高中一元二次函数总结
全国通用2023高中数学必修一第二章一元二次函数方程和不等式知识点总结(超全)
全国通用2023高中数学必修一第二章一元二次函数方程和不等式知识点总结(超全)单选题1、已知关于x的不等式ax2+bx+c<0的解集为{x|x<−1或x>4},则下列说法正确的是()A.a>0B.不等式ax2+cx+b>0的解集为{x|2−√7<x<2+√7}C.a+b+c<0D.不等式ax+b>0的解集为{x|x>3}答案:B分析:根据解集形式确定选项A错误;化不等式为x2−4x−3<0,即可判断选项B正确;设f(x)=ax2+bx+ c,则f(1)>0,判断选项C错误;解不等式可判断选项D错误.解:因为关于x的不等式ax2+bx+c<0的解集为{x|x<−1或x>4},所以a<0,所以选项A错误;由题得{a<0−1+4=−ba−1×4=ca,∴b=−3a,c=−4a,所以ax2+cx+b>0为x2−4x−3<0,∴2−√7<x<2+√7.所以选项B正确;设f(x)=ax2+bx+c,则f(1)=a+b+c>0,所以选项C错误;不等式ax+b>0为ax−3a>0,∴x<3,所以选项D错误.故选:B2、已知集合M={x|−4<x<2},N={x|x2−x−6<0},则M∩N=A.{x|−4<x<3}B.{x|−4<x<−2}C.{x|−2<x<2}D.{x|2<x<3}答案:C分析:本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.由题意得,M={x|−4<x<2},N={x|−2<x<3},则M∩N={x|−2<x<2}.故选C.小提示:不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.3、已知1a <1b<0,则下列结论正确的是()A.a<b B.a+b<abC.|a|>|b|D.ab>b2答案:B分析:结合不等式的性质、差比较法对选项进行分析,从而确定正确选项.因为1a <1b<0,所以b<a<0,故A错误;因为b<a<0,所以a+b<0,ab>0,所以a+b<ab,故B正确;因为b<a<0,所以|a|>|b|不成立,故C错误;ab−b2=b(a−b),因为b<a<0,所以a−b>0,即ab−b2=b(a−b)<0,所以ab<b2成立,故D错误. 故选:B4、若a>0,b>0,则“a+b≤4”是“ab≤4”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取a,b的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.当a>0,b>0时,a+b≥2√ab,则当a+b≤4时,有2√ab≤a+b≤4,解得ab≤4,充分性成立;当a=1,b=4时,满足ab≤4,但此时a+b=5>4,必要性不成立,综上所述,“a+b≤4”是“ab≤4”的充分不必要条件.小提示:易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取a,b的值,从假设情况下推出合理结果或矛盾结果.5、下列命题正确的是()A.若ac>bc,则a>bB.若ac=bc,则a=bC.若a>b,则1a <1bD.若ac2>bc2,则a>b答案:D分析:由不等式性质依次判断各个选项即可.对于A,若c<0,由ac>bc可得:a<b,A错误;对于B ,若c =0,则ac =bc =0,此时a =b 未必成立,B 错误;对于C ,当a >0>b 时,1a >0>1b ,C 错误; 对于D ,当ac 2>bc 2时,由不等式性质知:a >b ,D 正确.故选:D.6、已知实数a,b,c 满足a >b >0>c ,则下列不等式中成立的是( )A .a +1b <b +1aB .2a+b a+2b <a bC .b a−c >a b−cD .√c a 3<√c b 3 答案:B分析:对于A ,利用不等式的性质判断;对于CD ,举例判断;对于B ,作差法判断解:对于A ,因为a >b >0,所以1a <1b ,所以a +1b >b +1a ,所以A 错误,对于B ,因为a >b >0,所以2a+b a+2b −a b =(2a+b)b−a(a+2b)(a+2b)b =b 2−a 2(a+2b)b <0, 所以2a+b a+2b <a b ,所以B 正确,对于C ,当a =2,b =1,c =−1时,b a−c=13<a b−c =1,所以C 错误, 对于D ,当a =8,b =1,c =−1时,√c a 3=−12>√c b3=−1,所以D 错误, 故选:B7、已知a,b ∈R 且满足{1≤a +b ≤3−1≤a −b ≤1,则4a +2b 的取值范围是( ) A .[0,12]B .[4,10]C .[2,10]D .[2,8]答案:C分析:设4a +2b =A (a +b )+B (a −b ),求出A ,B 结合条件可得结果.设4a +2b =A (a +b )+B (a −b ),可得{A +B =4A −B =2, 解得{A =3B =1,4a +2b =3(a +b )+a −b , 因为{1≤a +b ≤3−1≤a −b ≤1 可得{3≤3(a +b )≤9−1≤a −b ≤1, 所以2≤4a +2b ≤10.故选:C.8、关于x的方程x2+2(m−1)x+m2−m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.−1B.−4C.−4或1D.−1或4答案:A分析:α2+β2=(α+β)2−2α⋅β,利用韦达定理可得答案.∵关于x的方程x2+2(m−1)x+m2−m=0有两个实数根,∴Δ=[2(m−1)]2−4×1×(m2−m)=−4m+4⩾0,解得:m⩽1,∵关于x的方程x2+2(m−1)x+m2−m=0有两个实数根α,β,∴α+β=−2(m−1),α⋅β=m2−m,∴α2+β2=(α+β)2−2α⋅β=[−2(m−1)]2−2(m2−m)=12,即m2−3m−4=0,解得:m=−1或m=4(舍去).故选:A.9、下列说法正确的为()A.x+1x≥2B.函数y=2√x2+3的最小值为4C.若x>0,则x(2−x)最大值为1D.已知a>3时,a+4a−3≥2√a⋅4a−3,当且仅当a=4a−3即a=4时,a+4a−3取得最小值8答案:C分析:利用基本不等式及其对勾函数的性质分别判断即可.对于选项A,只有当x>0时,才满足基本不等式的使用条件,则A不正确;对于选项B,y=2√x2+32√x2+3=2√x2+3√x2+3,令√x2+3=t(t≥√3),即y=2t+2t (t≥√3)在[√3,+∞)上单调递增,则最小值为y min=2√3√3=8√33,则B不正确;对于选项C,x(2−x)=−(x2−2x+1)+1=−(x−1)2+1≤1,则C正确;对于选项D,当a>3时,a+4a−3=a−3+4a−3+3≥2√(a−3)⋅4a−3+3=7,当且仅当a−3=4a−3时,即a=5,等号成立,则D不正确.故选:C.10、前后两个不等式解集相同的有()①x+52x−1≥0与(2x−1)(x+5)≥0②x+52x−1>0与(2x−1)(x+5)>0③x2(2x−1)(x+5)≥0与(2x−1)(x+5)≥0④x2(2x−1)(x+5)>0与(2x−1)(x+5)>0A.①②B.②④C.①③D.③④答案:B分析:由不含参的一元二次不等式,分式不等式、高次不等式的解法解出各个不等式,对选项一一判断即可得出答案.对于①,由x+52x−1≥0可得{2x−1≠0(x+5)(2x−1)≥0,解得:x>12或x≤−5.(2x−1)(x+5)≥0的解集为:{x|x≥12或x≤−5},故①不正确;对于②,由x+52x−1>0可得{2x−1≠0(x+5)(2x−1)>0,解得:x>12或x<−5.(2x−1)(x+5)>0的解集为:{x|x>12或x<−5},故②正确;对于③,x2(2x−1)(x+5)≥0的解集为:{x|x=0或x≤−5或x≥12},(2x−1)(x+5)≥0的解集为:{x|x≥12或x≤−5},故③不正确;对于④,x2(2x−1)(x+5)>0的解集为:{x|x<−5或x>12},(2x−1)(x+5)>0的解集为:{x|x>12或x<−5},故④正确;故选:B.填空题11、函数y=3x+1x−1(x>1)的最小值是_____答案:3+2√3分析:利用基本不等式可求得原函数的最小值.因为x >1,则x −1>0,所以y =3(x −1)+1x−1+3≥2√3(x −1)×1x−1+3=2√3+3,当且仅当3(x −1)=1x−1,因为x >1,即当x =3+√33时,等号成立. 所以函数y =3x +1x−1(x >1)的最小值是2√3+3.所以答案是:3+2√3.12、为配制一种药液,进行了二次稀释,先在体积为V 的桶中盛满纯药液,第一次将桶中药液倒出10升后用水补满,搅拌均匀第二次倒出8升后用水补满,若第二次稀释后桶中药液含量不超过容积的60%,则V 的取值范围为___________.答案:10≤V ≤40分析:根据题意列出不等式,最后求解不等式即可.第一次操作后,利下的纯药液为V −10,第二次操作后,利下的纯药液为V −10−V−10V ×8,由题意可知: V −10−V−10V ×8≤V ⋅60%⇒V 2−45V +200≤0⇒5≤V ≤40,因为V ≥10,所以10≤V ≤40,所以答案是:10≤V ≤4013、已知∀a ∈[0,2]时,不等式ax 2+(a +1)x +1−32a <0恒成立,则x 的取值范围为__________. 答案:(−2,−1)分析:由题意构造函数关于a 的函数f (a ) =(x 2+x −32)a +x +1,则可得{f(0)<0f(2)<0,从而可求出x 的取值范围.由题意,因为当a ∈[0,2],不等式ax 2+(a +1)x +1−32a <0恒成立,可转化为关于a 的函数f (a ) =(x 2+x −32)a +x +1,则f (a )<0对任意a ∈[0,2]恒成立,则满足{f(0)=x +1<0f(2)=2x 2+2x −3+x +1<0, 解得−2<x <−1,即x 的取值范围为(−2,−1).所以答案是:(−2,−1)解答题14、若x ,y 为正实数,且2x +8y −xy =0,求x +y 的最小值.答案:18解析:首先已知条件变形为8x +2y =1,再化简x +y =(x +y )(8x +2y ),利用基本不等式求最小值.2x +8y −xy =0⇒8x +2y =1 x +y =(x +y )(8x +2y )=8+8y x +2x y +2=10+(8y x +2x y)≥10+2×4=18 (当8y x =2x y 时取“=”)所以x +y 的最小值是18.小提示:本题考查基本不等式求最值,意在考查“1”的妙用,基本不等式求最值使用的三个原则“一正,二定,三相等”,缺一不可,做题时需注意.15、解关于x 的不等式ax 2−2≥2x −ax (a ∈R ).答案:详见解析.分析:分类讨论a ,求不等式的解集即可.原不等式变形为ax 2+(a −2)x −2≥0.①当a =0时,x ≤−1;②当a ≠0时,不等式即为(ax −2)(x +1)≥0,当a >0时,x ≥2a 或x ≤−1;由于2a −(−1)=a+2a ,于是当−2<a <0时,2a ≤x ≤−1;当a =−2时,x =−1;当a<−2时,−1≤x≤2.a,+∞);综上,当a=0时,不等式的解集为(−∞,−1];当a>0时,不等式的解集为(−∞,−1]∪[2a,−1];当a=−2时,不等式的解集为{−1};当a<−2时,不等式的解集为当−2<a<0时,不等式的解集为[2a[−1,2].a。
高中数学第二章一元二次函数方程和不等式知识点梳理(带答案)
高中数学第二章一元二次函数方程和不等式知识点梳理单选题1、已知x >0,则下列说法正确的是( )A .x +1x −2有最大值0B .x +1x −2有最小值为0C .x +1x −2有最大值为-4D .x +1x −2有最小值为-4 答案:B分析:由均值不等式可得x +1x ≥2√x ×1x =2,分析即得解由题意,x >0,由均值不等式x +1x ≥2√x ×1x =2,当且仅当x =1x ,即x =1时等号成立 故x +1x −2≥0,有最小值0故选:B2、在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm ,人跑开的速度为每秒4 m ,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x (cm )应满足的不等式为( )A .4×x 0.5≥100B .4×x 0.5≤100 C .4×x 0.5>100D .4×x 0.5<100答案:C分析:为了安全,则人跑开的路程应大于100米,路程=速度×时间,其中时间即导火索燃烧的时间. 导火索燃烧的时间x 0.5秒,人在此时间内跑的路程为4×x 0.5m .由题意可得4×x 0.5>100.故选:C.3、若不等式(ax −2)(|x |−b )≥0对任意的x ∈(0,+∞)恒成立,则( )A .a >0,ab =12B . a >0,ab =2C .a >0,a =2bD .a >0,b =2a答案:B分析:由选项可知a >0,故原不等式等价于(x −2a)(|x |−b )≥0,当b ≤0时,不满足题意,故b >0,再由二次函数的性质即可求解 由选项可知a >0,故原不等式等价于(x −2a )(|x |−b )≥0,当b ≤0时,显然不满足题意,故b >0,由二次函数的性质可知,此时必有2a =b ,即ab =2,故选:B4、已知正数x ,y 满足2x+3y +13x+y =1,则x +y 的最小值( )A .3+2√24B .3+√24C .3+2√28D .3+√28答案:A分析:利用换元法和基本不等式即可求解.令x +3y =m ,3x +y =n ,则2m +1n =1,即m +n =(x +3y )+(3x +y )=4(x +y ),∴x +y =m+n 4=(m 4+n 4)(2m +1n )=12+m 4n +2n 4m +14≥2√m 4n ⋅2n 4m +34=2×2√2+34=2√2+34,当且仅当m 4n =2n4m ,即m =2+√2,n =√2+1时,等号成立,故选:A.5、若不等式ax 2+bx +2>0的解集是{x |−12<x <13},则ax +b >0的解集为()A .(−∞,−16)B .(−∞,16)C .(−16,+∞)D .(16,+∞)答案:A分析:利用根于系数的关系先求出a,b ,再解不等式即可.不等式ax 2+bx +2>0的解集是{x |−12<x <13}则根据对应方程的韦达定理得到:{(−12)+13=−b a(−12)⋅13=2a,解得{a =−12b =−2,则−12x −2>0的解集为(−∞,−16)故选:A6、已知2<a <3,−2<b <−1,则2a −b 的范围是( )A .(6,7)B .(5,8)C .(2,5)D .(6,8)答案:B分析:由不等式的性质求解即可.,故4<2a <6,1<−b <2,得5<2a −b <8故选:B7、要使关于x 的方程x 2+(a 2−1)x +a −2=0的一根比1大且另一根比1小,则实数a 的取值范围是()A .{a |−1<a <2}B .{a |−2<a <1}C .{a |a <−2}D .{a |a >1}答案:B分析:根据二次方程根的分布可得出关于实数a 的不等式,由此可解得实数a 的取值范围.由题意可得1+(a 2−1)+a −2=a 2+a −2<0,解得−2<a <1.故选:B.8、不等式1+x 1−x ≥0的解集为( )A .{x|x ≥1或x ≤−1}B .{x ∣−1≤x ≤1}C .{x|x ≥1或x <−1}D .{x|−1≤x <1}答案:D分析:不等式等价于x+1x−1≤0,即(x +1)(x −1)≤0,且x −1≠0,由此求得不等式的解集.不等式等价于x+1x−1≤0,即(x +1)(x −1)≤0,且x −1≠0,解得−1≤x <1,故不等式的解集为{x|−1≤x <1}, 23,21<<-<<-a b故选:D .多选题9、已知a >b ⩾2,则( )A .b 2<3b −aB .a 3+b 3>a 2b +ab 2C .ab >a +bD .12+2ab >1a +1b 答案:BC解析:根据不等式的性质,逐一判断即可.解:a >b ⩾2,A 错误,比如a =3,b =2,4>3不成立;B ,a 3+b 3−(a 2b +ab 2)=a 2(a −b)−b 2(a −b)=(a −b)2(a +b)>0成立;C ,由ab −a −b =a(b −1)−b =(b −1)(a −b b−1)=(b −1)[a −(1+1b−1)]>0,故C 成立, D ,12+2ab −1a −1b =(a−2)(b−2)2ab ⩾0,故D 不成立,故选:BC . 小提示:本题考查不等式比较大小,常利用了作差法,因式分解法等.10、若a ,b ,c ∈R ,则下列命题正确的是( )A .若且a <b ,则1a >1bB .若0<a <1,则a 2<aC .若a >b >0且c >0,则b+c a+c >b aD .a 2+b 2+1≥2(a −2b −2)答案:BCD分析:由不等式的性质逐一判断即可.解:对于A ,当a <0<b 时,结论不成立,故A 错误;对于B ,a 2<a 等价于a (a −1)<0,又0<a <1,故成立,故B 正确;对于C ,因为a >b >0且c >0,所以b+c a+c >b a 等价于ab +ac >ab +bc ,即(a −b )c >0,成立,故C 正确; 对于D ,a 2+b 2+1≥2(a −2b −2)等价于(a −1)2+(b +2)2≥0,成立,故D 正确.故选:BCD. 0ab11、下面所给关于x的不等式,其中一定为一元二次不等式的是()A.3x+4<0B.x2+mx-1>0C.ax2+4x-7>0D.x2<0答案:BD分析:利用一元二次不等式的定义和特征对选项逐一判断即可.选项A是一元一次不等式,故错误;选项B,D,不等式的最高次是二次,二次项系数不为0,故正确;当a=0时,选项C是一元一次不等式,故不一定是一元二次不等式,即错误.故选:BD.12、已知不等式ax2+bx+c>0的解集为{x|−12<x<2},则下列结论正确的是()A.a>0B.b>0C.c>0D.a+b+c>0答案:BCD分析:对A,根据一元二次方程与一元二次函数的关系即可判断;对B,C,利用韦达定理即可判断;对D,根据韦达定理以及b>0,即可求解.解:对A,∵不等式ax2+bx+c>0的解集为{x|−12<x<2},故相应的二次函数y=ax2+bx+c的图象开口向下,即a<0,故A错误;对B,C,由题意知:2和−12是关于x的方程ax2+bx+c=0的两个根,则有ca =2×(−12)=−1<0,−ba=2+(−12)=32>0,又∵a<0,故b>0,c>0,故B,C正确;对D,∵ca=−1,∴a+c=0,又∵b>0,∴a+b+c>0,故D正确.故选:BCD.13、某辆汽车以xkm/ℎ的速度在高速公路上匀速行驶(考虑到高速公路行车安全,要求60≤x≤120)时,每小时的油耗(所需要的汽油量)为15(x −k +4500x )L ,其中k 为常数.若汽车以120km/h 的速度行驶时,每小时的油耗为11.5L ,欲使每小时的油耗不超过...9L ,则速度x 的值可为( ) A .60B .80C .100D .120答案:ABC解析:先利用120km/h 时的油耗,计算出k 的值,然后根据题意“油耗不超过9L ”列不等式,解不等式求得x 的取值范围.由汽车以120km/h 的速度行驶时,每小时的油耗为11.5L ,∴15(120−k +4500120)=11.5,解得:k =100,故每小时油耗为15(x +4500x )−20, 由题意得15(x +4500x )−20≤9,解得:45≤x ≤100,又60≤x ≤120,故60≤x ≤100,所以速度x 的取值范围为[60,100].故选:ABC小提示:关键点点睛:本题考查利用待定系数法求解析式,考查一元二次不等式的解法,解题的关键是先利用120km/h 时的油耗,计算出k 的值,然后代入根据题意解不等式,考查实际应用问题,属于中档题. 填空题14、已知实数x ,y ,满足{−1≤x +y ≤4,2≤x −y ≤3,则z =2x −3y 的取值范围是________.(用区间表示) 答案:[3,8]分析:直接用x +y,x −y 表示出2x −3y ,然后由不等式性质得出结论.2x −3y =m(x +y)+n(x −y)=(m +n )x +(m −n )y ,则{m +n =2m −n =−3解得{m =−12n =52,则2x −3y =−12(x +y)+52(x −y), 又−1≤x +y ≤4,2≤x −y ≤3,−2≤−12(x +y )≤12,5≤52(x −y )≤152∴5−2≤2x −3y ≤12+152,即3≤2x −3y ≤8,所以答案是:[3,8].15、已知实数x 、y 满足−2≤x +2y ≤3,−2≤2x −y ≤0,则3x −4y 的取值范围为______.答案:[−7,2]分析:设3x −4y =m(x +2y)+n(2x −y),利用待定系数法求出m,n 的值,然后根据不等式的性质即可求解.解:设3x −4y =m(x +2y)+n(2x −y),则{m +2n =32m −n =−4,解得{m =−1n =2, 所以3x −4y =−(x +2y)+2(2x −y),因为−2≤x +2y ≤3,−2≤2x −y ≤0,所以−3≤−(x +2y)≤2,−4≤2(2x −y)≤0,所以−7≤3x −4y ≤2,所以答案是:[−7,2].16、已知三个不等式:①ab >0,②c a >d b ,③bc >ad ,用其中两个作为条件,剩下的一个作为结论,则可组成______个真命题.答案:3分析:根据题意,结合不等式性质分别判断①、②、③作为结论的命题的真假性即可.由不等式性质,得{ab >0c a >d b ⇒{ab >0bc−ad ab>0⇒bc >ad ;{ab >0bc >ad ⇒c a >d b ; {c a >d b bc >ad ⇒{bc−ad ab >0bc >ad ⇒ab >0.故可组成3个真命题.所以答案是:3.解答题17、销售甲种商品所得利润是P 万元,它与投入资金t 万元的关系有经验公式P =at t+1;销售乙种商品所得利润是Q 万元,它与投入资金t 万元的关系有经验公式Q =bt .其中a ,b 为常数.现将3万元资金全部投入甲,乙两种商品的销售,若全部投入甲种商品,所得利润为94万元;若全部投入乙种商品.所得利润为1万元.若将3万元资金中的x 万元投入甲种商品的销售,余下的投入乙种商品的销售.则所得利润总和为y 万元(1)求利润总和y 关于x 的表达式:(2)怎样将3万元资金分配给甲、乙两种商品,才能使所得利润总和最大,并求最大值.答案:(1)y =3x x+1+13(3−x),0≤x ≤3;(2)对甲种商品投资2万元,对乙种商品投资1万元,才能使所得利润总和最大,最大值为73万元.分析:(1)由题意得y =ax x+1+b(3−x),代入数值计算即可求出结果;(2)转化成可以利用基本不等式的形式,最后利用基本不等式即可求出结果.(1)因为对甲种商品投资x 万元,所以对乙种商品投资为3−x 万元,由题意知:y =P +Q =ax x+1+b(3−x),当x =3时,f(x)=94,当x =0时,f(x)=1, 则{3a 4=94,3b =1,解得a =3,b =13, 则y =3x x+1+13(3−x),0≤x ≤3. (2)由(1)可得f(x)=3x x+1+13(3−x)=3(x+1)−3x+1+1−13x =133−[3x+1+13(x +1)]≤133−2√3x+1⋅x+13=73,当且仅当x =2时取等号,故对甲种商品投资2万元,对乙种商品投资1万元,才能使所得利润总和最大,最大值为73万元.18、已知函数f (x )=x 2+ax −2,f (x )>0的解集为{x |x <−1或x >b }.(1)求实数a 、b 的值;(2)若x ∈(0,+∞)时,求函数g (x )=f (x )+4x 的最小值.答案:(1)a =−1,b =2(2)2√2−1分析:(1)分析可知−1、b 是方程x 2+ax −2=0的两个根,利用一元二次方程根与系数的关系可求得a 、b 的值;(2)求得g (x )=x +2x −1,利用基本不等式可求得g (x )在(0,+∞)上的最小值.(1)解:因为关于x 的不等式x 2+ax −2>0的解集为{x |x <−1或x >b },所以,−1、b 是方程x 2+ax −2=0的两个根,所以,{1−a −2=0−1⋅b =−2,解得{a =−1b =2.(2)解:由题意知g(x)=f(x)+4x =x2−x+2x=x+2x−1,因为x>0,由基本不等式可得g(x)=x+2x −1≥2√x⋅2x−1=2√2−1,当且仅当x=2x时,即x=√2时,等号成立故函数g(x)的最小值为2√2−1.。
高中数学必修一第二章一元二次函数方程和不等式知识点总结全面整理(带答案)
