高效液相色谱法简介
高效液相色谱简介及操作
HPLC和经典液相色谱法的比较
3.高效液相色谱法的分类
• 通常将液相色谱法按分离机理分成吸附色谱法、分配色谱法、离子色 谱法和凝胶色谱法四大类。
4.如何阅读色谱图??
tR:保留时间;tM:死时间; :调整保留时间; W:峰宽
• 定性分析:在同一色谱系统中相同物质具 有相同的保留值 • 定量分析:组分含量与其响应值(峰高或 面积)成正比
2 色谱柱使用的注意事项
• 色谱柱在任何情况下不能碰撞、弯曲或强烈震动。 • 当分析柱长期不使用,应用适当有机溶剂保存(一般 为甲醇)。 • 每天工作结束后用适当的溶剂来清洗柱。
3 其他注意事项
• 未经提取净化的蛋白样品、血样、生物样品绝对禁 止直接进样分析。 • 要注意流动相的脱气。 • 避免使用高粘度的溶剂作为流动相。 • 使用新鲜配制的流动相,特别是水溶剂或缓冲液建 议不超过两天,最好每天更换。
(5)色谱柱平衡后,打开检测器(开灯) (6)测定样品 (7)清洗仪器
色谱柱及流路清洗 进样阀清洗 进样针清洗
四、主要注意事项
1 泵使用的注意事项
•
• •
• •
防止任何固体微粒进入泵体(用0.22 um或0.45 um 的微孔滤膜过滤) 流动相不应含有任何腐蚀性物质,含有缓冲盐的流 动相不应保留在泵内更不允许留在柱内。 泵工作时防止溶剂瓶内的流动相用完,否则空泵运 转一是会使大量空气进入柱内柱床崩塌、也会磨损柱塞、 密封圈,最终产生漏液。 输液泵的工作压力决不要超过规定的最高压力。 流动相应先脱气,以免在泵内产生气泡,影响流量 的稳定性和分析结果。
c. 荧光检测器 (FLD) 只适用于具有荧光的有机化合物(如多环芳烃、氨基 酸、胺类、维生素和某些蛋白质等)的测定。
《高效液相》课件
蛋白质分离与纯化
蛋白质分离
高效液相色谱技术可以用于蛋白质的分离和纯化,通过不 同的分离模式和固定相选择,实现对蛋白质的快速分离和 纯化。
蛋白质性质分析
通过高效液相色谱技术可以对蛋白质的性质进行分析,如 蛋白质的分子量、等电点等,为蛋白质的结构和功能研究 提供有力支持。
蛋白质相互作用研究
高效液相色谱技术可以用于研究蛋白质之间的相互作用, 如蛋白质与配体、抑制剂等之间的相互作用,有助于深入 了解蛋白质的功能和作用机制。
原理
利用不同物质在固定相和流动相之间 的分配系数差异进行分离,通过检测 器进行检测,收集各个组分,达到分 析样品组分的目的。
发展历程
01
02
03
04
起源
20世纪初,俄国植物学家茨 维特发明了色谱法。
1940年代
气相色谱法(GC)出现,并 逐渐发展成熟。
1960年代
高效液相色谱法(HPLC)开 始发展,并逐渐取代气相色谱
02
高效液相色谱仪
仪器组成
进样器
将样品注入色谱柱,是 色谱仪的重要部件之一
。
色谱柱
用于分离样品中的各组 分,由固定相和流动相
组成。
检测器
检测色谱柱流出的组分 ,并将其转换为电信号
。
数据处理系统
用于采集、处理和显示 检测器输出的信号。
重要部件介绍
01
02
03
色谱柱填料
常用的填料有硅胶、氧化 铝、活性炭等,根据不同 分离需求选择合适的填料 。
《高效液相》ppt课件
目录
• 高效液相色谱法简介 • 高效液相色谱仪 • 高效液相色谱分离技术 • 高效液相色谱在生物医药领域的应用 • 高效液相色谱实验技术 • 高效液相色谱技术前沿与展望
高效液相色谱法简介
高效液相色谱的特点
高压——压力可达150~300 kg/cm2。色谱
柱每米降压为75 kg/cm2以上。
高速——流速为0.1~10.0 mL/min。 高效——塔板数可达5000/米。在一根柱中
同时分离成份可达100种。
高灵敏度——紫外检测器灵敏度可达0.01ng。
同时消耗样品少。
第二节
塑料块 Teflon
1 cm
工作电极 (Pt, Au, 碳糊)
e.电导检测器
电导检测器主要用于离子色谱的检测。 原理: 根据待测物在一些介质中电离后所产 生的电导(电阻的倒数)变化来测量电离物质 的含量。 电导检测器的主要部件是电导池。其响应 受温度影响较大,因此需要将电导池置于恒温 箱中。另外,当 pH>7时,该检测器不够灵敏。 电导检测器不能用于梯度洗脱。
◆恒流泵
注射型泵------输出精确,无脉动,需更换溶剂而中断工作。
往复型泵------造价低廉,溶剂更换方便,但存在脉动。 (使用较多) 对流量变化敏感的检测器会有噪声 干扰,此时可连接一脉动阻尼器。
◆恒压泵--------压力恒定,但流量不恒定(现在已经较少使用)。
输液泵操作注意事项:
防止固体微粒进入泵体 流动相不应含有腐蚀性物质 防止溶剂瓶内的流动相被用完 不超过规定的最高压力 流动相一般应该先脱气
F=2.3QKI0εCl
Q为量子产率,K为荧光效率,ε为摩尔吸光系 数,l为光径长度。
F=KC
特点:选择性好,
专属型检测器,灵敏 度比紫外检测器高 (检测限10-10 g/ml) 对多环芳烃,维 生素 B 、黄曲霉素、 卟啉类化合物、农药 、药物、氨基酸、甾 类化合物等有响应;
c. 示差折光检测器
高效液相色谱法
第八章高效液相色谱法(High Performance Liquid Chromatograph)第一节概述(Generalization)以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。
HPLC是20世纪70年代初发展起来的一种新的色谱分离分析技术。
具有分离效能高、选择性好、灵敏度高、分析速度快、适用范围广(样品不需气化,只需制成溶液即可)的特点,适用于高沸点、热不稳定有机及生化试样的分离分析。
HPLC基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、或数据处理系统记录色谱信号再进行数据处理而得到分析结果。
高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。
目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。
将固定液的官能团键合在载体上,形成的固定相称为化学键合相,具有固定液不易流失的特点,一般认为有分配与吸附两种功能,常以分配作用为主。
C18(ODS)是最常使用的化学键合相。
根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。
《中国药典》中有50种中成药的定量分析采用HPLC法,在中药制剂分析中,大多采用反相键合相色谱法。
一、高效液相色谱法的特点目前经典LC主要用于制备,若用于分析则采用脱机或非连续检测。
经典LC填料缺陷,通常是填料粒度大、范围宽、不规则,不易填充均匀,扩散和传质阻力大,谱带展宽加大。
它存在致命弱点:速度慢、效率低和灵敏度低。
HPLC填料(高效固定相)颗粒细、直径范围窄、能承受高压。
高效液相色谱法的简介..
