2018届高三第一次联考理数学试题(含答案)
2021届四川省绵阳市2018级高三上学期一诊考试理科数学试卷参考答案
![2021届四川省绵阳市2018级高三上学期一诊考试理科数学试卷参考答案](https://img.taocdn.com/s3/m/af583a6e52ea551810a687a3.png)
即 sin C = 3 cosC ,得 tan C = 3 . ∵0Cπ,
∴ C = π . ……………………………………………………………………6 分 3
(2)由题意得 sin B = 1− cos2 B = 4 3 . 7
在△ABC 中, 由正弦定理得 AC = AB sin B = 8 . …………………………8 分 sin C
19.解:(1)在△ABC 中,由正弦定理得 sin C sin A = sin Acos(C − π) , 6
∵ 0 Aπ ∴ sin A 0 ,
∴ sin C = cos(C − π) = 3 cosC + 1 sin C ,
62
2
理科数学答案第 2 页(共 6 页)
2021届四川省绵阳市2018级高三上学期一诊考试理科数学试卷
3
8(4n
− 1)
3
+ −
n n
(n −2
= 2k,k N*),
…………………………………12
(n = 2k −1,k N*).
分
理科数学答案第 1 页(共 6 页)
2021届四川省绵阳市2018级高三上学期一诊考试理科数学试卷
18.解:(1) f (x) = 2 3 cos x sin(x + π) − 3 62
∴ 2a≥g(2) = −1,
∴ a≥ − 1 . ……………………………………………………………………12 分 2
理科数学答案第 3 页(共 6 页)
2021届四川省绵阳市2018级高三上学期一诊考试理科数学试卷
21.解:(1) f (x) = 2x2 − (a + 4)x + 2a = 2(x − a)(x − 2) . 2
2018年高考全国一卷理科数学答案及解析
![2018年高考全国一卷理科数学答案及解析](https://img.taocdn.com/s3/m/5891490d83c4bb4cf7ecd17b.png)
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
江苏南京、盐城市2018届高三数学一模试题有答案
![江苏南京、盐城市2018届高三数学一模试题有答案](https://img.taocdn.com/s3/m/4e5b04e86f1aff00bed51e79.png)
江苏南京、盐城市2018届高三数学一模试题(有答案)南京市、盐城市2018届高三年级第一次模拟考试数学试题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.参考公式:柱体体积公式:,其中为底面积,为高.一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合,,则▲.2.设复数为虚数单位),若为纯虚数,则的值为▲.3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在(单位:分钟)内的学生人数为▲.4.执行如图所示的伪代码,若,则输出的的值为▲.5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为▲.6.若抛物线的焦点与双曲线的右焦点重合,则实数的值为▲.7.设函数的值域为,若,则实数的取值范围是▲.8.已知锐角满足,则的值为▲.9.若函数在区间上单调递增,则实数的取值范围是▲.10.设为等差数列的前项和,若的前2017项中的奇数项和为2018,则的值为▲.11.设函数是偶函数,当x≥0时,=,若函数有四个不同的零点,则实数m的取值范围是▲.12.在平面直角坐标系中,若直线上存在一点,圆上存在一点,满足,则实数的最小值为▲.13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若四点均位于图中的“晶格点”处,且的位置所图所示,则的最大值为▲.14.若不等式对任意都成立,则实数的最小值为▲.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.(本小题满分14分)如图所示,在直三棱柱中,,点分别是的中点.(1)求证:∥平面;(2)若,求证:.16.(本小题满分14分)在中,角的对边分别为已知.(1)若,求的值;(2)若,求的值.17.(本小题满分14分)有一矩形硬纸板材料(厚度忽略不计),一边长为6分米,另一边足够长.现从中截取矩形(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中是以为圆心、的扇形,且弧,分别与边,相切于点,.(1)当长为1分米时,求折卷成的包装盒的容积;(2)当的长是多少分米时,折卷成的包装盒的容积最大?18.(本小题满分16分)如图,在平面直角坐标系中,椭圆的下顶点为,点是椭圆上异于点的动点,直线分别与轴交于点,且点是线段的中点.当点运动到点处时,点的坐标为.(1)求椭圆的标准方程;(2)设直线交轴于点,当点均在轴右侧,且时,求直线的方程.19.(本小题满分16分)设数列满足,其中,且,为常数.(1)若是等差数列,且公差,求的值;(2)若,且存在,使得对任意的都成立,求的最小值;(3)若,且数列不是常数列,如果存在正整数,使得对任意的均成立.求所有满足条件的数列中的最小值.20.(本小题满分16分)设函数,().(1)当时,若函数与的图象在处有相同的切线,求的值;(2)当时,若对任意和任意,总存在不相等的正实数,使得,求的最小值;(3)当时,设函数与的图象交于两点.求证:.南京市、盐城市2018届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)A.(选修4-1:几何证明选讲)如图,已知为⊙的直径,直线与⊙相切于点,垂直于点.若,求切点到直径的距离.B.(选修4-2:矩阵与变换)已知矩阵,求圆在矩阵的变换下所得的曲线方程. C.(选修4-4:坐标系与参数方程)在极坐标系中,直线与曲线()相切,求的值.D.(选修4-5:不等式选讲)已知实数满足,求当取最大值时的值.[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内)22.(本小题满分10分)如图,四棱锥的底面是菱形,与交于点,底面,点为中点,.(1)求直线与所成角的余弦值;(2)求平面与平面所成锐二面角的余弦值.23.(本小题满分10分)已知,.(1)求的值;(2)试猜想的表达式(用一个组合数表示),并证明你的猜想.南京市、盐城市2018届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分. 1.2.13.12004.15.6.67.8.9.10.403411.12.13.2414.100二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.证明:(1)因为是直三棱柱,所以,且,又点分别是的中点,所以,且.所以四边形是平行四边形,从而.……………4分又平面,平面,所以∥面.……………6分(2)因为是直三棱柱,所以底面,而侧面,所以侧面底面.又,且是的中点,所以.则由侧面底面,侧面底面,,且底面,得侧面.……………8分又侧面,所以.……………10分又,平面,且,所以平面.……………12分又平面,所以.……………14分16.解:(1)因为,则由正弦定理,得. (2)分又,所以,即.……………4分又是的内角,所以,故.……………6分(2)因为,所以,则由余弦定理,得,得.……………10分从而,……………12分又,所以.从而.……………14分17.解:(1)在图甲中,连接交于点.设,在中,因为,所以,则.从而,即.……………2分故所得柱体的底面积.……………4分又所得柱体的高,所以.答:当长为1分米时,折卷成的包装盒的容积为立方分米.…………………6分(2)设,则,所以所得柱体的底面积.又所得柱体的高,所以,其中.…………………10分令,则由,解得.…………………12分列表如下:+0-增极大值减所以当时,取得最大值.答:当的长为2分米时,折卷成的包装盒的容积最大.…………………14分18.解:(1)由,得直线的方程为. (2)分令,得点的坐标为.所以椭圆的方程为.…………………4分将点的坐标代入,得,解得.所以椭圆的标准方程为.…………………8分(2)方法一:设直线的斜率为,则直线的方程为.在中,令,得,而点是线段的中点,所以.所以直线的斜率.………………10分联立,消去,得,解得.用代,得.………………12分又,所以,得.………………14分故,又,解得.所以直线的方程为.………………16分方法二:设点的坐标分别为.由,得直线的方程为,令,得.同理,得.而点是线段的中点,所以,故.…………………10分又,所以,得,从而,解得.…………………12分将代入到椭圆C的方程中,得.又,所以,即,解得(舍)或.又,所以点的坐标为.……………14分故直线的方程为.…………………16分19.解:(1)由题意,可得,化简得,又,所以.………………4分(2)将代入条件,可得,解得,所以,所以数列是首项为1,公比的等比数列,所以.……6分欲存在,使得,即对任意都成立,则,所以对任意都成立.………………8分令,则,所以当时,;当时,;当时,.所以的最大值为,所以的最小值为.………………10分(3)因为数列不是常数列,所以.①若,则恒成立,从而,,所以,所以,又,所以,可得是常数列.矛盾.所以不合题意.………………12分②若,取(*),满足恒成立.………………14分由,得.则条件式变为.由,知;由,知;由,知.所以,数列(*)适合题意.所以的最小值为.………………16分20.解:(1)由,得,又,所以,.当时,,所以,所以.………………2分因为函数与的图象在处有相同的切线,所以,即,解得.………………4分(2)当时,则,又,设,则题意可转化为方程在上有相异两实根. (6)分即关于的方程在上有相异两实根.所以,得,所以对恒成立.………………8分因为,所以(当且仅当时取等号),又,所以的取值范围是,所以.故的最小值为.………………10分(3)当时,因为函数与的图象交于两点,所以,两式相减,得.………………12分要证明,即证,即证,即证.………………14分令,则,此时即证.令,所以,所以当时,函数单调递增.又,所以,即成立;再令,所以,所以当时,函数单调递减,又,所以,即也成立.综上所述,实数满足.………………16分附加题答案21.(A)解:如图,连接,,因为直线与⊙相切于点,所以,又因为垂直于,所以,所以,①在⊙中,所以,②………………5分由①②得,即,又,,所以,所以,又,所以,即到直径的距离为4.………………10分(B)解:设是圆上任意一点,则,设点在矩阵对应的变换下所得的点为,则,即,解得,………………5分代入,得,即为所求的曲线方程.………………10分(C)解:以极点O为原点,极轴为轴建立平面直角坐标系,由,得,得直线的直角坐标方程为.………………5分曲线,即圆,所以圆心到直线的距离为.因为直线与曲线()相切,所以,即.……………10分(D)解:由柯西不等式,得,即.而,所以,所以,………………5分由,得,所以当且仅当时,.所以当取最大值时的值为.………………10分22.解:(1)因为是菱形,所以.又底面,以为原点,直线分别为轴,轴,轴,建立如图所示空间直角坐标系.则,,,,.所以,,,,.则.故直线与所成角的余弦值为.………5分(2),.设平面的一个法向量为,则,得,令,得,.得平面的一个法向量为.又平面的一个法向量为,所以,,.则.故平面与平面所成锐二面角的余弦值为 (10)分23.解:(1)由条件,①,在①中令,得.………………1分在①中令,得,得.………………2分在①中令,得,得.………………3分(2)猜想=(或=).………………5分欲证猜想成立,只要证等式成立.方法一:当时,等式显然成立,当时,因为,故.故只需证明.即证.而,故即证②.由等式可得,左边的系数为.而右边,所以的系数为.由恒成立可得②成立.综上,成立.………………10分方法二:构造一个组合模型,一个袋中装有个小球,其中n个是编号为1,2,…,n的白球,其余n-1个是编号为1,2,…,n-1的黑球,现从袋中任意摸出n个小球,一方面,由分步计数原理其中含有个黑球(个白球)的n个小球的组合的个数为,,由分类计数原理有从袋中任意摸出n个小球的组合的总数为.另一方面,从袋中个小球中任意摸出n个小球的组合的个数为.故,即②成立.余下同方法一.………………10分方法三:由二项式定理,得③.两边求导,得④.③×④,得⑤.左边的系数为.右边的系数为.由⑤恒成立,可得.故成立.………………10分。