高中数学必修一第二章一元二次函数方程和不等式知识点总结全面整理单选题1、已知x>0,y>0,x+2y=1,则1x +1y的最小值为()A.3+2√2B.12C.8+4√3D.6答案:A分析:根据基本不等中“1”的用法,即可求出结果. 因为x>0,y>0,x+2y=1,所以(1x +1y)(x+2y)=3+2yx+xy≥3+2√2,当且仅当2yx =xy,即x=√2−1,y=2−√22时,等号成立.故选:A.2、当0<x<2时,x(2−x)的最大值为()A.0B.1C.2D.4答案:B分析:利用基本不等式直接求解.∵0<x<2,∴2−x>0,又x+(2−x)=2∴x(2−x)≤[x+(2−x)]24=1,当且仅当x=2−x,即x=1时等号成立,所以x(2−x)的最大值为1故选:B3、已知x∈R,则“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的()条件.A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要答案:C分析:先证充分性,由(x−2)(x−3)≤0求出x的取值范围,再根据x的取值范围化简|x−2|+|x−3|即可,再证必要性,若|x−2|+|x−3|=1,即|x−2|+|x−3|=|(x−2)−(x−3)|,再根据绝对值的性质可知(x−2)(x−3)≤0.充分性:若(x−2)(x−3)≤0,则2≤x≤3,∴|x−2|+|x−3|=x−2+3−x=1,必要性:若|x−2|+|x−3|=1,又∵|(x−2)−(x−3)|=1,∴|x−2|+|x−3|=|(x−2)−(x−3)|,由绝对值的性质:若ab≤0,则|a|+|b|=|a−b|,∴(x−2)(x−3)≤0,所以“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的充要条件,故选:C.4、若非零实数a,b满足a<b,则下列不等式成立的是()A.ab <1B.ba+ab>2C.1ab2<1a2bD.a2+a<b2+b答案:C分析:举出符合条件的特例即可判断选项A,B,D,对于C,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C5、对∀x∈R,不等式(a−2)x2+2(a−2)x−4<0恒成立,则a的取值范围是()A.−2<a≤2B.−2≤a≤2C.a<−2或a≥2D.a≤−2或a≥2答案:A分析:对a讨论,结合二次函数的图象与性质,解不等式即可得到a的取值范围.不等式(a−2)x2+2(a−2)x−4<0对一切x∈R恒成立,当a −2=0,即a =2时,−4<0恒成立,满足题意;当a −2≠0时,要使不等式恒成立,需{a −2<0Δ<0,即有{a <24(a −2)2+16(a −2)<0 , 解得−2<a <2.综上可得,a 的取值范围为(−2,2].故选:A.6、已知实数x ,y 满足x 2+y 2=2,那么xy 的最大值为( )A .14B .12C .1D .2答案:C分析:根据重要不等式x 2+y 2≥2xy 即可求最值,注意等号成立条件.由x 2+y 2=2≥2xy ,可得xy ≤1,当且仅当x =y =1或x =y =−1时等号成立.故选:C.7、设a >b >c >0,则2a 2+1ab +1a(a−b)−10ac +25c 2取得最小值时,a 的值为( )A .√2B .2C .4D .2√5答案:A解析:转化条件为原式=1ab +ab +1a(a−b)+a(a −b)+(a −5c)2,结合基本不等式即可得解.2a 2+1ab +1a (a −b )−10ac +25c 2 =1ab +ab +1a(a −b)+a(a −b)−ab −a(a −b)+2a 2−10ac +25c 2 =1ab +ab +1a(a −b)+a(a −b)+a 2−10ac +25c 2 =1ab +ab +1a(a −b)+a(a −b)+(a −5c)2 ≥2√1ab ⋅ab +2√1a(a−b)⋅a(a −b)+0=4,当且仅当{ab =1a(a −b)=1a =5c ,即a =√2,b =√22,c =√25时,等号成立.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.8、若x<0,则x+14x−2有()A.最小值−1B.最小值−3C.最大值−1D.最大值−3答案:D分析:根据基本不等式,首先取相反数,再尝试取等号,可得答案.因为x<0,所以x+14x −2=−(−x+1−4x)−2≤−2√−x⋅1−4x−2=−3,当且仅当−x=1−4x,即x=−12时等号成立,故x+14x−2有最大值−3.故选:D.多选题9、对于任意实数a,b,c,d,则下列命题正确的是()A.若ac2>bc2,则a>b B.若a>b,c>d,则a+c>b+dC.若a>b,c>d,则ac>bd D.若a>b,则1a >1b答案:AB分析:可由性质定理判断A、B对,可代入特例判断选项C、D错.解:若ac2>bc2,两边同乘以1c2则a>b,A对,由不等式同向可加性,若a>b,c>d,则a+c>b+d,B对,当令a=2,b=1,c=﹣1,d=﹣2,则ac=bd,C错,令a=﹣1,b=﹣2,则1a <1b,D错.10、关于x的一元二次不等式x2−2x−a≤0的解集中有且仅有5个整数,则实数a的值可以是()A.2B.4C.6D.8答案:BC解析:求出不等式的解,分析其中只有5个整数解,得a的不等式,解之,然后判断各选项可得.易知Δ=4+4a≥0,即a≥−1,解原不等式可得1−√1+a≤x≤1+√1+a,而解集中只有5个整数,则2≤√1+a<3,解得3≤a<8,只有BC满足.故选:BC.11、已知实数a,b,c满足c<b<a,且ac<0,则下列不等式一定成立的是()A.ab>ac B.c(b−a)>0C.ac(a−c)<0D.cb2<ab2答案:ABC分析:根据c<b<a,且ac<0,得到a>0,c<0,然后利用不等式的基本性质,逐项判断.因为实数a,b,c满足c<b<a,且ac<0,所以a>0,c<0,由b>c,a>0,得ab>ac,故A正确;由b<a,c<0,得c(b−a)>0,故B正确;由a>c,ac<0,得ac(a−c)<0,故C正确;由a>c,b2≥0,得cb2≤ab2,当b=0时,等号成立,故D错误;故选:ABC填空题12、若不等式x2−2>mx对满足|m|≤1的一切实数m都成立,则x的取值范围是___________答案:x<−2或x>2分析:令f(m)=mx−x2+2,依题意可得−1≤m≤1时f(m)<0恒成立,则{f(1)<0f(−1)<0,即可得到关于x 的一元二次不等式组,解得即可;解:因为x2−2>mx,所以mx−x2+2<0令f(m)=mx−x2+2,即f(m)<0在|m|≤1恒成立,即−1≤m≤1时f(m)<0恒成立,所以{f(1)<0f(−1)<0,即{x−x 2+2<0−x−x2+2<0,解x−x2+2<0得x>2或x<−1;解−x−x2+2<0得x>1或x<−2,所以原不等式组的解集为x∈(−∞,−2)∪(2,+∞)所以答案是:(−∞,−2)∪(2,+∞)13、已知−1<x+y<4,2<x−y<4,则3x+2y的取值范围是_____.答案:(−32,12)解析:利用换元法,结合不等式的性质进行求解即可.设x+y=m,x−y=n,因此得:x=m+n2,y=m−n2,−1<m<4,2<n<4,3x+2y=3⋅m+n2+2⋅m−n2=5m2+n2,因为−1<m<4,2<n<4,所以−52<5m2<10,1<n2<2,因此−32<5m2+n2<12,所以−32<3x+2y<12.所以答案是:(−32,12)14、关于x的不等式x2−4x+4a≥a2在[1,6]内有解,则a的取值范围为________.答案:[−2,6]分析:根据不等式有解可得当x∈[1,6]时,a2−4a≤(x2−4x)max,结合二次函数的最值可求得结果. ∵x2−4x+4a≥a2在[1,6]内有解,∴a2−4a≤(x2−4x)max,其中x∈[1,6];设y=x2−4x(1≤x≤6),则当x=6时,y max=36−24=12,∴a2−4a≤12,解得:−2≤a≤6,∴a的取值范围为[−2,6].所以答案是:[−2,6].解答题15、若0<a<b,则下列不等式哪些是成立的?若成立,给予证明;若不成立,请举出反例.(1)a+1b <b+1a;(2)a2+1a2≥a+1a;(3)a2b +b2a>a+b.答案:(1)正确,证明见解析;(2)正确,证明见解析;(3)正确,证明见解析. 解析:(1)作差分解因式,即可得出答案;(2)作差分解因式,即可得出答案;(3)用基本不等式,即可得出答案.(1)正确a+1b −b−1a=(a−b)(1+1ab)<0(2)正确a2+1a2−(a+1a)=(a+1a)2−(a+1a)−2=(a+1a−2)(a+1a+1)≥0(3)正确a2b +b>2a,b2a+a>2b∴a2b+b2a+a+b>2a+2b∴a2b+b2a>a+b小提示:本题考查证明不等式,一般采用作差法、作商法、基本不等式,属于容易题.。
高中数学第二章一元二次函数方程和不等式基础知识点归纳总结(带答案)
高中数学第二章一元二次函数方程和不等式基础知识点归纳总结单选题1、若实数a、b满足a>b>0,下列不等式中恒成立的是()A.a+b>2√ab B.a+b<2√ab C.a2+2b>2√ab D.a2+2b<2√ab答案:A分析:利用作差法可判断各选项中不等式的正误.因为a>b>0,则a+b−2√ab=(√a−√b)2>0,故a+b>2√ab,A对B错;a 2+2b−2√ab=a2+2b−2√a2⋅2b=(√a2−√2b)2≥0,即a2+2b≥2√ab,当且仅当a2=2b时,即当a=4b时,等号成立,CD都错. 故选:A.2、已知1a <1b<0,则下列结论正确的是()A.a<b B.a+b<abC.|a|>|b|D.ab>b2答案:B分析:结合不等式的性质、差比较法对选项进行分析,从而确定正确选项.因为1a <1b<0,所以b<a<0,故A错误;因为b<a<0,所以a+b<0,ab>0,所以a+b<ab,故B正确;因为b<a<0,所以|a|>|b|不成立,故C错误;ab−b2=b(a−b),因为b<a<0,所以a−b>0,即ab−b2=b(a−b)<0,所以ab<b2成立,故D错误.故选:B3、已知x>0,则下列说法正确的是()A.x+1x −2有最大值0B.x+1x−2有最小值为0C.x+1x −2有最大值为-4D.x+1x−2有最小值为-4答案:B分析:由均值不等式可得x+1x ≥2√x×1x=2,分析即得解由题意,x>0,由均值不等式x+1x ≥2√x×1x=2,当且仅当x=1x,即x=1时等号成立故x+1x−2≥0,有最小值0故选:B4、不等式(x+1)(x+3)<0的解集是()A.R B.∅C.{x∣−3<x<−1}D.{x∣x<−3,或x>−1}答案:C分析:根据一元二次不等式的解法计算可得;解:由(x+1)(x+3)<0,解得−3<x<−1,即不等式的解集为{x∣−3<x<−1};故选:C5、实数a,b满足a>b,则下列不等式成立的是()A.a+b<ab B.a2>b2C.a3>b3D.√a2+b2<a+b答案:C分析:利用不等式的性质逐一判断即可.A,若a=1,b=0,则a+b>ab,故A错误;B,若a=1,b=−2,则a2<b2,故B错误;C,若a>b,则a3−b3=(a−b)(a2+ab+b2)=(a−b)[(a+b2)2+3b24]>0,所以a3>b3,故C正确;D,若a=1,b=−2,则√a2+b2>a+b,故D错误. 故选:C6、若a,b,c∈R,则下列命题为假命题的是()A.若√a>√b,则a>b B.若a>b,则ac>bcC .若b >a >0,则1a >1bD .若ac 2>bc 2,则a >b 答案:B分析:根据不等式的性质逐一分析各选项即可得答案.解:对A :因为√a >√b ,所以a >b ≥0,故选项A 正确;对B :因为a >b ,c ∈R ,所以当c >0时,ac >bc ;当c =0时,ac =bc ;当c <0时,ac <bc ,故选项B 错误;对C :因为b >a >0,所以由不等式的性质可得1a >1b >0,故选项C 正确;对D :因为ac 2>bc 2,所以c 2>0,所以a >b ,故选项D 正确.故选:B.7、若x >53,则3x +43x−5的最小值为( )A .7B .4√3C .9D .2√3答案:C分析:利用基本不等式即可求解.解:∵x >53, ∴3x −5>0,则3x +43x−5=(3x −5)+43x−5+5≥2√(3x −5)⋅43x−5+5=9,当且仅当3x −5=2时,等号成立,故3x +43x−5的最小值为9,故选:C .8、已知2<a <3,−2<b <−1,则2a −b 的范围是( )A .(6,7)B .(5,8)C .(2,5)D .(6,8)答案:B分析:由不等式的性质求解即可., 23,21<<-<<-a b故4<2a <6,1<−b <2,得5<2a −b <8故选:B多选题9、已知正实数a ,b 满足a +b =2,下列式子中,最小值为2的有( )A .2abB .a 2+b 2C .1a +1bD .2ab 答案:BCD分析:利用基本不等式“一正二定三相等”的步骤进行判断﹒∵a ,b >0,∴2=a +b ≥2√ab ,∴0<ab ≤1,当且仅当a =b =1时等号成立.由ab ≤1,得2ab ≤2,∴2ab 的最大值为2,A 错误;a 2+b 2=(a +b )2-2ab ≥4-2=2,B 正确;1a+1b =a+b ab =2ab ≥2,C 正确; 2ab ≥2,D 正确.故选:BCD .10、解关于x 的不等式:ax 2+(2−4a)x −8>0,则下列说法中正确的是( )A .当a =0时,不等式的解集为{x |x >4}B .当a >0时,不等式的解集为{x|x >4或x <−2a }C .当a <0时,不等式的解集为{x |−2a <x <4}D .当a =−12时,不等式的解集为∅ 答案:ABD分析:讨论参数a ,结合一元二次不等式的解法求解集即可判断各选项的正误.A :a =0,则2x −8>0,可得解集为{x |x >4},正确;B :a >0,则(ax +2)(x −4)>0,可得解集为{x|x >4或x <−2a },正确;C :a <0,当−2a <4时解集为{x |−2a <x <4};当−2a =4时无解;当−2a >4时解集为{x |4<x <−2a },错误;D :由C 知:a =−12,即−2a =4,此时无解,正确.11、已知函数y =x 2+ax +b (a >0)有且只有一个零点,则( )A .a 2−b 2≤4B .a 2+1b ≥4C .若不等式x 2+ax −b <0的解集为{x |x 1<x <x 2}(x 1<x 2),则x 1x 2>0D .若不等式x 2+ax +b <c 的解集为{x |x 1<x <x 2}(x 1<x 2),且,则c =4 答案:ABD解析:因为y =x 2+ax +b (a >0)有且只有一个零点,故可得Δ=a 2−4b =0,即a 2=4b >0, 再利用基本不等式和不等式的性质对四个选项逐一分析即可得到答案.因为y =x 2+ax +b (a >0)有且只有一个零点,故可得Δ=a 2−4b =0,即a 2=4b >0,对A :a 2−b 2≤4等价于b 2−4b +4≥0,显然(b −2)2≥0,故A 正确;对B :a 2+1b =4b +1b ≥2√4b ×1b =4,故B 正确;对C :因为不等式x 2+ax −b <0的解集为(x 1,x 2),故可得x 1x 2=−b <0,故C 错误;对D :因为不等式x 2+ax +b <c 的解集为(x 1,x 2),且,则方程x 2+ax +b −c =0的两根为x 1,x 2,故可得√(x 1+x 2)2−4x 1x 2=√a 2−4(b −c )=√4c =2√c =4,故可得c =4,故D 正确.故选:ABD .小提示:本题主要考查一元二次方程、不等式的性质,考查函数与方程思想、转化与化归思想,属于常考题.12、下面所给关于x 的不等式,其中一定为一元二次不等式的是( )A .3x +4<0B .x 2+mx -1>0C .ax 2+4x -7>0D .x 2<0 124x x -=124x x -=分析:利用一元二次不等式的定义和特征对选项逐一判断即可.选项A是一元一次不等式,故错误;选项B,D,不等式的最高次是二次,二次项系数不为0,故正确;当a=0时,选项C是一元一次不等式,故不一定是一元二次不等式,即错误.故选:BD.13、下列说法正确的是()A.x+1x(x>0)的最小值是2B.2√x2+2的最小值是√2C.2√x2+4的最小值是2D.2−3x−4x的最小值是2−4√3答案:AB分析:利用基本不等式直接判断A,利用根式判断B,利用等号不成立判断C,利用特值判断D当x>0时,x+1x ≥2√x⋅1x=2(当且仅当x=1x,即x=1时取等号),A正确;2√x2+2=√x2+2,因为x2≥0,所以2√x2+2=√x2+2≥√2,B正确;2√x2+4=2√x2+4=√x2+4√x2+4≥2,当且仅当√x2+4=√x2+4,即x2=−3时,等号成立,显然不成立,故C错误;当x=1时,2−3x−4x=2−3−4=−5<2−4√3,D错误.故选:AB.填空题14、若一个直角三角形的面积为4cm2,则此三角形周长的最小值是________cm.答案:4+4√2分析:设两条直角边长分别为xcm、8xcm,利用勾股定理结合基本不等式可求得此三角形周长的最小值.设两条直角边长分别为xcm、8xcm,则该直角三角形的周长为x+8x +√x2+64x2≥2√x⋅8x+√2√x2⋅64x2=4√2+4(cm),当且仅当{x=8xx2=64x2x>0时,即当x=2√2时,等号成立. 所以答案是:4√2+4.15、已知正实数x,y满足1x +1y=1,则x+4y最小值为______.答案:9分析:利用基本不等式的性质直接求解即可.∵正数x,y满足:1x +1y=1,∴x+4y=(x+4y)⋅(1x +1y)=5+4yx+xy≥5+2√4yx⋅xy=9,当且仅当4yx =xy,即x=2y,x=3,y=32时“=”成立,所以答案是:9.16、若x>−1,则x+3x+1的最小值是___________. 答案:2√3−1分析:由x+3x+1=x+1+3x+1−1,结合基本不等式即可.因为x>−1,所以x+1>0,所以x+3x+1=x+1+3x+1−1≥2√3−1,当且仅当x+1=3x+1即x=√3−1时,取等号成立.故x+3x+1的最小值为2√3−1,所以答案是:2√3−1解答题17、某旅游公司在相距为100km的两个景点间开设了一个游船观光项目.已知游船最大时速为50km/ℎ,游船每小时使用的燃料费用与速度的平方成正比例,当游船速度为20km/ℎ时,燃料费用为每小时60元.其它费用为每小时240元,且单程的收入为6000元.(1)当游船以30km/ℎ航行时,旅游公司单程获得的利润是多少?(利润=收入−成本)(2)游船的航速为何值时,旅游公司单程获得的利润最大,最大利润是多少?答案:(1)4750元;(2)游轮的航速应为40km/ℎ,最大利润是4800元.分析:(1)设游船的速度为v(km/ℎ),旅游公司单程获得的利润为y(元),根据利润=收入−成本建立函数关系式,所以y=6000−15v−24000v(0<v⩽50),代入v=30km/ℎ即可求得;(2)利用基本不等式求出最大利润即可.解:(1)设游船的速度为v(km/ℎ),旅游公司单程获得的利润为y(元),因为游船的燃料费用为每小时k·v2元,依题意k·202=60,则k=320.所以y=6000−(320v2·100v+240·100v)=6000−15v−24000v(0<v⩽50).v=30km/ℎ时,y=4750元;(2)y=6000−15v−24000v ⩽6000−2√15v×24000v=4800,当且仅当15v=24000v,即v=40时,取等号.所以,旅游公司获得最大利润,游轮的航速应为40km/ℎ,最大利润是4800元.18、某旅店有200张床位.若每张床位一晚上的租金为50元,则可全部租出;若将出租收费标准每晚提高10x元(x为正整数),则租出的床位会相应减少10x张.若要使该旅店某晚的收入超过12600元,则每张床位的出租价格可定在什么范围内?答案:每个床位的出租价格应定在70元到180元之间(不包括70元,180元)分析:由题意可知该旅店某晚的收入为y元,可知(50+10x)(200−10x)>12600,解不等式可求解.设该旅店某晚的收入为y元,则y=(50+10x)(200−10x),x∈N∗由题意y>12600,则(50+10x)(200−10x)>12600即10000+1500x−100x2>12600,即x2−15x+26<0,解得:2<x<13,且x∈N∗所以每个床位的出租价格应定在70元到180元之间(不包括70元,180元)。
高中数学第二章一元二次函数方程和不等式必考知识点归纳(带答案)
高中数学第二章一元二次函数方程和不等式必考知识点归纳单选题1、已知a>0,b>0且ab=1,不等式12a +12b+ma+b≥4恒成立,则正实数m的取值范围是()A.m≥2B.m≥4C.m≥6D.m≥8答案:D分析:由条件结合基本不等式可求a+b的范围,化简不等式可得m≥4(a+b)−(a+b)22,利用二次函数性质求4(a+b)−(a+b)22的最大值,由此可求m的取值范围.不等式12a +12b+ma+b≥4可化为a+b2ab+ma+b≥4,又a>0,b>0,ab=1,所以m≥4(a+b)−(a+b)22,令a+b=t,则m≥4t−t22,因为a>0,b>0,ab=1,所以t=a+b≥2√ab=2,当且仅当a=b=1时等号成立,又已知m≥4t−t22在[2,+∞)上恒成立,所以m≥(4t−t22)max因为4t−t22=12(8t−t2)=−12(t−4)2+8≤8,当且仅当t=4时等号成立,所以m≥8,当且仅当a=2−√3,b=2+√3或a=2−√3,b=2+√3时等号成立,所以m的取值范围是[8,+∞),故选:D.2、已知正数x,y满足x+y=4,则xy的最大值()A. 2B.4C. 6D.8答案:B分析:直接使用基本不等式进行求解即可.因为正数x,y满足x+y=4,所以有4=x+y≥2√xy⇒√xy≤2⇒xy≤4,当且仅当x=y=2时取等号,故选:B3、下列命题正确的是()A.若ac>bc,则a>b B.若ac=bc,则a=bC.若a>b,则1a <1bD.若ac2>bc2,则a>b答案:D分析:由不等式性质依次判断各个选项即可.对于A,若c<0,由ac>bc可得:a<b,A错误;对于B,若c=0,则ac=bc=0,此时a=b未必成立,B错误;对于C,当a>0>b时,1a >0>1b,C错误;对于D,当ac2>bc2时,由不等式性质知:a>b,D正确.故选:D.4、已知x>0,y>0,且x+y=2,则下列结论中正确的是()A.2x +2y有最小值4B.xy有最小值1C.2x+2y有最大值4D.√x+√y有最小值4答案:A分析:利用基本不等式和不等式的性质逐个分析判断即可解:x>0,y>0,且x+y=2,对于A,2x +2y=12(x+y)(2x+2y)=2+xy+yx≥2+2√xy⋅yx=4,当且仅当x=y=1时取等号,所以A正确,对于B,因为2=x+y≥2√xy,所以xy≤1,当且仅当x=y=1时取等号,即xy有最大值1,所以B错误,对于C,因为2x+2y≥2√2x⋅2y=2√2x+y=4,当且仅当x=y=1时取等号,即2x+2y有最小值4,所以C错误,对于D,因为(√x+√y)2=x+y+2√xy≤2(x+y)=4,当且仅当x=y=1时取等号,即√x+√y有最大值4,所以D 错误, 故选:A5、已知使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则实数a 的取值范围为( )A .(−∞,−13)B .(−∞,−13] C .[−13,+∞)D .(−13,+∞)答案:C分析:使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,求出两个不等式的解集,利用集合的包含关系列不等式求解. 解:由3x −1≤0得x ≤13,因为使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0 则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集, 又由x 2+(a +1)x +a ≤0得(x +a )(x +1)≤0, 当a =1,x ∈{−1}⊆(−∞,13],符合;当a <1,x ∈[−1,−a ]⊆(−∞,13],则−a ≤13,∴1>a ≥−13, 当a >1,x ∈[−a,−1]⊆(−∞,13],符合,故实数a 的取值范围为[−13,+∞). 故选:C.6、某公司准备对一项目进行投资,提出两个投资方案:方案A 为一次性投资300万;方案B 为第一年投资80万,以后每年投资20万.下列不等式表示“经过n 年之后,方案B 的投入不大于方案A 的投入”的是( ) A .80+20n ≥300B .80+20n ≤300C .80+20(n −1)≥300D .80+20(n −1)≤300 答案:D分析:由不等关系求解即可.经过n 年之后,方案B 的投入为80+20(n −1),故经过n 年之后,方案B 的投入不大于方案A 的投入,即80+20(n −1)≤300 故选:D7、已知a >b >0,下列不等式中正确的是( ) A .ca >cb B .ab <b 2C .a −b +1a−b ≥2D .1a−1<1b−1 答案:C分析:由a >b >0,结合不等式的性质及基本不等式即可判断出结论. 解:对于选项A ,因为a >b >0,0<1a <1b ,而c 的正负不确定,故A 错误; 对于选项B ,因为a >b >0,所以ab >b 2,故B 错误;对于选项C ,依题意a >b >0,所以a −b >0,1a−b >0,所以a −b +1a−b ≥2√(a −b )×1a−b =2,故C 正确; 对于选项D ,因为a >b >0,a −1>b −1>−1,1a−1与1b−1正负不确定,故大小不确定,故D 错误; 故选:C.8、若不等式ax 2+bx +c >0的解集为{x |−1<x <2},则不等式a (x 2+1)+b(x −1)+c >2ax 的解集是( )A .{x |0<x <3}B .{x |x <0或x >3}C .{x |1<x <3}D .{x |−1<x <3} 答案:A分析:由题知{ba =−1ca=−2,a <0,进而将不等式转化为x 2−3x <0,再解不等式即可. 解:由a (x 2+1)+b (x −1)+c >2ax ,整理得ax 2+(b −2a )x +(a +c −b )>0 ①. 又不等式ax 2+bx +c >0的解集为{x |−1<x <2},所以a <0,且{(−1)+2=−ba (−1)×2=c a,即{ba =−1ca=−2②. 将①两边同除以a 得:x 2+(b a −2)x +(1+ca −ba )<0③.将②代入③得:x 2−3x <0,解得0<x <3. 故选:A 多选题9、(多选题)下列命题为真命题的是( )A .若a >b >0,则ac 2≥bc 2B .若a <b <0,则a 2>ab >b 2C .若a >b >0且c >0,则ca 2>cb 2D .若a >b 且1a >1b ,则ab <0 答案:ABD解析:由不等式的性质结合作差法,逐项判断即可得解.对于A ,若a >b >0,则ac 2−bc 2=c 2(a −b )≥0,即ac 2≥bc 2,故A 正确; 对于B ,若a <b <0,则a 2−ab =a (a −b )>0,ab −b 2=b (a −b )>0, 所以a 2>ab >b 2,故B 正确;对于C ,若a >b >0且c >0,则ca 2−cb 2=c (b 2−a 2)a 2b 2=c (b−a )(b+a )a 2b 2<0,所以c a 2<c b 2,故C 错误;对于D ,若a >b 且1a >1b ,则b −a <0,1a −1b =b−a ab>0,所以ab <0,故D 正确. 故选:ABD.10、已知函数y =x 2+ax +b (a >0)有且只有一个零点,则( ) A .a 2−b 2≤4 B .a 2+1b ≥4C .若不等式x 2+ax −b <0的解集为(x 1,x 2),则x 1x 2>0D .若不等式x 2+ax +b <c 的解集为(x 1,x 2),且,则c =4答案:ABD分析:由函数的零点的定义和二次方程有两个相等的实数解的条件可得a ,b 的关系式,由二次函数的最值求法,可判断A ;由基本不等式可判断B ;由二次方程的韦达定理可判断C ,D .124x x -=根据题意,函数y =x 2+ax +b(a >0)有且只有一个零点,必有a 2−4b =0,即a 2=4b ,(b >0), a 2−b 2−4=4b −b 2−4=−(b 2−4b +4)=−(b −2)2≤0,b =2时,等号成立,即有a 2−b 2≤4,故A 正确;a 2+1b =4b +1b ≥2√4b ⋅1b =4,当且仅当b =12时,取得等号,故B 正确; 由x 1,x 2为方程x 2+ax −b =0的两根,可得x 1x 2=−b <0,故C 错误; 由x 1,x 2为方程x 2+ax +b −c =0的两根,可得x 1+x 2=−a ,x 1x 2=b −c , 则|x 1−x 2|2=(x 1+x 2)2−4x 1x 2=a 2−4(b −c)=a 2−4b +4c =4c =16, 解得c =4,故D 正确. 故选:ABD .11、设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>a B .a 2+9>6aC .(a +b )(1a +1b )≥4D .(a +1a )(b +1b )≥4答案:ACD分析:选项A ,B 可用作差法比较大小;选项C ,D 可用基本不等式求范围. 由(a 2+1)−a =(a −12)2+34>0可得a 2+1>a ,故A 正确; 由(a 2+9)−6a =(a −3)2≥0可得a 2+9≥6a ,故B 错误;由(a +b )(1a +1b )=2+ab +ba ≥2+2√ab ⋅ba =4,当且仅当a =b 时取等号,故C 正确; 由(a +1a )(b +1b )=(ab +1ab )+(ab +ba )≥2√ab ⋅1ab +2√ab ⋅ba =4, 当且仅当{ab =1aba b =b a ,即a =b =1时取等号,故D 正确.故选:ACD.12、已知a >0,b >0,a 2+b 2=1,则( ) A .ab 的最大值为12B .2ab+3a+b的最小值为2√2C .a 2(1+2b 2)的最大值为94D .1a 2+4b 2的最小值为9答案:ABD分析:利用基本不等式判断A 、B 、D 的正误,注意等号成立条件,将a 2(1+2b 2)化为关于a 2的二次函数形式求最值判断C.