3.操作条件差别
GC:加温操作
HPLC:室温;高压(液体粘度大,峰展宽小)
二. 高效液相色谱法的特点和应用
“三高” “一快” “一广” 高压 高柱效——n=104片/米,柱效高(远高于一般LC) 高灵敏度 分析速度快 应用范围广泛(可分析80%有机化合物)
三.各类高效液相色谱法
液-固吸附色谱 液-液分配色谱
3.1 液-固吸附色谱法
固定相为固体吸附剂,流动相为液体。
固定相:固体吸附剂为,如硅胶、氧化铝等,较常 使用的是5~10μm的硅胶吸附剂;
流动相:各种不同极性的一元或多元溶剂
分离机制:利用溶质分子占据固定相表面吸附活性 中心能力的差异,即物质吸附作用的不同来分离的。
适用于分离相对分子质量中等的油溶性试样,对具 有官能团的化合物和异构体有较高选择性
3.2 液-液分配色谱
固定相与流动相均为液体(互不相溶);
基本原理:组分在固定相和流动相上的分配; 流动相 :对于亲水性固定液,采用疏水性流动相,即 流动相的极性小于固定液的极性(正相色谱),反之, 流动相的极性大于固定液的极性(反相色谱)。正相 与反相的出峰顺序相反; 固定相:早期涂渍固定液,固定液流失较多,较少采 用;
离子交换色谱
离子色谱
排阻色谱
亲和色谱
高效液相色谱固定相和流动相 (-)固定相
1. 高效液相色谱固定相以承受高压能力来分类,可分为刚性固体和硬胶两 大类:
刚性固体:以二氧化硅为基质,可承受 7.O×108 ~ 1.O×109Pa 的高压,可 制成直径、形状、孔隙度不同的颗粒。如果在二氧化硅表面键合各种官 能团,就是键合固定相。 硬胶:主要用于离子交换和尺寸排阻色谱中,它由聚苯乙烯与二乙烯苯基 交联而成。可承受压力上限为3.5×108Pa。
高效液相色谱法
(2)化学键合固定相 ) B. 极性键合相 极性键合相指键合有机分子 中含某些极性基团,与空白硅胶相比, 中含某些极性基团,与空白硅胶相比,其极性 键合相表面能量分布均匀,是一种改性的硅胶, 键合相表面能量分布均匀,是一种改性的硅胶, 常用的极性键合相有氨基、氰基等。 常用的极性键合相有氨基、氰基等。氨基键合 相是分离糖类最常用的固定相,常用乙腈-水 相是分离糖类最常用的固定相,常用乙腈 水
二、液相色谱的流动相
1. 流动相特性
(mobile phases of LC) )
(2)化学键合固定相 )
化学键合固定相是应用最广的色谱法。 化学键合固定相是应用最广的色谱法。将固定液的官能团键
合在载体上形成的固定相称为化学键合相,其特点是不流失, 合在载体上形成的固定相称为化学键合相,其特点是不流失, 一般认为有分配与吸附两种功能。 一般认为有分配与吸附两种功能。 a. 硅氧碳键型: 硅氧碳键型: ≡Si—O—C b. 硅氧硅碳键型:≡Si—O—Si — C 硅氧硅碳键型: 稳定,耐水、耐光、耐有机溶剂,应用最广 稳定,耐水、耐光、耐有机溶剂, c. 硅碳键型: 硅碳键型: d. 硅氮键型: 硅氮键型: ≡Si—C ≡Si—N
4.6
高效液相色谱法
高效液相色谱法(high pressure Liquid 高效液相色谱法 chromatography,HPLC)是利用物质在两 , 是利用物质在两 相之间吸附或分配的微小差异达到分离的目的。 相之间吸附或分配的微小差异达到分离的目的。 当两相作相对移动时, 当两相作相对移动时,被测物质在两相之间做 反复多次的分配, 反复多次的分配,这样使原来微小的差异产生 了很大的分离效果,达到分离、 了很大的分离效果,达到分离、分析和测定一 些理化常数的目的。 些理化常数的目的。
高效液相色谱-电化学法_概述及解释说明
高效液相色谱-电化学法概述及解释说明1. 引言1.1 概述高效液相色谱-电化学法(简称HPLC-EC)是一种常用的分析技术,利用高效液相色谱技术和电化学检测原理相结合,实现对样品中化合物的分离和定量分析。
此方法具有灵敏度高、选择性好、重复性好等优点,因而在环境科学、生物医药和食品安全等领域得到广泛应用。
1.2 文章结构本文共分五个部分进行阐述。
引言部分是对整篇文章的概述,介绍了HPLC-EC 技术的背景和研究意义。
第二部分将对HPLC技术和电化学法以及它们之间的结合进行简要介绍。
接下来一节将详细讨论HPLC-EC的实验原理与分析过程。
第四部分将探讨HPLC-EC在环境污染物、生物医药和食品安全领域中的应用案例。
最后一节是总结与展望,回顾整篇文章所提到的内容,并展望该技术在未来发展中可能取得的进展。