山东省淄博市2018届高三下学期第一次模拟考试数学(理)
![山东省淄博市2018届高三下学期第一次模拟考试数学(理)](https://img.taocdn.com/s3/m/38d624f45ebfc77da26925c52cc58bd63186933d.png)
山东省淄博市2018届高三下学期第一次模拟考试数学(理)淄博市2017-2018学年度高三模拟考试试题理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合 $A=\{x\in N|2x\leq 8\},B=\{0,1,2,3,4\}$,则$A\cap B=$A。
$\{0,1,2,3\}$B。
$\{1,2,3\}$C。
$\{0,1,2\}$D。
$\{0,1,2,3,4\}$2.在复平面内,复数 $z$ 满足 $z(1+i)=1-2i$,则 $z$ 对应的点位于A。
第一象限B。
第二象限C。
第三象限D。
第四象限3.若 $0.43a=3,b=0.4,c=\log_{0.4}3$,则A。
$b<a<c$B。
$c<a<b$XXX<c<b$D。
$c<b<a$4.若 $\sin2\alpha=\frac{\sin(\alpha-\pi/2)}{2\cos(\alpha+\pi/2)}$,则 $\sin\alpha$ 的值为A。
$\frac{5}{7}$B。
$\frac{5}{3}$C。
$-\frac{3}{5}$D。
$-\frac{5}{3}$5.已知某空间几何体的三视图如图所示,则该几何体的体积是A。
$\frac{2}{3}$B。
$\frac{5}{6}$C。
$1$D。
$2$6.设每天从甲地去乙地的旅客人数为随机变量 $X$,且$X\sim N(800,502)$。
记一天中从甲地去乙地的旅客人数不超过 $2X\sim N(\mu,\sigma^2)$ 的概率为 $p$,则 $p$ 的值为(参考数据:若 $P(\mu-\sigma<X\leq\mu+\sigma)=0.6826$,$P(\mu-2\sigma<X\leq\mu+2\sigma)=0.9544$,$P(\mu-3\sigma<X\leq\mu+3\sigma)=0.9974$)A。
高考数学考点导数的几何意义以及应用#
![高考数学考点导数的几何意义以及应用#](https://img.taocdn.com/s3/m/b7a1f4175727a5e9846a6113.png)
考点09 导数的几何意义以及应用【高考再现】热点一导数的几何意义1.<2018年高考<课标文))曲线在点(1,1>处的切线方程为________2.<2018年高考<广东理))曲线在点处的切线方程为_______________【答案】【解读】,所以切线方程为,即.热点二导数的几何意义的应用3.<2018年高考<重庆理))设其中,曲线在点处的切线垂直于轴.(Ⅰ> 求的值。
(Ⅱ> 求函数的极值.【解读】(1>因,故因为曲线在点处的切线垂直于轴,故该切线斜率为0,即4.<2018年高考<山东文))已知函数为常数,e=2.71828是自然对数的底数>,曲线在点处的切线与x轴平行.(Ⅰ>求k的值。
(Ⅱ>求的单调区间。
(Ⅲ>设,其中为的导函数.证明:对任意.5.<2018年高考<湖北文))设函数,为正整数,为常数, 曲线在处的切线方程为.(1>求的值。
(2>求函数的最大值。
(3>证明:.【点评】本题考查多项式函数的求导,导数的几何意义,导数判断函数的单调性,求解函数的最值以及证明不等式等的综合应用.考查转化与划归,分类讨论的数学思想以及运算求解的能力. 导数的几何意义一般用来求曲线的切线方程,导数的应用一般用来求解函数的极值,最值,证明不等式等. 来年需注意应用导数判断函数的极值以及求解极值,最值等。
另外,要注意含有等的函数求导的运算及其应用考查.6.<2018年高考<北京文))已知函数(>,.(1>若曲线与曲线在它们的交点(1,>处具有公共切线,求的值。
(2>当时,求函数在区间上的最大值为28,求的取值范围.当时,函数在区间上的最大值小于28.因此,的取值范围是7.<2018年高考<北京理))已知函数(>,.(1>若曲线与曲线在它们的交点(1,>处具有公共切线,求的值。
2018年高三北京市朝阳区2018届高三(一模)数学
![2018年高三北京市朝阳区2018届高三(一模)数学](https://img.taocdn.com/s3/m/035148a8f61fb7360b4c65f6.png)
理科数学 2018年高三北京市朝阳区2018届高三(一模)数学(理)试题解析单选题略略略略略略略略填空题略略略略略略略略略略略略单选题(本大题共8小题,每小题____分,共____分。
)1.已知全集为实数集,集合,,则A.B.C.D.2.复数满足,则在复平面内复数所对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.直线的参数方程为(为参数),则的倾斜角大小为A.C.D.4.已知为非零向量,则“”是“与夹角为锐角”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5.某单位安排甲、乙、丙、丁4名工作人员从周一到周五值班,每天有且只有1人值班,每人至少安排一天且甲连续两天值班,则不同的安排方法种数为A.B.C.D.6.某四棱锥的三视图如图所示,则该四棱锥的体积等于A.C.D.7.庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:甲说:“我或乙能中奖”;乙说:“丁能中奖”;丙说:“我或乙能中奖”;丁说:“甲不能中奖”.游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是A. 甲B. 乙C. 丙D. 丁8.在平面直角坐标系xOy中,已知点,,动点满足,其中,则所有点构成的图形面积为A.B.C.D.填空题(本大题共12小题,每小题____分,共____分。
)9.执行如图所示的程序框图,若输入,则输出的值为________.10.若三个点中恰有两个点在双曲线上,则双曲线的渐近线方程为_____________.11.函数()的部分图象如图所示,则____;函数在区间上的零点为____.12.已知点,若点是圆上的动点,则面积的最小值为____.13.等比数列满足如下条件:①;②数列的前项和.试写出满足上述所有条件的一个数列的通项公式____.14.已知,函数当时,函数的最大值是____;若函数的图象上有且只有两对点关于轴对称,则的取值范围是____.15. (本小题满分13分)在中,已知,.(Ⅰ)若,求的面积;(Ⅱ)若为锐角,求的值.16.(本小题满分14分)如图1,在矩形中,,,为的中点,为中点.将沿折起到,使得平面平面(如图2).(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)在线段上是否存在点,使得平面若存在,求出的值;若不存在,请说明理由.17.(本小题满分13分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生中随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史学科的概率;(Ⅲ)从选考方案确定的8名男生中随机选出2名,设随机变量求的分布列及数学期望.18. (本小题满分13分)已知函数.(Ⅰ)当时,(ⅰ)求曲线在点处的切线方程;(ⅱ)求函数的单调区间;(Ⅱ)若,求证:.19. (本小题满分14分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)过椭圆的左焦点的直线与椭圆交于两点,直线过坐标原点且与直线的斜率互为相反数.若直线与椭圆交于两点且均不与点重合,设直线与轴所成的锐角为,直线与轴所成的锐角为,判断与大小关系并加以证明.20. (本小题满分13分)已知集合是集合的一个含有8个元素的子集.(Ⅰ)当时,设,(i)写出方程的解;(ii)若方程至少有三组不同的解,写出的所有可能取值;(Ⅱ)证明:对任意一个,存在正整数,使得方程至少有三组不同的解.答案单选题1. C2. A3. C4. B5. B6. D7. A8. C 填空题9.410.11.12.213.14.15.(Ⅰ)由,得,因为,所以.因为,所以.故的面积.………………….7分(Ⅱ)因为,且为锐角,所以.所以.………….13分16.(Ⅰ)由已知,因为为中点,所以.因为平面平面,且平面平面,平面,所以平面.又因为平面,所以.………….5分(Ⅱ)设为线段上靠近点的四等分点,为中点.由已知易得.由(Ⅰ)可知,平面,所以,.以为原点,所在直线分别为轴建立空间直角坐标系(如图).因为,,所以.设平面的一个法向量为,因为,所以即取,得.而.所以直线与平面所成角的正弦值……….10分(Ⅲ)在线段上存在点,使得平面.设,且,则,.因为,所以,所以,所以,.若平面,则.即.由(Ⅱ)可知,平面的一个法向量,即,解得,所以当时,平面.……….14分17.(Ⅰ)由题可知,选考方案确定的男生中确定选考生物的学生有4人,选考方案确定的女生中确定选考生物的学生有6人,该学校高一年级选考方案确定的学生中选考生物的学生有人.……….3分(Ⅱ)由数据可知,选考方案确定的8位男生中选出1人选考方案中含有历史学科的概率为;选考方案确定的10位女生中选出1人选考方案中含有历史学科的概率为.所以该男生和该女生的选考方案中都含有历史学科的概率为.…….8分(Ⅲ)由数据可知,选考方案确定的男生中有4人选择物理、化学和生物;有2人选择物理、化学和历史;有1人选择物理、化学和地理;有1人选择物理、化学和政治.由已知得的取值为.,,或.所以的分布列为12所以.…….13分18.当时,..(ⅰ)可得,又,所以在点()处的切线方程为. ….3分(ⅱ)在区间()上,且,则.在区间()上,且,则.所以的单调递增区间为(),单调递减区间为(). ….8分(Ⅱ)由,,等价于,等价于. 设,只须证成立.因为,,由,得有异号两根.令其正根为,则.在上,在上.则的最小值为.又,,所以.则.因此,即.所以所以.….….13分19.Ⅰ)由题意得解得,,.故椭圆的方程为.….….5分(Ⅱ).证明如下:由题意可设直线的方程为,直线的方程为,设点,,,.要证,即证直线与直线的斜率之和为零,即.因为.由得,所以,.由得,所以.所以..所以.….….14分20.(Ⅰ)(ⅰ)方程的解有:. (2)分(ii)以下规定两数的差均为正,则:列出集合的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6;中间相隔三数的两数差:10,11,11,10;中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15;中间相隔六数的两数差:16这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,所以的可能取值有4,6.…………………………………………………………6分(Ⅱ)证明:不妨设,记,,共13个差数.假设不存在满足条件的,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而. …………①又,这与①矛盾!所以结论成立.……………………………………………………………………13分解析单选题略略略略略略略略填空题略略略略略略略略略略略略。
21 平面向量中最值、范围问题-备战2018高考技巧大全之高中数学黄金解题模板含解析
