b,原式=-ab;若a<0<b,原式=ab.
5.原式=2.
6.原式=828.
7.(1)
(2)x=22,y=2;x=-22,y=-2.
8.由条件知两边平方后整理得再平方得1-2b2-2a2+b4+2a2b2+a4=0即1-2(a2+b2)+(a2+b2)2=0,[1-(a2+b2)]2=0,∴a2+b2=1. 9.∵A2+B2=6,AB=2,∴(A+B)2=1,A+B=,A-B=,∴A3-B3=(A-B)+3AB(A-B)= 8.当b≥0时,原式值为b,当0<b<1时,原式值为。

相关文档
最新文档