1.3 目的本文旨在全面介绍高效液相色谱-电化学法的相关知识,深入探讨其原理及其在环境科学、生物医药和食品安全领域的应用。
通过文章阐述,读者可以对HPLC-EC技术有一个全面的了解,并且了解到该技术在不同领域的实际应用和发展趋势。
2. 高效液相色谱-电化学法概述:2.1 高效液相色谱技术简介高效液相色谱(HPLC)是一种广泛应用于分析化学领域的分离技术。
它基于物质在溶剂流动下通过固定相的不同速率进行分离,可用于分析和检测各种化合物。
HPLC技术具有分离效果好、选择性强、重复性好等特点,因此被广泛应用于环境、生物医药和食品安全等领域的样品分析中。
2.2 电化学法简介电化学法是利用电极与溶液中存在的化学反应产生的电流或电势来检测或测定物质的一种方法。
根据所使用的电极类型和测量参数,常见的电化学方法包括极谱法、电化学滴定法、恒定电位法等。
这些方法可以实现对不同种类和浓度范围内的物质进行快速准确的检测和分析。
2.3 结合应用优势高效液相色谱-电化学法(HPLC-EC)是将HPLC技术与电化学方法相结合而形成的一种分析技术。
高效液相色谱法
正相色谱:以极性物质做固定相,非极性物质作
流动相,即流动相的极性<固定相的极性。正相色 谱适用于极性化合物的分离,极性小的先出柱, 极性大的后出柱。(反之为反相色谱)
高效液相色谱仪
压力表 储液器 高压泵
进样器
梯度洗 提装置
色 谱 柱
记录仪 检测器
馏分收集器
一 高压输液系统 1.贮液器:1-2L的玻璃瓶,配有溶剂过滤器(Ni 合金),其孔径约2 m,可防止颗粒物进行 泵内。 2.脱气:超声波脱气或真空加热脱气。溶剂通 过脱气器中的脱气膜,相对分子量小的气 体透过膜从溶剂中除去。 3.高压泵: 对输液泵的要求:密封性好、输液流量稳 定无脉动、可调范围宽、耐腐蚀。
二 分离和进样系统 (一)进样系统 与GC相比,HPLC柱要短得多,因此由于柱 本身所产生的峰形展宽相对要小些。即, HPLC的展宽多因一些柱外因素引起。这些 因素包括:进样系统、连接管道及检测器 的死体积。进样装置包括两种。 1. 隔膜注射进样:使用微量注射器进样。装 置简单、死体积小。但进样量小且重现性 差。
2.化学发光检测器
是近年发展起来的高选择性、高灵敏度
(二)荧光检测器(FD) 早期的荧光检测器是具有滤光片的荧光 光度计,已基本淘汰。 目前使用的荧光检测器多是具有流通池 的荧光分光光度计(直角光路)。 检测限可达 1× 10-10g / ml ,比紫外检测 器灵敏,但只适用于能产生荧光或其衍生 物能发荧光的物质。
主要用于氨基酸、
多环芳烃、维生素、 甾体化合物、酶类、 黄曲霉素、卟啉类 化合物、农药等的 检测。
利用固定相与流动相之间对待分离组分子溶解
度的差异来实现分离。分配色谱的固定相一般 为液相的溶剂,依靠图布、键合、吸附等手段
高效液相色谱法
31
特点: 特点: 氰基键合相选择性与硅胶类似 键合相选择性与硅胶类似, ① 氰基键合相选择性与硅胶类似, 但极性更小。相同流动相, 但极性更小。相同流动相,组分保留 时间小于硅胶。 时间小于硅胶。 氨基键合相 主要用于糖类分析, ② 氨基键合相 主要用于糖类分析, 糖类分析专用柱 分析专用柱。 是糖类分析敏度: 紫外、荧光、电化学、 紫外、荧光、电化学、质谱等高灵敏 度检测器使用。 度检测器使用。 最小检测量: 最小检测量: 10-9 ~10-11 g 4. 高度自动化: 高度自动化: 采用色谱专家系统为核心的色谱智 能化和仿真优化技术, 能化和仿真优化技术,使 HPLC不仅能 不仅能 自动处理数据,绘图和打印分析结果, 自动处理数据,绘图和打印分析结果, 而且还可以自动控制色谱条件。 而且还可以自动控制色谱条件。
32
2. 流动相极性与容量因子的关系 流动相极性大,洗脱能力增加, 流动相极性大,洗脱能力增加, k 减小,tR 减小;反之, k 与 tR 均 减小, 减小;反之, 增加。 增加。 极性小的组分先出柱
33
四、正、反相色谱法 正相HPLC(normal phase HPLC) ( 正相 ) 固定相: 固定相:极性 常用:改性硅胶 硅胶、 常用:改性硅胶、氰基柱 流动相: 非极性(或弱极性) 流动相 非极性(或弱极性) 常用: 正己烷 常用: 流动相极性小于固定相极性
11
第二节 分离机制 一、液-固吸附色谱法 固吸附色谱法
(Liquid-Solid Chromatography)