![21 平面向量中最值、范围问题-备战2018高考技巧大全之高中数学黄金解题模板含解析](https://img.taocdn.com/s3/m/f8d6744a284ac850ad0242f9.png)
【高考地位】平面向量中的最值和范围问题,是一个热点问题,也是难点问题,这类试题的基本类型是根据给出的条件求某个量的最值、范围,如:向量的模、数量积、夹角及向量的系数.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,解决平面向量最值、范围问题的另一个基本思想是数形结合.在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中高档题. 【方法点评】方法一 利用基本不等式求平面向量的最值使用情景:一般平面向量求最值问题解题模板:第一步 利用向量的概念及其基本运算将所求问题转化为相应的等式关系;第二步 运用基本不等式求其最值问题; 第三步 得出结论。
例1.已知点A 在线段BC 上(不含端点),O 是直线BC 外一点,且20OA aOB bOC --=,则221a ba b b+++的最小值是___________ 【答案】222例2 如右图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,N M 两点,且,AM x AB AN y AC ==,则2x y +的最小值为( )A .2B .13C .3223+ D .34【答案】C【变式演练1】如图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,M N 两点,且,AM x AB AN y AC ==,则x y +的最小值为( )A .2B .13C .43D .34【答案】CMNA BGQ考点:向量共线,基本不等式求最值【变式演练2】已知点A(1, 1),B(4,0),C(2,2).平面区域D由所有满足AP AB ACλμ=+(1≤≤a,1≤≤b)的点P(x,y)组成的区域.若区域D的面积为8,则a+b的最小值为.【答案】4考点:1、平面向量的线性运算;2、基本不等式. 【变式演练3】平行四边形ABCD 中,60,1,2,BAD AB AD P ∠===为平行四边形内一点,且22AP =,若),(R AD AB AP ∈+=μλμλ,则2u λ+的最大值为 . 6【解析】试题分析:对),(R AD AB AP ∈+=μλμλ两边平方可得()()22AP AB AD λμ=+可化为222222APAB AB AD ADλλμμ=+⋅⋅+,据已知条件可得22122λμ=+≥,即λμ≤,又()22212223λλμ=++=+≤,则λ+≤. 考点:向量的数量积运算;基本不等式方法二 利用向量的数量积m n m n ⋅≤求最值或取值范围使用情景:涉及数量积求平面向量最值问题解题模板:第一步 运用向量的加减法用已知向量表示未知向量;第二步 运用向量的数量积的性质求解; 第三步 得出结论。
2018届高三上学期期末联考数学(理)试题有答案-精品
![2018届高三上学期期末联考数学(理)试题有答案-精品](https://img.taocdn.com/s3/m/597a096da300a6c30c229f86.png)
2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。
解密06+定积分与微积分基本定理-备战2018年高考数学(理)之高频考点解密+Word版含解析
![解密06+定积分与微积分基本定理-备战2018年高考数学(理)之高频考点解密+Word版含解析](https://img.taocdn.com/s3/m/5c20a4e1ad51f01dc281f17a.png)
考点1 定积分的计算题组一 用牛顿—莱布尼茨公式求定积分调研1 已知函数1(10)()πcos (0)2x x f x x x +-≤≤⎧⎪=⎨<≤⎪⎩,则π21()d f x x -=⎰A .12 B .1 C .2 D .32【答案】D 【解析】πππ200222101113()d (1)d cos d ()|sin |1222x f x x x x x x x x ---=++=++=+=⎰⎰⎰,故选D.☆技巧点拨☆1.用牛顿—莱布尼茨公式求定积分的步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差;(2)把定积分用定积分性质变形为求被积函数为上述函数的定积分; (3)分别用求导公式找到一个相应的原函数; (4)利用牛顿—莱布尼茨公式求出各个定积分的值; (5)计算原始定积分的值. 2.分段函数的定积分分段函数求定积分,可先把每一段函数的定积分求出后再相加.题组二 用定积分的几何意义求定积分 调研2 计算333(cos )d x x x -=⎰.【答案】0【解析】∵3cos y x x =为奇函数,∴333(cos )d 0x x x -=⎰.调研3 m 等于 A .−1 B .0 C .1D .2【答案】B【解析】由已知可得: y 的图象为圆:22(1)1x y ++=对应的上半部分,由定积分的几何意义可得0m =,故选B.☆技巧点拨☆1.求定积分的三种方法(1)利用定义求定积分(定义法),可操作性不强; (2)利用微积分基本定理求定积分;(3)利用定积分的几何意义求定积分.当曲边梯形面积易求时,可通过求曲边梯形的面积求定积分.例如,定积分x ⎰的几何意义是求单位圆面积的14,所以π=4x ⎰.2.奇偶函数的定积分(1)若奇函数y =f (x )的图象在[−a ,a ]上连续,则()d 0aaf x x -=⎰;(2)若偶函数y =g (x )的图象在[−a ,a ]上连续,则()d 2()d aaag x x g x x -=⎰⎰.考点2 定积分的应用题组一 利用定积分求平面图形的面积调研1 已知a >0,若曲线y =、x a =与0y =所围成的封闭区域的面积为2a ,则a =________.【答案】49【解析】由题意322002|3a a x x ==⎰,所以a =49. 调研2 已知{()|,01}1,0x y x y Ω≤≤≤≤=,A 是由直线x =1,y =0和曲线y =x 4所围成的曲边三角形的平面区域,若向平面区域Ω内随机投一点M ,则点M 落在区域A 内的概率为________. 【答案】15【解析】区域Ω对应的是边长为1的正方形,其面积为S =1.区域A 是由直线x =1,y =0和曲线y =x 4围成的曲边三角形,如图中阴影部分,故区域A 的面积为S A =14510011d |55x x x ==⎰.所以点M 落在区域A 内的概率为15.☆技巧点拨☆利用定积分求平面图形的面积是近几年高考考查定积分的一个重要考查方向,多以选择题、填空题的形式考查.难度一般不大,属中低档题型.常见的题型及其解法如下: 1.利用定积分求平面图形面积的步骤①根据题意画出图形;②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;③把曲边梯形的面积表示成若干个定积分的和;④计算定积分,写出答案.注意:当曲边梯形位于x轴上方时,定积分的值为正;当曲边梯形位于x轴下方时,定积分的值为负;当位于x轴上方的曲边梯形与位于x轴下方的曲边梯形面积相等时,定积分的值为零.2.知图形的面积求参数求解此类题的突破口:画图,一般是先画出它的草图;然后确定积分的上、下限,确定被积函数,由定积分求出其面积,再由已知条件可找到关于参数的方程,从而可求出参数的值.3.与概率相交汇问题解决此类问题应先利用定积分求出相应平面图形的面积,再用相应概率公式进行计算.题组二定积分的物理意义调研3 一列火车在平直的铁轨上行驶,由于遇到紧急情况,火车以速度55()51V t tt=-++(t的单位:s,v的单位:m/s)紧急刹车至停止.在此期间火车继续行驶的距离是A.55ln 10 m B.55ln 11 m C.(12+55ln 7) m D.(12+55ln 6) m 【答案】B【解析】令55501tt-+=+,注意到t>0,得t=10,即行驶的时间为10 s.行驶的距离s=10210551(5)d[555ln(1)]|55ln1112t t t t tt-+=-++=+⎰,即紧急刹车后火车继续行驶的距离为55ln 11 m.☆技巧点拨☆利用定积分解决变速直线运动问题和变力做功问题时,关键是求出物体做变速直线运动的速度函数和变力与位移之间的函数关系,确定好积分区间,得到积分表达式,再利用微积分基本定理计算即得所求.1.(2018届江西省高三年级阶段性检测考试(二))1204d x x -=⎰A .7B .C .D .4【答案】C【解析】.故选C.2.(辽宁省鞍山市第一中学2018届高三上学期第二次模拟考试(期中))由曲线1xy =与直线y x =,3y =所围成的封闭图形的面积为 A .2ln3- B .ln3 C .2D .4ln3-【答案】D3.(安徽省淮南市第二中学、宿城第一中学2018届高三第四次考试)设()[](]cos ,0,π1,π,2πx x f x x ⎧∈⎪=⎨∈⎪⎩,则()2πd f x x =⎰A .0B .πC .π-D .π2【答案】B【解析】由已知得()2πd f x x =⎰π2ππ2π0π0πcos d 1d sin ||πx x x x x +=+=⎰⎰,故选B.4.(安徽省阜阳市临泉县第一中学2018届高三上学期第二次模拟)若,125b -=,π01sin d 4c x x =⎰,则的大小关系是A .B .C .D .【答案】D【解析】∵π01sin d 4c x x =⎰,∴,∵,∴,故选D.5.(陕西省西安市长安区2018届高三上学期质量检测大联考(一)2ny y ⎛⎫+ ⎪⎝⎭的展开式中常数项为A .8B .16C .24D .60【答案】C6.(陕西省西安市西北工业大学附属中学2017届高三下学期第七次模拟)已知平面区域(){,|0π,01}x y x y Ω=≤≤≤≤,现向该区域内任意掷点,则该点落在曲线2sin y x =下方的概率是A .12 B .1π C .2πD .π4【答案】A7.(东北师大附中、哈尔滨师大附中、辽宁省实验中学2017届高三下学期第四次联合模拟考试)已知函数()f x 的部分图象如图所示,向图中的矩形区域随机投出200粒豆子,记下落入阴影区域的豆子数,通过100次这样的试验,算得落入阴影区域的豆子的平均数为66,由此可估计()2d f x x ⎰的值约为A .9925 B .9950 C .310D .35【答案】B【解析】由定积分的几何意义知()2d f x x ⎰的值即为阴影部分面积S ,再由几何概型可知6620023S=⨯,解得9950S =.故本题选B .8.(四川省德阳市2018【答案】42π+【解析】令y =则()2240x y y +=≥,其图象为半圆,且面积为2π,又22221d |4x x --==⎰,所以填42π+.9.(安徽省合肥一中、马鞍山二中等六校教育研究会2018届高三上学期第一次联考)如图所示,在平面直角坐标系内,四边形ABCD 为正方形且点C 坐标为11,2⎛⎫⎪⎝⎭.抛物线Γ的顶点在原点,关于x 轴对称,且过点C .在正方形ABCD 内随机取一点M ,则点M 在阴影区域内的概率为_________.【答案】2310.(江西省新余市第一中学2018届高三毕业班第四次模拟考试)设曲线cos y x =与x 轴、y 轴、围成的封闭图形的面积为b ,若()22ln 2g x x bx kx =--在[)1,+∞上单调递减,则实数k 的取值范围是__________. 【答案】[0,)+∞则()222ln 22ln g x x bx kx x x kx =--=--,()22g x x k x-'=-, 由()22ln 2g x x bx kx =--在[)1,+∞上单调递减,1.(2015年高考湖南卷)2(1)d x x -=⎰.【答案】0 【解析】2220011(1)d ()|42022x x x x -=-=⨯-=⎰.2.(2015年高考天津卷)曲线2y x =与直线y x =所围成的封闭图形的面积为 . 【答案】16【解析】由题意可得封闭图形的面积为122310011111()d ()|23236x x x x x -=-=-=⎰. 3.(2015年高考山东卷)执行如图所示的程序框图,输出的T 的值为 .【答案】错误!未找到引用源。