因为a >0,b >0,a 2+b 2=1, 所以1≥2ab ,即ab ≤12,2ab+3a+b=(a+b )2+2a+b=a +b +2a+b≥2√2,当且仅当a =b =√22时等号成立,则A ,B正确. a 2(1+2b2)=a 2[1+2(1−a2)]=3a 2−2a 4=−2(a 2−34)2+89,当a 2=34时取得最大值98,则C 错误.1a 2+4b 2=(a 2+b 2)(1a 2+4b 2)=5+b 2a 2+4a 2b 2≥5+2√4=9,当且仅当b 2=2a 2=23时等号成立,则D 正确.故选:ABD13、已知a,b ∈R +且a +b =1,那么下列不等式中,恒成立的有( ). A .ab ⩽14B .ab +1ab ⩾174C .√a +√b ⩽√2D .1a +12b ⩾2√2 答案:ABC分析:利用基本不等式,逐个进行验证,即可得到结论. ∵a,b ∈R +,a +b =1,∴ab ⩽(a+b 2)2=14(当且仅当a =b =12时取得等号).所以选项A 正确由选项A 有ab ≤14,设y =x +1x ,则y =x +1x 在(0,14]上单调递减. 所以ab +1ab ≥14+4=174,所以选项B 正确∵(√a +√b)2=a +b +2√ab ⩽a +b +a +b =2(当且仅当a =b =12时取得等号), ∴√a +√b ⩽√2.所以选项C 正确. ∵1a +12b=a+b a+a+b 2b=32+b a+a 2b⩾32+2√b a⋅a 2b=32+√2(当且仅当a 2=2b 2时等号成立),所以选项D 不正确.故A ,B ,C 正确 故选:ABC小提示:本题考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题填空题14、已知x,y∈(0,+∞),a∈R,若(x−y+sin2α+1)(x+3y−2sin2α)=2,则3x+y的最小值为______. 答案:2分析:利用基本不等式即可求解.∵(x−y+sin2α+1)(x+3y−2sin2α)=2,∴4=(2x−2y+2sin2α+2)(x+3y−2sin2α)即4=(2x−2y+2sin2α+2)(x+3y−2sin2α)≤(2x−2y+2sin2α+2+x+3y−2sin2α2)2=(3x+y+2)24,所以(3x+y+2)2≥16,解得3x+y≥2,当且仅当2x−2y+2sin2α+2=x+3y−2sin2α时,取等号,所以3x+y的最小值为2.所以答案是:2小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15、已知x>0,则7−x−9x的最大值为________.答案:1分析:直接利用基本不等式求最大值.∵x>0,则7−x−9x =7−(x+9x)≤7−2√x⋅9x=1,当且仅当x=9x即x=3时取等号.所以答案是:116、已知关于x的不等式−x2+6ax−3a2≥0(a>0)的解集为[x1,x2],则x1+x2+3ax1x2的最小值是___________.答案:2√6分析:由题知x1+x2=6a,x1x2=3a2,进而根据基本不等式求解即可.解:因为关于x的不等式−x2+6ax−3a2≥0(a>0)的解集为[x1,x2],所以x1,x2是方程−x2+6ax−3a2=0(a>0)的实数根,所以x1+x2=6a,x1x2=3a2,因为a>0,所以x1+x2+3ax1x2=6a+1a≥2√6,当且仅当6a=1a,即a=√66时等号成立,所以x1+x2+3ax1x2的最小值是2√6所以答案是:2√6解答题17、已知不等式(a+1)x2−4x−6<0的解集是{x|−1<x<3}.(1)求常数a的值;(2)若关于x的不等式ax2+mx+4≥0的解集为R,求m的取值范围.答案:(1)a=1(2)[−4,4]分析:(1)由题意可得-1和3是方程(a+1)x2−4x−6=0的解,将x=−1代入方程中可求出a的值;(2)由x2+mx+4≥0的解集为R,可得Δ≤0,从而可求出m的取值范围(1)因为不等式(a+1)x2−4x−6<0的解集是{x|−1<x<3}.所以-1和3是方程(a+1)x2−4x−6=0的解,把x=−1代入方程解得a=1.经验证满足题意(2)若关于x的不等式ax2+mx+4≥0的解集为R,即x2+mx+4≥0的解集为R,所以Δ=m2−16≤0,解得−4≤m≤4,所以m的取值范围是[−4,4].18、为持续推进“改善农村人居环境,建设宜居美丽乡村”,某村委计划在该村广场旁一矩形空地进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均摆满宽度相同的花,已知两块绿草坪的面积均为400平方米.(1)若矩形草坪的长比宽至少多9米,求草坪宽的最大值;(2)若草坪四周及中间的花坛宽度均为2米,求整个绿化面积的最小值.答案:(1)最大值为16米;(2)最小值为(824+160√3)平方米.分析:(1)设草坪的宽为x米,长为y米,依题意列出不等关系,求解即可;(2)表示S=(2x+6)(y+4)=(2x+6)(400x+4),利用均值不等式,即得最小值.(1)设草坪的宽为x米,长为y米,由面积均为400平方米,得y=400x.因为矩形草坪的长比宽至少大9米,所以400x⩾x+9,所以x2+9x−400⩽0,解得−25⩽x⩽16.又x>0,所以0<x⩽16.所以宽的最大值为16米.(2)记整个的绿化面积为S平方米,由题意可得S=(2x+6)(y+4)=(2x+6)(400x +4)=824+8(x+300x)⩾(824+160√3)(平方米)当且仅当x=10√3米时,等号成立.所以整个绿化面积的最小值为(824+160√3)平方米.。
全国通用2023高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳
全国通用2023高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳单选题1、已知关于x 的不等式mx 2−6x +3m <0在(0,2]上有解,则实数m 的取值范围是( )A .(−∞,√3)B .(−∞,127)C .(√3,+∞)D .(127,+∞)答案:A分析:分离参数,将问题转换为m <6x x 2+3在(0,2]上有解,设函数g(x)=6x x 2+3,x ∈(0,2],求出函数g(x)=6xx 2+3的最大值,即可求得答案.由题意得,mx 2−6x +3m <0,x ∈(0,2],即m <6x x 2+3 ,故问题转化为m <6x x 2+3在(0,2]上有解,设g(x)=6x x 2+3,则g(x)=6x x 2+3=6x+3x ,x ∈(0,2], 对于x +3x≥2√3 ,当且仅当x =√3∈(0,2]时取等号, 则g(x)max =2√3=√3, 故m <√3 ,故选:A2、已知a,b 为正实数且a +b =2,则b a +2b 的最小值为( )A .32B .√2+1C .52D .3 答案:D分析:由题知b a +2b =2(1a +1b )−1,再结合基本不等式求解即可.解:因为a,b 为正实数且a +b =2,所以b =2−a ,所以,b a +2b =2−a a +2b =2a +2b −1=2(1a +1b )−1 因为2a +2b =2(1a +1b )=(a +b )(1a +1b )=2+b a +a b ≥2+2=4,当且仅当a =b =1时等号成立;所以ba +2b=2−aa+2b=2a+2b−1≥3,当且仅当a=b=1时等号成立;故选:D3、下列命题中,是真命题的是()A.如果a>b,那么ac>bc B.如果a>b,那么ac2>bc2C.如果a>b,那么ac >bcD.如果a>b,c<d,那么a−c>b−d答案:D分析:根据不等式的性质和特殊值法,逐项验证可得出答案. 对于A,如果c=0,那么ac=bc,故错误;对于B,如果c=0,那么ac2=bc2,故错误;对于C,如果c<0,那么ac <bc,故错误;对于D,如果c<d,那么−c>−d,由a>b,则a−c>b−d,故正确.故选:D.4、当0<x<2时,x(2−x)的最大值为()A.0B.1C.2D.4答案:B分析:利用基本不等式直接求解.∵0<x<2,∴2−x>0,又x+(2−x)=2∴x(2−x)≤[x+(2−x)]24=1,当且仅当x=2−x,即x=1时等号成立,所以x(2−x)的最大值为1故选:B5、若不等式ax2+bx−2<0的解集为{x|−2<x<1},则a+b=()A.−2B.0C.1D.2答案:D分析:根据一元二次不等式与一元二次方程的关系以及韦达定理列方程组,可解出答案.不等式ax2+bx−2<0的解集为{x|−2<x<1},则方程ax2+bx−2=0根为−2、1,则{−b a =−2+1−2a =−2×1 ,解得a =1,b =1,∴a +b =2, 故选:D6、已知x >0,则下列说法正确的是( )A .x +1x −2有最大值0B .x +1x −2有最小值为0C .x +1x −2有最大值为-4D .x +1x −2有最小值为-4 答案:B分析:由均值不等式可得x +1x ≥2√x ×1x =2,分析即得解由题意,x >0,由均值不等式x +1x ≥2√x ×1x =2,当且仅当x =1x ,即x =1时等号成立故x +1x −2≥0,有最小值0 故选:B7、对∀x ∈R ,不等式(a −2)x 2+2(a −2)x −4<0恒成立,则a 的取值范围是( )A .−2<a ≤2B .−2≤a ≤2C .a <−2或a ≥2D .a ≤−2或a ≥2答案:A分析:对a 讨论,结合二次函数的图象与性质,解不等式即可得到a 的取值范围.不等式(a −2)x 2+2(a −2)x −4<0对一切x ∈R 恒成立,当a −2=0,即a =2时,−4<0恒成立,满足题意;当a −2≠0时,要使不等式恒成立,需{a −2<0Δ<0,即有{a <24(a −2)2+16(a −2)<0 , 解得−2<a <2.综上可得,a 的取值范围为(−2,2].故选:A.8、某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位(x+600x−30)元(试剂的总产量为x单位,50≤x≤200),则要使生产每单位试剂的成本最低,试剂总产量应为()A.60单位B.70单位C.80单位D.90单位答案:D分析:设生产每单位试剂的成本为y,求出原料总费用,职工的工资总额,后续保养总费用,从而表示出y,然后利用基本不等式求解最值即可.解:设每生产单位试剂的成本为y,因为试剂总产量为x单位,则由题意可知,原料总费用为50x元,职工的工资总额为7500+20x元,后续保养总费用为x(x+600x−30)元,则y=50x+7500+20x+x 2−30x+600x =x+8100x+40≥2√x⋅8100x+40=220,当且仅当x=8100x,即x=90时取等号,满足50≤x≤200,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位.故选:D.9、若x<0,则x+14x−2有()A.最小值−1B.最小值−3C.最大值−1D.最大值−3答案:D分析:根据基本不等式,首先取相反数,再尝试取等号,可得答案.因为x<0,所以x+14x −2=−(−x+1−4x)−2≤−2√−x⋅1−4x−2=−3,当且仅当−x=1−4x,即x=−12时等号成立,故x+14x−2有最大值−3.故选:D.10、某公司准备对一项目进行投资,提出两个投资方案:方案A为一次性投资300万;方案B为第一年投资80万,以后每年投资20万.下列不等式表示“经过n年之后,方案B的投入不大于方案A的投入”的是()A.80+20n≥300B.80+20n≤300C.80+20(n−1)≥300D.80+20(n−1)≤300分析:由不等关系求解即可.经过n年之后,方案B的投入为80+20(n−1),故经过n年之后,方案B的投入不大于方案A的投入,即80+ 20(n−1)≤300故选:D填空题11、已知−1<x+y<4,2<x−y<4,则3x+2y的取值范围是_____.答案:(−32,12)解析:利用换元法,结合不等式的性质进行求解即可.设x+y=m,x−y=n,因此得:x=m+n2,y=m−n2,−1<m<4,2<n<4,3x+2y=3⋅m+n2+2⋅m−n2=5m2+n2,因为−1<m<4,2<n<4,所以−52<5m2<10,1<n2<2,因此−32<5m2+n2<12,所以−32<3x+2y<12.所以答案是:(−32,12)12、已知x,y为正数,且12+x +4y=1,则x+y的最小值为________.答案:7解析:由题设等式有x+y+2=5+y2+x +4(x+2)y,利用基本不等式可求x+y+2的最小值,从而可得x+y的最小值.x+y+2=[(x+2)+y]×(1x+2+4y)=5+y2+x+4(x+2)y,由基本不等式有y2+x +4(x+2)y≥4,当且仅当x=1,y=6时等号成立,故x+y+2的最小值为9即x+y的最小值为7.所以答案是:7.小提示:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.13、已知不等式x2+ax+b≥0的解集为{x|x≤2或x≥3},则a+b=_____.分析:根据不等式的解集可得方程x 2+ax +b =0的两根为x =2或x =3,最后利用根与系数的关系建立等式,解之即可.∵不等式x 2+ax +b ≥0解集为{x |x ≤2或x ≥3}, 故方程x 2+ax +b =0的两根为x =2或x =3,由根与系数的关系可得{−a =5b =6 ,∴{a =−5b =6,∴a +b =1. 所以答案是:1.解答题14、求实数m 的范围,使关于x 的方程x 2+2(m −1) x +2m +6=0.(1)有两个实根,且一个比2大,一个比2小;(2)有两个实根α , β,且满足0<α<1<β<4;(3)至少有一个正根.答案:(1)m <−1(2)−75<m <−54(3)m ≤−1分析:设y =f (x )=x 2+2(m −1)x +2m +6,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定.(1)设y =f (x )=x 2+2(m −1)x +2m +6.依题意有f (2)<0,即4+4(m −1)+2m +6<0,得m <−1.(2)设y =f (x )=x 2+2(m −1)x +2m +6.依题意有{f (0)=2m +6>0f (1)=4m +5<0f (4)=10m +14>0,解得−75<m <−54.(3)设y =f (x )=x 2+2(m −1)x +2m +6.方程至少有一个正根,则有三种可能:①有两个正根,此时可得{Δ≥0 f(0)>02(m−1)−2>0,即{m≤−1或m≥5m>−3m<1.∴−3<m≤−1.②有一个正根,一个负根,此时可得f(0)<0,得m<−3.③有一个正根,另一根为0,此时可得{6+2m=02(m−1)<0,∴m=−3.综上所述,得m≤−1.15、已知实数x>0,y>0.(1)若x+y+xy=3,求2xy的最大值与x+y的最小值;(2)若x>y,求xy 2x−y +xy+1y2的最小值.答案:(1)最小值为2;(2)最小值为4.分析:(1)由已知结合基本不等式x+y⩾2√xy,及不等式的性质即可求解;(2)先进行换元t=x−y,t>0,然后把x=t+y代入所求式子,进行合理的变形后结合基本不等式可求.解:(1)因为x+y≥2√xy,又因为x+y+xy=3,所以xy+2√xy≤3,解得−3≤√xy≤1,因为0<√xy,所以0<√xy≤1,所以0<xy≤1,所以2xy≤2,当且仅当x=y=1时等号成立,所以2xy最大值为2;因为xy≤(x+y2)2,所以(x+y2)2+(x+y)≥3,当且仅当x=y=1时等号成立,所以x+y≥2,所以x+y最小值为2;(2)xy 2x−y +xy+1y2=x2yx−y+1y2,令t=x−y,t>0,所以x=t+y,x2y x−y +1y2=(t+y)2yt+1y2=ty+y3t+2y2+1y2≥2√ty⋅y3t+2y2+1y2=4y2+1y2≥2√4y2⋅1y2=4;当且仅当ty=y 3t ,且4y2=1y2,即x=√2,y=√22时等号成立,所以xy 2x−y +xy+1y2最小值为4.。
高中数学必修一第二章一元二次函数方程和不等式知识点总结(超全)(带答案)
高中数学必修一第二章一元二次函数方程和不等式知识点总结(超全) 单选题1、已知−1≤x+y≤1,1≤x−y≤5,则3x−2y的取值范围是()A.[2,13]B.[3,13]C.[2,10]D.[5,10]答案:A分析:设3x−2y=m(x+y)−n(x−y)=(m−n)x+(m+n)y,求出m,n的值,根据x+y,x−y的范围,即可求出答案.设3x−2y=m(x+y)−n(x−y)=(m−n)x+(m+n)y,所以{m−n=3m+n=−2,解得:{m=12n=−52,3x−2y=12(x+y)+52(x−y),,因为−1≤x+y≤1,1≤x−y≤5,所以3x−2y=12(x+y)+52(x−y)∈[2,13],故选:A.2、前后两个不等式解集相同的有()①x+52x−1≥0与(2x−1)(x+5)≥0②x+52x−1>0与(2x−1)(x+5)>0③x2(2x−1)(x+5)≥0与(2x−1)(x+5)≥0④x2(2x−1)(x+5)>0与(2x−1)(x+5)>0A.①②B.②④C.①③D.③④答案:B分析:由不含参的一元二次不等式,分式不等式、高次不等式的解法解出各个不等式,对选项一一判断即可得出答案.对于①,由x+52x−1≥0可得{2x−1≠0(x+5)(2x−1)≥0,解得:x>12或x≤−5.(2x−1)(x+5)≥0的解集为:{x|x≥12或x≤−5},故①不正确;对于②,由x+52x−1>0可得{2x−1≠0(x+5)(2x−1)>0,解得:x>12或x<−5.(2x−1)(x+5)>0的解集为:{x|x>12或x<−5},故②正确;对于③,x2(2x−1)(x+5)≥0的解集为:{x|x=0或x≤−5或x≥12},(2x−1)(x+5)≥0的解集为:{x|x≥12或x≤−5},故③不正确;对于④,x2(2x−1)(x+5)>0的解集为:{x|x<−5或x>12},(2x−1)(x+5)>0的解集为:{x|x>12或x<−5},故④正确;故选:B.3、y=x+4x(x≥1)的最小值为()A.2B.3C.4D.5答案:C分析:利用均值不等式求解即可.因为y=x+4x (x≥1),所以x+4x≥2√x×4x=4,当且仅当x=4x即x=2时等号成立.所以当x=2时,函数y=x+4x有最小值4.故选:C.4、若不等式x2+ax+1≥0对于一切x∈(0,12]恒成立,则a的最小值是()A.0B.−2C.−52D.−3答案:C解析:采用分离参数将问题转化为“a≥−(x+1x )对一切x∈(0,12]恒成立”,再利用基本不等式求解出x+1x的最小值,由此求解出a的取值范围.因为不等式x2+ax+1≥0对于一切x∈(0,12]恒成立,所以a≥−(x+1x )对一切x∈(0,12]恒成立,所以a≥[−(x+1x )]max(x∈(0,12]),又因为f(x)=x+1x 在(0,12]上单调递减,所以f(x)min=f(12)=52,所以a ≥−52,所以a 的最小值为−52,故选:C.小提示:本题考查利用基本不等式求解最值,涉及不等式在给定区间上的恒成立问题,难度一般.不等式在给定区间上恒成立求解参数范围的两种方法:参变分离法、分类讨论法.5、已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的( )条件. A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:C分析:先证充分性,由(x −2)(x −3)≤0 求出x 的取值范围,再根据x 的取值范围化简|x −2|+|x −3|即可,再证必要性,若|x −2|+|x −3|=1,即|x −2|+|x −3|=|(x −2)−(x −3)|,再根据绝对值的性质可知(x −2)(x −3)≤0.充分性:若(x −2)(x −3)≤0,则2≤x ≤3, ∴|x −2|+|x −3|=x −2+3−x =1,必要性:若|x −2|+|x −3|=1,又∵|(x −2)−(x −3)|=1, ∴|x −2|+|x −3|=|(x −2)−(x −3)|, 由绝对值的性质:若ab ≤0,则|a |+|b |=|a −b|, ∴(x −2)(x −3)≤0,所以“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的充要条件, 故选:C .6、若非零实数a ,b 满足a <b ,则下列不等式成立的是( ) A .ab <1B .ba +ab >2C .1ab 2<1a 2b D .a 2+a <b 2+b 答案:C分析:举出符合条件的特例即可判断选项A ,B ,D ,对于C ,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C7、已知函数y=x−4+9x+1(x>−1),当x=a时,y取得最小值b,则a+b=()A.−3B.2C.3D.8答案:C分析:通过题意可得x+1>0,然后由基本不等式即可求得答案解:因为x>−1,所以9x+1>0,x+1>0,所以y=x−4+9x+1=x+1+9x+1−5≥2√(x+1)⋅9x+1−5=1,当且仅当x+1=9x+1即x=2时,取等号,所以y的最小值为1,所以a=2,b=1,所以a+b=3,故选:C8、小李从甲地到乙地的平均速度为a,从乙地到甲地的平均速度为b(a>b>0),他往返甲乙两地的平均速度为v,则()A.v=a+b2B.v=√abC.√ab<v<a+b2D.b<v<√ab答案:D分析:平均速度等于总路程除以总时间设从甲地到乙地的的路程为s,从甲地到乙地的时间为t1,从乙地到甲地的时间为t2,则t1=sa ,t2=sb,v=2st1+t2=2s sa+sb=21a+1b,∴v =21a +1b>21b +1b=b ,v =21a +1b=2ab a+b <2√ab=√ab ,故选:D. 多选题9、若a >0,b >0,a +b =2,则( )A .ab ≤1B .√a +√b ≤√2C .a 2+b 2≥2D .1a +1b ≥2 答案:ACD分析:根据基本不等式依次讨论各选项即可得答案.对于A ,由基本不等式得,2=a +b ≥2√ab 则ab ≤1,当且仅当a =b =1时等号成立,故A 正确; 对于B ,令a =32, b =12时,√a +√b =√6+√22>√2=√2+√22,故√a +√b ≤√2不成立,故B 错误;对于C ,由A 选项得ab ≤1,所以a 2+b 2=(a +b)2−2ab =4−2ab ≥2,当且仅当a =b =1时等号成立,故C 正确;对于D ,根据基本不等式的“1”的用法得(1a +1b )(a+b 2)=12(1a +1b )(a +b ) =12(1+1+b a +a b ) =1+12(b a +ab )≥1+12⋅2√1=2,当且仅当ba =ab ,即a =b =1时等号成立,故D 正确. 故选:ACD .10、若方程x 2+2x +λ=0在区间(−1,0)上有实数根,则实数λ的取值可以是( ) A .−3B .18C .14D .1答案:BC解析:分离参数得λ=−x 2−2x ,求出−x 2−2x 在(−1,0)内的值域即可判断. 由题意λ=−x 2−2x 在(−1,0)上有解.∵x ∈(−1,0),∴λ=−x 2−2x =−(x +1)2+1∈(0,1), 故选:BC .11、不等式ax 2+bx +c ≥0的解集是{x |−1≤x ≤2},则下列结论正确的是( ) A .a +b =0B .a +b +c >0 C .c >0D .b <0答案:ABC分析:根据二次函数图像与二次不等式关系求解即可. 解:因为不等式ax 2+bx +c ≥0的解集是{x |−1≤x ≤2},所以a <0,且{−ba=−1+2=1>0c a =−2<0,所以{b >0,b =−a,c >0, 所以a +b =0,c >0,b >0,故AC 正确,D 错误.因为二次函数y =ax 2+bx +c 的两个零点为−1,2,且图像开口向下, 所以当x =1时,y =a +b +c >0,故B 正确. 故选:ABC . 填空题 12、不等式x 2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞) 分析:将x 2+2x−3x+1≥0等价转化为{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解不等式组可得答案.原不等式等价于{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解得x ≥1 或−3≤x <−1 , 所以答案是:[−3,−1)∪[1,+∞)13、x −y ≤0,x +y −1≥0,则z =x +2y 的最小值是___________. 答案:32##1.5分析:分析可得x +2y =32(x +y )−12(x −y ),利用不等式的基本性质可求得z =x +2y 的最小值. 设x +2y =m (x +y )+n (x −y )=(m +n )x +(m −n )y ,则{m +n =1m −n =2 ,解得{m =32n =−12, 所以,z =x +2y =32(x +y )−12(x −y )≥32,因此,z=x+2y的最小值是32.所以答案是:32.14、某校生物兴趣小组为开展课题研究,分得一块面积为32m2的矩形空地,并计划在该空地上设置三块全等的矩形试验区(如图所示).要求试验区四周各空0.5m,各试验区之间也空0.5m.则每块试验区的面积的最大值为___________m2.答案:6分析:设矩形空地的长为x m,根据图形和矩形的面积公式表示出试验区的总面积,利用基本不等式即可求出结果.设矩形空地的长为x m,则宽为32xm,依题意可得,试验区的总面积S=(x−0.5×4)(32x −0.5×2)=34−x−64x≤34−2√x⋅64x=18,当且仅当x=64x即x=8时等号成立,所以每块试验区的面积的最大值为183=6m2.所以答案是:6解答题15、已知一元二次函数f(x)=ax2+bx+c (a>0,c>0)的图像与x轴有两个不同的公共点,其中一个公共点的坐标为(c,0),且当0<x<c时,恒有f(x)>0.(1)当a=1,c=12时,求出不等式f(x)<0的解;(2)求出不等式f(x)<0的解(用a,c表示);(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;(4)若不等式m2−2km+1+b+ac≥0对所有k∈[−1, 1]恒成立,求实数m的取值范围.答案:(1)(12,1);(2)(c,1a);(3)a∈(0, 18];(4)m≤−2 或 m=0 或m≥2.分析:(1)根据根与系数的关系,求出f(x)=0的另一根,得到不等式f(x)<0的解;(2)根据根与系数的关系,求出f(x)=0另一根,并判断两根的大小,得到不等式f(x)<0的解;(3)先求出f(x)的图像与坐标轴的交点,表示出以这些点组成的三角形的面积,再将a 用c 表示出来,再求得a 的范围;(4)根据f(c)=0,得到a,b,c 的关系式,化简不等式,将k,m 分离,分离时注意讨论m 的符号,求得实数m 的范围.(1)当a =1,c =12时,f(x)=x 2+bx +12,f(x)的图像与x 轴有两个不同交点, ∵f(12)=0设另一个根为x 2,则12x 2=12,∴x 2=1,则f(x)<0的解集为(12,1). (2)f(x)的图像与x 轴有两个交点,∵f(c)=0,设另一个根为x 2, 则cx 2=c a ∴x 2=1a 又当0<x <c 时,恒有f(x)>0,则1a >c , ∴f(x)<0的解集为(c,1a ).(3)由(2)的f(x)的图像与坐标轴的交点分别为(c,0),(1a ,0),(0,c) 这三交点为顶点的三角形的面积为S =12(1a −c)c =8, ∴a =c 16+c2≤2√16c=18,故a ∈(0, 18].(4)∵f(c)=0,∴ac 2+bc +c =0,又∵c >0,∴ac +b +1=0, 要使m 2−2k m ≥0,对所有k ∈[−1, 1]恒成立,则 当m >0时,m ≥(2k)max =2; 当m <0时,m ≤(2k)min =−2;当m =0时,02≥2k ⋅0,对所有k ∈[−1, 1]恒成立. 从而实数m 的取值范围为m ≤−2 或 m =0 或m ≥2.小提示:本题考查了二次函数,一元二次方程,一元二次不等式三个二次之间关系及应用,根与系数的关系,恒成立求参问题,参变分离技巧,属于中档题.。