(一)吸附机理 根据吸附剂对样品中各组分的吸 根据吸附剂对样品中各组分的吸 附能力差异而分离 而分离。 附能力差异而分离。 吸附过程是被分离组分的分子 与流动相分子争夺吸附剂表面活性 中心(active center)的结果。 的结果。 中心 的结果
高效液相色谱法的简介
高效液相色谱仪
色谱仪器的流程由液体流动相的输液系统、进样系统、分离
系统、检测系统、信号放大记录系统组成,其中高压泵、色 谱柱和检测系统是高效液相色谱的主要部件。
1.贮液罐 (滤棒,可滤去颗粒状物 质) 2.高压泵(输液泵) 3.进样装置 4.色谱柱——分离 5.检测器——分析 6.废液出口或组分收集 器 7.记录装置
3.根据分子结构选择 用红外光谱法,可预先简单地判断样品中存在什么 官能团。然后,确定采用什么方法合适。例如,酸、 碱化合物用离子交换色谱;脂肪族或芳香族用液– 液分配色谱、液–固吸附色谱;异构体用液–固吸附 色谱;同系物不同官能团及强氢键的用液–液分配 色谱
高效液相色谱分离方法的选择参考表
五.高效液相色谱仪
离子对色谱机理:离子对形成机理;离子交换机理;离 子相互作用机理;
例如离子对形成机理:固定相为非极性键合相,流动相为水溶液,组分离子 A-,加入一种反荷离子B+,B+离子由于静电引力与带负电的组分离子生成 离子对化合物A-B+。
A 水相
B 有机相
A B 有机相
由于离子对化合物A-B+具有疏水性,因而被非极性固定相(有机 相)提取。
高效液相色谱固定相和流动相
(-)固定相
1. 高效液相大类:
刚性固体:以二氧化硅为基质,可承受7.O×108~1.O×109Pa的高压,可 制成直径、形状、孔隙度不同的颗粒。如果在二氧化硅表面键合各种官 能团,就是键合固定相。
硬胶:主要用于离子交换和尺寸排阻色谱中,它由聚苯乙烯与二乙烯苯基 交联而成。可承受压力上限为3.5×108Pa。
流动相:对于亲水性固定液,采用疏水性流动相,即 流动相的极性小于固定液的极性(正相色谱),反之, 流动相的极性大于固定液的极性(反相色谱)。正相 与反相的出峰顺序相反;
仪器分析第4讲 高效液相色谱法
经典液相色谱法 75-600 0.01-1.0 1-20 50-200 2-50 1-10
高效液相色谱法 3-50(常用5-10)
20-300 0.05-1.0
2-30 104-105 10-6-10-2
2.高效液相色谱法与气相色谱法
(l)气相色谱法分析对象只限于分析气体和 沸点较低的化合物,它们仅占有机物总数 的20%.对于占有机物总数近80%的那些高 沸点、热稳定性差、摩尔质量大的物质, 目前主要采用高效液相色谱法进行分离和 分析.
3. 柱外效应
由于色谱柱之外的因 素引起的色谱峰的展 宽,例如进样系统、 连接管路及检测器的 死体积等。
3-3 高效液相色谱的类型及其分离原理
液—液分配色谱及化学键合相色谱 液—固吸附色谱 离子交换色谱 离子色谱 空间排阻色谱
1、 液-液分配色谱
liquid- liquid partition chromatography
4、 离子色谱
ion chromatography
离子色谱法是由离子交换色谱法派生出来的一种 分离方法。由于离子交换色谱法在无机离子的分 析和应用受到限制。例如,对于那些不能采用紫 外检测器的被测离子,如采用电导检测器,由于 被测离子的电导信号被强电解质流动相的高背景 电导信号掩没而无法检测。
2、 液-固吸附色谱
liquid-solid adsorption chromatography
流动相为液体,固定相为固体吸附剂
分离原理:利用溶质分子占据固定相表面吸附 活性中心能力的差异
分离前提:K不等或k不等
液—固吸附色谱
固体吸附剂主要类型: 极性的硅胶(应用最广) 氧化铝 分子筛 非极性的活性炭
1971年科克兰等人出版了《液相色谱的现代实践》一 书,标志着高效液相色谱法(HPLC)正式建立。
高效液相色谱(HPLC)简介
2. 流动相类别
按流动相组成分:单组分和多组分;
按极性分:极性、弱极性、非极性;
按使用方式分:固定组成淋洗和梯度淋洗。
常用溶剂: 己烷、四氯化碳、甲苯、乙酸乙酯、乙醇、
乙腈、水。
采用二元或多元组合溶剂作为流动相可以灵活调节流动
相的极性或增加选择性,以改进分离或调整出峰时间。
3. 流动相选择
在选择溶剂时,溶剂的极性是选择的重要依据。
(1)尽量使用高纯度试剂作流动相,防止微量杂质长期累 积,损坏色谱柱和使检测器噪声增加。 (2)避免流动相与固定相发生作用而使柱效下降或损坏柱 子。如使固定液溶解流失,酸性溶剂破坏氧化铝固定相等。 (3)试样在流动相中应有适宜的溶解度,防止产生沉淀并 在柱中沉积。 (4)流动相同时还应满足检测器的要求。当使用紫外检测 器时,流动相不应有紫外吸收。