吉林省长春市普通高中2018届高三一模考试理数试题(附答案)
![吉林省长春市普通高中2018届高三一模考试理数试题(附答案)](https://img.taocdn.com/s3/m/58e5616ef242336c1eb95eef.png)
长春市普通高中2018届高三质量监测(一)数学试题卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,则()()122i i -+-=( ) A .5i B .5i - C .5 D .-5 2.集合{},,a b c 的子集的个数为( ) A .4 B .7 C .8 D .163.右图是某学校某年级的三个班在一学期内的六次数学测试的平均成绩y 关于测试序号x 的函数图像,为了容易看出一个班级的成绩变化,将离散的点用虚线连接,根据图像,给出下列结论:①一班成绩始终高于年级平均水平,整体成绩比较好; ②二班成绩不够稳定,波动程度较大;③三班成绩虽然多数时间低于年级平均水平,但在稳步提升. 其中正确结论的个数为( )A .0B .1C .2D .34.等差数列{}n a 中,已知611||||a a =,且公差0d >,则其前n 项和取最小值时的n 的值为( )A .6B .7C .8D .95.已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( )A .95,94B .92,86C .99,86D .95,916.若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线3y x =-上,则角α的取值集合是( ) A .{|2,}3k k Z πααπ=-∈ B .2{|2,}3k k Z πααπ=+∈ C .2{|,}3k k Z πααπ=-∈ D .{|,}3k k Z πααπ=-∈ 7.已知0,0x y >>,且4x y xy +=,则x y +的最小值为( ) A .8 B .9 C .12 D .168.《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为( )A .4立方丈B .5立方丈C . 6立方丈D .12立方丈9.已知矩形ABCD 的顶点都在球心为O ,半径为R 的球面上,6,23AB BC ==,且四棱锥O ABCD -的体积为83,则R 等于( )A .4B .23C .479D .13 10.已知某算法的程序框图如图所示,则该算法的功能是( )A .求首项为1,公差为2的等差数列前2017项和B .求首项为1,公差为2的等差数列前2018项和C .求首项为1,公差为4的等差数列前1009项和D .求首项为1,公差为4的等差数列前1010项和11.已知O 为坐标原点,设12,F F 分别是双曲线221x y -=的左、右焦点,点P 为双曲线上任一点,过点1F 作12F PF ∠的平分线的垂线,垂足为H ,则||OH =( ) A .1 B .2 C . 4 D .1212.已知定义在R 上的奇函数()f x 满足()()f x f x π+=-,当[0,]2x π∈时,()f x =()()()1g x x f x π=--在区间3[,3]2ππ-上所有零点之和为( )A .πB .2πC . 3πD .4π 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知角,αβ满足22ππαβ-<-<,0αβπ<+<,则3αβ-的取值范围是 .14.已知平面内三个不共线向量,,a b c 两两夹角相等,且||||1a b ==,||3c =,则||a b c ++= .15.在ABC 中,三个内角,,A B C 的对边分别为,,a b c ,若1(sin )cos sin cos 2b C A A C -=,且a =ABC 面积的最大值为 . 16.已知圆锥的侧面展开图是半径为3的扇形,则圆锥体积的最大值为 . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知数列{}n a 的前n 项和122n n S n +=+-.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2log 1)n n b a =-(,求证:122334111111n n b b b b b b b b +++++<. 18.长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,在我市推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计: 点击量 []0,1000(1000,3000]()3000,+∞节数61812(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数. (Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间[]0,1000内,则需要花费40分钟进行剪辑,若点击量在区间(1000,3000]内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(Ⅰ)中选出的6节课中随机取出2节课进行剪辑,求剪辑时间X 的分布列与数学期望.19.如图,四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设1,60PA ABC =∠=,三棱锥E ACD -3,求二面角D AE C --的余弦值.20.已知椭圆C 的两个焦点为()()121,0,1,0F F -,且经过点33,2E . (Ⅰ)求椭圆C 的方程;(Ⅱ)过1F 的直线l 与椭圆C 交于,A B 两点(点A 位于x 轴上方),若11AF F Bλ=,且23λ≤<,求直线l 的斜率k 的取值范围.21.已知函数()xf x e =,()()lng x x a b =++.(Ⅰ)若函数()f x 与()g x 的图像在点()0,1处有相同的切线,求,a b 的值; (Ⅱ)当0b =时,()()0f x g x ->恒成立,求整数a 的最大值;(Ⅲ)证明:23ln 2(ln 3ln 2)(ln 4ln 3)+-+-[ln(1)ln ]1n e n n e +++-<-. (二)选考题:请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点P 的直角坐标为()1,2,点M 的极坐标为(3,)2π,若直线l 过点P ,且倾斜角为6π,圆C 以M 圆心,3为半径.(Ⅰ)求直线l 的参数方程和圆C 的极坐标方程; (Ⅱ)设直线l 与圆C 相交于,A B 两点,求||||PA PB ⋅. 23.选修4-5:不等式选讲设不等式||1||1||2x x +--<的解集为A . (Ⅰ)求集合A ;(Ⅱ)若,,a b c A ∈,求证:1||1abcab c->-.长春市普通高中2018届高三质量监测(一) 数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)1. A2. C3. D4. C5.B6. D7. B8. B9. A10. C11. A12. D简答与提示:1. 【命题意图】本题考查复数的运算. 【试题解析】A (12)(2)5-+-=i i i . 故选A.2. 【命题意图】本题考查集合的子集.【试题解析】C 集合有3个元素,所以子集个数共有328=个.故选C. 3. 【命题意图】本题考查函数的应用.【试题解析】D 通过函数图象,可以看出①②③均正确.故选D. 4. 【命题意图】本题考查等差数列及其前n 项和. 【试题解析】C 由题意知6111150,0,2<>=-a a a d ,有2[(8)64]2=--n d S n ,所以当8=n 时前n 项和取最小值.故选C. 5. 【命题意图】本题主要考查茎叶图.【试题解析】B 由茎叶图可知,中位数为92,众数为86. 故选B. 6. 【命题意图】本题主要考查角的终边所在集合问题.【试题解析】D 终边落在直线=y 上的角的取值集合为{|,}3Z πααπ=-∈k k 或者2{|,}3Z πααπ=+∈k k .故选D. 7. 【命题意图】本题考查基本不等式的应用.【试题解析】B 414141,()()59+=+=++=++≥x y x y x y y x y x y x,当且仅当3,6==x y 时取等号.故选B.8. 【命题意图】本题考查中华传统文化及三视图.【试题解析】B 由已知可将刍甍切割成一个三棱柱和一个四棱锥,三棱柱的体积为3,四棱锥的体积为2,则刍甍的体积为5.故选B. 9. 【命题意图】本题主要考查球的相关知识.【试题解析】A 由题意可知球心到平面ABCD 的距离 2,矩形ABCD 所在圆的半径为32,从而球的半径4=R .故选A.10. 【命题意图】本题主要考查算法和等差数列的前n 项和. 【试题解析】C 由题意可知1594033=++++S ,为求首项为1,公差为4的等 差数列的前1009项和.故选C.11. 【命题意图】本题考查双曲线定义的相关知识.【试题解析】A 不妨在双曲线右支上取点P ,延长21,PF FH ,交于点Q ,由角分线性质可知1||||,=PF PQ 根据双曲线的定义,12||||||2-=PF PF ,从而2||2=QF ,在12∆FQF 中,OH 为其中位线,故||1=OH .故选A.12. 【命题意图】本题是考查函数的奇偶性、周期性和对称性及零点的相关知识. 【试题解析】D 由题意知()f x 为奇函数,周期为2π,其图象关于(,0)π对称,()g x 的零点可视为1(),π==-y f x y x 图象交点的横坐标,由1π=-y x 关于(,0)π对称,从而在3[,3]2ππ-上有4个零点关于(,0)π对称,进而所有零点之和为4π. 故选D. 二、填空题(本大题共4小题,每小题5分,共20分)13. (,2)ππ-14. 215.16.简答与提示:13. 【命题意图】本题考查不等式的性质. 【试题解析】由不等式22ππαβ-<-<,0+αβπ<<,则3()2()αβαβαβ-=++-,因此3αβ-取值范围是(,2)ππ-.14. 【命题意图】本题考查平面向量的相关知识.【试题解析】由题意可知,c b a ,,的夹角为︒1201==可得b a +与c 反向, 且1||=+b a 2=++b .15. 【命题意图】本题考查解三角形的相关知识. 【试题解析】由题意可知1cos sin 2=b A B ,cos sin sin 2==A B Ab a,得tan 3π==A A ,由余弦定理2212=+-b c bc ,由基本不等式12bc ≤,从而ABC ∆面积的最大值为b c =时取到最大值.16. 【命题意图】本题考查圆锥的体积最值问题.【试题解析】设圆锥的底面圆半径为(03)<<r r积为1133π==V r 2(09)=<<t r t ,有13=V 2329,3183(6)'=-=-+=--y t t y t t t t ,当06<<t 时函数为增函数,当69<<t 时函数为减函数,从而当6=t时体积取最大值. 三、解答题17. (本小题满分12分)【命题意图】本题考查数列前n 项和与通项的应用,还有裂项求和的应用等.【试题解析】(1)由11222(1)2(2)n n nn S n S n n +-⎧=+-⎪⎨=+-- ⎪⎩≥,则21nn a =+(2)n ≥. 当1n =时,113a S ==,综上21nn a =+.(2)由22log (1)log 2nn n b a n =-==.12233411111...n n bb b b b b b b +++++1111...122334(1)n n =++++⨯⨯⨯+ 1111111(1)()()...()223341n n =-+-+-++-+1111n =-<+. 得证.18. (本小题满分12分)【命题意图】本小题主要考查学生对抽样的理解,以及分布列的相关知识,同时考查学生的数据处理能力.