高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版(带答案)
高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版单选题1、已知x,y,z都是正实数,若xyz=1,则(x+y)(y+z)(z+x)的最小值为()A.2B.4C.6D.8答案:D分析:均值定理连续使用中要注意等号是否同时成立.由x>0,y>0,z>0可知x+y≥2√xy>0(当且仅当x=y时等号成立)y+z≥2√yz>0(当且仅当y=z时等号成立)x+z≥2√xz>0(当且仅当x=z时等号成立)以上三个不等式两边同时相乘,可得(x+y)(y+z)(z+x)≥8√x2y2z2=8(当且仅当x=y=z=1时等号成立)故选:D2、已知2<a<3,−2<b<−1,则2a−b的范围是()A.(6,7)B.(5,8)C.(2,5)D.(6,8)答案:B分析:由不等式的性质求解即可.2<a<3,−2<b<−1,故4<2a<6,1<−b<2,得5<2a−b<8故选:B3、下列命题中,是真命题的是()A.如果a>b,那么ac>bc B.如果a>b,那么ac2>bc2C.如果a>b,那么ac >bcD.如果a>b,c<d,那么a−c>b−d答案:D分析:根据不等式的性质和特殊值法,逐项验证可得出答案.对于A ,如果c =0,那么ac =bc ,故错误; 对于B ,如果c =0,那么ac 2=bc 2,故错误; 对于C ,如果c <0,那么ac <bc ,故错误;对于D ,如果c <d ,那么−c >−d ,由a >b ,则a −c >b −d ,故正确. 故选:D.4、y =x +4x (x ≥1)的最小值为( ) A .2B .3C .4D .5 答案:C分析:利用均值不等式求解即可.因为y =x +4x(x ≥1),所以x +4x≥2√x ×4x=4,当且仅当x =4x即x =2时等号成立.所以当x =2时,函数y =x +4x 有最小值4. 故选:C.5、已知使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则实数a 的取值范围为( )A .(−∞,−13)B .(−∞,−13] C .[−13,+∞)D .(−13,+∞) 答案:C分析:使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,求出两个不等式的解集,利用集合的包含关系列不等式求解.解:由3x −1≤0得x ≤13,因为使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0 则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集, 又由x 2+(a +1)x +a ≤0得(x +a )(x +1)≤0, 当a =1,x ∈{−1}⊆(−∞,13],符合;当a <1,x ∈[−1,−a ]⊆(−∞,13],则−a ≤13,∴1>a ≥−13, 当a >1,x ∈[−a,−1]⊆(−∞,13],符合, 故实数a 的取值范围为[−13,+∞). 故选:C.6、已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的( )条件. A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:C分析:先证充分性,由(x −2)(x −3)≤0 求出x 的取值范围,再根据x 的取值范围化简|x −2|+|x −3|即可,再证必要性,若|x −2|+|x −3|=1,即|x −2|+|x −3|=|(x −2)−(x −3)|,再根据绝对值的性质可知(x −2)(x −3)≤0.充分性:若(x −2)(x −3)≤0,则2≤x ≤3, ∴|x −2|+|x −3|=x −2+3−x =1,必要性:若|x −2|+|x −3|=1,又∵|(x −2)−(x −3)|=1, ∴|x −2|+|x −3|=|(x −2)−(x −3)|, 由绝对值的性质:若ab ≤0,则|a |+|b |=|a −b|, ∴(x −2)(x −3)≤0,所以“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的充要条件, 故选:C .7、若非零实数a ,b 满足a <b ,则下列不等式成立的是( ) A .ab <1B .ba +ab >2C .1ab 2<1a 2b D .a 2+a <b 2+b 答案:C分析:举出符合条件的特例即可判断选项A ,B ,D ,对于C ,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C8、若a,b,c为实数,且a<b,c>0,则下列不等关系一定成立的是()A.a+c<b+c B.1a <1bC.ac>bc D.b−a>c答案:A分析:由不等式的基本性质和特值法即可求解.对于A选项,由不等式的基本性质知,不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,则a<b⇒a+c<b+c,A选项正确;对于B选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个负数,不等号方向改变,若a=−2,b=−1,则1a >1b,B选项错误;对于C选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个正数,不等号方向不变,c>0,0<a<b⇒ac<bc,C选项错误;对于D选项,因为a<b⇒b−a>0,c>0,所以无法判断b−a与c大小,D选项错误.多选题9、若−1<a<b<0,则()A.a2+b2>2ab B.1a <1bC.a+b>2√ab D.a+1a>b+1b答案:AD分析:应用作差法判断B、D,根据重要不等式判断A,由不等式性质判断C.A:由重要不等式知:a2+b2≥2ab,而−1<a<b<0,故a2+b2>2ab,正确;B:由−1<a<b<0,则1a −1b=b−aab>0,故1a>1b,错误;C:由−1<a<b<0,则a+b<0<2√ab,错误;D :(a +1a )−(b +1b )=a −b +1a −1b =a −b +b−a ab=(a −b)(ab−1ab)>0,故a +1a >b +1b ,正确.故选:AD10、设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>a B .a 2+9>6aC .(a +b )(1a +1b )≥4D .(a +1a )(b +1b )≥4 答案:ACD分析:选项A ,B 可用作差法比较大小;选项C ,D 可用基本不等式求范围. 由(a 2+1)−a =(a −12)2+34>0可得a 2+1>a ,故A 正确;由(a 2+9)−6a =(a −3)2≥0可得a 2+9≥6a ,故B 错误;由(a +b )(1a +1b )=2+ab +ba ≥2+2√ab ⋅ba =4,当且仅当a =b 时取等号,故C 正确; 由(a +1a )(b +1b )=(ab +1ab )+(ab +ba )≥2√ab ⋅1ab +2√ab ⋅ba =4, 当且仅当{ab =1ab a b =b a ,即a =b =1时取等号,故D 正确. 故选:ACD.11、十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若a 、b 、c ∈R ,则下列命题正确的是( )A .若a >b >0,则ac 2>bc 2B .若a <b <0,则a +1b <b +1a C .若a <b <c <0,则ba <b+ca+c D .若a >0,b >0,则b 2a +a 2b≥a +b答案:BCD解析:取c =0可判断A 选项的正误;利用作差法可判断BCD 选项的正误. 对于A 选项,当c =0时,则ac 2=bc 2,A 选项错误;对于B 选项, (a +1b )−(b +1a )=(a −b )+(1b −1a )=(a −b )+a−b ab=(a −b )(1+1ab ),∵a <b <0,a −b <0,ab >0,∴1+1ab >0,则(a +1b )−(b +1a )<0,B 选项正确; 对于C 选项,ba −b+ca+c =b (a+c )−a (b+c )a (a+c )=c (b−a )a (a+c ),∵a <b <c <0,则b −a >0,a +c <0,则ba −b+ca+c <0,C 选项正确; 对于D 选项,(b 2a +a 2b)−(a +b )=b 2−a 2a+a 2−b 2b=(b 2−a 2)(1a −1b )=(b 2−a 2)(b−a )ab=(b+a )(b−a )2ab,∵a >0,b >0,则(b 2a +a 2b)−(a +b )=(b+a )(b−a )2ab≥0,D 选项正确.故选:BCD.小提示:判断不等式是否成立,主要利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简便. 填空题 12、不等式x 2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞) 分析:将x 2+2x−3x+1≥0等价转化为{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解不等式组可得答案.原不等式等价于{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解得x ≥1 或−3≤x <−1 , 所以答案是:[−3,−1)∪[1,+∞)13、x −y ≤0,x +y −1≥0,则z =x +2y 的最小值是___________. 答案:32##1.5分析:分析可得x +2y =32(x +y )−12(x −y ),利用不等式的基本性质可求得z =x +2y 的最小值. 设x +2y =m (x +y )+n (x −y )=(m +n )x +(m −n )y ,则{m +n =1m −n =2 ,解得{m =32n =−12, 所以,z =x +2y =32(x +y )−12(x −y )≥32, 因此,z =x +2y 的最小值是32.所以答案是:32.14、已知集合A={x|−5<−2x+3<7},B={x|x2−(3a−1)x+2a2−a<0} ,若B⊆A,则实数a的取值范围为______.答案:[−12,5 2 ]分析:分类讨论解不等式,再利用集合的包含关系列式求解作答.依题意,B={x|(x−a)(x−2a+1)<0},当a<2a−1,即a>1时,B=(a,2a−1),当a=2a−1,即a=1时,B=∅,当a>2a−1,即a<1时,B=(2a−1,a),又A=(−2,4),B⊆A,于是得{a>12a−1≤4,解得1<a≤52,或{a<12a−1≥−2,解得−12≤a<1,而∅⊆A,则a=1,综上得:−12≤a≤52,所以实数a的取值范围为[−12,52 ].所以答案是:[−12,5 2 ]解答题15、实数a、b满足-3≤a+b≤2,-1≤a-b≤4.(1)求实数a、b的取值范围;(2)求3a-2b的取值范围.答案:(1)a∈[-2,3],b∈[-72,3 2 ](2)[-4,11]分析:(1)由a=12[(a+b)+(a-b)],b=12[(a+b)-(a-b)]根据不等式的性质计算可得;(2)求出3a-2b=12(a+b)+52(a-b),再利用不等式的性质得解.(1)解:由-3≤a+b≤2,-1≤a-b≤4,则a=12[(a+b)+(a-b)],所以-4≤(a+b)+(a-b)≤6,所以-2≤12[(a+b)+(a-b)]≤3,即-2≤a≤3,即实数a的取值范围为[-2,3].因为b=12[(a+b)-(a-b)],由-1≤a-b≤4,所以-4≤b -a ≤1,所以-7≤(a +b )-(a -b)≤3, 所以-72≤12[(a +b )-(a -b)]≤32,∴-72≤b ≤32,即实数b 的取值范围为[-72,32].(2)解:设3a -2b =m (a +b )+n(a -b)=(m +n )a +(m -n)b , 则{m +n =3m -n =-2 ,解得{m =12n =52 ,∴3a -2b =12(a +b )+52(a -b ), ∵-3≤a +b ≤2,-1≤a -b ≤4. ∴-32≤12(a +b )≤1,-52≤52(a -b )≤10, ∴-4≤3a -2b ≤11,即3a -2b 的取值范围为[-4,11].。
全国通用版高中数学第二章一元二次函数方程和不等式知识点总结归纳完整版
(名师选题)全国通用版高中数学第二章一元二次函数方程和不等式知识点总结归纳完整版单选题1、关于x的不等式ax2−|x|+2a≥0的解集是(−∞,+∞),则实数a的取值范围为()A.[√24,+∞)B.(−∞,√24]C.[−√24,√24]D.(−∞,−√24]∪[√24,+∞)答案:A分析:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,分x=0和a≠0两种情况讨论,结合基本不等式即可得出答案.解:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,当x=0时,a≥0,当a≠0时,a≥|x|x2+2=1|x|+2|x|,因为1|x|+2|x|≤2√x⋅2|x|=√24,所以a≥√24,综上所述a∈[√24,+∞).故选:A.2、已知实数a,b满足a+b=ab(a>1,b>1),则(a−1)2+(b−1)2的最小值为( ) A.2B.1C.4D.5答案:A分析:将a -1和b -1看作整体,由a +b =ab (a >1,b >1)构造出(a −1)(b −1)=1,根据(a −1)2+(b −1)2≥2(a −1)(b −1)即可求解.由a +b =ab (a >1,b >1)得a +b −ab −1=−1,因式分解得(a −1)(b −1)=1, 则(a −1)2+(b −1)2≥2(a −1)(b −1)=2,当且仅当a =b =2时取得最小值. 故选:A .3、已知x >0,y >0,x +2y =1,则1x+1y 的最小值为( )A .3+2√2B .12C .8+4√3D .6 答案:A分析:根据基本不等中“1”的用法,即可求出结果. 因为x >0,y >0,x +2y =1, 所以(1x+1y )(x +2y)=3+2y x+xy≥3+2√2,当且仅当2yx =xy ,即x =√2−1,y =2−√22时,等号成立.故选:A.4、已知x >2,则x +4x−2的最小值为( ) A .6B .4C .3D .2 答案:A分析:利用基本不等式可得答案. ∵x >2,∴x −2>0,∴x +4x−2= x −2+4x−2+2≥2√(x −2)⋅4x−2+2=6, 当且仅当x −2=4x−2即x =4时, x +4x−2取最小值6, 故选:A .5、若实数x >32,y >13,不等式4x 2t (3y−1)+9y 2t (2x−3)≥2恒成立,则正实数t 的最大值为( ) A .4B .16C .72D .8答案:D分析:令3y −1=a,2x −3=b ,则(b+3)2a+(a+1)2b≥2t ,由权方和不等式和基本不等式得(b+3)2a+(a+1)2b≥16,即可求解t ≤8.由4x 2t (3y−1)+9y 2t (2x−3)≥2得4x 2(3y−1)+9y 2(2x−3)≥2t 因为x >32,y >13,则3y −1>0,2x −3>0 令3y −1=a,2x −3=b 则4x 2(3y−1)+9y 2(2x−3)≥2t 化为(b+3)2a+(a+1)2b≥2t 恒成立,由权方和不等式得(b+3)2a+(a+1)2b≥(a+b+4)2a+b=(a +b )+16a+b +8≥2√16+8=16当且仅当{b+3a=a+1ba +b =4,得a =53,b =73即x =73,y =109时等号成立.所以16≥2t ⇒t ≤8 故选:D6、若关于x 的不等式|x −1|<a 成立的充分条件是0<x <4,则实数a 的取值范围是( ) A .(-∞,1]B .(-∞,1) C .(3,+∞)D .[3,+∞) 答案:D分析:根据充分条件列不等式,由此求得a 的取值范围. |x −1|<a 成立的充分条件是0<x <4,则a >0, |x −1|<a ⇒1−a <x <1+a ,所以{1−a ≤01+a ≥4⇒a ≥3.故选:D7、已知0<x <2,则y =x√4−x 2的最大值为( ) A .2B .4C .5D .6 答案:A分析:由基本不等式求解即可 因为0<x <2, 所以可得4−x 2>0, 则y =x√4−x 2=√x 2⋅(4−x 2)≤x 2+(4−x 2)2=2,当且仅当x 2=4−x 2,即x =√2时,上式取得等号, y =x√4−x 2的最大值为2. 故选:A . 8、若x >1,则x +1x−1的最小值等于( )A .0B .1C .2D .3 答案:D 分析:将x +1x−1变形为x −1+1x−1+1,即可利用均值不等式求最小值.因为x >1,所以x −1>0,因此x +1x−1=x −1+1x−1+1≥2√(x −1)⋅1x−1+1=3,当且仅当x −1=1x−1,即x =2时,等号成立,所以x +1x−1的最小值等于3. 故选:D.9、已知y =(x −m )(x −n )+2022(n >m ),且α,β(α<β)是方程y =0的两实数根,则α,β,m ,n 的大小关系是( )A .α<m <n <βB .m <α<n <βC .m <α<β<nD .α<m <β<n 答案:C分析:根据二次函数图像特点,结合图像平移变换即可得到答案.∵α,β为方程y =0的两实数根,∴α,β为函数y =(x −m )(x −n )+2022的图像与x 轴交点的横坐标, 令y 1=(x −m )(x −n ),∴m ,n 为函数y 1=(x −m )(x −n )的图像与x 轴交点的横坐标,易知函数y =(x −m )(x −n )+2022的图像可由y 1=(x −m )(x −n )的图像向上平移2022个单位长度得到, 所以m <α<β<n . 故选:C.10、已知−1≤x +y ≤1,1≤x −y ≤5,则3x −2y 的取值范围是( ) A .[2,13]B .[3,13]C .[2,10]D .[5,10] 答案:A分析:设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,求出m,n 的值,根据x +y,x −y 的范围,即可求出答案.设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,所以{m −n =3m +n =−2 ,解得:{m =12n =−52,3x −2y =12(x +y )+52(x −y ), , 因为−1≤x +y ≤1,1≤x −y ≤5,所以3x −2y =12(x +y )+52(x −y )∈[2,13], 故选:A.11、已知a,b 为正实数,且a +b =6+1a+9b ,则a +b 的最小值为( )A .6B .8C .9D .12 答案:B分析:根据题意,化简得到(a +b )2=(6+1a +9b )(a +b )=6(a +b )+10+ba +9a b,结合基本不等式,即可求解.由题意,可得(a +b )2=(6+1a +9b )(a +b )=6(a +b )+10+ba +9a b≥6(a +b )+16,则有(a +b )2−6(a +b )−16≥0,解得a +b ≥8,当且仅当a=2,b=6取到最小值8.故选:B.12、要使关于x的方程x2+(a2−1)x+a−2=0的一根比1大且另一根比1小,则实数a的取值范围是()A.{a|−1<a<2}B.{a|−2<a<1}C.{a|a<−2}D.{a|a>1}答案:B分析:根据二次方程根的分布可得出关于实数a的不等式,由此可解得实数a的取值范围.由题意可得1+(a2−1)+a−2=a2+a−2<0,解得−2<a<1.故选:B.填空题13、若对任意x>0,x3+5x2+4x≥ax2恒成立,则实数a的取值范围是___________.答案:(−∞,9]分析:先分离参数a,再运用基本不等式可求解.因为对任意x>0,x3+5x2+4x≥ax2⇔x2+5x+4x ≥a恒成立,只需满足a≤(x2+5x+4x)min,因为x>0,所以x 2+5x+4x=x+4x+5≥2√x⋅4x+5=9,当且仅当x=4x,即x=2时取等号.故实数a的取值范围是(−∞,9].所以答案是:(−∞,9]14、某校生物兴趣小组为开展课题研究,分得一块面积为32m2的矩形空地,并计划在该空地上设置三块全等的矩形试验区(如图所示).要求试验区四周各空0.5m,各试验区之间也空0.5m.则每块试验区的面积的最大值为___________m2.答案:6分析:设矩形空地的长为x m,根据图形和矩形的面积公式表示出试验区的总面积,利用基本不等式即可求出结果.设矩形空地的长为x m,则宽为32xm,依题意可得,试验区的总面积S=(x−0.5×4)(32x −0.5×2)=34−x−64x≤34−2√x⋅64x=18,当且仅当x=64x即x=8时等号成立,所以每块试验区的面积的最大值为183=6m2. 所以答案是:615、已知三个不等式:①ab>0,②ca >db,③bc>ad,用其中两个作为条件,剩下的一个作为结论,则可组成______个真命题.答案:3分析:根据题意,结合不等式性质分别判断①、②、③作为结论的命题的真假性即可.由不等式性质,得{ab>0ca>db⇒{ab>0bc−adab>0⇒bc>ad;{ab>0bc>ad⇒ca>db;{ca>dbbc>ad⇒{bc−adab>0bc>ad⇒ab>0.故可组成3个真命题.所以答案是:3.16、正实数x,y满足:2x+y=1,则2x +1y的最小值为_____.答案:9解析:根据题意,可得2x +1y=(2x+1y)(2x+y)=5+2yx+2xy,然后再利用基本不等式,即可求解.2 x +1y=(2x+1y)(2x+y)=5+2yx+2xy≥5+2√2yx⋅2xy≥5+2√4=9,当且仅当x=y=13时取等号.所以答案是:9.小提示:本题主要考查利用基本不等式求最值,属于基础题.17、当x>1时,求2x+8x−1的最小值为___________.答案:10分析:化为积为定值的形式后,利用基本不等式可求得结果.当x>1时,2x+8x−1=2(x−1)+8x−1+2≥2√2(x−1)⋅8x−1+2=8+2=10,当且仅当{x>12(x−1)=8x−1,即x=3时等号成立.∴2x+8x−1的最小值为10.所以答案是:10.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.解答题18、已知实数x>0,y>0.(1)若x+y+xy=3,求2xy的最大值与x+y的最小值;(2)若x>y,求xy 2x−y +xy+1y2的最小值.答案:(1)最小值为2;(2)最小值为4.分析:(1)由已知结合基本不等式x+y⩾2√xy,及不等式的性质即可求解;(2)先进行换元t=x−y,t>0,然后把x=t+y代入所求式子,进行合理的变形后结合基本不等式可求.解:(1)因为x+y≥2√xy,又因为x+y+xy=3,所以xy+2√xy≤3,解得−3≤√xy≤1,因为0<√xy,所以0<√xy≤1,所以0<xy≤1,所以2xy≤2,当且仅当x=y=1时等号成立,所以2xy最大值为2;因为xy≤(x+y2)2,所以(x+y2)2+(x+y)≥3,当且仅当x=y=1时等号成立,所以x+y≥2,所以x+y最小值为2;(2)xy 2x−y +xy+1y2=x2yx−y+1y2,令t=x−y,t>0,所以x=t+y,x2y x−y +1y2=(t+y)2yt+1y2=ty+y3t+2y2+1y2≥2√ty⋅y3t+2y2+1y2=4y2+1y2≥2√4y2⋅1y2=4;当且仅当ty=y 3t ,且4y2=1y2,即x=√2,y=√22时等号成立,所以xy 2x−y +xy+1y2最小值为4.19、已知12<a<60,15<b<36,求a−2b,2ab的取值范围.答案:a−2b的取值范围是(−60,30),2ab 的取值范围是(23,8).分析:根据题意可得−72<−2b<−30,进而得到a−2b的范围,再根据分数的性质可得2ab的取值范围. 因为15<b<36,所以−72<−2b<−30.又12<a<60,所以12−72<a−2b<60−30,即−60<a−2b<30.因为12<a<60,所以24<2a<120,因为15<b<36,所以136<1b<115,所以2436<2ab<12015,即23<2ab<8.所以a−2b的取值范围是(−60,30),2ab 的取值范围是(23,8).20、设f(x)=ax2+(1-a)x+a-2.(1)若命题“对任意实数x,f(x)≥-2”为真命题,求实数a的取值范围;(2)解关于x的不等式f(x)<a-1(a∈R).答案:(1)a≥13(2)答案见解析分析:(1)根据“对任意实数x,f(x)≥-2”为真命题,知ax2+(1-a)x+a-2≥-2,即ax2+(1-a)x+a≥0,此时对a进行分类讨论,再结合判别式Δ即可求出a的范围.(2)由f(x)<a-1得ax2+(1-a)x+a-2<a-1,即ax2+(1-a)x-1<0,对a进行分类讨论,即可求出不等式f(x)<a-1的解集.(1)∵命题“对任意实数x,f(x)≥-2”为真命题,∴ax2+(1-a)x+a-2≥-2恒成立,即ax2+(1-a)x+a≥0恒成立. 当a=0时,x≥0,不满足题意;当a≠0时,知{a>0,Δ≤0,即{a>0,(1-a)2-4a2≤0,解得a≥13.故实数a的取值范围为a≥13.(2)∵f(x)<a-1(a∈R),∴ax2+(1-a)x+a-2<a-1,即ax2+(1-a)x-1<0.当a=0时,x<1,∴不等式的解集为{x|x<1};当a>0时,ax2+(1-a)x-1<0⇒(ax+1)(x-1)<0,此时方程(ax+1)(x-1)=0的解分别为-1a,1,∵-1a <1,∴不等式的解集为{x|-1a<x<1},当a<0时,不等式可化为(ax+1)(x-1)<0,①当a=-1时,-1a=1,∴不等式的解集为{x|x≠1};②当-1<a<0时,-1a >1,此时不等式的解集为{x|x>−1a或x<1};③当a<-1时,-1a <1,此时不等式的解集为{x|x>1或x<−1a}。
高中数学第二章一元二次函数方程和不等式知识汇总笔记(带答案)