高效液相色谱(HPLC)简介
目
1, 液相色谱分析法的发展 2, 高效液相色谱的特点 3, 高效液相色谱仪简介 4, 液相色谱法介绍 5, 分析方法的选择 6, 实际分析操作过程
录
1、液相色谱分析法的发展
20世纪初: 俄国植物学家茨维特提出经典液 相色谱法。经典液相色谱法包括柱色 谱、薄层色谱、纸色谱。 20世纪60年代末: 随着色谱理论的发展、高效细微 固定相的开发、高压恒流泵及高灵敏 度检测器的应用,高效液相色谱法得 到了突破性的发展。
a. 紫外检测器
应用最广,对大部分有机 化合物有响应。 特点: 灵敏度高;
线性范围宽;
流通池可做得很小(1mm × 10mm ,容积 8μL); 对流动相的流速和温度变化不敏感; 波长可选,易于操作; 可用于梯度洗脱。
b. 光电二极管阵列检测器
紫外检测器的重要进展;
中国药典版--高效液相色谱法
色谱条件与系统适用性试验
按各品种项下的要求对仪器进行适用 性试验,即用规定的对照品对仪器进 行试验和调整,应达到规定的要求; 或规定分析状态下色谱柱的最小理论 板数、分离度、重复性和拖尾因子。
(1) 色谱柱的理论板数
色谱柱的理论板数(n) 在选定的条件下,注入 供试品溶液或各品种项下规定的内标物质溶液, 记录色谱图,量出供试品主成分或内标物质峰 的保留时间tR(以分钟或长度计,下同,但应 取相同单位)和半高峰宽(Wh/2),按 n=5.54(tR/Wh/2)<2>计算色谱柱的理论板数, 如果测得理论板数低于各品种项下规定的最小 理论板数,应改变色谱柱的某些条件(如柱长, 载体性能,色谱柱充填的优劣等),使理论板 数达到要求。
(3) 拖尾因子
为保证测量精度,特别当采用峰高 法测量时,应检查待测峰的拖尾因子 (T)是否符合各品种项下的规定,或不同 浓度进样的校正因子误差是否符合要 求。除另有规定外, (T) 应在0.95~ 1.05之间。
四重复性
取各品种下的对照溶液,连续进样5次, 除令有规定外,其峰面积测量值相对 标准偏差应不大于2.0%。也可按照规 定 配制相当于80%、100%和120%的 对照品溶液,加入规定量的内标溶液, 配成三种不同浓度的溶液,分别注样3 次,计算平均校正因子,其相对标准偏 差应不大于2.0%。
对氨基酸分离,用经典色谱法,柱长约 170cm,柱径0.9cm,流动相速度为 30cm3·h-1,需用20多小时才能分离出20 种氨基酸;而用高效液相色谱法,只需lh 之内即可完成。又如用25cm×0.46cm的 Lichrosorb-ODS(5μ)的柱,采用梯度洗 脱,可在不到0.5h内分离出尿中104个组
3.测定法
定量测定时,可根据样品的具体情 况采用峰面积法或峰高法。但用归一 法或内标法测定杂质总量时,须采用 峰面积法。
《仪器分析》4-高效液相色谱法
(4) 示差折光检测器: 是一种中等灵敏度(10–6 g/mL)的通用型检测器。
是利用纯流动相和含有待测组分的流动相之间折射率的 差别进行检测的。
可分为三类:反射式;折射式(偏振式)和干涉式。常 用前两种。
优点:灵敏度适宜,操作简便是一种通用型的检测器; 缺点:对温度变化敏感,不能用于梯度洗脱。 应用范围:聚合物、糖。还用于分析以紫外检测和荧光
精选课件
药典中的液相色谱检测器
精选课件
常用的检测器:
(1) 紫外光度检测器:是一种选择性浓度检测器,仅 对那些在紫外波长有吸收的物质有响应。
作用原理:基于待测试样对特定波长的紫外光有选择 性的吸收,试样浓度与吸光度的关系服从比尔定律。
结构:
1-低压汞灯 2-透镜 3-遮光板 4-测量池 5-参比池 6-紫外滤光片 7-双紫外光敏电阻
精选课件
⑶ 色谱柱 GC柱很长,特别是毛细管柱可长至几十米至上百米,柱效
很高(理论塔板数N = 104~106)。HPLC柱较短,一般为15~25 cm,柱效(理论塔板数N = 103~104),低于GC柱。 ⑷ 检测器
与GC相比,HPLC检测器种类较多。 ⑸ 制备色谱
GC难以制备样品,因为进样量小,难以收集或被破坏。 HPLC可进行制备,即制备色谱。
精选课件
2. 进样系统
在高效液相色谱中,常用的进样方式: 高压阀进样:优点是能用于高压,适于大体积进样,重现性