【试题解析】解:(1)根据分层抽样,选出的6节课中有2节点击量超过3000. (2)X 的可能取值为0,20,40,602611(0)15P X C === 11322662(20)155C C P X C ====12232651(40)153C C P X C +==== 132631(60)155C P X C ====则X 的分布列为即1003EX =19. (本小题满分12分)【命题意图】本小题以四棱锥为载体,考查立体几何的基础知识. 本题考查学生的空间想象能力、推理论证能力和运算求解能力.【试题解析】解:(1)连接BD 交AC 于点O ,连接OE 在PBD △中,////PE DE PB OE BO DO OEACE PB ACE PB ACE=⎫⎫⇒⎬⎪=⎭⎪⎪⊂⇒⎬⎪⊄⎪⎪⎭平面平面平面(2)242P ABCD P ACD E ACD V V V ---===,设菱形ABCD 的边长为a 211(2)133P ABCD ABCDV SPA -=⋅=⨯⨯=,则a =取BC 中点M ,连接AM .以点A 为原点,以AM 方向为x 轴,以AD 方向为y 轴,以AP 方向为z 轴, 建立如图所示坐标系.D,(0,0,0)A,1)2E,3(2C1(0,)2AE=,3(2AC=,1(1,n=-,2(1,0,0)n=1212||cos||||1n nn nθ⋅===⋅+即二面角D AE C--的余弦值为13.20. (本小题满分12分)【命题意图】本小题考查直线与椭圆的位置关系及标准方程,考查学生的逻辑思维能力和运算求解能力.【试题解析】(1) 由椭圆定义122||||4=+=a EF EF,有2,1,===a c b从而22143+=x y.(2) 设直线:(1)(0)=+>l y k x k,有22(1)143=+⎧⎪⎨+=⎪⎩y k xx y,整理得2236(4)90+--=y yk k,设1122(,),(,)A x yB x y,有21212122,()(1)λλλ-=-=+-y y y y y y,222(1)414,23434λλλλ-=+-=++k k,由于23λ≤<,所以114223λλ≤+-<,21442343≤<+k,解得0<≤k21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的知识,具体涉及到导数的运算,利用导数比较大小等,考查学生解决问题的综合能力.【试题解析】(1)由题意可知,()f x 和()g x 在(0,1)处有相同的切线,即在(0,1)处(1)(1)f g =且(1)(1)f g ''=,解得1,1a b ==.(2)现证明1x e x +≥,设()1x F x e x =--,令()10x F x e '=-=,即0x =,因此()(0)0min F x F ==,即()0F x ≥恒成立,即1x e x +≥,同理可证ln 1x x -≤.由题意,当2a ≤时,1x e x +≥且ln(2)1x x ++≤,即1ln(2)x e x x ++≥≥,即2a =时,()()0f x g x ->成立.当3≥a 时,0ln <e a ,即ln()+x e x a ≥不恒成立.因此整数a 的最大值为2.(3)由ln(2)x e x >+,令1n x n -+=, 即11ln(2)n n n e n-+-+>+,即11ln (2)n n n e n -+-+>+ 由此可知,当1n =时,0ln 2e >,当2n =时,12(ln3ln2)e ->-,当3n =时,23(ln4ln3)e ->-,……当n n =时,1[ln(1)ln ]-+>+-n n e n n .综上:012123...ln2(ln3ln2)(ln4ln3)...[ln(1)ln ]---+++++>+-+-+++-n n e e e e n n 0121231...11ln 2(ln 3ln 2)(ln 4ln 3)...[ln(1)ln ]---+>++++->+-+-+++-n ne e e e en n .即23ln 2(ln3ln 2)(ln 4ln3)...[ln(1)ln ]1+-+-+++-<-n e n n e . 22. (本小题满分10分) 【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到参数方程与平面直角坐标方程的互化、直线的参数方程的几何意义等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】 (Ⅰ)直线l的参数方程为1,12,2x y t ⎧=+⎪⎪⎨⎪=+⎪⎩为参数)t (, 圆的极坐标方程为θρsin 6=.(Ⅱ)把1,12,2x y t ⎧=+⎪⎪⎨⎪=+⎪⎩代入22(3)9x y +-=,得21)70t t +-=, 127t t ∴=-,设点,A B 对应的参数分别为12,t t , 则12,PA t PB t ==,∴7.PA PB ⋅=23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式解法等内容. 本小题重点考查考生的化归与转化思想. 【试题解析】(1)由已知,令2(1)()|1||1|2(11)2(1)x f x x x x x x ⎧⎪=+--= -<<⎨⎪- ⎩≥≤-由|()|2<f x 得{|11}=-<<A x x .(2)要证1||1abc ab c->-,只需证|1|||abc ab c ->-, 只需证2222221a b c a b c +>+,只需证222221(1)a b c a b ->-只需证222(1)(1)0a b c -->,由,,a b c A ∈,则222(1)(1)0a b c -->恒成立.长春市普通高中2018届高三质量监测(一)数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)1. A2. C3. D4. C5.B6. D7. B 8. B 9. A 10. C 11. A 12. D 简答与提示:1. 【命题意图】本题考查复数的运算.【试题解析】A (12)(2)5-+-=i i i . 故选A.2. 【命题意图】本题考查集合的子集.【试题解析】C 集合有3个元素,所以子集个数共有328=个.故选C.3. 【命题意图】本题考查函数的应用.【试题解析】D 通过函数图象,可以看出①②③均正确.故选D.4. 【命题意图】本题考查等差数列及其前n 项和.【试题解析】C 由题意知6111150,0,2<>=-a a a d ,有2[(8)64]2=--n d S n , 所以当8=n 时前n 项和取最小值.故选C.5. 【命题意图】本题主要考查茎叶图.【试题解析】B 由茎叶图可知,中位数为92,众数为86. 故选B.6. 【命题意图】本题主要考查角的终边所在集合问题.【试题解析】D 终边落在直线=y 上的角的取值集合为 {|,}3Z πααπ=-∈k k 或者2{|,}3Z πααπ=+∈k k .故选D. 7. 【命题意图】本题考查基本不等式的应用.【试题解析】B 414141,()()59+=+=++=++≥x y x y x y y x y x y x,当且仅当3,6==x y 时取等号.故选B.8. 【命题意图】本题考查中华传统文化及三视图.【试题解析】B 由已知可将刍甍切割成一个三棱柱和一个四棱锥,三棱柱的体积为3,四棱锥的体积为2,则刍甍的体积为5.故选B.9. 【命题意图】本题主要考查球的相关知识.【试题解析】A 由题意可知球心到平面ABCD 的距离 2,矩形ABCD 所在圆的半径为32,从而球的半径4=R .故选A.10. 【命题意图】本题主要考查算法和等差数列的前n 项和.【试题解析】C 由题意可知1594033=++++S ,为求首项为1,公差为4的等 差数列的前1009项和.故选C.11. 【命题意图】本题考查双曲线定义的相关知识.【试题解析】A 不妨在双曲线右支上取点P ,延长21,PF F H ,交于点Q ,由角分 线性质可知1||||,=PF PQ 根据双曲线的定义,12||||||2-=PF PF ,从而2||2=QF , 在12∆F QF 中,OH 为其中位线,故||1=OH .故选A.12. 【命题意图】本题是考查函数的奇偶性、周期性和对称性及零点的相关知识.【试题解析】D 由题意知()f x 为奇函数,周期为2π,其图象关于(,0)π对称,()g x 的零点可视为1(),π==-y f x y x 图象交点的横坐标,由1π=-y x 关于(,0)π对称,从而在3[,3]2ππ-上有4个零点关于(,0)π对称,进而所有零点之和为4π. 故选D. 二、填空题(本大题共4小题,每小题5分,共20分)13. (,2)ππ- 14. 2 15. 16. 简答与提示:13. 【命题意图】本题考查不等式的性质.【试题解析】由不等式22ππαβ-<-<,0+αβπ<<,则3()2()αβαβαβ-=++-,因此3αβ-取值范围是(,2)ππ-.14. 【命题意图】本题考查平面向量的相关知识.【试题解析】由题意可知,c b a ,,的夹角为︒1201==可得b a +与c 反向, 且1||=+b a 2=++b .15. 【命题意图】本题考查解三角形的相关知识. 【试题解析】由题意可知1cos sin 2=b A B ,cos sin sin 2==A B A b a ,得tan 3π==A A ,由余弦定理2212=+-b c bc ,由基本不等式12bc ≤,从而ABC ∆面积的最大值为b c =时取到最大值.16. 【命题意图】本题考查圆锥的体积最值问题.【试题解析】设圆锥的底面圆半径为(03)<<r r 锥的体积为1133π==V r 2(09)=<<t r t ,有13=V 2329,3183(6)'=-=-+=--y t t y t t t t ,当06<<t 时函数为增函数,当69<<t 时函数为减函数,从而当6=t时体积取最大值.三、解答题17. (本小题满分12分)【命题意图】本题考查数列前n 项和与通项的应用,还有裂项求和的应用等.【试题解析】(1)由11222(1)2(2)n n n n S n S n n +-⎧=+-⎪⎨=+-- ⎪⎩≥,则21n n a =+(2)n ≥. 当1n =时,113a S ==,综上21n n a =+.(6分)(2)由22log (1)log 2n n n b a n =-==. 12233411111...n n b b b b b b b b +++++1111...122334(1)n n =++++⨯⨯⨯+ 1111111(1)()()...()223341n n =-+-+-++-+1111n =-<+. 得证. (12分)18. (本小题满分12分)【命题意图】本小题主要考查学生对抽样的理解,以及分布列的相关知识,同时考查学生的数据处理能力.【试题解析】解:(1)根据分层抽样,选出的6节课中有2节点击量超过3000. (4分)(2)X 的可能取值为0,20,40,60 2611(0)15P X C === 11322662(20)155C C P X C ==== 12232651(40)153C C P X C +==== 132631(60)155C P X C ==== 则X 的分布列为即1003EX =(12分)19. (本小题满分12分)【命题意图】本小题以四棱锥为载体,考查立体几何的基础知识. 本题考查学生的空间想象能力、推理论证能力和运算求解能力.【试题解析】解:(1)连接BD 交AC 于点O ,连接OE 在PBD △中,////PE DE PB OE BO DO OE ACE PB ACE PBACE =⎫⎫⇒⎬⎪=⎭⎪⎪⊂⇒⎬⎪⊄⎪⎪⎭平面平面平面 (4分)(2)24P ABCD P ACD E ACD V V V ---===,设菱形ABCD 的边长为a211(2)133P ABCD ABCDV SPA -=⋅=⨯⨯=,则a =取BC中点M ,连接AM .以点A 为原点,以AM 方向为x 轴,以AD 方向为y 轴,以AP 方向为z 轴,建立如图所示坐标系.D ,(0,0,0)A,1)2E ,3(2C1(0,)22AE =,3(22AC =, 1(1,n =-,2(1,0,0)n = 1212||cos 13||||1n n n n θ⋅===⋅+即二面角D AE C --的余弦值为13. (12分)20. (本小题满分12分)【命题意图】本小题考查直线与椭圆的位置关系及标准方程,考查学生的逻辑思维能力和运算求解能力.