高中数学第二章一元二次函数方程和不等式知识汇总笔记单选题1、已知a >0,b >0,若a +4b =4ab ,则a +b 的最小值是( ) A .2B .√2+1C .94D .52答案:C分析:将a +4b =4ab ,转化为1b +4a =4,由a +b =14(a +b )(1b +4a )=14(5+ab +4b a),利用基本不等式求解.因为a +4b =4ab , 所以1b+4a =4,所以a +b =14(a +b )(1b +4a )=14(5+a b +4b a),≥14(5+2√ab ⋅4b a )=94,当且仅当{1b +4a =4a b=4b a,即{a =32b =34时,等号成立,故选:C2、若对任意实数x >0,y >0,不等式x +√xy ≤a(x +y)恒成立,则实数a 的最小值为( ) A .√2−12B .√2−1C .√2+1D .√2+12答案:D分析:分离变量将问题转化为a ≥x+√xy x+y对于任意实数x >0,y >0恒成立,进而求出x+√xy x+y的最大值,设√yx =t(t >0)及1+t =m(m >1),然后通过基本不等式求得答案.由题意可得,a ≥x+√xy x+y对于任意实数x >0,y >0恒成立,则只需求x+√xy x+y的最大值即可,x+√xy x+y=1+√yx 1+y x,设√yx =t(t >0),则1+√y x 1+y x=1+t1+t 2,再设1+t =m(m >1),则1+√y x 1+y x=1+t 1+t 2=m 1+(m−1)2=m m 2−2m+2=1m+2m−2≤2√m⋅m−2=2√2−2=√2+12,当且仅当m =2m ⇒√yx =√2−1时取得“=”.所以a ≥√2+12,即实数a 的最小值为√2+12. 故选:D.3、下列说法正确的为( ) A .x +1x ≥2B .函数y =2√x 2+3的最小值为4C .若x >0,则x(2−x)最大值为1D .已知时,a +4a−3≥2√a ⋅4a−3,当且仅当a =4a−3即a =4时,a +4a−3取得最小值8答案:C分析:利用基本不等式及其对勾函数的性质分别判断即可.对于选项A ,只有当x >0时,才满足基本不等式的使用条件,则A 不正确; 对于选项B ,y =2√x 2+3=2√x 2+3=2√x 2+3√x 2+3√x 2+3=t(t ≥√3),即y =2t +2t (t ≥√3)在[√3,+∞)上单调递增,则最小值为y min =2√3+√3=8√33, 则B 不正确;对于选项C ,x(2−x)=−(x 2−2x +1)+1=−(x −1)2+1≤1,则C 正确;对于选项D ,当时,a +4a−3=a −3+4a−3+3≥2√(a −3)⋅4a−3+3=7,当且仅当 a −3=4a−3时,即a =5,等号成立,则D 不正确.故选:C .4、已知a >b >c >0,则( ) A .2a <b +c B .a (b −c )>b (a −c ) C .1a−c >1b−c D .(a −c )3>(b −c )3 答案:D分析:由不等式的性质判断ACD ;取特殊值判断B.解:对于A ,因为a >b >c >0,所以a +a >b +a >b +c ,即2a >b +c ,故错误;3a >3a >对于B,取a=3>b=2>c=1>0,则a(b−c)=3<b(a−c)=4,故错误;对于C,由a>b>c>0,得a−c>b−c>0,所以1a−c <1b−c,故错误;对于D,由a>b>c>0,得a−c>b−c>0,所以(a−c)3>(b−c)3,故正确.故选:D.5、《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F在半圆O上,点C在直径AB上,且OF⊥AB,设AC=a,BC=b,则该图形可以完成的无字证明为()A.a+b2≥√ab(a>0,b>0)B.a2+b2≥2√ab(a>0,b>0)C.2aba+b ≤√ab(a>0,b>0)D.a+b2≤√a2+b22(a>0,b>0)答案:D分析:根据图形,求出圆的半径以及OC .再利用勾股定理求得FC ,结合直角三角形的直角边长小于斜边长,可得答案.设AC=a,BC=b,可得圆O的半径为r=OF=12AB=a+b2,又由OC=OB−BC=a+b2−b=a−b2,在直角△OCF中,可得FC2=OC2+OF2=(a−b2)2+(a+b2)2=a2+b22,因为FO≤FC,所以a+b2≤√a2+b22,当且仅当a=b时取等号.故选:D.6、前后两个不等式解集相同的有()①x+52x−1≥0与(2x−1)(x+5)≥0②x+52x−1>0与(2x−1)(x+5)>0③x2(2x−1)(x+5)≥0与(2x−1)(x+5)≥0④x2(2x−1)(x+5)>0与(2x−1)(x+5)>0A.①②B.②④C.①③D.③④答案:B分析:由不含参的一元二次不等式,分式不等式、高次不等式的解法解出各个不等式,对选项一一判断即可得出答案.对于①,由x+52x−1≥0可得{2x−1≠0(x+5)(2x−1)≥0,解得:x>12或x≤−5.(2x−1)(x+5)≥0的解集为:{x|x≥12或x≤−5},故①不正确;对于②,由x+52x−1>0可得{2x−1≠0(x+5)(2x−1)>0,解得:x>12或x<−5.(2x−1)(x+5)>0的解集为:{x|x>12或x<−5},故②正确;对于③,x2(2x−1)(x+5)≥0的解集为:{x|x=0或x≤−5或x≥12},(2x−1)(x+5)≥0的解集为:{x|x≥12或x≤−5},故③不正确;对于④,x2(2x−1)(x+5)>0的解集为:{x|x<−5或x>12},(2x−1)(x+5)>0的解集为:{x|x>12或x<−5},故④正确;故选:B.7、设M I表示函数f(x)=|x2−4x+2|在闭区间I上的最大值.若正实数...a满足M[0,a]≥2M[a,2a],则正实数a 的取值范围是()A.[2−√3,12]B.[2−√3,1]C.[2,2+√3]D.[2+√3,4]答案:A分析:作图分析函数f(x)的特点,再分类讨论.函数f(x)的图像如下:f (x )的对称轴为x =2,f (2)=2,f (0)=f (4)=2;分类讨论如下:①当a >4时,M [0,a ]=f (a ),M [a,2a ]=f (2a ), 依题意,f (a )≥f (2a ),而函数在x ≥2+√2时是增函数,a <2a , f (a )<f (2a ),故不可能;②当a ≤4时,M [0,a ]=2,依题意,2≥M [a,2a ],即M [a,2a ]≤1, 令f (x )=1,解得:x 1=2−√3,x 2=1,x 3=2+√3,x 4=3,如图; 则有:a ≥2−√3并且2a ≤1,解得:2−√3≤a ≤12; 或者a ≥3并且2a ≤2+√3,无解; 故选:A.8、已知x >0,y >0,,则1x+1y的最小值为( )A .3+2√2B .12C .8+4√3D .6 答案:A分析:根据基本不等中“1”的用法,即可求出结果. 因为x >0,y >0,, 所以(1x +1y )(x +2y )=3+2y x+xy ≥3+2√2,当且仅当2yx =xy ,即x =√2−1,y =2−√22时,等号成立.故选:A. 多选题21x y +=21x y +=9、设a>0,b>0,且2a +3b=1,则下列不等式成立的是()A.b>3 B.ab≤24C.4a2+9b2≥12D.2a+b≤7+4√3答案:AC分析:对于选项A,利用已知求出a的关系式,然后由a>0即可求出b的范围;对于选项BCD,利用基本不等式以及“1”的代换即可求解,判断是否正确.对于选项A,因为a>0,b>0,且2a +3b=1,则a=21−3b,由a>0,则21−3b >0,即1−3b>0,解得b>3,故A正确,对于选项B,因为a>0,b>0,所以2a +3b=1≥2√2a⋅3b,当且仅当2a=3b=12时取等号,此时√6ab≤12,解得ab≥24,故B错误;对于选项C,a>0,b>0,且2a +3b=1,则4a2+9b2+12ab=1,即4a2+9b2=1−12ab,由选项B可得:4a2+9b2=1−12ab ≥1−1224=1−12=12,当且仅当2a=3b=12时取等号,故C正确;选项D:因为2a+b=(2a+b)(2a +3b)=7+2ba+6ab≥7+2√2ba⋅6ab=7+4√3,当且仅当2ba=6ab时取等号,故D错误.故选:AC.10、已知x>0,y>0,且x+y+xy−3=0,则()A.xy的取值范围是[1,9]B.x+y的取值范围是[2,3)C.x+4y的最小值是3D.x+2y的最小值是4√2−3答案:BD分析:根据基本不等式可求得0<xy≤1,判断A;将x+y+xy−3=0变形为3−(x+y)=xy≤(x+y2)2结合基本不等式,判断B;由x+y+xy−3=0整理得到x=−1+4y+1结合基本不等式可判断C,D. 对于A,因为x>0,y>0,所以x+y≥2√xy,当且仅当x=y时取等号,即3−xy≥2√xy,解得0<√xy≤1,即0<xy≤1,A错误;对于B, 由x>0,y>0,3−(x+y)=xy≤(x+y2)2,当且仅当x=y时取等号,得(x+y)2+4(x+y)−12≥0,所以x+y≥2, 又3−(x+y)=xy>0,所以x+y<3,B正确;对于C, 由x>0,y>0,x+y+xy−3=0,得x=−y+3y+1=−1+4y+1,则x+4y=−1+4y+1+4y=4y+1+4(y+1)−5≥2√4y+1⋅4(y+1)−5=3,当且仅当4y+1=4(y+1),即y=0时等号成立,但y>0,所以x+4y>3.(等号取不到),故C错误;对于D,由C的分析知:x>0,y>0,x=−1+4y+1,x+2y=−1+4y+1+2y=4y+1+2(y+1)−3≥4√2−3,当且仅当4y+1=2(y+1),即y=√2−1时等号成立,D正确,故选:BD11、已知1a <1b<0,则下列不等关系中正确的是()A.ab>a−b B.ab<−a−b C.ba +ab>2D.ba>ab答案:CD分析:根据不等式的性质,特值法以及基本不等式即可判断各关系式的真假.对A,由1a <1b<0,得b<a<0,当a=−12,b=−2时,A错误;对B,当a=−2,b=−3时,B错误;对C,由1a <1b<0,得b<a<0,根据基本不等式知,C正确:对D ,由1a <1b <0,得b <a <0,所以b 2>a 2,因为b a −ab =b 2−a 2ab>0,所以D 正确.故选:CD .12、已知函数f(x)=x 2−2x +2,关于f(x)的最大(小)值有如下结论,其中正确的是( ) A .f(x)在区间[−1,0]上的最小值为1B .f(x)在区间[−1,2]上既有最小值,又有最大值C .f(x)在区间[2,3]上有最小值2,最大值5D .当0<a <1时f(x)在区间[0,a ]上的最小值为f(a);当a >1时f(x)在区间[0,a ]上的最小值为1 答案:BCD分析:根据二次函数的图象和性质判断.函数f(x)=x 2−2x +2=(x −1)2+1的图象开口向上,对称轴为直线x =1.对于A 选项,因为f(x)在区间[−1,0]上单调递减,所以f(x)在区间[−1,0]上的最小值为f(0)=2,所以错误; 对于B 选项,因为f(x)在区间[−1,1]上单调递减,在[1,2]上单调递增,所以f(x)在区间[−1,2]上的最小值为f (1)=1,又因为f(−1)=5,f(2)=2,f(−1)>f(2),所以f(x)在区间[−1,2]上的最大值为f(−1)=5,所以此选项正确; 对于C 选项,因为f(x)在区间[2,3]上单调递增,所以f(x)在区间[2,3]上的最小值为f(2)=2,最大值为f(3)=5,所以C 正确;对于D 选项,当0<a <1时,f(x)在区间[0,a ]上单调递减,所以f(x)的最小值为f(a), 当a >1时,因为f(x)在区间上单调递减,在[1,a ]上单调递增,所以f(x)在区间[0,a ]上的最小值为f(1)=1,所以D 正确. 故选:BCD13、若方程x 2+2x +λ=0在区间(−1,0)上有实数根,则实数λ的取值可以是( ) A .−3B .18C .14D .1答案:BC解析:分离参数得λ=−x 2−2x ,求出−x 2−2x 在(−1,0)内的值域即可判断. 由题意λ=−x 2−2x 在(−1,0)上有解.[]0,1∵x ∈(−1,0),∴λ=−x 2−2x =−(x +1)2+1∈(0,1), 故选:BC . 填空题14、已知−1<x +y <4,2<x −y <4,则3x +2y 的取值范围是_____. 答案:(−32,12)解析:利用换元法,结合不等式的性质进行求解即可. 设x +y =m,x −y =n ,因此得:x =m+n 2,y =m−n 2,−1<m <4,2<n <4,3x +2y =3⋅m+n 2+2⋅m−n 2=5m 2+n2,因为−1<m <4,2<n <4,所以−52<5m 2<10,1<n 2<2,因此−32<5m 2+n2<12,所以−32<3x +2y <12. 所以答案是: (−32,12)15、已知∀a ∈[0,2]时,不等式ax 2+(a +1)x +1−32a <0恒成立,则x 的取值范围为__________. 答案:(−2,−1)分析:由题意构造函数关于a 的函数f (a )=(x 2+x −32)a +x +1,则可得{f(0)<0f(2)<0,从而可求出x 的取值范围.由题意,因为当a ∈[0,2],不等式ax 2+(a +1)x +1−32a <0恒成立,可转化为关于a 的函数f (a )=(x 2+x −32)a +x +1,则f (a )<0对任意a ∈[0,2]恒成立, 则满足{f(0)=x +1<0f(2)=2x 2+2x −3+x +1<0,解得−2<x <−1,即x 的取值范围为(−2,−1). 所以答案是:(−2,−1)16、用一根长为12m 的铝合金条做成一个“目”字形窗户的框架(不计损耗),要使这个窗户通过的阳光最充足,则框架的宽为______m . 答案:32##1.5分析:首先设框架的宽为x ,再表示框架的面积,利用基本不等式求最值,即可求框架的宽. 设框架的宽为x ,则其高为6−2x ,要使这个窗户通过的阳光最充足,只要窗户的面积S 最大,S =x (6−2x )=2x (3−x )≤2×[x+(3−x )2]2=92,当且仅当x =3−x ,即x =32时等号成立,故框架的宽为32m .所以答案是:32解答题17、已知a >0,b >0,且a +b =1. (1)求1a+2b 的最小值;(2)证明:ab+2b a 2+b 2+1<√52.答案:(1)3+2√2;(2)证明见解析. 分析:(1)利用基本不等式即可求得最小值; (2)关键是配凑系数,进而利用基本不等式得证. (1)1a +2b =(a +b)(1a +2b )=3+2a b+b a z3+2√2a b ⋅ba =3+2√2,当且仅当“b =√2a ”时取等号, 故1a+2b 的最小值为3+2√2;(2)证明:ab+2ba 2+b 2+1=ab+2b a 2+b 25+4b 25+1⩽2√a 2⋅25+2√25⋅1=ab+2b2√5(ab+2b )=√52, 当且仅当a =12,b =√52时取等号,此时a +b ≠1.故ab+2ba 2+b 2+1<√52.小提示:本题主要考查利用基本不等式求和的最小值,以及利用基本不等式证明不等式,属基础题. 18、已知二次函数y =x 2−2tx +t 2−1(t ∈R ).(1)若该二次函数有两个互为相反数的零点,解不等式x2−2tx+t2−1≥0;(2)若关于x的方程x2−2tx+t2−1=0的两个实根均大于−2且小于4,求实数t的取值范围.答案:(1){x|x≥1或x≤−1}(2){t|−1<t<3}分析:(1)设二次函数y=x2−2tx+t2−1(t∈R)的两个零点分别为x1,x2,由x1+x2=0求出t,直接解得;(2)由根的分布情况列不等式组,求出实数t的取值范围.(1)设二次函数y=x2−2tx+t2−1(t∈R)的两个零点分别为x1,x2,由已知得x1+x2=0,而x1+x2=2t,所以2t=0,故t=0,不等式x2−2tx+t2−1≥0即x2−1≥0,解得x≥1或x≤−1,故不等式的解集为{x|x≥1或x≤−1}.(2)因为方程x2−2tx+t2−1=0的两个实根均大于−2且小于4,所以{Δ=(−2t)2−4(t2−1)≥0−2<t<4(−2)2−2t×(−2)+t2−1>0 42−2t×4+t2−1>0,即{4≥0−2<t<4 t2+4t+3>0t2−8t+15>0,解得:−1<t<3,即实数t的取值范围为{t|−1<t<3}.。
一元二次函数知识点
一元二次函数知识点一元二次函数是数学中的重要概念,能够描述很多实际问题,并被广泛应用于数学、物理、工程等领域。
本文将介绍一元二次函数的基本定义、图像特征、性质以及应用,以帮助读者更好地理解和应用这一知识点。
首先,我们来看一元二次函数的定义。
一元二次函数是指形如y =ax^2 + bx + c的函数,其中a、b、c是常数,且a不为0。
其中,x为自变量,y为因变量,a、b、c是函数的系数。
一元二次函数的图像呈现出抛物线的形状,称为抛物线函数。
接下来,我们来探讨一元二次函数的图像特征。
对于一元二次函数y = ax^2 + bx + c而言,首先我们可以根据a的正负来确定抛物线的开口方向。
当a大于0时,抛物线开口朝上;当a小于0时,抛物线开口朝下。
此外,通过对x的取值范围的分析,可以确定抛物线的轴对称线在y轴左(右)侧,进而确定抛物线的对称中心。
对称中心的横坐标为-x轴系数b/2a。
图像的顶点就是抛物线的最高(最低)点,其纵坐标为函数的值,在对称中心对应的自变量下代入函数表达式即可求得。
一元二次函数还有一些重要的性质。
首先是零点的性质。
一元二次函数的零点是指函数的值为0的自变量取值。
对于一元二次函数y =ax^2 + bx + c,可以使用求根公式x = (-b±√(b^2-4ac))/2a来求解。
其中,b^2-4ac被称为判别式,根据判别式的值可以判断一元二次函数的零点情况。
当判别式大于0时,函数有两个不相等的实数零点;当判别式等于0时,函数有一个重根零点;当判别式小于0时,函数没有实数零点。
除了零点,一元二次函数还有极值的性质。
当抛物线开口朝上时,函数的最小值为顶点的纵坐标;当抛物线开口朝下时,函数的最大值为顶点的纵坐标。
通过求导数,可以求得函数的导函数,进而求得函数的最值点和最值。
最后,我们来了解一元二次函数的应用。
一元二次函数广泛应用于许多实际问题的建模过程中。
例如,在物理领域中,一元二次函数可以用来描述自由落体运动的轨迹、飞行物体的抛体运动等;在经济领域中,一元二次函数可以用来分析成本、利润、收益等与输出量的关系;在工程领域中,一元二次函数可以用来研究材料的强度、力学结构等。
高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳(带答案)
高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳单选题1、设a>b>1,y1=b+1a+1,y2=ba,y3=b−1a−1,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y2<y3<y1答案:C分析:利用作差法先比较y1,y2,再比较y2,y3即可得出y1,y2,y3的大小关系.解:由a>b>1,有y1﹣y2=b+1a+1−ba=ab+a−ab−b(a+1)a=a−b(a+1)a>0,即y1>y2,由a>b>1,有y2﹣y3=ba −b−1a−1=ab−b−ab+aa(a−1)=a−ba(a−1)>0,即y2>y3,所以y1>y2>y3,故选:C.2、已知a>0,b>0,a+b=1,则y=1a +3b的最小值是()A.7B.2+√3C.4D.4+2√3答案:D分析:由“1”的妙用和基本不等式可求得结果. 因为a>0,b>0,a+b=1,所以y=1a +3b=(a+b)(1a+3b)=4+ba+3ab≥4+2√ba⋅3ab=4+2√3,当且仅当ba =3ab即b=√3a时,等号成立.结合a+b=1可知,当a=√3−12,b=3−√32时,y有最小值4+2√3.故选:D.3、下列命题正确的是()A.若ac>bc,则a>b B.若ac=bc,则a=bC.若a>b,则1a <1bD.若ac2>bc2,则a>b答案:D分析:由不等式性质依次判断各个选项即可. 对于A ,若c <0,由ac >bc 可得:a <b ,A 错误;对于B ,若c =0,则ac =bc =0,此时a =b 未必成立,B 错误; 对于C ,当a >0>b 时,1a>0>1b,C 错误;对于D ,当ac 2>bc 2时,由不等式性质知:a >b ,D 正确. 故选:D.4、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( ) A .90<a <100B .90<a <110C .100<a <110D .80<a <100 答案:A分析:首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据y >0,求x 的取值范围,即可得到a 的取值范围.设每个涨价x 元,涨价后的利润与原利润之差为y 元,则a =x +90,y =(10+x)⋅(400−20x)−10×400=−20x 2+200x .要使商家利润有所增加,则必须使y >0,即x 2−10x <0,得0<x <10,∴90<x +90<100,所以a 的取值为90<a <100. 故选:A5、已知a,b ∈R 且满足{1≤a +b ≤3−1≤a −b ≤1,则4a +2b 的取值范围是( )A .[0,12]B .[4,10]C .[2,10]D .[2,8] 答案:C分析:设4a +2b =A (a +b )+B (a −b ),求出A ,B 结合条件可得结果. 设4a +2b =A (a +b )+B (a −b ),可得{A +B =4A −B =2,解得{A =3B =1,4a +2b =3(a +b )+a −b ,因为{1≤a +b ≤3−1≤a −b ≤1 可得{3≤3(a +b )≤9−1≤a −b ≤1 ,所以2≤4a +2b ≤10. 故选:C.6、已知a >0,b >0,若a +4b =4ab ,则a +b 的最小值是( ) A .2B .√2+1C .94D .52答案:C分析:将a +4b =4ab ,转化为1b +4a =4,由a +b =14(a +b )(1b +4a )=14(5+ab +4b a),利用基本不等式求解.因为a +4b =4ab , 所以1b +4a =4,所以a +b =14(a +b )(1b +4a )=14(5+ab +4b a),≥14(5+2√ab ⋅4b a)=94, 当且仅当{1b +4a=4ab=4b a,即{a =32b =34时,等号成立, 故选:C7、若(x −a)2<4成立的一个充分不必要条件是1+12−x ≤0,则实数a 的取值范围为( ) A .(−∞,4]B .[1,4]C .(1,4)D .(1,4] 答案:D分析:解一元二次不等式、分式不等式求得题设条件为真时对应x 的范围,再根据条件的充分不必要关系求参数a 的取值范围.由(x −a)2<4,可得:a −2<x <a +2;由1+12−x =3−x 2−x ≤0,则{(x −2)(x −3)≤02−x ≠0,可得2<x ≤3;∵(x −a)2<4成立的一个充分不必要条件是1+12−x ≤0, ∴{a −2≤2a +2>3,可得1<a ≤4.故选:D.8、已知正实数a ,b 满足a +1b =2,则2ab +1a 的最小值是( ) A .52B .3C .92D .2√2+1 答案:A分析:由已知得, a =2−1b 代入得2ab +1a =2(2b −1)+b2b−1,令2b −1=t ,根据基本不等式可求得答案. 解:因为a +1b=2,所以a =2−1b>0,所以0<b <2 ,所以2ab +1a =2(2−1b )b +b 2b−1=2(2b −1)+b2b−1, 令2b −1=t ,则b =t +12,且−1<t <3 ,所以2ab +1a =2t +t +12t=2t +12t+12≥2√2t ⋅12t+12=52,当且仅当2t =12t,即t =12,b =34,a =23时,取等号,所以2ab +1a 的最小值是52. 故选:A. 多选题9、《几何原本》中的几何代数法(以几何方法研究代数问题)成为了后世数学家处理问题的重要依据.通过这一原理,很多代数的公理或定理都能够通过图形实现证明.如图,在AB 上取一点C ,使得AC =a,BC =b ,过点C 作CD ⊥AB 交以AB 为直径,O 为圆心的半圆周于点D ,连接OD .下面不能由OD ≥CD 直接证明的不等式为( )A .√ab ≤a+b 2(a >0,b >0)B .√ab ≥2ab a+b(a >0,b >0)C .a 2+b 2≥2ab(a >0,b >0)D .a+b 2≤a 2+b 22(a >0,b >0)答案:BCD解析:由AC =a,BC =b ,得到OD =12(a +b ),然后利用射影定理得到CD 2=ab 判断. 因为AC =a,BC =b ,所以OD =12(a +b ),因为∠ADB =90∘,所以由射影定理得CD 2=ab , 因为OD ≥CD , 所以√ab ≤a+b 2,当且仅当a =b 时取等号,故选:BCD10、已知P =a 2+b 2,Q =2ab ,R =(a+b )22,则( )A .P ≥RB .Q ≥RC .P ≤RD .P ≥Q 答案:AD分析:对于A,B,C 利用作差法即可比较出大小,对于D 利用不等式传递性即可. 对于A ,P −R =(a 2+b 2)−(a+b )22=(a−b )22≥0,则P ≥R ,故A 正确;对于B ,R −Q =(a+b )22−2ab =a 2−2ab+b 22=(a−b )22≥0,所以R ≥Q ,故B 错误;对于C ,由已证得P ≥R ,故C 错误; 因为P ≥R ,R ≥Q ,所以P ≥Q ,故D 正确 故选:AD11、已知x >0,y >0且3x +2y =10,则下列结论正确的是( ) A .xy 的最大值为625B .√3x +√2y 的最大值为2√5 C .3x+2y的最小值为52D .x 2+y 2的最大值为10013答案:BC分析:利用基本不等式直接判断A ;利用基本不等式求得(√3x +√2y)2的最大值可判断B ;利用基本不等式“1”的代换可判断C ;利用二次函数的性质可判断D ; ∵x >0,y >0且3x +2y =10,∴0<x <103,0<y <5对于A ,利用基本不等式得10=3x +2y ≥2√3x ×2y ,化简得xy ≤256,当且仅当3x =2y ,即x =53,y =52时,等号成立,所以xy 的最大值为256,故A 错误;对于B ,(√3x +√2y)2=3x +2y +2√6xy =10+2√6xy ≤10+10=20,当且仅当3x =2y ,即x =53,y =52时,等号成立,所以√3x +√2y 的最大值为2√5,故B 正确;对于C ,3x +2y =110×(3x +2y )(3x +2y )=110×(9+6x y +6y x+4)≥110×(13+2√6x y ⋅6yx)=52, 当且仅当6xy =6yx,即x =y =2时,等号成立,所以3x +2y 的最小值为52,故C 正确; 对于D ,x 2+y 2=(10−2y 3)2+y 2=13y 2−40y+1009(0<y <5)利用二次函数的性质知,当0<y <2013时,函数单调递减;当2013<y <5时,函数单调递增,∴(x 2+y2)min=13×(2013)2−40×2013+1009=10013,(x 2+y 2)max <13×(5)2−40×5+1009=2259,故D 错误;故选:BC 填空题12、设x 1、x 2、x 3、y 1、y 2、y 3是六个互不相等的实数,则在以下六个式子中:x 1y 1+x 2y 2+x 3y 3,x 1y 1+x 2y 3+x 3y 2,x 1y 2+x 2y 3+x 3y 1,x 1y 2+x 2y 1+x 3y 3,x 1y 3+x 2y 2+x 3y 1,x 1y 3+x 2y 1+x 3y 2,能同时取到150的代数式最多有________个. 答案:2分析:由作差法比较大小后判断 不妨设x 1<x 2<x 3,y 1<y 2<y 3,记x 1y 1+x 2y 2+x 3y 3为①式,x 1y 1+x 2y 3+x 3y 2为②式,以此类推, 由①−②=x 2y 2+x 3y 3−x 2y 3−x 3y 2=(x 2−x 3)(y 2−y 3)>0,故①>②, ②−③=x 1y 1+x 3y 2−x 1y 2−x 3y 1=(x 1−x 3)(y 1−y 2)>0,故②>③, ①−④=x 1y 1+x 2y 2−x 1y 2−x 2y 1=(x 1−x 2)(y 1−y 2)>0,故①>④, 同理得,①>⑤,②>⑥,③>⑤,④>③,④>⑥,⑥>⑤, 综上可知①>②>③>⑤,①>④>③>⑤,且②>⑥>⑤,④>⑥>⑤, 最多有②④或③⑥两项可同时取150,令x 1y 1+x 2y 3+x 3y 2=x 1y 2+x 2y 1+x 3y 3=150,得其一组解为{x 1=−1x 2=0x 3=1 ,{y 1=2y 2=152y 3=302所以答案是:213、已知实数x ,y ,满足{−1≤x +y ≤4,2≤x −y ≤3,则z =2x −3y 的取值范围是________.(用区间表示)答案:[3,8]分析:直接用x +y,x −y 表示出2x −3y ,然后由不等式性质得出结论. 2x −3y =m(x +y)+n(x −y)=(m +n )x +(m −n )y ,则{m +n =2m −n =−3 解得{m =−12n =52 ,则2x −3y =−12(x +y)+52(x −y), 又−1≤x +y ≤4,2≤x −y ≤3, −2≤−12(x +y )≤12, 5≤52(x −y )≤152∴5−2≤2x −3y ≤12+152,即3≤2x −3y ≤8, 所以答案是:[3,8].14、函数y =3x +1x−1(x >1)的最小值是_____ 答案:3+2√3分析:利用基本不等式可求得原函数的最小值. 因为x >1,则x −1>0,所以y =3(x −1)+1x−1+3≥2√3(x −1)×1x−1+3=2√3+3, 当且仅当3(x −1)=1x−1,因为x >1,即当x =3+√33时,等号成立.所以函数y =3x +1x−1(x >1)的最小值是2√3+3.所以答案是:3+2√3. 解答题15、已知a >0,b >0.(1)求证:a2+3b2≥2b(a+b);(2)若a+b=2ab,求ab的最小值.答案:(1)证明见解析;(2)1.分析:(1)对不等式两边式子作差,分解因式,判断作差的结果的符号,可得证.(2)根据a+b=2ab,可得2ab=a+b≥2√ab,从而得到√ab≥1,进而求得ab≥1,注意等号成立的条件,得到结果.证明:(1)∵a2+3b2−2b(a+b)=a2−2ab+b2=(a−b)2≥0,∴a2+3b2≥2b(a+b).(2)∵a>0,b>0,∴2ab=a+b≥2√ab,即2ab≥2√ab,∴√ab≥1,∴ab≥1.当且仅当a=b=1时取等号,此时ab取最小值1.小提示:该题主要是考查不等式的证明和运用基本不等式求最值,在证明不等式时,可以运用综合法也可以运用分析法,一般的比较大小的最重要的方法就是作差法,然后结合综合法和分析法来一起证明,属于中档题.。
