数值修约及计算规则
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二. 数字修约 各测量值有效数字位数可能不同,因 此计算前要先对各测量值进行修约。 应保留的有效数字位数确定之后,其 余尾数一律舍弃的过程称为修约。 修约应一次到位,不得连续多次修约。
修约规则:为四舍六入五留双。例如,将 下列数据修约为两位有效数字
8.369 8.4 7.4500 7.4 7.549 7.5 7.3500 7.4 7.4501 7.5
第七节 有效数字及计算规则
一. 有效数字 有效数字: 是在分析工作中实际测量到
的数字,除最后一位是可疑的外,其余的数 字都是确定的。它一方面反映了数量的 大小,同时也反映了测量的精密程度。
例如, 用分析天平称NaCl1.2007g,可能 有±0.0001g的误差;用台秤称1.20g,可能 有±0.01g的误差。 注意: 数字0可以是测量得到的有效数 字,但当0只用来定位时,就不能是有效 数字,并且有效数字的位数与小数点的 位置无关。 例如: 1.2007g 0.0012007g
(6) 计算中涉及到常数 ,e以及非测量
值,如自然数、分数时,不考虑其有 效数字的位数,视为准确数值。
(7) 为提高计算的准确性, 在计算过程 中可暂时多保留一位有效数字, 计 算完后再修约.运用电子计算器运 算时, 要对其运算结果进行修约, 保 留适当的位数,不可将显示的全部 数字作为结果。
(8) 若数据进行乘除运算时, 第一位数 字大于或等于8, 其有效数字位数可 多算一位。 如9.46可看做是四位有效数字.
பைடு நூலகம்
三. 有效数字的计算规则 (1) 进行数值加减时,结果保留小数点
后位数应与小数点位数最少者相 同。 例如, 0.0121+12.56+7.8432 可先修约后计算,即
0.01+12.56+7.84=20.41
(2) 进行数值乘除时,结果保留位数应与 有效数字位数最少者相同。 例如, (0.0142×24.43×305.84)/28.67 可先修约后计算, (0.0142×24.4×306)/28.7=3.69。
(3) 进行数值乘方或开方时, 结果有 效数字位数不变。 例如, 6.542=42.8 7.56 2.75
(4) 进行对数计算时,对数尾数的位数应
与真数的有效数字位数相同。
例如:
[H ] 6.31011mol/L pH 10.20
(5) 表示分析结果的精密度和准确度 时, 误差和偏差等只取一位或两 位有效数字。