【试题解析】(1) 由椭圆定义122||||4=+=a EF EF,有2,1,===a c b从而22143+=x y . (4分)(2) 设直线:(1)(0)=+>l y k x k ,有22(1)143=+⎧⎪⎨+=⎪⎩y k x x y ,整理得2236(4)90+--=y y k k ,设1122(,),(,)A x y B x y ,有21212122,()(1)λλλ-=-=+-y y y y y y ,222(1)414,23434λλλλ-=+-=++k k ,由于23λ≤<,所以114223λλ≤+-<,21442343≤<+k,解得02<≤k .(12分)21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的知识,具体涉及到导数的运算,利用导数比较大小等,考查学生解决问题的综合能力.【试题解析】(1)由题意可知,()f x 和()g x 在(0,1)处有相同的切线, 即在(0,1)处(1)(1)f g =且(1)(1)f g ''=,解得1,1a b ==. (4分)(2)现证明1x e x +≥,设()1xF x e x =--, 令()10xF x e '=-=,即0x =,因此()(0)0min F x F ==,即()0F x ≥恒成立, 即1x e x +≥, 同理可证ln 1x x -≤.由题意,当2a ≤时,1x e x +≥且ln(2)1x x ++≤, 即1ln(2)xe x x ++≥≥, 即2a =时,()()0f xg x ->成立.当3≥a 时,0ln <e a ,即ln()+xe x a ≥不恒成立. 因此整数a 的最大值为2. (9分)(3)由ln(2)xe x >+,令1n x n-+=, 即11ln(2)n nn e n -+-+>+,即11ln (2)n n n e n-+-+>+ 由此可知,当1n =时,0ln 2e >, 当2n =时,12(ln 3ln 2)e ->-, 当3n =时,23(ln 4ln 3)e ->-,……当n n =时,1[ln(1)ln ]-+>+-n n en n .综上:012123...ln 2(ln 3ln 2)(ln 4ln 3)...[ln(1)ln ]---+++++>+-+-+++-n ne e e e n n 0121231 (1)1ln 2(ln 3ln 2)(ln 4ln 3)...[ln(1)ln ]---+>++++->+-+-+++-n ne e e e en n .即23ln 2(ln 3ln 2)(ln 4ln 3)...[ln(1)ln ]1+-+-+++-<-n e n n e . (12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到参数方程与平面直角坐标方程的互化、直线的参数方程的几何意义等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求. 【试题解析】 (Ⅰ)直线l的参数方程为1,12,2x y t ⎧=+⎪⎪⎨⎪=+⎪⎩为参数)t (, 圆的极坐标方程为θρsin 6=. (5分)(Ⅱ)把1,12,2x y t ⎧=+⎪⎪⎨⎪=+⎪⎩代入22(3)9x y +-=,得21)70t t +-=, 127t t ∴=-,设点,A B 对应的参数分别为12,t t ,则12,PA t PB t ==,∴7.PA PB ⋅= (10分)23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式解法等内容. 本小题重点考查考生的化归与转化思想.【试题解析】(1)由已知,令2(1)()|1||1|2(11)2(1)x f x x x x x x ⎧⎪=+--= -<<⎨⎪- ⎩≥≤-由|()|2<f x 得{|11}=-<<A x x .(5分)(2)要证1||1abcab c->-,只需证|1|||abc ab c ->-,只需证2222221a b c a b c +>+,只需证222221(1)a b c a b ->-只需证222(1)(1)0a b c -->,由,,a b c A ∈,则222(1)(1)0a b c -->恒成立.(10分)。
2018年高考(四川省)真题数学(理)试题及答案解析
![2018年高考(四川省)真题数学(理)试题及答案解析](https://img.taocdn.com/s3/m/4b319d3e650e52ea55189894.png)
2018年普通高等学校招生全国统一考试理科(四川卷)参考答案第I 卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}-【答案】A2.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .10【答案】C3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度【答案】A4.若0a b >>,0c d <<,则一定有A .a b c d > B .a b c d < C .a b d c > D .a b d c< 【答案】D5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为A .0B .1C .2D .3【答案】C6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有A .192种B .216种C .240种D .288种【答案】B7.平面向量a=(1,2), b=(4,2), c=ma+b (m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =A .2-B .1-C .1D .2【答案】D8.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。
设点P 在线段。
高考数学母题题源系列专题07三角函数图像与应用理
![高考数学母题题源系列专题07三角函数图像与应用理](https://img.taocdn.com/s3/m/1ff2bba1daef5ef7ba0d3c31.png)
考点:三角函数性质
10.【江苏省启东中学高三上学期期中模拟数学试卷】将函数 ( )的图象,向左平移 个单位,得到 函数的图象,若 在 上为增函数,则 的最大值为_____ _____.
【答案】
考点:三角函数图像及性质
【母题原题4】【2016江苏,理14】在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是▲.
【答案】8
【考点】三角恒等变换,切的性质应用
【名师点睛】消元与降次是高中数学中的主旋律,利用三 角形中隐含的边角关系作为消元依据是本题突破口,斜三角形 中恒有 ,这类同于正、余弦定理,是一个关于切的等量关系,平时应多总结积累常见的三角恒等变形,提高转化问题能力,培养消元意识.此类问题的求解有两种思路:一是边化角,二是角化边.
7.求解三角函数对称性的方法:
(1)求函数 的对称中心、对称轴问题往往转化为解方程问题:①由 的对称中心是 , ,所以 的中心,由方程 解出 即可;②因为 的对称轴是 , ,所以可由 解出 ,即为函数 的对称轴;注意 的对称中心为 ;
(2) 对于函数 ,其对称轴一定经过图象的最高点或最低点,对称中心一定是函 数的零点,因此在判 断直线 或点 是否是函数的对称轴或对称中心时,可通过检验 的值进行判断.
【命题规律】1.高考对三角函数的图象与性质的考查往往集中于正弦函数、余弦函数、正切函数的图象与性质;函数y=Asin(ωx+φ)的图象及性质,主要考查三角函数图象的识别及其简单的性质(周期、单调性、奇偶性、最值、对称性、图象平移及变换等).
2.高考中主要涉及如下题型:(1)考查周期、单调性、极 值等简单性质;(2)考查与三角函数有关的零点问题;(3)考查图象的识别.
【考点】两角和正切公式
2018届吉林省长春市普通高中高三一模考试数学试题卷
![2018届吉林省长春市普通高中高三一模考试数学试题卷](https://img.taocdn.com/s3/m/22e7a8a6aeaad1f346933f78.png)
2018届吉林省长春市普通高中高三一模考试题数学试题卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设为虚数单位,则(?1+2i)(2?i)=()A. 5iB. ?5iC. 5D. -5【答案】A【解析】由题意可得:(?1+2i)(2?i)=?2+4i+i?2i2=5i.本题选择A选项.2. 集合{a,b,c}的子集的个数为()A. 4B. 7C. 8D. 16【答案】C【解析】集合{a,b,c}含有3个元素,则其子集的个数为23=8.本题选择C选项.3. 若图是某学校某年级的三个班在一学期内的六次数学测试的平均成绩y关于测试序号x的函数图像,为了容易看出一个班级的成绩变化,将离散的点用虚线连接,根据图像,给出下列结论:①一班成绩始终高于年级平均水平,整体成绩比较好;②二班成绩不够稳定,波动程度较大;③三班成绩虽然多数时间低于年级平均水平,但在稳步提升.其中正确结论的个数为()A. 0B. 1C. 2D. 3【答案】D【解析】通过函数图象,可以看出①②③均正确.故选D.4. 等差数列{a n}中,已知|a6|=|a11|,且公差d>0,则其前n项和取最小值时的n的值为()A. 6B. 7C. 8D. 9【答案】C【解析】因为等差数列中,,所以,有,所以当时前项和取最小值.故选C......................5. 已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为()A. 95,94B. 92,86C. 99,86D. 95,91【答案】B【解析】由茎叶图可知,中位数为92,众数为86. 故选B.6. 若角α的顶点为坐标原点,始边在x轴的非负半轴上,终边在直线y=?√3x上,则角α的取值集合是()A. {α|α=2kπ?π3,k∈Z} B. {α|α=2kπ+2π3,k∈Z}C. {α|α=kπ?2π3,k∈Z} D. {α|α=kπ?π3,k∈Z}【答案】D【解析】因为直线y=?√3x的倾斜角是2π3,所以终边落在直线y=?√3x上的角的取值集合为{α|α=kπ?π3,k∈Z}或者{α|α=kπ+2π3,k∈Z}.故选D.7. 已知x>0,y>0,且4x+y=xy,则x+y的最小值为()A. 8B. 9C. 12D. 16【答案】B【解析】由题意可得:4y +1x=1,则:x+y=(x+y)(4y +1x)=5+4xy+yx≥5+2√4xy×yx=9,当且仅当x=3,y=6时等号成立,综上可得:则x+y的最小值为9.本题选择B选项.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.8. 《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为()A. 4立方丈B. 5立方丈C. 6立方丈D. 12立方丈【答案】B【解析】由已知可将刍甍切割成一个三棱柱和一个四棱锥,三棱柱的体积为3,四棱锥的体积为2,则刍甍的体积为5.故选B.9. 已知矩形ABCD的顶点都在球心为O,半径为R的球面上,AB=6,BC=2√3,且四棱锥O?ABCD的体积为8√3,则R等于()A. 4B. 2√3C. 4√7D. √139【答案】A【解析】由题意可知球心到平面ABCD的距离 2,矩形ABCD所在圆的半径为2√3,从而球的半径R=4.故选A.10. 已知某算法的程序框图如图所示,则该算法的功能是()A. 求首项为1,公差为2的等差数列前2017项和B. 求首项为1,公差为2的等差数列前2018项和C. 求首项为1,公差为4的等差数列前1009项和D. 求首项为1,公差为4的等差数列前1010项和【答案】C【解析】由题意可知S=1+5+9+?