部编版高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版
(名师选题)部编版高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版单选题1、关于x的不等式x2−(a+1)x+a<0的解集中恰有1个整数,则实数a的取值范围是()A.(−1,0]∪[2,3) B.[−2,−1)∪(3,4]C.[−1,0)∪(2,3] D.(−2,−1)∪(3,4)答案:C分析:分类讨论一元二次不等式的解,根据解集中只有一个整数,即可求解.由x2−(a+1)x+a<0得(x−1)(x−a)<0,若a=1,则不等式无解.若a>1,则不等式的解为1<x<a,此时要使不等式的解集中恰有1个整数解,则此时1个整数解为x=2,则2<a≤3.若a<1,则不等式的解为a<x<1,此时要使不等式的解集中恰有1个整数解,则此时1个整数解为x=0,则−1≤a<0.综上,满足条件的a的取值范围是[−1,0)∪(2,3]故选:C.2、设a<b<0,则下列不等式中不一定正确的是()A.2a >2bB.ac<bc C.|a|>-b D.√−a>√−b答案:B分析:利用不等式的性质对四个选项一一验证:对于A,利用不等式的可乘性进行证明;对于B,利用不等式的可乘性进行判断;对于C,直接证明;对于D,由开方性质进行证明.对于A,因为a<b<0,所以2ab >0,对a<b同乘以2ab,则有2a>2b,故A成立;对于B,当c>0时选项B成立,其余情况不成立,则选项B不成立;对于C,|a|=-a>-b,则选项C成立;对于D,由-a>-b>0,可得√−a>√−b,则选项D成立.故选:B3、已知函数y=x−4+9x+1(x>−1),当x=a时,y取得最小值b,则a+b=()A.−3B.2C.3D.8答案:C分析:通过题意可得x+1>0,然后由基本不等式即可求得答案解:因为x>−1,所以9x+1>0,x+1>0,所以y=x−4+9x+1=x+1+9x+1−5≥2√(x+1)⋅9x+1−5=1,当且仅当x+1=9x+1即x=2时,取等号,所以y的最小值为1,所以a=2,b=1,所以a+b=3,故选:C4、关于x的不等式ax2−|x|+2a≥0的解集是(−∞,+∞),则实数a的取值范围为()A.[√24,+∞)B.(−∞,√24]C.[−√24,√24]D.(−∞,−√24]∪[√24,+∞)答案:A分析:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,分x=0和a≠0两种情况讨论,结合基本不等式即可得出答案.解:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,当x=0时,a≥0,当a ≠0时,a ≥|x |x 2+2=1|x |+2|x |, 因为1|x |+2|x |≤2√|x |⋅2|x |=√24, 所以a ≥√24, 综上所述a ∈[√24,+∞). 故选:A.5、已知关于x 的不等式mx 2−6x +3m <0在(0,2]上有解,则实数m 的取值范围是( ) A .(−∞,√3)B .(−∞,127)C .(√3,+∞)D .(127,+∞)答案:A分析:分离参数,将问题转换为m <6x x 2+3在(0,2]上有解,设函数g(x)=6x x 2+3,x ∈(0,2],求出函数g(x)=6x x 2+3的最大值,即可求得答案.由题意得,mx 2−6x +3m <0,x ∈(0,2],即m <6x x 2+3 , 故问题转化为m <6x x 2+3在(0,2]上有解,设g(x)=6x x 2+3,则g(x)=6x x 2+3=6x+3x ,x ∈(0,2], 对于x +3x≥2√3 ,当且仅当x =√3∈(0,2]时取等号, 则g(x)max =2√3=√3,故m <√3 ,故选:A 6、已知a,b 为正实数且a +b =2,则b a +2b 的最小值为( )A .32B .√2+1C .52D .3答案:D 分析:由题知b a +2b =2(1a +1b)−1,再结合基本不等式求解即可. 解:因为a,b 为正实数且a +b =2,所以b=2−a,所以,ba +2b=2−aa+2b=2a+2b−1=2(1a+1b)−1因为2a +2b=2(1a+1b)=(a+b)(1a+1b)=2+ba+ab≥2+2=4,当且仅当a=b=1时等号成立;所以ba +2b=2−aa+2b=2a+2b−1≥3,当且仅当a=b=1时等号成立;故选:D7、已知实数a,b满足a+b=ab(a>1,b>1),则(a−1)2+(b−1)2的最小值为( )A.2B.1C.4D.5答案:A分析:将a-1和b-1看作整体,由a+b=ab(a>1,b>1)构造出(a−1)(b−1)=1,根据(a−1)2+ (b−1)2≥2(a−1)(b−1)即可求解.由a+b=ab(a>1,b>1)得a+b−ab−1=−1,因式分解得(a−1)(b−1)=1,则(a−1)2+(b−1)2≥2(a−1)(b−1)=2,当且仅当a=b=2时取得最小值.故选:A.8、下列命题中,是真命题的是()A.如果a>b,那么ac>bc B.如果a>b,那么ac2>bc2C.如果a>b,那么ac >bcD.如果a>b,c<d,那么a−c>b−d答案:D分析:根据不等式的性质和特殊值法,逐项验证可得出答案. 对于A,如果c=0,那么ac=bc,故错误;对于B,如果c=0,那么ac2=bc2,故错误;对于C,如果c<0,那么ac <bc,故错误;对于D,如果c<d,那么−c>−d,由a>b,则a−c>b−d,故正确.故选:D.多选题9、已知函数f(x)=x2−2x+2,关于f(x)的最大(小)值有如下结论,其中正确的是()A.f(x)在区间[−1,0]上的最小值为1B.f(x)在区间[−1,2]上既有最小值,又有最大值C.f(x)在区间[2,3]上有最小值2,最大值5D.当0<a<1时f(x)在区间[0,a]上的最小值为f(a);当a>1时f(x)在区间[0,a]上的最小值为1答案:BCD分析:根据二次函数的图象和性质判断.函数f(x)=x2−2x+2=(x−1)2+1的图象开口向上,对称轴为直线x=1.对于A选项,因为f(x)在区间[−1,0]上单调递减,所以f(x)在区间[−1,0]上的最小值为f(0)=2,所以错误;对于B选项,因为f(x)在区间[−1,1]上单调递减,在[1,2]上单调递增,所以f(x)在区间[−1,2]上的最小值为f(1)=1,又因为f(−1)=5,f(2)=2,f(−1)>f(2),所以f(x)在区间[−1,2]上的最大值为f(−1)=5,所以此选项正确;对于C选项,因为f(x)在区间[2,3]上单调递增,所以f(x)在区间[2,3]上的最小值为f(2)=2,最大值为f(3)=5,所以C正确;对于D选项,当0<a<1时,f(x)在区间[0,a]上单调递减,所以f(x)的最小值为f(a),当a>1时,因为f(x)在区间[0,1]上单调递减,在[1,a]上单调递增,所以f(x)在区间[0,a]上的最小值为f(1)=1,所以D正确.故选:BCD10、已知函数y=ax2+bx-3,则下列结论正确的是()A.关于x的不等式ax2+bx-3<0的解集可以是{x|x>3}B.关于x的不等式ax2+bx-3>0的解集可以是∅C.函数y=ax2+bx-3的图象与x轴正半轴可以有两个交点D.“关于x的方程ax2+bx-3=0有一个正根和一个负根”的充要条件是“a>0”答案:BCD分析:根据不等式的解集求出a、b,再解不等式ax2+bx-3<0可判断A;取a=-1,b=0,解不等式-x2-3>0可判断B;取a=-1,b=4可判断C;根据根的分布、充要条件的定义可判断D.若不等式ax 2+bx -3<0的解集是{x |x >3},则a =0且3b -3=0,得b =1,而当a =0,b =1时,不等式ax 2+bx -3<0,即x -3<0,得x <3,与x >3矛盾,故A 错误;取a =-1,b =0,此时不等式-x 2-3>0的解集为∅,故B 正确;函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点,即ax 2+bx -3=0可以有2个正根,取a =-1,b =4,则由y =-x 2+4x -3=0,得x =1或3,故C 正确;若关于x 的方程ax 2+bx -3=0有一个正根和一个负根,则{a ≠0,−3a <0,得a >0,若a >0,则Δ=b 2+12a >0,故关于x 的方程ax 2+bx -3=0有两个不等的实根x 1,x 2,且x 1x 2=-3a <0,即关于x 的方程ax 2+bx -3=0有一个正根和一个负根.因此“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0”,故D 正确.故选:BCD .11、设实数a 、b 、c 满足b +c =6−4a +3a 2,c −b =4−4a +a 2,则下列不等式成立的是()A .c <bB .b ≥1C .b ≤aD .a <c答案:BD分析:由已知可得b =a 2+1,作差即可比较大小,得出答案.∵{b +c =6−4a +3a 2c −b =4−4a +a 2 ,两式相减得2b =2a 2+2,即b =a 2+1,∴b ≥1.又b −a =a 2+1−a =(a −12)2+34>0,∴b >a .而c −b =4−4a +a 2=(a −2)2≥0.∴c ≥b ,从而c ≥b >a .故选:BD .填空题12、若关于x 的不等式x 2+ax −2<0的解集是(−1,b),则a +b =______.答案:1分析:由题意可得−1,b 是方程x 2+ax −2=0的两个根,所以−1+b =−a ,从而可求得结果解:因为关于x 的不等式x 2+ax −2<0的解集是(−1,b),所以−1,b 是方程x 2+ax −2=0的两个根,所以由根与系数的关系可得−1+b=−a,得a+b=1,所以答案是:1。
高一数学第2章 一元二次函数、方程和不等式 章末重难点归纳总结(解析版)
第2章一元二次函数、方程和不等式章末重难点归纳总结考点一 基本不等式常见考法【例1-1】(2022·浙江·温州中学)若正数,a b 满足a b ab +=,则2+a b 的最小值为( ) A .6 B .42C .322+D .222+【答案】C【解析】因为正数,a b 满足a b ab +=,所以111a b+=,所以112(2)a b a b a b ⎛⎫+=++ ⎪⎝⎭23a b b a =++232322a bb a ≥+⋅+ 当且仅当2a b b a =,即2221,a b +==C【例1-2】(2022·湖北十堰·高一期末)若0a >,0b >,且3327ab a b =++,则ab 的最小值为( ) A .9 B .16 C .49 D .81【答案】D【解析】由题意得332727ab a b ab =++≥,得)()627930ab ab ab ab -=≥9ab ,即81ab ≥,当且仅当9a b ==时,等号成立.故选:D 【例1-3】(2021·四川德阳·高一期末)若关于x 的不等式101x ax ->+的解集为11a ⎛⎫- ⎪⎝⎭,,则a 的取值范围为( )A .() 1? ∞+,B .(0,1)C .()1?∞--, D .(-1,0)【答案】C【解析】不等式101x ax ->+ 等价于()()110x ax -+>,设()()()11f x x ax =-+ , 显然a =0不符合题意, 若0a > ,()()111f x x x a a ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦,()f x 是开口向上,零点分别为1和1a - 的抛物线, 对于()0f x > ,解集为1x a <- 或1x > ,不符合题意;若0a < ,则()f x 是开口向下,零点分别为1和1a- 的抛物线,对于()0f x > ,依题意解集为1,1a ⎛⎫- ⎪⎝⎭,11a ∴-< ,即(),1a ∞∈-- ,故选:C.【例1-4】(2021·江苏·高一专题练习) 若两个正实数,x y 满足141x y +=且存在这样的,x y 使不等式234yx m m +<+有解,则实数m 的取值范围是( ) A .(1,4)- B .(4,1)-C .()(),41,-∞-+∞D .(,3)(0,)∞∞--⋃+【答案】C【解析】正实数x ,y 满足141x y+=,144422244444y y x y x y x x x y y x y x⎛⎫⎛⎫∴+=++=+++⋅ ⎪ ⎪⎝⎭⎝⎭ 当且仅当44x yy x =且141x y+=,即2x =,8y =时取等号, 存在x ,y 使不等式234yx m m +<+有解, 243m m ∴<+,解可得1m 或4m <-,即()(),41,m ∈-∞-+∞,故选:C .【一隅三反】1.(2022·四川德阳)若关于x 的不等式101x ax ->+的解集为11a ⎛⎫- ⎪⎝⎭,,则a 的取值范围为( ) A .() 1? ∞+,B .(0,1)C .()1?∞--, D .(-1,0)【答案】C 【解析】不等式101x ax ->+ 等价于()()110x ax -+>,设()()()11f x x ax =-+ ,显然a =0不符合题意, 若0a > ,()()111f x x x a a ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦,()f x 是开口向上,零点分别为1和1a - 的抛物线, 对于()0f x > ,解集为1x a<- 或1x > ,不符合题意;若0a < ,则()f x 是开口向下,零点分别为1和1a- 的抛物线,对于()0f x > ,依题意解集为1,1a ⎛⎫- ⎪⎝⎭,11a ∴-< ,即(),1a ∞∈-- ,故选:C.2.(2022·天津红桥·)若a ,b 都是正数,且1ab =,则11822a b a b+++的最小值为( )A .4B .8C .3D .42【答案】A【解析】若a ,b 都是正数,且1ab = ∴11888824222222b a a b a b a b a b a b a b a b++++=++=+⋅++++≥, 当且仅当4a b +=时等号成立,故选:A.3.(2022·四川·成都外国语学校高一阶段练习(文))设0a >,0b >,且1a b +=,则4aba b+的最大值为( ).A .110 B .19C .227 D .15【答案】B【解析】∵1a b +=,1414ab a b a b =++,()4141445529a b a ba b a b a b b a b a ⎛⎫+=++=++≥+⋅= ⎪⎝⎭, 当且仅当23a =,13b =时取等号,∵149ab a b ≤+.故选:B . 4.(2022·全国·专题练习)(1)已知01x <<,则(43)x x -取得最大值时x 的值为________. (2)已知54x <,则1()4245f x x x =-+-的最大值为________. (3)函数22(1)1x y x x +=>-的最小值为________.【答案】(1)23(2) 1 (3) 232 【解析】(1)2113(43)4(43)3(43)3323x x x x x x +-⎡⎤-=⨯-≤⨯=⎢⎥⎣⎦, 当且仅当343x x =-,即23x =时,取等号.故答案为:23.(2)因为54x <,所以540x ->, 则()()()1114254325431455454f x x x x x x x⎡⎤=-+=--++≤--⨯=⎢⎥---⎣⎦, 当且仅当15454x x-=-,即1x =时,取等号.故1()4245f x x x =-+-的最大值为1. 故答案为:1.(3)2222(21)(22)3(1)2(1)3111x x x x x x y x x x +-++-+-+-+===--- 3122321x x =-++≥-.当且仅当311x x -=-,即31x =时,等号成立. 故答案为:232.5.(2022·浙江衢州·高一阶段练习)已知正实数a 、b 满足131a b+=,则()()12a b ++的最小值是___________. 【答案】13230+3013【解析】因为正实数a 、b 满足131a b+=,则03ba b =>-,由0b >可得3b >,所以,()()()()()()32312122222333b b a b b b b b b b +⎛⎫⎛⎫++=++=++=++ ⎪ ⎪---⎝⎭⎝⎭()()()()33515152223132231313230333b b b b b b b -+=++=-++≥-⋅=+---当且仅当630b +=.因此,()()12a b ++的最小值是13230+故答案为:1330+ 考点二 三个一元二次的关系【例2-1】(2021·安徽省定远中学高一阶段练习)已知关于x 的不等式20ax bx c ++>的解集为()2,4-,则不等式20cx bx a -+<的解集是( ) A .12xx ⎧<-⎨⎩∣或14x ⎫>⎬⎭ B .1142xx ⎧⎫-<<⎨⎬⎩⎭∣ C .14xx ⎧<-⎨⎩∣或12x ⎫>⎬⎭ D .1124xx ⎧⎫-<<⎨⎬⎩⎭∣ 【答案】B【解析】由题意得24,24,0b ca a a-+=--⨯=<,即2,8b a c a =-=-,所以2820ax ax a -++<即28210x x --<,解得1142x -<<.故选:B【例2-2】(2022·甘肃定西·高一阶段练习)若关于x 的不等式()2330x m x m -++<的解集中恰有3个整数,则实数m 的取值范围为( ) A .(]6,7B .[)1,0-C .[)(]1,06,7-⋃D .[]1,7-【答案】C【解析】不等式()2330x m x m -++<,即()()30x x m --<,当3m >时,不等式解集为()3,m ,此时要使解集中恰有3个整数,这3个整数只能是4,5,6,故67m <≤; 当3m =时,不等式解集为∅,此时不符合题意;当3m <时,不等式解集为(),3m ,此时要使解集中恰有3个整数,这3个整数只能是0,1,2,故10m -≤<; 故实数m 的取值范围为[)(]1,06,7-⋃.故选:C【例2-3】(2022·江西宜春)已知:4p m <-,q :方程240x mx ++=有两个不相等的实数根,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】方程240x mx ++=有两个不相等的实数根,当且仅当2160m ∆=->,解得4m <-或4m >, 显然,p q ⇒,q p ,所以p 是q 的充分不必要条件.故选:A【一隅三反】1.(2022·江苏·高一)已知关于x 的不等式ax b >的解集是{|2}x x <,则关于x 的不等式()()10ax b x +->的解集是( )A .()()12-∞⋃+∞,, B .()12, C .()()21-∞-⋃+∞,, D .()21-,【答案】D【解析】关于x 的不等式ax b >的解集为{|2}x x <,0a ∴<,20a b -=,()()10ax b x ∴+->可化为()()210a x x +->,21x ∴-<<,∴关于x 的不等式()()10ax b x +->的解集是()21-,.故选:D .2.(2022·广东·汕头市潮阳区河溪中学高一期中)(多选)已知关于x 的不等式20ax bx c ++>的解集为()(),23,,∞∞--⋃+则( )A .0a <B .不等式0bx c ->的解集为{}|6x x <C .420a b c ++<D .不等式20cx bx a -+≥的解集为11,32⎛⎫- ⎪⎝⎭【答案】BC【解析】因为关于x 的不等式20ax bx c ++>的解集为()(),23,,∞∞--⋃+ 所以0a >,2,3-是方程20ax bx c ++=,所以A 错误,2323b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,则6b a c a =-⎧⎨=-⎩,对于B ,由0bx c ->,得60ax a -+>,因为0a >,所以6x <,所以不等式0bx c ->的解集为{}|6x x <,所以B 正确,对于C ,因为0a >,6b ac a=-⎧⎨=-⎩,所以4242()(6)40a b c a a a a ++=+-+-=-<,所以C 正确,对于D ,不等式20cx bx a -+≥可化为260ax ax a -++≥,因为0a >,所以2610x x --≤,解得1132x -≤≤,所以原不等式的解集为11,32⎡⎤-⎢⎥⎣⎦,所以D 错误,故选:BC30(2022广东)在∵A B A ⋃=,∵A B ⋂≠∅,∵B A ⊆R这三个条件中任选一个,补充在下面问题(3)中,若问题中的实数m 存在,求m 的取值范围;若不存在,说明理由.已知一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,关于x 的不等式()2ax am b x bm -++<的解集为B (其中m ∈R ). (1)求a ,b 的值; (2)求集合B ;(3)是否存在实数m ,使得_______.(注:如果选择多个条件分别解答,按第一个解答计分). 【答案】(1)1、2;(2)当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =; (3)若选∵:2m ≥;若选∵:1m <或2m >;若选∵:12m ≤≤.【解析】(1)由一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,得0a >,且方程2320ax x -+=的两根为1、b ,∵0,31,21,a b a b a⎧⎪>⎪⎪=+⎨⎪⎪=⨯⎪⎩ 解得1,2.a b =⎧⎨=⎩ (2)由(1)可知()20ax am b x bm -++<即为()2220x m x m -++<,即()()20x m x --<.m <2时,2m x <<; m =2时,不等式无解; m >2时,2x m <<.综上,当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =. (3)由(1)知{1A x x =<或}2x >, 若选①:A B A ⋃=,则B A ⊆, 当2m <时,(),2B m =,不满足; 当2m =时,B =∅,满足; 当2m >时,()2,B m =,满足; ∵选①,则实数m 的取值范围是2m ≥; 若选②:A B ⋂≠∅,当2m <时,(),2B m =,则1m <; 当2m =时,B =∅,不满足; 当2m >时,()2,B m =,满足;∵选②,则实数m 的取值范围是1m <或2m >; 若选③:B A ⊆R,A R[]1,2=,当2m <时,(),2B m =,则m ≥1,∵12m ≤<; 当2m =时,B =∅,满足; 当2m >时,()2,B m =,不满足. ∵选③,则实数m 的取值范围是12m ≤≤.考点三 恒成立或存在问题【例3-1】(2022·全国·专题练习)若命题“0x ∃∈R ,20020x x m -+<”为真命题,则实数m 的取值范围为______.【答案】(),1-∞【解析】由题意可知,不等式220x x m -+<在R 上有解,∵440,1m m ∆=-><,∵实数m 的取值范围为(),1-∞,故答案为:(),1-∞【例3-2】(2022·全国·专题练习)已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为( )A .(-∞,2)(3⋃,)∞+B .(-∞,1)(2⋃,)∞+C .(-∞,1)(3⋃,)∞+D .(1,3)【答案】C【解析】令()2(2)44f a x a x x =-+-+,则不等式2(4)420x a x a +-+->恒成立转化为()0f a >在[1,1]a ∈-上恒成立.∴有(1)0(1)0f f ->⎧⎨>⎩,即22(2)4402440x x x x x x ⎧--+-+>⎨-+-+>⎩,整理得:22560320x x x x ⎧-+>⎨-+>⎩,解得:1x <或3x >. x 的取值范围为()(),13,-∞⋃+∞.故选:C .【一隅三反】1.(2022·江西吉安)若关于x 的不等式2220ax ax --<恒成立,则实数a 的取值范围为( ) A .[]2,0- B .(]2,0- C .()2,0- D .()(),20,-∞-⋃+∞【答案】B【解析】当0a =时,不等式成立;当0a ≠时,不等式2220ax ax --<恒成立,等价于()()20,2420,a a a <⎧⎪⎨∆=--⨯-<⎪⎩20a ∴-<<.综上,实数a 的取值范围为(]2,0-.故选:B . 2.(2022·全国·专题练习)已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( ) A .[]0,1B .(]0,1C .()(),01,-∞⋃+∞D .(][),01,-∞+∞【答案】A【解析】当0k =时,该不等式为80≥,成立;当0k ≠时,要满足关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,只需()2036480k k k k >⎧⎨-+≤⎩,解得01k <≤,综上所述,k 的取值范围是[]0,1,故选:A.3.(2021·全国·高一课时练习)关于x 的不等式22(11)m x mx m x +<+++对R x ∈恒成立,则实数m 的取值范围是( )A .(0)∞-,B .30,(4)⎛⎫∞+∞⎪- ⎝⎭,C .(]0-∞,D .(]40,3∞∞⎛⎫-⋃+ ⎪⎝⎭,【答案】C【解析】因为不等式22(11)m x mx m x +<+++对R x ∈恒成立, 所以210mx mx m ++-<对R x ∈恒成立, 所以,当0m =时,10-<对R x ∈恒成立.当0m ≠时,由题意,得20Δ410m m mm <⎧⎨=--<⎩,即20340m m m <⎧⎨->⎩,解得0m <, 综上,m 的取值范围为(]0-∞,.