好;缺点是进样阀进样时需排掉一部分试样,不同的进样 量需用不同的定量管,同时峰的扩展也比注射进样大。 微量注射器进样:也可由微量注射器注入取样环少量样品, 即采用较大体积取样环而进少量试样,进样量由注射器控 制,试样不充满取样环,只填充一部分体积。
名词解释高效液相色谱法
名词解释高效液相色谱法
高效液相色谱法(HPLC,High Performance Liquid Chromatography)是一种分离分析技术,通常用于分离混合物中的化合物,特别是在有机分析中广泛应用。
它基于液体流动相和固定相之间不同的亲和力,通过样品在固定相上的分配和吸附作用,实现对混合物中各组分的分离和检测。
高效液相色谱法的基本原理是将一个复杂的混合物通过样品进样器注入色谱柱,在柱内通过流动相的不断输送,样品中的各组分根据其在固定相上的亲和力不同,以不同的速率通过色谱柱,并最终通过检测器进行检测。
该技术具有高效、快速、灵敏、选择性好等特点,可以用于对有机物、无机物、生物大分子等的定性和定量分析。
在实际应用中,高效液相色谱法广泛应用于药物分析、环境监测、食品检测、化学合成过程控制等领域。
18章高效液相色谱法
六、反相离子对色谱法
把离子对试剂加入到含水流动相中,被分析组分离 子在流动相中与离子对试剂的反离子(或是称对离子) 生成不带电荷的中性离子对,从而增加溶质与非极性固 定相的作用,使分配系数增加,改善分离效果, 适用于分离可离子化或离子型的化合物。 1、离子对模型
试样离子在流动相中与离子对试剂离解出的反离子 生成不荷电的中性离子对,然后在非极性固定相上产生 保留。
第四节 高效液相色谱分析方法
一、定性和定量分析方法
1、定性方法分为色谱鉴定法和非色谱鉴定法。 2、定量方法常用外标法和内标法进行。 3、主成分自身对照法:
不加校正因子主成分自身对照法: 加校正因子主成分自身对照法: 二、高效液相色谱分离方法的选择 分离模式选择主要依据试样的性质和各种模式的分离 机制。试样的性质包括相对分子量、化学结构、极性和溶 解度等。
(1)化学稳定性好,使用过程中不流失,柱寿命长;
(2)均一性和重现性好;
(3)柱效高,分离选择性好;
(4)适于梯度洗脱;
(5)载样量大. 3、使用注意事项: (1)使用硅胶基质的键合相pH应维持在2-8;硅-碳杂化 硅胶等为基质的键合相pH范围宽(2-12);
(2)不同厂家,不同批号的同类键合相也可表现不同 的色谱特性。
(3)极性键合相:常用氨基、氰基键合相。是分别 将氨丙硅烷基和氰乙硅烷基键合在硅胶是制成。一般用 作正相色谱固定相。 氰基键合相。对双键或含双键的环状化合物有较好 的分离能力。 氨基键合相对糖类化合物的分离选择性好。在酸性 介质中它是一种弱阴离子交换剂,能分离核酸。不宜分 离带羰基的物质
2、键合相的特点
高效液相色谱法的检测器要求:灵敏度高、噪声 低、线性范围宽、重复性好和适用范围广。
1、紫外检测器简介: 灵敏度较高、噪声低、线性范围宽,对流速 和温度的波动不灵敏,还适用于制备色谱。 工作原理:是朗伯比尔定律,即组分的浓度与吸 光度成正比。 2、紫外检测器分类:
高效液相色谱法
液相色谱法固定相
(三) 离子交换色谱法固定相
1. 薄膜型离子交换树脂: 即以薄壳玻璃珠为担体, 在它的表面涂约 1% 的离子交换树脂而成。
2. 离子交换键合固定相: 用化学反应将离子交换基 团键合在惰性担体表面。
液相色谱法固定相
(四) 亲和色谱固定相
亲和色谱是一种基于分离物与配体间特异
的生物亲合作用来分离生物大分子的技术,它
五 高效液相色谱分离类型的选择
要正确地选择色谱分离方法,首先必须尽可能多的 了解样品
的有关性质,其次必须熟悉各种色谱方法的主要特点及其应
用范围。选择色谱分离方法的主要根据 是样品的相对分子质 量的大小,在水中和有机溶剂中的溶解度,极性和稳定程度
以及化学结构等物理、化学性质。
1、相对分子质量 对于相对分子质量较低(一般在200以下),挥发性比
的作用越来越大,主要应用如下:
多环芳烃、农药、酚类、真菌毒素、异腈酸酯等
等。 特别是有机农药方面的检测。
1. 有机氯农药残留量分析
固定相:薄壳型硅胶(37 ~50m)
流动相:正己烷
流 速:1.5 mL/min 色谱柱:50cm2.5mm(内径)
检测器:差示折光检测器
可对水果、蔬菜中的农药残 留量进行分析。
极性小的组分先出柱,极性大的组分后出柱
适于分离极性组分
反相色谱——固定液极性 < 流动相极性(RLLC)
极性大的组分先出柱,极性小的组分后出柱 适于分离非极性组分
载体又称担体
(1) 全多孔型担体:
a.