+4033,为求首项为1,公差为4的等差数列的前1009项和.故选C.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.11. 已知O为坐标原点,设F1,F2分别是双曲线x2?y2=1的左、右焦点,点P为双曲线上任一点,过点F1作∠F1PF2的平分线的垂线,垂足为H,则|OH|=()A. 1B. 2C. 4D. 12【答案】A【解析】延长交于点,由角分线性质可知根据双曲线的定义,,从而,在中,为其中位线,故.故选A.点睛:对于圆锥曲线问题,善用利用定义求解,注意数形结合,画出合理草图,巧妙转化.12. 已知定义在R上的奇函数f(x)满足f(x+π)=f(?x),当x∈[0,π2]时,f(x)=√x,则函数g(x)=(x?π)f(x)?1在区间[?3π2,3π]上所有零点之和为()A. πB. 2πC. 3πD. 4π【答案】D【解析】f(x+π)=f(−x)=?f(x)?T=2π,g(x)=(x−π)f(x)−1=0?f(x)=1x?π作图如下:,四个交点分别关于(π,0)对称,所以零点之和为2×2π=4π,选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知角α,β满足?π2<α?β<π2,0<α+β<π,则3α?β的取值范围是__________.【答案】(?π,2π)【解析】结合题意可知:3α?β=2(α?β)+(α+β),且:2(α?β)∈(?π,π),(α+β)∈(0,π),利用不等式的性质可知:3α−β的取值范围是(−π,2π).点睛:利用不等式性质求某些代数式的取值范围时,多次运用不等式的性质时有可能扩大变量的取值范围.解决此类问题一般是利用整体思想,通过“一次性”不等关系的运算求得待求整体的范围,是避免错误的有效途径.14. 已知平面内三个不共线向量a ⃑,b ⃑⃑,c ⃑两两夹角相等,且|a ⃑|=|b ⃑⃑|=1,|c ⃑|=3,则|a ⃑+b ⃑⃑+c ⃑|=__________. 【答案】2【解析】因为平面内三个不共线向量a ⃑,b ⃑⃑,c ⃑两两夹角相等,所以由题意可知,a ⃑,b ⃑⃑,c ⃑的夹角为120°,又知|a ⃑|=|b ⃑⃑|=1,|c ⃑|=3,所以a ⃑.b ⃑⃑=?12 ,a ⃑?c ⃑=b ⃑⃑?c ⃑=?32,|a ⃑+b ⃑⃑+c ⃑|= √1+1+9+2×(?12)+2×(?32)+2×(?32)=2 故答案为2.15. 在ΔABC 中,三个内角A,B,C 的对边分别为a,b,c ,若(12b?sinC)cosA =sinAcosC ,且a =2√3,ΔABC 面积的最大值为__________. 【答案】3√3【解析】由(12b −sinC)cosA =sinAcosC 可得12bcosA =sin (A +C )=sinB ,cosA2=sinB b=sinA a,得 tanA =√3,A =π3,由余弦定理12=b 2+c 2?bc ≥2bc?bc =bc , ΔABC 面积的最大值为12×12×√32=3√3,当且仅当b =c 时取到最大值,故答案为3√3.【方法点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现ab 及b 2 、a 2 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 16. 已知圆锥的侧面展开图是半径为3的扇形,则圆锥体积的最大值为__________. 【答案】2√3π【解析】设圆锥的底面半径为R ,由题意可得其体积为:V =13Sℎ=13×πR 2×√9?R 2=2π×√R 2×R 2×(9?R 2)=23π×3√3=2√3π.当且仅当R =√6时等号成立.综上可得圆锥体积的最大值为2√3π.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 已知数列{a n}的前n项和S n=2n+1+n?2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log2(a n?1),求证:1b1b2+1b2b3+1b3b4+?+1b n b n+1<1.【答案】(Ⅰ)a n=2n+1;(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)利用已知条件,推出新数列是等比数列,然后求数列{a n}的通项公式;(Ⅱ)化简b n=log2(a n?1)=log22n=n,则1b n b n+1=1n−1n+1,利用裂项相消法和,再根据放缩法即可证明结果.试题解析:(Ⅰ)由{S n=2n+1+n−2S n−1=2n+(n−1)−2(n≥2),则a n=2n+1(n≥2). 当n=1时,a1=S1=3,综上a n=2n+1.(Ⅱ)由b n=log2(a n−1)=log22n=n.1 b1b2+1b2b3+1b3b4+...+1b n b n+1=11×2+12×3+13×4+...+1n(n+1)=(1−12)+(12−13)+(13−14)+...+(1n−1n+1)=1−1n+1<1. 得证.18. 长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,在我市推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计:(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间[0,1000]内,则需要花费40分钟进行剪辑,若点击量在区间(1000,3000]内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(Ⅰ)中选出的6节课中随机取出2节课进行剪辑,求剪辑时间X的分布列与数学期望.【答案】(Ⅰ)2;(Ⅱ)1003.【解析】试题分析:(Ⅰ)因为 36节云课中采用分层抽样的方式选出6节,所以12节应选出12×636=2节;(Ⅱ)X的所有可能取值为0,1,2,3,根据古典概型概率公式分别求出各随机变量的概率,从而可得分布列,由期望公式可得结果..试题解析:(Ⅰ)根据分层抽样,选出的6节课中有2节点击量超过3000. (Ⅱ)X的可能取值为0,20,40,60P(X=0)=1C62=115P(X=20)=C31C21C62=615=25P(X=40)=C21+C32C62=515=13P(X=60)=C31C62=315=15则X的分布列为0 20 40 60即EX=1003.19. 如图,四棱锥P?ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设PA=1,∠ABC=60°,三棱锥E?ACD的体积为√38,求二面角D?AE?C的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)√1313.【解析】试题分析:(Ⅰ) )连接BD交AC于点O,连接OE,根据中位线定理可得PB//OE,由线面平行的判定定理即可证明PB//平面AEC;(Ⅱ)以点A为原点,以AM方向为x轴,以AD方向为y轴,以AP方向为z轴,建立空间直角坐标系,分别求出平面CAE与平面DAE的一个法向量,根据空间向量夹角余弦公式,可得结果.试题解析:(Ⅰ)连接BD交AC于点O,连接OE在△PBD中,PE =DEBO =DO }?PB//OE OE?平面ACE PB?平面ACE}?PB//平面ACE(Ⅱ)V P−ABCD =2V P−ACD =4V E−ACD =√32,设菱形ABCD 的边长为aV P−ABCD =13S ?ABCD ?PA =13×(2×√34a 2)×1=√32,则a =√3.取BC 中点M ,连接AM .以点A 为原点,以AM 方向为x 轴,以AD 方向为y 轴,以AP 方向为z 轴, 建立如图所示坐标系.D(0,√3,0),A(0,0,0),E(0,√32,12),C(32,√32,0) AE⃑⃑⃑⃑⃑⃑=(0,√32,12),AC ⃑⃑⃑⃑⃑⃑=(32,√32,0), n 1⃑⃑⃑⃑⃑=(1,−√3,3),n 2⃑⃑⃑⃑⃑=(1,0,0) cosθ=|n1⃑⃑⃑⃑⃑⃑?n 2⃑⃑⃑⃑⃑⃑||n 1⃑⃑⃑⃑⃑⃑|?|n 2⃑⃑⃑⃑⃑⃑|=√1+3+9=√1313, 即二面角D −AE −C 的余弦值为√1313.【方法点晴】本题主要考查线面平行的判定定理以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离. 20. 已知椭圆C 的两个焦点为F 1(?1,0),F 2(1,0),且经过点E(√3,√32).(Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线与椭圆C 交于A,B 两点(点A 位于x 轴上方),若AF 1⃑⃑⃑⃑⃑⃑⃑⃑=λF 1B ⃑⃑⃑⃑⃑⃑⃑⃑,且2≤λ<3,求直线的斜率k 的取值范围. 【答案】(Ⅰ)x 24+y 23=1;(Ⅱ)0<k ≤√52. 【解析】试题分析:(1)由题意可得a =2,c =1,b =√3,则椭圆方程为x 24+y 23=1. (2)联立直线与椭圆的方程,结合韦达定理得到关于实数k 的不等式,求解不等式可得直线的斜率k 的取值范围是k=√52. 试题解析:(1)由椭圆定义2a =|EF 1|+|EF 2|=4,有a =2,c =1,b =√3,从而x 24+y 23=1.(2)设直线l:y =k (x +1)(k >0),有{y =k (x +1)x 24+y 23=1 ,整理得(3k 2+4)y 2−6k y −9=0, 设A (x 1,y 1),B (x 2,y 2),有y 1=−λy 2,y 1y 2=−λ(1−λ)2(y 1+y 2)2,(1−λ)2λ=43+4k 2,λ+1λ−2=43+4k 2, 由于2≤λ<3,所以12≤λ+1λ−2<43,12≤43+4k 2<43,解得0<k ≤√52. 3+4k 2=8,k =±√52,由已知k =√52.21. 已知函数f (x )=e x ,g (x )=ln (x +a )+b .(Ⅰ)若函数f (x )与g (x )的图像在点(0,1)处有相同的切线,求a,b 的值; (Ⅱ)当b =0时,f (x )?g (x )>0恒成立,求整数a 的最大值;(Ⅲ)证明:ln2+(ln3?ln2)2+(ln4?ln3)3 +?+[ln(n +1)?lnn]n <ee?1. 【答案】(Ⅰ)1,1;(Ⅱ)2;(Ⅲ)证明见解析.【解析】试题分析:(Ⅰ)求出f′(x )与g′(x ),由f(1)=g(1)且f ′(1)=g ′(1)解方程组可求a,b 的值;(Ⅱ)f (x )−g (x )>0恒成立等价于e x ≥ln(x +a)恒成立,先证明当a ≤2时恒成立,再证明a ≥3时不恒成立,进而可得结果;(Ⅲ))由e x >ln(x +2),令x =−n+1n,即e−n+1n>ln(−n+1n+2),即e −n+1>ln n (−n+1n+2),令n =1,2,3,4... ,各式相加即可得结果.试题解析:(Ⅰ)由题意可知,f(x)和g(x)在(0,1)处有相同的切线, 即在(0,1)处f(1)=g(1)且f ′(1)=g ′(1), 解得a =1,b =1.(Ⅱ)现证明e x ≥x +1,设F(x)=e x −x −1, 令F ′(x)=e x −1=0,即x =0,因此F(x)min =F(0)=0,即F(x)≥0恒成立, 即e x ≥x +1, 同理可证lnx ≤x −1.由题意,当a ≤2时,e x ≥x +1且ln(x +2)≤x +1,即e x ≥x +1≥ln(x +2), 即a =2时,f(x)−g(x)>0成立.当a ≥3时,e 0<lna ,即e x ≥ln(x +a)不恒成立. 因此整数a 的最大值为2. (Ⅲ)由e x >ln(x +2),令x =−n+1n,即e−n+1n>ln(−n+1n+2),即e −n+1>ln n (−n+1n+2)由此可知,当n =1时,e 0>ln2, 当n =2时,e −1>(ln3−ln2)2, 当n =3时,e −2>(ln4−ln3)3, ……当n =n 时,e −n+1>[ln(n +1)−lnn]n .