故选:C 4.(2022·山东·德州市第一中学高二阶段练习)命题“存在[]01,2x ∈-,20020x x a -->”为假命题,则实数a的取值范围是___________. 【答案】[)3,+∞【解析】由于“存在[]01,2x ∈-,20020x x a -->”为假命题,所以“[]21,2,20x x x a ∀∈---≤”,为真命题,所以22a x x ≥-在区间[]1,2-上恒成立,在区间[]1,2-上,当1x =-时,22x x -取得最大值为()()21213--⨯-=,所以3a ≥.故答案为:[)3,+∞5.(2022·黑龙江·鸡东县第二中学)已知命题“[1,2]x ∃∈-,230x x a +>-”是假命题,则实数a 的取值范围是________. 【答案】(,4]-∞-【解析】由题意得,“[1,2]x ∀∈-,230x x a -+≤”是真命题,则23a x x ≤-+对[1,2]x ∀∈-恒成立,在区间[]1,2-上,23x x -+的最小值为()()21314--+⨯-=-,所以()2min 34a x x ≤-+=-,即a 的取值范围是(,4]-∞-.故答案为:(,4]-∞-6.(2021·全国·高一专题练习)若不等式210ax x ++>在[]1,2x ∈时有解,则实数a 的取值范围为______. 【答案】(2,)-+∞【解析】由210ax x ++>,得21ax x >--,因为[]1,2x ∈,所以211a x x >--有解,令2211111()24f x x x x ⎛⎫=--=-++ ⎪⎝⎭,则()f x 在[1,2]上单调递增,所以min ()(1)2f x f ==-,所以2a >-,故答案为:(2,)-+∞7(2022·江苏)已知关于x 的不等式2243x x a a -+≥-在R 上有解,则实数a 的取值范围是__________. 【答案】[]1,4-【解析】因为关于x 的不等式2243x x a a -+≥-在R 上有解,()22424y x x x =-+=--+的最大值为4 所以234a a -≤,解得14a -≤≤故答案为:[]1,4-考点四 含参一元二次不等式解法【例4-1】(2022·四川)若关于x 的不等式101x ax ->+的解集为11a ⎛⎫- ⎪⎝⎭,,则a 的取值范围为( ) A .() 1? ∞+,B .(0,1)C .()1?∞--, D .(-1,0)【答案】C 【解析】不等式101x ax ->+ 等价于()()110x ax -+>,设()()()11f x x ax =-+ , 显然a =0不符合题意, 若0a > ,()()111f x x x a a ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦,()f x 是开口向上,零点分别为1和1a - 的抛物线,对于()0f x > ,解集为1x a<- 或1x > ,不符合题意;若0a < ,则()f x 是开口向下,零点分别为1和1a- 的抛物线,对于()0f x > ,依题意解集为1,1a ⎛⎫- ⎪⎝⎭,11a ∴-< ,即(),1a ∞∈-- ,故选:C.【例4-2】(2022·河北·石家庄市藁城区第一中学高一阶段练习)已知关于x 的不等式2325ax x ax -+>- (1)若不等式的解集为3{|1}2x x -<<-,则实数a 的值;(2)若R a ∈,求不等式的解集. 【答案】(1)2-;(2)答案见解析.【解析】(1)不等式22325(3)30ax x ax ax a x -+>-⇔+-->,依题意,3,12--是方程2(3)30ax a x +--=的二根,且0a <,因此,33(1)233(1)2a a a -⎧-+-=-⎪⎪⎨⎪-⨯-=-⎪⎩,解得2a =-,所以实数a 的值是2-.(2)由(1)知,2(3)30(3)(1)0ax a x ax x +-->⇔-+>, 当0a =时,解得1x <-,当0a >时,不等式化为3()(1)0x x a -+>,解得1x <-或3x a>,当0a <时,不等式化为3()(1)0x x a-+<, 当30a -<<时,有31a <-,解得31x a<<-, 当3a =-时,有31a=-,不等式无解, 当3a <-时,有31a >-,解得31x a-<<, 所以当0a =时,原不等式解集为(,1)-∞-,当0a >时,原不等式解集为3(,1)(,)a-∞-⋃+∞,当30a -<<时,原不等式解集为3(,1)a -,当3a =-时,原不等式解集为∅,当3a <-时,原不等式解集为3(1,)a-.【一隅三反】.(2022·全国·高三专题练习)解下列关于x 的不等式:(1)()22120ax a x +--<;(2)2(1)10ax a x -++>;(3)222ax x ax -≥-;(4)()210x x a a --->;(5)220ax x a -+<;(6)()()2220mx m x m R +-->∈;(7)ax 2-2(a +1)x +4>0. 【答案】答案见解析【解析】(1)2(21)20ax a x +--<当0a =时,不等式为20x --<,解集为(2,)-+∞;0a ≠时,不等式分解因式可得(1)(2)0ax x -+<当0a >时,故1()(2)0x x a -+<,此时解集为1(2,)a-;当12a =-时,1(1)(2)02x x --+<,故此时解集为{}||2x x x ≠-;当12a <-时,(1)(2)0ax x -+<可化为1()(2)0x x a -+>,又12a >-解集为1(,2)(,)a-∞-⋃+∞;当102a -<<时,(1)(2)0ax x -+<可化为1()(2)0x x a -+>,又12a <-解集为1(,)(2,)a-∞⋃-+∞.综上有,0a =时,解集为(2,)-+∞; 0a >时,解集为1(2,)a -;12a =-时,解集为{}||2x x x ≠-;12a <-时,解集为1(,2)(,)a -∞-⋃+∞;102a -<<时,解集为1(,)(2,)a-∞⋃-+∞ (2)把2(1)10ax a x -++>化简得(1)(1)0x ax -->, ∵当0a =时,不等式的解为{}|1x x < ∵当11a>,即10a a -<,得01a <<,此时,不等式的解为1{|x x a>或1}x < ∵当11a<,即10a a ->,得1a >或0a <,a当0a <时,不等式的解为1|1x x a ⎧⎫<<⎨⎬⎩⎭,∵当11a=,得1a =,此时,2(1)0x ->,解得{|x x R ∈且1}x ≠, 综上所述,当0a <时,不等式的解为1|1x x a ⎧⎫<<⎨⎬⎩⎭,当0a =时,不等式的解为{}|1x x <, 当01a <<时,不等式的解为1{|x x a>或1}x <, 当1a =时,不等式的解为{|x x R ∈且1}x ≠, 当1a >时,不等式的解为{1|x x a<或1}x >, (3)222ax x ax -≥-, 2(2)20ax a x +--≥,∵0a =时,220x --≥,可得{}|1x x ≤-; ∵0a ≠时,可得2()(1)0a x x a-+≥若0a >,解可得,{2|x x a≥或}1x ≤-; 若0a <,则可得2()(1)0x x a-+≤,()i 当21a >-即2a <-时,解集为[1-,2]a ; ()ii 当21a <-即20a -<<时,解集为[2a,]1-; ()iii 当21a=-即2a =-时,解集为{}1-. (4)不等式2(1)0x x a a --->可化为[]()(1)0x a x a --->. ∵当12a >时,1a a ,解集为{|x x a >,或1}x a <-; ∵当12a =时,1a a ,解集为1|2x x ⎧⎫≠⎨⎬⎩⎭; ∵当12a <时,1a a <-,解集为{|x x a <,或1}x a >-. 综上所述, 当12a >时,原不等式的解集为{|x x a >,或1}x a <-;22⎩⎭当12a <时,原不等式的解集为{|x x a <,或1}x a >-. (5)当0a =时,不等式即20x -<,解得0x >. 当0a ≠时,对于方程220ax a -+=,244a ∆=- 令∆<0,解得1a >或1a <-; 令0∆=,解得1a =或1-;令0∆>,解得01a <<或10a -<<,方程220ax x a -+=211a±-. 综上可得,当1a ≥时,不等式的解集为∅;当01a <<时,不等式的解集为221111|a a x x ⎧--+-⎪<<⎨⎪⎪⎩⎭; 当0a =时,不等式的解集为{}|0x x >; 当10a -<<时,不等式的解集211{|a x x +-<211}a x -->; 当1a =-时,不等式的解集为{}|1x x ≠-; 当1a <-时,不等式的解集为R .(6)原不等式可变形为(2)(1)0mx x -+>.∵当0m =时,则有2(1)0x -+>,即10x +<,解得1x <-; ∵当0m >时,21m>-,解原不等式得1x <-或2x m >;∵当0m <时,20m<. (i )当21m=-时,即当2m =-时,原不等式即为22(1)0x -+>,该不等式无解; (ii )当21m<-时,即当20m -<<时,解原不等式得21x m <<-;(iii )当21m>-时,即当2m <-时,解原不等式可得21x m -<<.综上所述:∵当2m <-时,原不等式的解集为2(1,)m-; ∵当2m =-时,原不等式的解集为∅; ∵当20m -<<时,原不等式的解集为2(,1)m-; ∵当0m =时,原不等式的解集为(,1)-∞-;∵当0m >时,原不等式的解集为2(,1)(,)m-∞-⋃+∞. (7)(1)当a =0时,原不等式可化为-2x +4>0,解得x <2,所以原不等式的解集为{x |x <2}. (2)当a >0时,原不等式可化为(2)(2)0ax x -->,对应方程的两个根为x 1=2a ,x 2=2.∵当0<a <1时,2a >2,所以原不等式的解集为{2|x x a >或2}x <;∵当a =1时,2a =2,所以原不等式的解集为{x |x ≠2};∵当a >1时,2a<2,所以原不等式的解集为2{|x x a <或2}x >.(3)当a <0时,原不等式可化为(2)(2)0ax x -+-<,对应方程的两个根为x 1=2a,x 2=2,则2a <2,所以原不等式的解集为2|2x x a ⎧⎫<<⎨⎬⎩⎭. 综上,a <0时,原不等式的解集为2|2x x a ⎧⎫<<⎨⎬⎩⎭;a =0时,原不等式的解集为{x |x <2}; 0<a ≤1时,原不等式的解集为{2|x x a>或2}x <; 当a >1时,原不等式的解集为2{|x x a<或2}x >.。
高中数学第二章一元二次函数方程和不等式知识点总结归纳完整版(带答案)
高中数学第二章一元二次函数方程和不等式知识点总结归纳完整版单选题1、已知a,b 为正实数且a +b =2,则ba +2b 的最小值为( ) A .32B .√2+1C .52D .3 答案:D分析:由题知ba +2b =2(1a +1b )−1,再结合基本不等式求解即可.解:因为a,b 为正实数且a +b =2, 所以b =2−a , 所以,ba +2b =2−a a +2b =2a +2b −1=2(1a +1b )−1因为2a +2b =2(1a +1b )=(a +b )(1a +1b )=2+ba +ab ≥2+2=4,当且仅当a =b =1时等号成立; 所以ba +2b =2−a a+2b =2a +2b −1≥3,当且仅当a =b =1时等号成立;故选:D2、已知正数x ,y 满足2x+3y+13x+y=1,则x +y 的最小值( )A .3+2√24B .3+√24C .3+2√28D .3+√28答案:A分析:利用换元法和基本不等式即可求解. 令x +3y =m ,3x +y =n ,则2m +1n =1, 即m +n =(x +3y )+(3x +y )=4(x +y ), ∴x +y =m+n 4=(m 4+n 4)(2m +1n )=12+m 4n +2n 4m +14≥2√m 4n ⋅2n 4m +34=2×2√2+34=2√2+34, 当且仅当m4n =2n4m ,即m =2+√2,n =√2+1时,等号成立, 故选:A.3、已知关于x 的不等式(2a +3m )x 2−(b −3m )x −1>0(a >0,b >0)的解集为(−∞,−1)∪(12,+∞),则下列结论错误的是()A.2a+b=1B.ab的最大值为18C.1a +2b的最小值为4D.1a+1b的最小值为3+2√2答案:C分析:根据不等式的解集与方程根的关系,结合韦达定理,求得2a+3m=2,b−3m=−1,可判定A正确;结合基本不等式和“1”的代换,可判断B正确,C错误,D正确.由题意,不等式(2a+3m)x2−(b−3m)x−1>0的解集为(−∞,−1]∪[12,+∞),可得2a+3m>0,且方程(2a+3m)x2−(b−3m)x−1=0的两根为−1和12,所以{−1+12=b−3m2a+3m−1×12=−12a+3m,所以2a+3m=2,b−3m=−1,所以2a+b=1,所以A正确;因为a>0,b>0,所以2a+b=1≥2√2ab,可得ab≤18,当且仅当2a=b=12时取等号,所以ab的最大值为18,所以B正确;由1a +2b=(1a+2b)(2a+b)=4+ba+4ab≥4+2√ba⋅4ab=4+4=8,当且仅当ba =4ab时,即2a=b=12时取等号,所以1a+2b的最小值为8,所以C错误;由1a +1b=(1a+1b)(2a+b)=3+ba+2ab≥3+2√ba⋅2ab=3+√2,当且仅当ba =2ab时,即b=√2a时,等号成立,所以1a +1b的最小值为3+2√2,所以D正确.故选:C.4、已知a=√2,b=√7−√3,c=√6−√2,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.c>a>b D.c>b>a答案:B分析:通过作差法,a−b=√2+√3−√7,确定符号,排除D选项;通过作差法,a−c=2√2−√6,确定符号,排除C选项;通过作差法,b−c=(√7+√2)−(√6+√3),确定符号,排除A选项;由a−b=√2+√3−√7,且(√2+√3)2=5+2√6>7,故a>b;由a−c=2√2−√6且(2√2)2=8>6,故a>c;b−c=(√7+√2)−(√6+√3)且(√6+√3)2=9+2√18>9+2√14=(√7+√2)2,故c>b.所以a>c>b,故选:B.5、要使关于x的方程x2+(a2−1)x+a−2=0的一根比1大且另一根比1小,则实数a的取值范围是()A.{a|−1<a<2}B.{a|−2<a<1}C.{a|a<−2}D.{a|a>1}答案:B分析:根据二次方程根的分布可得出关于实数a的不等式,由此可解得实数a的取值范围.由题意可得1+(a2−1)+a−2=a2+a−2<0,解得−2<a<1.故选:B.6、若x<0,则x+14x−2有()A.最小值−1B.最小值−3C.最大值−1D.最大值−3答案:D分析:根据基本不等式,首先取相反数,再尝试取等号,可得答案.因为x<0,所以x+14x −2=−(−x+1−4x)−2≤−2√−x⋅1−4x−2=−3,当且仅当−x=1−4x,即x=−12时等号成立,故x+14x−2有最大值−3.故选:D.7、若a>b>0,则下列不等式中一定成立的是()A.ba >b+1a+1B.a+1a>b+1bC.a+1b>b+1aD.2a+ba+2b>ab答案:C分析:根据不等式的性质,对选项逐一判断对于A,ba −b+1a+1=b−aa(a+1),因为a>b>0,故ba−b+1a+1=b−aa(a+1)<0,即ba<b+1a+1,故A错;对于B,a+1a −(b+1b)=(a−b)(1−1ab)不确定符号,取a=1,b=12则a+1a<b+1b,故B错误;对于C,a+1b −(b+1a)=(a−b)(1+1ab),因为a>b>0,故a+1b −(b+1a)=(a−b)(1+1ab)>0,即a+1b>b+1a,故C正确;对于D,2a+ba+2b −ab=(b+a)(b−a)(a+2b)b,因为a>b>0,故2a+ba+2b −ab=(b+a)(b−a)(a+2b)b<0,即2a+ba+2b<ab,故D错误.故选:C8、设a<b<0,则下列不等式中不一定正确的是()A.2a >2bB.ac<bc C.|a|>-b D.√−a>√−b答案:B分析:利用不等式的性质对四个选项一一验证:对于A,利用不等式的可乘性进行证明;对于B,利用不等式的可乘性进行判断;对于C,直接证明;对于D,由开方性质进行证明.对于A,因为a<b<0,所以2ab >0,对a<b同乘以2ab,则有2a>2b,故A成立;对于B,当c>0时选项B成立,其余情况不成立,则选项B不成立;对于C,|a|=-a>-b,则选项C成立;对于D,由-a>-b>0,可得√−a>√−b,则选项D成立.故选:B多选题9、若a>1,b<2,则()A.a−b>−1B.(a−1)(b−2)<0C .a +1a−1的最小值为2D .12−b≥b答案:ABD分析:利用不等式的性质可判断ABD 选项;利用基本不等式可判断C 选项. 因为b <2,所以−b >−2,又a >1,所以a −b >−1,A 正确;因为a >1,b <2,则a −1>0,b −2<0,所以(a −1)(b −2)<0,B 正确; 因为a >1,所以a −1>0,所以a +1a−1=a −1+1a−1+1≥2√(a −1)⋅1a−1+1=3, 当且仅当a =2时,等号成立,C 不正确;因为b <2,则b (b −2)+1=(b −1)2≥0,所以,b (2−b )≤1, 因为2−b >0,所以12−b≥b ,D 正确.故选:ABD.10、已知不等式ax 2+bx +c >0的解集为{x|−12<x <2},则下列结论正确的是( ) A .a >0B .b >0C .c >0D .a +b +c >0 答案:BCD分析:对A ,根据一元二次方程与一元二次函数的关系即可判断;对B ,C ,利用韦达定理即可判断;对D ,根据韦达定理以及b >0,即可求解.解:对A ,∵不等式ax 2+bx +c >0的解集为{x|−12<x <2}, 故相应的二次函数y =ax 2+bx +c 的图象开口向下, 即a <0,故A 错误;对B ,C ,由题意知: 2和−12是关于x 的方程ax 2+bx +c =0的两个根, 则有ca =2×(−12)=−1<0,−ba =2+(−12)=32>0, 又∵a <0,故b >0,c >0,故B ,C 正确; 对D ,∵c a =−1, ∴a +c =0, 又∵b >0,∴a+b+c>0,故D正确.故选:BCD.11、《几何原本》中的几何代数法(以几何方法研究代数问题)成为了后世数学家处理问题的重要依据.通过这一原理,很多代数的公理或定理都能够通过图形实现证明.如图,在AB上取一点C,使得AC=a,BC=b,过点C作CD⊥AB交以AB为直径,O为圆心的半圆周于点D,连接.下面不能由OD≥CD直接证明的不等式为()A.√ab≤a+b2(a>0,b>0)B.√ab≥2aba+b(a>0,b>0)C.a2+b2≥2ab(a>0,b>0)D.a+b2≤a2+b22(a>0,b>0)答案:BCD解析:由AC=a,BC=b,得到OD=12(a+b),然后利用射影定理得到CD2=ab判断. 因为AC=a,BC=b,所以OD=12(a+b),因为∠ADB=90∘,所以由射影定理得CD2=ab,因为OD≥CD,所以√ab≤a+b2,当且仅当a=b时取等号,故选:BCD12、若1≤x≤3≤y≤5,则()A.4≤x+y≤8B.x+y+1x +16y的最小值为10C.−2≤x−y≤0D.(x+1y )(y+4x)的最小值为9OD答案:AB分析:根据不等式的基本性质和基本不等式进行求解判断即可.因为1≤x ≤3≤y ≤5,所以4≤x +y ≤8,−4≤x −y ≤0,故A 正确,C 错误; 因为x +y +1x +16y=x +1x +y +16y≥2√x ⋅1x +2√y ⋅16y=10,当且仅当x =1,y =4时,等号成立,所以x +y +1x +16y的最小值为10,因此B 正确;因为(x +1y )(y +4x )=xy +4xy +5≥2√4+5=9,当且仅当xy =2时,等号成立,但1≤x ≤3≤y ≤5,xy 取不到2,所以(x +1y )(y +4x )的最小值不是9,因此D 不正确, 故选:AB13、若a <b <0,则下列不等式恒成立的是( ) A .1a−b <1a B .1|a |>1|b |C .(a +1b )2>(b +1a )2D .(a +1a )2>(b +1b )2答案:AC分析:根据作差法比较大小或者取特殊值举反例即可. 对于A 选项, 由于a <b <0,故a −b <0,所以1a−b −1a =a−(a−b )a (a−b )=b a (a−b )<0, 即1a−b <1a ,故A 选项正确; 对于B 选项, 由于a <b <0,故a −b <0, 1|a|−1|b|=|b |−|a ||a ||b |=a−b |a ||b |<0,故1|a|<1|b |,故B 选项错误;对于C 选项, 因为a <b <0,故0>1a >1b ,所以0>b +1a >a +1b ,所以(a +1b )2>(b +1a )2,故C 选项正确; 对于D 选项,令a =−2,b =−12,则a +1a =b +1b =−52,所以(a +1a )2>(b +1b )2不成立,故D 选项错误;故选:AC小提示:本题考查不等式的性质,作差法比较大小,考查运算求解能力,是中档题.本题解题的关键在于利用不等式的性质或者作差法比较大小,进而判断. 填空题14、不等式ax 2+x +1>0的解集为(m,1),则m =__________. 答案:−12##−0.5分析:利用一元二次方程根与系数的关系可求得m 的值.由已知,关于x 的二次方程ax 2+x +1=0的两根分别为m 、1,且a <0, 所以,{a +2=01⋅m =1a,解得{a =−2m =−12.所以答案是:−12.15、函数y =2√x 2+1的最小值是___________.答案:4分析:根据基本不等式可求出结果. 令t =√x 2+1≥1,则y =2√x 2+1=t +4t≥4,当且仅当t =2,即x =±√3时,y min =4.所以函数y =2√x 2+1的最小值是4.所以答案是:4小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 16、已知a >0,b >0,且ab =1,则12a+12b+8a+b的最小值为_________.答案:4分析:根据已知条件,将所求的式子化为a+b 2+8a+b ,利用基本不等式即可求解. ∵a >0,b >0,∴a +b >0,ab =1,∴12a+12b +8a+b=ab 2a+ab 2b+8a+b=a+b 2+8a+b ≥2√a+b 2×8a+b =4,当且仅当a +b =4时取等号,结合ab =1,解得a =2−√3,b =2+√3,或a =2+√3,b =2−√3时,等号成立. 所以答案是:4小提示:本题考查应用基本不等式求最值,“1”的合理变换是解题的关键,属于基础题. 解答题17、如图,动物园要以墙体为背面,用钢筋网围成四间具有相同面积的矩形虎笼.(1)现有可围36m 长钢筋网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼的面积最大?(2)若每间虎笼的面积为20m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小? 答案:(1)长为92m ,宽为185m(2)长为5m ,宽为4m分析:(1)设每间老虎笼的长为xm ,宽为ym ,则每间老虎笼的面积为S =xy ,可得出4x +5y =36,利用基本不等式可求得S 的最大值,利用等号成立的条件求出x 、y 的值,即可得出结论;(2)设每间老虎笼的长为xm ,宽为ym ,则xy =20,利用基本不等式可求得钢筋网总长4x +5y 的最小值,利用等号成立的条件求出x 、y 的值,即可得出结论. (1)解:设每间老虎笼的长为xm ,宽为ym ,则每间老虎笼的面积为S =xy , 由已知可得4x +5y =36,由基本不等式可得S =xy =120⋅4x ⋅5y ≤120×(4x+5y 2)2=815(m 2),当且仅当{4x =5y4x +5y =36,即当{x =92y =185时,等号成立, 因此,每间虎笼的长为92m ,宽为185m 时,可使得每间虎笼的面积最大. (2)解:设每间老虎笼的长为xm ,宽为ym ,则xy =20, 钢筋网总长为4x +5y ≥2√20xy =40(m ),当且仅当{4x =5y xy =20,即当{x =5y =4时,等号成立,因此,每间虎笼的长为5m ,宽为4m 时,可使围成四间虎笼的钢筋网总长最小. 18、实数a 、b 满足−3≤a +b ≤2,−1≤a −b ≤4. (1)求实数a 、b 的取值范围; (2)求3a −2b 的取值范围. 答案:(1)a ∈[−2,3],b ∈[−72,32](2)[−4,11]分析:(1)由a =12[(a +b )+(a −b )],b =12[(a +b )−(a −b )]根据不等式的性质计算可得;(2)求出3a −2b =12(a +b)+52(a −b),再利用不等式的性质得解. (1)解:由−3≤a +b ≤2,−1≤a −b ≤4,则a =12[(a +b )+(a −b )],所以−4≤(a +b )+(a −b )≤6,所以−2≤12[(a +b )+(a −b )]≤3,即−2≤a ≤3,即实数a 的取值范围为[−2,3]. 因为b =12[(a +b )−(a −b )], 由−1≤a −b ≤4,所以−4≤b −a ≤1,所以−7≤(a +b )−(a −b )≤3, 所以−72≤12[(a +b )−(a −b )]≤32, ∴−72≤b ≤32,即实数b 的取值范围为[−72,32].(2)解:设3a −2b =m (a +b )+n (a −b )=(m +n )a +(m −n )b , 则{m +n =3m −n =−2,解得{m =12n =52,∴3a−2b=12(a+b)+52(a−b),∵−3≤a+b≤2,−1≤a−b≤4.∴−32≤12(a+b)≤1,−52≤52(a−b)≤10,∴−4≤3a−2b≤11,即3a−2b的取值范围为[−4,11].。
一元二次函数知识点汇总
1.定义:一般地,如果 是常数, ,那么 叫做 的一元二次函数.其中,x是自变量,a,b,c分别是函数表达式的二次项系数、一次项系数和常数项。
2.二次函数 的性质
(1)抛物线 的顶点是原点,对称轴是 轴.
(2)函数 的图像与 的符号关系:
①当 时 抛物线开口向上 顶点为其最低点;②当 时 抛物线开口向下 顶点为其最高点
当 时, ,∴抛物线 与 轴有且只有一个交点(0, ):
1 ,抛物线经过原点; ② ,与 轴交于正半轴;③ ,与 轴交于负半轴.
以上三点中,当结论和条件互换时仍成立.如抛物线的对称轴在 轴右侧,则 .
8.二次函数由特殊到一般,可分为以下几种形式:
① ;② ;③ ;④ ;⑤ .
图像特征如下:
函数解析式
的两个实数根.抛物线与 轴的交点情况可以由对应的一元二次方程的根的判别式判定:
①有两个交点 抛物线与 轴相交;
②有一个交点(顶点在 轴上) 抛物线与 轴相切;
③没有交点 抛物线与 轴相离.
(4)平行于 轴的直线与抛物线的交点
同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为 ,则横坐标是 的两个实数根.而根的存在情况仍如(3)一样由根的判别式判定。
★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★
7.抛物线 中, 的作用
(1) 决定开口方向及开口大小,这与 中的 完全一样.
(2) 和 共同决定抛物线对称轴的位置.由于抛物线 的对称轴是直线 ,故:
① 时,对称轴为 轴;② 时,对称轴在 轴左侧;③ 时,对称轴在 轴右侧.
(3) 的大小决定抛物线 与 轴交点的位置.