HPLC早期使用的担体与GC类似,是颗粒均匀的多孔球 体,如有氧化铝、氧化硅、硅藻土等制成的 Φ 100μ m全多孔型担体。
高效液相色谱法(HPLC)简介
高效液相色谱法分离过程
主要在于固定相的性质、形状及粒度,其次 差别: 是检测手段和输液设备。
经典液相色谱 固定相: 粒度:60~600μm(多孔) 柱长:10~200cm(d=10~50mm) n 约为 2~50/m
流动相:靠重力输送
经典液相色谱无在线检测器
缺点:
①粒度范围宽、不规则,不易填充均匀,扩散和传质阻 力大。 ②无检测设备,分析速度慢、效率低。 只能作为分离手段
(3)不能完全替代气相色谱
(4)不适于分析受压分解、变性的具有生物活性的
Hale Waihona Puke 生化样品。高效液相色谱法与其他分析方法一样,
不是尽善尽美的。
第二节 高效液相色谱法的基本理论
一、高效液相色谱参数 1.定性参数 tR 、 t 0 、 t’ R t’R= tR- t0 2.柱效参数 σ、 W1/2 、W W=4 σ 或 w=1.699W1/2 n=( tR / σ)2 H=L/n
四、高效液相色谱法的应用范围和局限性
1.应用范围 高效液相色谱法适于分析高沸点、受热不稳定易 分解、分子量大、不同极性的有机化合物;生物活性 物质和多种天然产物;合成和天然高分子化合物。 涉及石油化工产品、食品、药品、生物化工产品 及环境污染物。约占全部有机物的80%。 2.方法的局限性
(1)使用多种溶剂为流动相,成本高,污染环境 (2)缺少通用检测器
美国药典委员会(USPC)成立于1820年,至今近200 年。出版发行了25版药典。 75年(19版)将HPLC载入药典 20版-62项;21版-363项;22版-871项;23版-1188项; 24版-含量测定法:1386项 鉴别:519项 杂质检查:206项
如今:在评价世界各国药典水平时,HPLC法成为 反映各国药典先进性的重要指标之一。
高效液相色谱法(HPLC)的概述
此帖与GC版的对应,是为了让大家更好的学习和了解LC主要内容包括:1.高效液相色谱法(HPLC)的概述2. 高效液相色谱基础知识介绍(1——13楼)3. 高压液相色谱HPLC发展概况、特点与分类4. 液相色谱的适用性5.应用高效液相色谱法(HPLC)的概述以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。
其基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、积分仪或数据处理系统记录色信号或进行数据处理而得到分析结果。
由于高效液相色谱法具有分离效能高、选择性好、灵敏度高、分析速度快、适用X围广(样品不需气化,只需制成溶液即可)、色谱柱可反复使用的特点,在《中国药典》中有50种中成药的定量分析采用该法,已成为中药制剂含量测定最常用的分析方法。
高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。
目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。
将固定液的官能团键合在载体上,形成的固定相称为化学键合相,不易流失是其特点,一般认为有分配与吸附两种功能,常以分配作用为主。
C18(ODS)为最常使用的化学键合相。
根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。
在中药制剂分析中,大多采用反相键合相色谱法。
系统组成:(一)高压输液系统由贮液罐、脱气装置、高压输液泵、过滤器、梯度洗脱装置等组成。
1.贮液罐由玻璃、不锈钢或氟塑料等耐腐蚀材料制成。
贮液罐的放置位置要高于泵体,以保持输液静压差,使用过程应密闭,以防止因蒸发引起流动相组成改变,还可防止气体进入。
高效液相色谱法培训PPT课件
注意事项与常见问题解答
样品处理注意事项
01
避免样品污染、损失或变质,确保处理过程的准确性和可重复
性。
常见问题及解决方法
02
针对样品处理过程中可能出现的问题,如回收率低、干扰物质
多等,提供相应的解决方法。
安全与防护
03
注意有毒有害试剂的使用安全,做好个人防护和环境保护工作。
04 方法开发与优化策略
梯度洗脱程序设计思路
初始比例确定
根据待测组分的极性差异,选 择合适的初始流动相比例。
梯度斜率设置
根据组分的分离情况,调整梯 度斜率,使各组分在合适的保 留时间内洗脱出来。
梯度时间设置
确保梯度洗脱过程中,各组分 能够充分分离,同时避免过长 的分析时间。
梯度曲线类型
根据实际需求选择合适的梯度 曲线类型,如线性梯度、凹形
梯度或凸形梯度等。
方法验证内容及标准
精密度
准确度
通过添加回收率试验,验证方法 的准确度,确保测定结果可靠。
考察方法的重复性和中间精密度, 确保测定结果的稳定性。
线性范围
确定方法的线性范围,确保待测 组分浓度在该范围内时,测定结 果准确可靠。
专属性
考察方法对待测组分的选择性, 确保其他共存物质不干扰测定。
长期稳定性
考察样品在规定的储存条件下放置一定时间后的稳定性,以确定 样品的保质期和储存条件。
方法学考察
对分析方法本身进行稳定性考察,包括方法的耐用性、重复性和 中间精密度等指标的评估。
质量控制图绘制和应用
质量控制图绘制
根据长期稳定性考察数据,绘制质量控 制图,包括平均值、标准差和控制限等 指标。
VS
发展历程及应用领域
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高效液相色谱仪一般可分为四个主要
部分:高压输液系统,进样系统,分离系
统和检测系统。此外还配有辅助装置:如
梯度淋洗,自动进样、馏分收集及数据处
理等。
1、高压输液系统
1 ) 贮 液 器 : 1-2L 的 玻 璃 瓶 , 配 有 溶 剂 过 滤 器 (Ni合金),其孔很小约2 m,可防止颗粒物进
入泵内。 2)脱气:超声波脱气或真空加热脱气。溶剂通 过脱气器中的脱气膜,相对分子量小的气体透 过膜从溶剂中除去(气泡会影响检测)。
高效液相色谱法是以液体作为流动相的色谱
法,它是利用样品中各组分在色谱柱中固定相和流 动相相间分配系数或吸附系数的差异,将各组分分 离后进行定性、定量分析。
发展历史
20世纪初,俄国植物学家茨维特提出经典液相色 谱法。
1960年代,由于气相色谱对高沸点有机物分析的 局限性,为了分离蛋白质、核酸等不易气化的大 分子物质,气相色谱的理论和方法被重新引入经 典液相色谱。
(使用较多)
ห้องสมุดไป่ตู้对流量变化敏感的检测器会有噪声
干扰,此时可连接一脉动阻尼器。
◆恒压泵--------压力恒定,但流量不恒定(现在已经较少使用)。
输液泵操作注意事项:
防止固体微粒进入泵体 流动相不应含有腐蚀性物质 防止溶剂瓶内的流动相被用完 不超过规定的最高压力 流动相一般应该先脱气
4)梯度淋洗装置:
3)高压泵
输液泵应具备如下性能:①流量稳定②流量范 围宽③输出压力高,一般应能达到150~300 kg/cm2;④液缸容积小;⑤密封性能好,耐腐蚀。
高压泵按排液性质可分为:恒压型和恒流型。
注射型泵------输出精确,无脉动,需更换溶剂而中断工作。
◆恒流泵
往复型泵------造价低廉,溶剂更换方便,但存在脉动。
发展趋势: 填料粒度小 柱径小
装柱技术:干法:填料粒度大于20m时可用。
湿法(匀浆法):配成悬浮液。高压泵压入 色谱柱,洗净备用
4、检测系统
检测器是HPLC仪的三大关键部件之一。其作用 是把洗脱液中组分的量转变为电信号。
要求:
灵敏度高 噪音低(即对温度、流量等外界变化不敏感) 线性范围宽 重复性好 适用范围广
分类:
1)按原理可分为光学检测器(如紫外、荧光、示差折
光、蒸发光散射)、热学检测器(如吸附热)、电化学检 测器(如极谱、库仑、安培)、电学检测器(电导、介电 常数、压电石英频率)、放射性检测器(闪烁计数、电子 捕获、氦离子化)以及氢火焰离子化检测器。
1960年代末,科克兰(Kirkland)、哈伯、荷瓦 斯(Horvath)、莆黑斯、里普斯克等人开发了世界 上第一台高效液相色谱仪,开启了高效液相色谱 的时代。
20世纪70年代,高效液相色谱法开始广泛应用。
高效液相色谱的特点
高压——压力可达150~300 kg/cm2。色谱
柱每米降压为75 kg/cm2以上。
图 六通进样阀
3、分离系统
分离系统包括色谱柱、恒温器和连接管等部件。
色谱柱由柱管、压帽、卡套(密封环)、筛
板(滤片)、接头、螺丝等组成。色谱柱一般用
内部抛光的不锈钢制成。其内径为2~6mm,柱长 为10~50cm,柱形多为直形,内部充满微粒固定
相。柱温一般为室温或接近室温。
色谱柱
标准柱型: 4.6mm或 3.9mm L: 15-30cm 填料粒度:5-10m
HPLC有等强度(isocratic)和梯度(gradient)
洗脱两种方式。等度洗脱是在同一分析周期
内流动相组成保持恒定,适合于组分数目较少,
性质差别不大的样品。梯度洗脱是在一个分
析周期内程序控制流动相的组成,如溶剂的极 性、离子强度和pH值等,用于分析组分数目多、 性质差异较大的复杂样品。采用梯度洗脱可以 缩短分析时间,提高分离度,改善峰形,提高 检测灵敏度,但是常常引起基线漂移和降低重 现性。
高速——流速为0.1~10.0 mL/min。 高效——塔板数可达5000/米。在一根柱中
同时分离成份可达100种。
高灵敏度——紫外检测器灵敏度可达0.01ng。
同时消耗样品少。
第二节 高效液相色谱仪
高效液相色谱仪基本装置
检测器 进样阀 色谱柱
流动相 高压泵 注入样品液
流出液
色谱处理机
高效液相色谱仪的组成
梯度洗脱有两种实现方式:
一是高压梯度(内梯度),利用两台高压输液泵,将两种不同
极性的溶剂按一定的比例送入梯度混合室,混合均匀后再进入色谱柱。
二是低压梯度(外梯度),通过比例调节阀,将两种不同极性
的溶剂按一定的比例抽入一台高压泵中混合,随后打入色谱柱。
高压梯度
低压梯度
2、进样系统
早期使用隔膜和停流进样器,装在色谱 柱入口处。现在大都使用六通进样阀或自动 进样器。进样装置要求:密封性好,死体积 小,重复性好,保证中心进样,进样时对色 谱系统的压力、流量影响小。
(3)自动进样。用于大量样品的常规分析。
(4)阀进样。一般HPLC分析常用六通进样阀,其关
键部件由圆形密封垫(转子)和固定底座(定子)组成。 由于阀接头和连接管死体积的存在,柱效率低于隔膜进样 (约下降5~10%左右),但耐高压(35~40MPa),进样 量准确,重复性好(0.5%),操作方便。
HPLC进样方式可分为:
(1)隔膜进样 (2)停流进样 (3)自动进样 (4)阀进样
(1)隔膜进样。使用微量注射器进样。装置简单、
死体积小。但进样量小且重现性差,常规分析使用受 到局限。
(2)停流进样。可避免在高压下进样。但在
HPLC中由于隔膜的污染,停泵或重新启动时往往会 出现“鬼峰”;另一缺点是保留时间不准。在以峰的 始末信号控制馏分收集的制备色谱中,效果较好。
高效液相色谱法
High-Performance Liquid Chromatography,HPLC
主要内容
第一节 概述 第二节 高效液相色谱仪 第三节 高效液相色谱类型 第四节 固定相和流动相的选择 第五节 图形结果分析及其应用
第一节 概述
高效液相色谱(HPLC)也叫高压液相色
谱(high pressure liquid chromatography)、高速 液相色谱(high speed liquid chromatography)、 高分离度液相色谱(high resolution liquid chromatography)等。