高中数学一元二次函数方程和不等式知识点总结(超全)
(每日一练)高中数学一元二次函数方程和不等式知识点总结(超全)单选题1、若不等式(ax−2)(|x|−b)≥0对任意的x∈(0,+∞)恒成立,则()B.a>0,ab=2A.a>0,ab=12C.a>0,a=2b D.a>0,b=2a答案:B分析:由选项可知a>0,故原不等式等价于)(|x|−b)≥0,当b≤0时,不满足题意,故b>0,再由二次函数的性质即可求解(x−2a由选项可知a>0,故原不等式等价于(x−2)(|x|−b)≥0,a当b≤0时,显然不满足题意,故b>0,=b,即ab=2,由二次函数的性质可知,此时必有2a故选:B2、关于x的方程x2+2(m−1)x+m2−m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.−1B.−4C.−4或1D.−1或4答案:A分析:α2+β2=(α+β)2−2α⋅β,利用韦达定理可得答案.∵关于x的方程x2+2(m−1)x+m2−m=0有两个实数根,∴Δ=[2(m−1)]2−4×1×(m2−m)=−4m+4⩾0,解得:m⩽1,∵关于x的方程x2+2(m−1)x+m2−m=0有两个实数根α,β,∴α+β=−2(m−1),α⋅β=m2−m,∴α2+β2=(α+β)2−2α⋅β=[−2(m−1)]2−2(m2−m)=12,即m2−3m−4=0,解得:m=−1或m=4(舍去).故选:A.3、若正数a,b满足a+b=ab,则a+2b的最小值为()A.6B.4√2C.3+2√2D.2+2√2答案:C分析:由a+b=ab,可得1a +1b=1,则a+2b=(a+2b)(1a+1b),化简后利用基本不等式可求得其最小值因为正数a,b满足a+b=ab,所以1a +1b=1,所以a+2b=(a+2b)(1a +1b)=3+ab+2ba≥3+2√ab ⋅2ba=3+2√2,当且仅当ab =2ba,即a=√2+1,b=2+√22时取等号,故选:C4、前后两个不等式解集相同的有()①x+52x−1≥0与(2x−1)(x+5)≥0②x+52x−1>0与(2x−1)(x+5)>0③x2(2x−1)(x+5)≥0与(2x−1)(x+5)≥0④x2(2x−1)(x+5)>0与(2x−1)(x+5)>0A.①②B.②④C.①③D.③④答案:B分析:由不含参的一元二次不等式,分式不等式、高次不等式的解法解出各个不等式,对选项一一判断即可得出答案.对于①,由x+52x−1≥0可得{2x−1≠0(x+5)(2x−1)≥0,解得:x>12或x≤−5.(2x−1)(x+5)≥0的解集为:{x|x≥12或x≤−5},故①不正确;对于②,由x+52x−1>0可得{2x−1≠0(x+5)(2x−1)>0,解得:x>12或x<−5.(2x−1)(x+5)>0的解集为:{x|x>12或x<−5},故②正确;对于③,x2(2x−1)(x+5)≥0的解集为:{x|x=0或x≤−5或x≥12},(2x−1)(x+5)≥0的解集为:{x|x≥12或x≤−5},故③不正确;对于④,x2(2x−1)(x+5)>0的解集为:{x|x<−5或x>12},(2x−1)(x+5)>0的解集为:{x|x>12或x<−5},故④正确;故选:B.5、权方和不等式作为基本不等式的一个变化,在求二元变量最值时有很广泛的应用,其表述如下:设a,b,x,y>0,则a2x +b2y≥(a+b)2x+y,当且仅当ax=by时等号成立.根据权方和不等式,函数f(x)=2x+91−2x(0<x<12)的最小值为( )A .16B .25C .36D .49答案:B分析:将给定函数式表示成已知不等式的左边形式,再利用该不等式求解作答.因a ,b ,x ,y >0,则a 2x +b 2y ≥(a+b )2x+y ,当且仅当a x =b y 时等号成立, 又0<x <12,即1−2x >0,于是得f(x)=222x +321−2x ≥(2+3)22x+(1−2x)=25,当且仅当22x =31−2x ,即x =15时取“=”,所以函数f(x)=2x +91−2x (0<x <12)的最小值为25.故选:B6、设a<b<0,则下列不等式中不一定正确的是( )A .2a >2bB .ac <bcC .|a|>-bD .√−a >√−b 答案:B分析:利用不等式的性质对四个选项一一验证:对于A ,利用不等式的可乘性进行证明;对于B ,利用不等式的可乘性进行判断;对于C ,直接证明;对于D ,由开方性质进行证明.对于A ,因为a<b<0,所以2ab >0,对a<b 同乘以2ab ,则有2a >2b ,故A 成立;对于B ,当c>0时选项B 成立,其余情况不成立,则选项B 不成立;对于C ,|a|=-a>-b ,则选项C 成立;对于D ,由-a>-b>0,可得√−a >√−b ,则选项D 成立.故选:B7、关于x 的不等式ax 2−|x|+2a ≥0的解集是(−∞,+∞),则实数a 的取值范围为( )A .[√24,+∞)B .(−∞,√24]C .[−√24,√24]D .(−∞,−√24]∪[√24,+∞) 答案:A分析:不等式ax 2−|x|+2a ≥0的解集是(−∞,+∞),即对于∀x ∈R ,ax 2−|x|+2a ≥0恒成立,即a ≥|x |x 2+2,分x =0和a ≠0两种情况讨论,结合基本不等式即可得出答案.解:不等式ax 2−|x|+2a ≥0的解集是(−∞,+∞),即对于∀x ∈R ,ax 2−|x|+2a ≥0恒成立,即a ≥|x |x 2+2,当x =0时,a ≥0,当a ≠0时,a ≥|x |x 2+2=1|x |+2|x |,因为1|x |+2|x |≤2√x ⋅2|x |=√24, 所以a ≥√24, 综上所述a ∈[√24,+∞).故选:A. 8、已知a,b 为正实数且a +b =2,则b a +2b 的最小值为( )A .32B .√2+1C .52D .3答案:D分析:由题知ba +2b=2(1a+1b)−1,再结合基本不等式求解即可.解:因为a,b为正实数且a+b=2,所以b=2−a,所以,ba +2b=2−aa+2b=2a+2b−1=2(1a+1b)−1因为2a +2b=2(1a+1b)=(a+b)(1a+1b)=2+ba+ab≥2+2=4,当且仅当a=b=1时等号成立;所以ba +2b=2−aa+2b=2a+2b−1≥3,当且仅当a=b=1时等号成立;故选:D9、下列命题中,是真命题的是()A.如果a>b,那么ac>bc B.如果a>b,那么ac2>bc2C.如果a>b,那么ac >bcD.如果a>b,c<d,那么a−c>b−d答案:D分析:根据不等式的性质和特殊值法,逐项验证可得出答案. 对于A,如果c=0,那么ac=bc,故错误;对于B,如果c=0,那么ac2=bc2,故错误;对于C,如果c<0,那么ac <bc,故错误;对于D,如果c<d,那么−c>−d,由a>b,则a−c>b−d,故正确. 故选:D.10、当0<x<2时,x(2−x)的最大值为()A.0B.1C.2D.4答案:B分析:利用基本不等式直接求解.∵0<x <2,∴2−x >0,又x +(2−x)=2∴x(2−x)≤[x+(2−x)]24=1,当且仅当x =2−x ,即x =1时等号成立,所以x(2−x)的最大值为1故选:B填空题11、已知x 、y 为两个正实数,且m x+y ≤1x +1y 恒成立,则实数m 的取值范围是________.答案:(−∞,4]分析:由参变量分离法可得m ≤(x +y )(1x +1y ),利用基本不等式求出(x +y )(1x +1y)的最小值,由此可得出实数m 的取值范围.因为x 、y 为两个正实数,由m x+y ≤1x +1y 可得m ≤(x +y )(1x +1y ),因为(x +y )(1x +1y )=2+x y +y x ≥2+2√x y ⋅y x =4,当且仅当x =y 时,等号成立.所以,m ≤4,因此,实数m 的取值范围是(−∞,4].所以答案是:(−∞,4].12、不等式2x−7x−1≤1的解集是________.答案:(1,6]分析:把原不等式的右边移项到左边,通分计算后,根据分式不等式解法,然后转化为两个一元一次不等式组,注意分母不为0的要求,求出不等式组的解集即为原不等式的解集.不等式2x−7x−1≤1得x−6x−1≤0 ,故{(x −1)(x −6)≤0x −1≠0⇒1<x ≤6 ,所以答案是:(1,6].13、已知M=x2−3x,N=−3x2+x−3,则M,N的大小关系是________.答案:M>N分析:利用作差法直接比大小.M−N=(x2−3x)−(−3x2+x−3)=4x2−4x+3=(2x−1)2+2>0∴M>N,所以答案是:M>N.14、已知命题p:“∀x∈[1,4],ax≤2x2+6”为真命题,则实数a的最大值是___.答案:4√3分析:分离参数a,将问题转化为a≤[2(x+3x )]min,然后利用均值不等式求出最小值即可得答案.解:由题意,∀x∈[1,4],a≤2(x+3x)恒成立,因为x+3x ≥2√x⋅3x=2√3,当且仅当x=√3时等号成立,所以a≤4√3,即a的最大值是4√3.所以答案是:4√3.15、已知集合A={x|−5<−2x+3<7},B={x|x2−(3a−1)x+2a2−a<0} ,若B⊆A,则实数a的取值范围为______.答案:[−12,5 2 ]分析:分类讨论解不等式,再利用集合的包含关系列式求解作答.依题意,B={x|(x−a)(x−2a+1)<0},当a<2a−1,即a>1时,B=(a,2a−1),当a=2a−1,即a=1时,B=∅,当a>2a−1,即a<1时,B=(2a−1,a),又A=(−2,4),B⊆A,于是得{a>12a−1≤4,解得1<a≤52,或{a<12a−1≥−2,解得−12≤a<1,而∅⊆A,则a=1,综上得:−12≤a≤52,所以实数a的取值范围为[−12,52 ].所以答案是:[−12,5 2 ]16、已知−1<x+y<4,2<x−y<4,则3x+2y的取值范围是_____.答案:(−32,12)解析:利用换元法,结合不等式的性质进行求解即可.设x+y=m,x−y=n,因此得:x=m+n2,y=m−n2,−1<m<4,2<n<4,3x+2y=3⋅m+n2+2⋅m−n2=5m2+n2,因为−1<m<4,2<n<4,所以−52<5m2<10,1<n2<2,因此−32<5m2+n2<12,所以−32<3x+2y<12.所以答案是:(−32,12)17、已知x,y为正数,且12+x +4y=1,则x+y的最小值为________.答案:7解析:由题设等式有x+y+2=5+y2+x +4(x+2)y,利用基本不等式可求x+y+2的最小值,从而可得x+y的最小值.x+y+2=[(x+2)+y]×(1x+2+4y)=5+y2+x+4(x+2)y,由基本不等式有y2+x +4(x+2)y≥4,当且仅当x=1,y=6时等号成立,故x+y+2的最小值为9即x+y的最小值为7.所以答案是:7.小提示:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.18、在一个限速40km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场测得甲车的刹车距离略超过12m,乙车的刹车距离略超过10m.又知甲、乙两种车型的刹车距离sm与车速x km/h之间分别有如下关系:s甲=0.1x+0.01x2,s乙=0.05x+0.005x2.这次事故的主要责任方为________.答案:乙车分析:依题意,分别列出一元二次不等式,求出各车的最低速度,即可求解.解:由题意列出不等式s甲=0.1x+0.01x2>12,s乙=0.05x+0.005x2>10.分别求解,得x甲<-40或x甲>30.x乙<-50或x乙>40.由于x>0,从而得x甲>30km/h,x乙>40km/h.经比较知乙车超过限速,应负主要责任.故答案为:乙车.19、若对任意x>0,x3+5x2+4x≥ax2恒成立,则实数a的取值范围是___________.答案:(−∞,9]分析:先分离参数a,再运用基本不等式可求解.因为对任意x>0,x3+5x2+4x≥ax2⇔x2+5x+4x ≥a恒成立,只需满足a≤(x2+5x+4x)min,因为x >0,所以x 2+5x+4x=x +4x+5≥2√x ⋅4x+5=9,当且仅当x =4x,即x =2时取等号.故实数a 的取值范围是(−∞,9]. 所以答案是:(−∞,9]20、设a >0,b >0,给出下列不等式:①a 2+1>a ; ②(a +1a )(b +1b )≥4; ③(a +b )(1a +1b )≥4; ④a 2+9>6a .其中恒成立的是________(填序号). 答案:①②③分析:利用做差法判断①,利用基本不等式判断②③,特殊值代入判断④即可得出结论.由于a 2+1-a =(a −12)2+34>0,故①恒成立;由于(a +1a )(b +1b )=ab +1ab +ba +ab ≥2√ab ⋅1ab +2√ba ⋅ab=4,当且仅当{ab =1abb a=a b 即a =b =1时等号成立,故②恒成立; 由于(a +b )(1a +1b )=2+ba +ab ≥2+2√ba ×ab =4.当且仅当ab =ba ,那么a =b =1时等号成立,故③恒成立; 当a =3时,a 2+9=6a ,故④不恒成立. 综上,恒成立的是①②③. 所以答案是:①②③.小提示:本题主要考查了利用做差法和基本不等式以及特殊值代入的方法,判断不等式是否成立的问题.属于较易题. 解答题21、回答下列问题:(1)若a>b,且c>d,能否判断a−c与b−d的大小?举例说明.(2)若a>b,且c<d,能否判断a+c与b+d的大小?举例说明.(3)若a>b,且c>d,能否判断ac与bd的大小?举例说明.(4)若a>b,c<d,且c≠0,d≠0,能否判断ac 与bd的大小?举例说明.答案:(1)不能判断,举例见解析(2)不能判断,举例见解析(3)不能判断,举例见解析(4)不能判断,举例见解析分析:因为a,b,c,d的正负不确定,因此可举例说明每个小题中的两式的大小关系不定. (1)不能判断a−c与b−d的大小,举例:取a=5,b=3,c=1,d=0,满足条件a>b,且c>d,此时a−c>b−d;取a=5,b=4,c=3,d=0,满足条件a>b,且c>d,此时a−c<b−d;取a=5,b=4,c=3,d=2,满足条件a>b,且c>d,此时a−c=b−d;(2)不能判断a+c与b+d的大小,举例:取a=5,b=3,c=0,d=1,满足条件a>b,且c<d,此时a+c>b+d;取a=5,b=3,c=2,d=6,满足条件a>b,且c<d,此时a+c<b+d.取a=5,b=3,c=4,d=6,满足条件a>b,且c<d,此时a+c=b+d;(3)不能判断ac与bd的大小,举例:取a=5,b=3,c=1,d=0,满足条件a>b,且c>d,此时ac>bd;取a=5,b=3,c=−3,d=−5,满足条件a>b,且c>d,此时ac=bd;取a=5,b=−3,c=1,d=−2,满足条件a>b,且c>d,此时ac<bd;(4)不能判断ac 与bd的大小举例:取a=6,b=3,c=1,d=2,满足条件a>b,且c<d,此时ac >bd;取a=2,b=1,c=−1,d=2,满足条件a>b,且c<d,此时ac <bd;取a=6,b=3,c=−2,d=−1,满足条件a>b,且c<d,此时ac =bd;22、阅读材料:我们研究了函数的单调性、奇偶性和周期性,但是这些还不能够准确地描述出函数的图象,例如函数y=x2和y=√x,虽然它们都是增函数,图象在[0,1]上都是上升的,但是却有着显著的不同.如图1所示,函数y=x2的图象是向下凸的,在[0,1]上任意取两个点M1,M2,函数y=x2的图象总是在线段M1M2的下方,此时函数y=x2称为下凸函数;函数y=√x的图象是向上凸的,在[0,1]上任意取两个点M1,M2,函数y=√x的图象总是在线段M1M2的上方,则函数y=√x称为上凸函数.具有这样特征的函数通常称做凸函数.定义1:设函数y=f(x)是定义在区间I上的连续函数,若∀x1,x2∈I,都有f(x1+x22)≤f(x1)+f(x2)2,则称y=f(x)为区间I上的下凸函数.如图2.下凸函数的形状特征:曲线上任意两点M1,M2之间的部分位于线段M1M2的下方.定义2:设函数y=f(x)是定义在区间I上的连续函数,若∀x1,x2∈I,都有f(x1+x22)≥f(x1)+f(x2)2,则称y=f(x)为区间I上的上凸函数.如图3.上凸函数的形状特征:曲线上任意两点M1,M2之间的部分位于线段M1M2的上方.上凸(下凸)函数与函数的定义域密切相关的.例如,函数y=x3在(−∞,0]为上凸函数,在[0,+∞)上为下凸函数.函数的奇偶性和周期性分别反映的是函数图象的对称性和循环往复,属于整体性质;而函数的单调性和凸性分别刻画的是函数图象的升降和弯曲方向,属于局部性质.关于函数性质的探索,对我们的启示是:在认识事物和研究问题时,只有从多角度、全方位加以考查,才能使认识和研究更加准确.结合阅读材料回答下面的问题:(1)请尝试列举一个下凸函数:___________;(2)求证:二次函数f(x)=−x2+bx+c是上凸函数;(3)已知函数f(x)=x|x−a|,若对任意x1,x2∈[2,3],恒有f(x1+x22)≥f(x1)+f(x2)2,尝试数形结合探究实数a的取值范围.答案:(1)y=1x,x∈(0,+∞);(2)证明见解析;(3)a≥3.分析:(1)根据下凸函数的定义举例即可;(2)利用上凸函数定义证明即可;(3)根据(2)中结论,结合条件,函数满足上凸函数定义,根据数形结合求得参数取值范围. (1)y=1x,x∈(0,+∞);(2)对于二次函数f(x)=−x2+bx+c,∀x1,x2∈R,满足f(x1+x22)−f(x1)+f(x2)2=−(x1+x22)2+b⋅x1+x22+c−−x12+bx1+c−x22+bx2+c2=−x12+x22+2x1x24+x12+x222=(x1−x2)24≥0,即f(x1+x22)≥f(x1)+f(x2)2,满足上凸函数定义,二次函数f(x)=−x2+bx+c是上凸函数.(3)由(2)知二次函数f(x)=−x2+bx+c是上凸函数,同理易得二次函数f(x)=x2+bx+c为下凸函数,对于函数f(x)=x|x−a|={x2−ax,x>a−x2+ax,x≤a,其图像可以由两个二次函数的部分图像组成,如图所示,若对任意x1,x2∈[2,3],恒有f(x1+x22)≥f(x1)+f(x2)2,则函数f(x)=x|x−a|满足上凸函数定义,即[2,3]⊆(−∞,a],即a≥3.。
一元二次函数图象及性质高中
一元二次函数图象及性质高中一元二次函数是高中数学课堂上常见的一种函数,又被称为二次多项式,其图象表现为一条弯曲的曲线,特征上有三个拐点,即交点,且其图象不受外力或外界制约,只惟其函数参数a、b,c来决定其图象特征。
图形性质一元二次函数的图象是一条弯曲曲线,它的两个定义域是[-∞,+∞],值域为[-∞,+∞],一个特征是一元二次函数有三个拐点,即交点,垂直于x轴的拐点叫做y轴交点,而中心极限点则是最重要的极点,该点的判断可以由一元二次函数的三个参数a、b、c决定,而且根据参数a的不同值,图象的空间占比也有所不同,图象的面积越大,参数a的值越小。
图形的性质一元二次的性质有很多,其中最重要的一点是极值方向性。
一般来讲,如果参数a>0,则表明图象上至少有两个极值点,它们由图象上最高/最低处来描绘,而且当参数a>0时,曲线是上凸的;反之,参数a<0时,曲线是下凹的。
另外,一元二次函数也有一个重要的性质:它可以判断出函数原函数的单调性。
一元二次函数的单调性可以通过判断拐点的位置以及它们所在的方向来进行判断。
当a>0时,右边的拐点位于函数上,函数于此处单调递减;而参数a<0时,左边的拐点位于函数上,函数于此处单调递增。
综上,一元二次函数具有非常丰富的图形性质,不仅可以展示三个拐点,而且可以描述函数的单调性,而参数a的大小和两个拐点的方向以及形状也具有重要的意义。
应用一元二次函数的应用是非常广泛的,可以应用于各类力学问题,物理问题,以及商业计算,投资以及经济问题等。
在力学上,可以使用一元二次函数来描述各种由磁力,弹力,重力等力量作用产生的运动轨迹,计算其速度、位移等情况;而在法学上,则可以使用一元二次函数来拟合各种实际变量,如通货膨胀率、投资回报率等变量,来建立更加精确完整的法学模型。
此外,一元二次函数在工程科学、数理统计等方面也有着重要的应用,它们在各类问题中都可以有效解决,从而发挥出重要作用,提高工作效率,提升精确度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.二次函数的解析式的三种形式: (1)一般式:f(x)=ax 2+bx+c(a ≠0)。
(2)顶点式(配方式):f(x)=a(x-h)2+k 其中(h,k)是抛物线的顶点坐标。
(3)两点式(因式分解):f(x)=a(x-x 1)(x-x 2),其中x 1,x 2是抛物线与x 轴两交点的坐标。
2.二次函数f(x)=ax 2+bx+c(a ≠0)的图象是一条抛物线,对称轴ab x 2-=,顶点坐标)44,2(2ab ac a b --(1)a>0时,抛物线开口向上,函数在]2,(ab --∞上单调递减,在),2[+∞-ab上单调递增,abx 2-=时,a b ac x f 44)(2min -=;(2)a<0时,抛物线开口向下,函数在]2,(ab--∞上单调递增,在),2[+∞-ab上单调递减,abx 2-=时,a b ac x f 44)(2max -=。
3.二次函数f(x)=ax 2+bx+c(a ≠0)当042>-=∆ac b 时图象与x 轴有两个交点M 1(x 1,0),M 2(x 2,0)ax x x x x x M M ∆=-+=-=2122121214)(。
4. 根分布问题: 一般地对于含有字母的一元二次方程ax 2+bx+c=0 的实根分布问题,用图象求解,有如下结论:令f(x)=ax 2+bx+c (a>0) ,(1)x 1<α,x 2<α ,则⎪⎩⎪⎨⎧><-≥∆0)()2/(0ααaf a b ;(2)x 1>α,x 2>α,则⎪⎩⎪⎨⎧>>-≥∆0)()2/(0ααaf a b(3)α<x 1<β,α<x 2<β,则⎪⎪⎩⎪⎪⎨⎧<-<>>≥∆βαβα)2/(0)(0)(0a b f f (4)x 1<α,x 2>β (α<β),则⎪⎩⎪⎨⎧<<≥∆0)(0)(0βαf f(5)若f(x)=0在区间(α,β)内只有一个实根,则有0))(<(βαf f5 最值问题:二次函数f(x)=ax 2+bx+c 在区间[α,β]上的最值一般分为三种情况讨论,即:(1)对称轴-b/(2a)在区间左边,函数在此区间上具有单调性;;(2)对称轴-b/(2a)在区间之内;(3)对称轴在区间右边要注意系数a 的符号对抛物线开口的影响6 二次函数、一元二次方程及一元二次不等式之间的关系:①0∆<⇔f(x)=ax 2+bx+c 的图像与x 轴无交点⇔ax 2+bx+c=0无实根⇔ax 2+bx+c>0(<0)的解集为∅或者是R;②0∆=⇔f(x)=ax 2+bx+c 的图像与x 轴相切⇔ax 2+bx+c=0有两个相等的实根⇔ax 2+bx+c>0(<0)的解集为∅或者是R;③0∆>⇔f(x)=ax 2+bx+c 的图像与x 轴有两个不同的交点⇔ax 2+bx+c=0有两个不等的实根⇔ax 2+bx+c>0(<0)的解集为(,)αβ()αβ<或者是(,)(,αβ-∞+∞(二)考点分析考点1.求二次函数的解析式例1.已知二次函数f(x)满足f(2)= -1,f(-1)= -1且f(x)的最大值是8,试确定此二次函数。
法一:利用一般式 设f(x)=ax 2+bx+c(a ≠0),由题意得:⎪⎪⎩⎪⎪⎨⎧=--=+--=++84411242a b ac c b a c b a 解得:⎪⎩⎪⎨⎧==-=744c b a ∴f(x)= - 4x 2+4x+7法二:利用顶点式∵f(2)= f(-1) ∴对称轴212)1(2=-+=x 又最大值是8 ∴可设)0(8)21()(2<+-=a x a x f ,由f(2)= -1可得a= - 47448)21(4)(22++-=+--=∴x x x x f法三:由已知f(x)+1=0的两根为x 1=2,x 2=-1,故可设f(x)+1=a(x-2)(x+1)即f(x)=ax 2-ax-2a-1,又84)12(482max =---=aaa a y 即得a= - 4或a=0(舍) ∴f(x)= - 4x 2+4x+7 例2.已知二次函数的对称轴为x=截x 轴上的弦长为4,且过点(0,1)-,求函数的解析式.解:∵二次函数的对称轴为x =数为2()(f x a x b =++,又∵()f x 截x轴上的弦长为4,∴()f x过点(2,0),()f x 又过点(0,1)-,∴4021a b a b +=⎧⎨+=-⎩, 122a b ⎧=⎪⎨⎪=-⎩,∴21()(22f x x =-考点2.二次函数在区间上的最值问题例1.已知函数f(x)= - x 2+2ax+1-a 在0≤x ≤1时有最大值2,求a 的值。
思维分析:一般配方后结合二次函数图象对字母参数分类讨论解:f(x)= -(x-a)2+a 2-a+1(0≤x ≤1),对称轴x=a 1a<0时,121)0()(max -=∴=-==a a f x f2≤a≤1时)(25121)()(2max 舍得±==+-==a a a a f x f 30a>1时,22)1()(max =∴===a a f x f综上所述:a= - 1或a=2例2.已知y=f(x)=x 2-2x+3,当x ∈[t,t+1]时,求函数的最大值和最小值。
答案:32,2,12min 2max +-=+=>t t y t y t 时2,2,121min 2max =+=≤<y t y t 时 2,32,210min 2max =+-=≤<y t t y t 时2,32,02min 2max +=+-=≤t y t t y t 时例3.已知函数21sin sin 42a y x a x =-+-+的最大值为2,求a 的值 . 分析:令sin t x =,问题就转二次函数的区间最值问题. 解:令sin t x =,[1,1]t ∈-,∴221()(2)24a y t a a =--+-+,对称轴为2a t =, (1)当112a-≤≤,即22a -≤≤时,2max 1(2)24y a a =-+=,得2a =-或3a =(舍去). (2)当12a>,即2a >时,函数221()(2)24a y t a a =--+-+在[1,1]-单调递增,由max 111242y a a =-+-+=,得103a =.(3)当12a<-,即2a <-时,函数221()(2)24a y t a a =--+-+在[1,1]-单调递减, 由max 111242y a a =---+=,得2a =-(舍去).综上可得:a 的值为2a =-或103a =.考点3.一元二次方程根的分布及取值范围 例1.已知关于x 的二次方程x 2+2mx+2m+1=0 (1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围。
(2)若方程两根在区间(0,1)内,求m 的范围。
思维分析:一般需从三个方面考虑①判别式Δ②区间端点函数值的正负③对称轴abx 2-=与区间相对位置。
解:设f(x)=x 2+2mx+2m+1(1)由题意画出示意图2165056)1(02)1(012)0(-<<-⇒⎪⎩⎪⎨⎧>+>=-<+=⇔m m f f m f(2)2121100)1(0)0(0-≤<-⇒⎪⎪⎩⎪⎪⎨⎧<-<>>≥∆⇔m m f f练习:方程k x x=-232在(- 1,1)上有实根,求k 的取值范围。
宜采用函数思想,求)11(23)(2<<--=x x x x f 的值域。
)25,169[-∈k 【反思归纳】根分布问题: 一般地对于含有字母的一元二次方程ax 2+bx+c=0 的实根分布问题,用图象求解,主要研究开口、判别式、对称轴、区间端点对应函数值的正负,列出不等式(组)求解。
例2.已知函数22()(21)2f x x a x a =--+-与非负x 轴至少有一个交点,求a 的取值范围. 解法一:由题知关于x的方程22(21)20x a x a --+-=至少有一个非负实根,设根为12,x x则120x x ≤或1212000x x x x ∆≥⎧⎪>⎨⎪+>⎩,得94a ≤≤.解法二:由题知(0)0f ≤或(0)0(21)020f a >⎧⎪--⎪->⎨⎪∆≥⎪⎩,得94a ≤≤.二次函数 一、知识梳理: 1、二次函数的解析式:(1)一般式:)0.(2≠++=a c bx ax y(2)顶点式:)0.()(2≠+-=ayxxay其顶点为:),(yx;abacyabx44,22-=-=(3)两根式:))((21xxxxay--=)0(≠a其42≥-=∆acb,顶点横坐标221 0xx x +=2、二次函数的图象和性质:)0.()(2≠++=acbxaxxf二次函数的图象是对称轴垂直于x轴的抛物线,当0>a时开口向上,当<a时开口向下。
它的定义域:), (+∞-∞值域:当>a时为),44[2+∞-abac;当<a时为]44,(2abac--∞对称性:对称轴为ab x2-=单调性:当>a时,减区间是]2,(ab--∞,增区间是),2[+∞-ab;当<a时,减区间是),2[+∞-ab,增区间是]2,(ab--∞3、掌握二次函数)0.(2≠++=acbxaxy在闭区间[m,n]上的最值求法。
一、自我检测:1.函数422+-=bxxy为偶函数,则()A.0 >b B.0<b C.0=b D.Rb∈2、.设函数f(x)=⎩⎨⎧≤++>0)x(cbxx0),x(22,若f(-4)=f(0),f(-2)=-2,则f(x)的解析式为f(x)=______________,关于x的方程f(x)= x的解的个数为___________.3、(04春)14、若关于x的不等式2>--aaxx的解集为),(+∞-∞,则实数a的取值范围是__________;若关于x的不等式32-≤--aaxx的解集不是空集,则实数a的取值范围是__________。
4、若cba,,成等比数列,则函数)0.(2≠++=acbxaxy的图象与x轴交点的个数是()(A) 0 (B) 1 (C)2 (D)不能确定(B)5、.若函数y义域为R,求实数m的取值范围是_______6.在函数cbxaxxf++=2)(中,若a,b,c 成等比数列且f(0)=-4,则f(x)有最________值(填“大”或“小”),且该值为________.(04北京文)8、函数82)(2+-=xxxf单调减区间是()A.[)+∞,1B.(]1,∞-、C.()1,1-D.()+∞∞-,9、若函数()2)1(22+-+=xaxxf在区间)4,(-∞上是减函数,则实数a的取值范围是()(A)3-≤a(B)2-≥a(C)5≤a(D)5≥a 10、.函数32)(2+-=mxxxf,当(]1,-∞-∈x 时是减函数,当()+∞-∈,1x 时是增函数,则)2(f =_________.(B)11、、已知函数()52+-=kx x x f 在区间(1,2)上是增函数,求f(2)的取值范围 是 _________. 10.函数32)(2--=ax x x f 在区间[1,2]上存在反函数的充分必要条件是( ) A .]1(,-∞∈aB .)2[∞+∈,aC .)2[]1(∞+-∞∈,, aD .]21[,∈a 12.函数)1(11)(x x x f --=的最大值是( )A .54B .45C .43D .3413、(陕西卷)函数f(x)=11+x 2 (x ∈R)的值域是( )A.(0,1)B.(0,1]C.[0,1)D.[0,1] 14、函数)(x f =)11(3622≤≤-+-x x x 的最小值是( )A.23-B.3C.-1D.不存在15、已知二次函数()c bx x x f ++=2,且()()31f f =-,则( )(A )()()11->>f c f(B )()()11f f c >->(C )()()11f f c <-<(D )()()11-<<f c f(B)16、函数)(2cos cos R x x x y ∈-=的值域是_______________ 17、函数)2(22-<+=x x x y 的反函数是________________18、已知函数f (x)=-x ∈[-2,0],则f (x )的反函数是 ( )(07朝阳文)A .f (x)=- x ∈[0,2]B .f (xx ∈[-2,0]C.f (x)=x∈[0,2]D .f (xx ∈[-2,0]19.(安徽卷)函数y =⎩⎨⎧<-≥0,0,22x x x x 的反函数是Ay =⎪⎩⎪⎨⎧<-≥0,0,2x x x xB .y =⎩⎨⎧<-≥0,0,2x x x xC .y =⎪⎩⎪⎨⎧<--≥0,0,2x x x xD .y =⎩⎨⎧<--≥0,0,2x x x x 20、(重庆卷)设P (3,1)为二次函数2()2(1)f x ax ax b x =-+≥的图象与其反函数)(1x ff -=的图象的一个交点,则(A )25,21==b a(B )25,21-==b a (C )25,21=-=b a(D )25,21-=-=b a (B)21、关于x的方程0)2()1(22=-+-+a x a x 一根比1大,一根比1小,则有( ) A.1<<-a B.2-<a 或1>a C.12<<-aD.1-<a 或2>a(B)22.(山东卷)当(12)x ∈,时,不等式240x mx ++<恒成立,则m的取值范围是 . 二、填空23、已知函数23()23[,2]2f x ax ax =+--在上的最大值为1,求实数a 的值。