综上:e 0+e −1+e −2+...+e −n+1>ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln(n +1)−lnn]n11−1e>e 0+e −1+e −2+...+e −n+1>ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln (n +1)−lnn ]n .即ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln(n +1)−lnn]n <ee−1.(二)选考题:请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点P 的直角坐标为(1,2),点M 的极坐标为(3,π2),若直线过点P ,且倾斜角为π6,圆C 以M 圆心,3为半径. (Ⅰ)求直线的参数方程和圆C 的极坐标方程; (Ⅱ)设直线与圆C 相交于A,B 两点,求|PA|?|PB|. 【答案】(Ⅰ){x =1+√32ty =2+12t(t 为参数),ρ=6sinθ;(Ⅱ)7. 【解析】试题分析:(1)根据直线参数方程形式直接写出直线的参数方程,根据直角三角形关系得ρ=6sinθ,即为圆C 的极坐标方程(2)利用ρsinθ=y,x 2+y 2=ρ2将圆C 的极坐标方程化为直接坐标方程,将直线参数方程代入,利用韦达定理及参数几何意义得|PA |?|PB |=|t 1t 2|=7 试题解析:(Ⅰ)直线的参数方程为{x =1+√32t,y =2+12t, (t 为参数), 圆的极坐标方程为ρ=6sinθ .(Ⅱ)把{x =1+√32t,y =2+12t,代入x 2+(y −3)2=9,得t 2+(√3−1)t −7=0, ∴t 1t 2=−7,设点A,B 对应的参数分别为t 1,t 2,则|PA |=|t 1|,|PB |=|t 2|,|PA |?|PB |=7. 23. 选修4-5:不等式选讲设不等式||x +1|?|x?1||<2的解集为A .(Ⅰ)求集合A ;(Ⅱ)若a,b,c ∈A ,求证:|1?abcab?c |>1.【答案】(Ⅰ){x|?1<x <1};(Ⅱ)证明见解析.【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集(2)利用分析法证明,将所求不等式转化为(1−a 2b 2)(1−c 2)>0,再根据a,b,c ∈A ,证明(1−a 2b 2)(1−c 2)>0试题解析:(1)由已知,令f(x)=|x +1|−|x −1|={2(x ≥1)2x(−1<x <1)−2(x ≤−1)由|f(x)|<2得A ={x|−1<x <1}.(2)要证|1−abcab−c |>1,只需证|1−abc|>|ab −c|,只需证1+a 2b 2c 2>a 2b 2+c 2,只需证1−a 2b 2>c 2(1−a 2b 2)只需证(1−a 2b 2)(1−c 2)>0,由a,b,c ∈A ,则(1−a 2b 2)(1−c 2)>0恒成立.点睛:(1)分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.(2)利用综合法证明不等式,关键是利用好已知条件和已经证明过的重要不等式.。
2017-2018学年安徽省合肥八中、淮南二中等十校联考高三第一学期摸底数学试卷(理科)〖详解wor
![2017-2018学年安徽省合肥八中、淮南二中等十校联考高三第一学期摸底数学试卷(理科)〖详解wor](https://img.taocdn.com/s3/m/1e5e0b0004a1b0717ed5ddb4.png)
百度文库一一让每个人平等地提升自我2021-2021学年安徽省巢湖一中、合肥八中、淮南二中等十校联考高三第一学期摸底数学试卷〔理科〕、选择题:本大题共 12个小题,每题 5分,共60分.在每题给出的四个选项中,只 有一项为哪一项符合题目要求的1. (5 分)设集合 A={x|x2 —4x+3<0}, B = {x|3x―6>0},那么 AAB=()A . (-2, 1)B. (-2, 3)C. (1, 2)D, (2, 3)2. (5分)i 是虚数单位,假设复数(1-mi) (1 + i)的实部与虚部相等,那么实数m=()A . - 1B. 0C. 1D. 23. (5分)向量□= (3, -2), b= (1, -4),假设向量4^+b 与a -止平行,那么实数 入中生有一颗类似芦苇的植物,露出水面一尺,假设把它引向岸边,正好与岸边齐〔如图所 示〕,问水有多深,该植物有多长?其中一丈为十尺.假设从该葭上随机取一点,那么该点取 自水下的概率为〔〕“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.〞其意思是:有一水池一丈见方,池 5. 〔5分〕?九章算术?勾股章有一 “引葭赴岸〞问题:那么 f (iog25)=()L1B.二(5分)函数 =3 x+0 ) (A>0, 3>.,假设将函数f 〔x 〕的图象向左平移 g-个单位,那么所得图象对应的函数可以为〔6. 102〔5分〕函数1+工 ,|X |<1,其中 a>0 且 awl,假设 f ( — 1) =f (2),7. 8. 〔5分〕执行如下图的程序框图,那么输出的〔5分〕假设实数x, yi 的值为〔C. 6击的最小值是〔D -1D. 79.10的图象如下图,»A • 尸-2si 门〔2x1 J : 〕 B- 尸2sin ⑵।手 〕4冗 耳冗C.二 一 ,n :二门,'D. 一「一 一 1 门 i 一 二H:—:10. 〔5分〕假设两个正实数 x, y 满足/L ■+ :=1,且 4+去-6冗恒成立,那么实数 m 的取值范围是〔 〕 A. 〔-8, 2〕 B.〔-巴 8〕 U 〔 2, +8〕 C. 〔-2, 8〕D. 〔-8, - 2〕 U 〔8, +8〕11. 〔5分〕在平面直角坐标系 xOy 中,点A 〔-1, 1〕在抛物线 C: x 2= ay 〔aw0〕上,抛 物线C 上异于点A 的两点P, Q 满足的二黑赢〔入<0〕,直线OP 与QA 交于点R, △ PQR 和△ PAR 的面积满足Sh PQR = 3S APAR ,那么点P 的横坐标为〔 〕 A.-4B. - 2C. 2D. 412. 〔5分〕函数f 〔x 〕 = 〔 1+ax+x 2〕 e x -x 2,假设存在正数x0,使得f〔x0〕< 0,那么实数a 的取值范围是〔 〕 A. [e- 2, +8〕B, 〔-8, e- 2]C. [—-2,D. 〔-co,工-2]ee二、填空题〔每题 5分,,茜分20分,将答案填在做题纸上〕13. 〔5分〕在〔x-2〕 8 〔x+1〕的展开式中,x7的系数为 .〔用数字作答〕 14. 〔5分〕k 可-2, - 1],那么双曲线x 2+ky 2=1的离心率的取值范围是15. 〔5分〕某三棱锥的三视图如下图,那么该三棱锥的四个面中最大的面积为俯视图一*、一一、八一、、“一… ,,」a1,a2,…,an 〔nC N 〕满足 an+an+1 = an+2+an+3,就称该数列为相侧视图16. 〔5分〕假设有穷数列邻等和数列〞,各项都为正整数的数列 {an }是项数为8的“相邻等和数列〞 =8, a2+a3=9,那么满足条件的数列{an }有 个.三、解做题〔本大题共 6小题,共70分.解容许写出文字说明、证实过程或演算步骤 .〕17. 〔10分〕递增的等比数列 {an }和等差数列{bn },满足ai+a4=18, a2a3=32, b2是 ai 和a2的等差中项,且b3=a3- 3.〔I 〕求数列{an }和{bn }的通项公式;(I )求AC, CD 的长;[60, 70), [70, 80), [80, 90), [90 , 100]分组,得到如下图的频率分布直方图.〔I 〕假设同一组数据用该组区间的中点值代表,估计参加这次知识竞赛的学生的平均成 绩;〔n 〕估计参加这次知识竞赛的学生成绩的中位数〔结果保存一位小数〕;〔出〕假设规定80分以上〔含80分〕为优秀,用频率估计概率,从全体参赛学生中随机 抽取3名,记其中成绩优秀的人数为E,求E 的分布列与期望.,且 ai+a2(□)假设 ,求数列{Cn }的前n 项和Sn.18. (12 分)如图,在^ ABC 中,C= — 456,COS -ZADB=-Z -. 、J 5 ,不•西=48,点D 在BC 边上,且 AD =19. 〔12分〕2021年?诗词大会?火爆荧屏,某校为此举办了一场主题为“爱诗词、爱祖国〞 的诗词知识竞赛,从参赛的全体学生中抽出60人的成绩作为样本.对这 60名学生的成绩进行统计,并按[40, 50〕, [50, 60〕, (n)求 cos/ BAD 的值.20. (12分)在四棱锥 P-ABCD 中,底面 ABCD 是菱形,AC=AB, PA ,平面 ABCD ,E, F 分别是AB, PD 的中点.(n)假设 AB=2AP=2,求平面PAD 与平面PCE 所成锐二面角的余弦值.21. (12分)椭圆Ci :(a>b>O )的离心率为—,椭圆Ci 截直线y=x 所得的b 22弦长为织〞.过椭圆Ci 的左顶点A 作直线l 与椭圆交于另一点 M,直线l 与圆C2: (x5-4) 2+y 2=r 2 (r>0)相切于点 N. (I )求椭圆C1的方程;(n)右AN=^MN ,求直线।的方程和圆C2的半径r. 22. (12 分)设函数 f(K )=-^^-+x-a+2(a6R) .(I)当曲线y = f (x)在点(1, f (, 1))处的切线与直线 y=x 垂直时,求a 的值; (n)假设函数尸(力二£(*)记一有两个零点,求实数 a 的取值范围.成绩(I )求证:AF//平面 PCE;4x2021-2021学年安徽省巢湖一中、合肥八中、淮南二中等十校联考高三第一学期摸底数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1 .【解答】解:求解不等式可得:A={x|1<x<3}, B={x|x>2},A n B= {x|2v xv 3},写为区间的形式即(2, 3).应选:D.2 .【解答】解:♦「( 1-mi) (1 + i) = 1 + m+ (1 - m) i的实部与虚部相等,-- 1 + m= 1 - m,解得m=0.应选:B.3 .【解答]解:4 为+b=4 (3, — 2) + (1, — 4) = (13, —12),己一入b= (3—入,—2+4 X),;向量4a+b与0—北平行,13 (—2+4 A +12 (3— X) =0,解得上一工.4应选:C.4 .【解答】解:由题意知,函数f (x)的定义域为(-8, 0) U (0, +8),:•一_「,,.Jn Jk A L Jite -e e -e・♦・函数f (x)是偶函数,排除C、D;又f(l)二一排除B,e-e应选:A.5 .【解答】解:设水深为x尺,那么(x+1) 2=x2+52,解得x=12,即水深12尺.又葭长13尺,…_ 一一1 2那么所求概率:,6 .【解答】解::函数f(x)=,1+工,其中a>0且aw 1,.••f ( - 1) = ----------- W ----- =且,f (2) = a2,1+ C-l)2 2•••f (― 1) =f (2), •••包工〞,2 S解得a= ',2log14"f (log25) = (1) 1.叼5=普)2 =±应选:D.7 .【解答] 解:当S= 0, i=1时,不满足S> 1,那么S=9, i = 2; -w-当S= —, i= 2 时,不满足S> 1,那么S= —, i = 3;2 4当S= —, i= 3 时,不满足S> 1,那么S= —, i = 4;4 12当S=HL, i = 4时,不满足S> 1,那么S=筌,i = 5;12 24当S=2», i=5 时,满足S>1,24故输出的i值为5,应选:B.8 .【解答】解:作出实数x, y满足〞对应的平面区域如图:L设z=3±£=1+X二二,那么z的几何意义为过Q ( - 1, 1)的直线的斜率加1;z+1 x+1由图象可知当直线经过点A时,直线QBA的斜率最小,G二1 1 91q由, ,解得A (1, 3),此时QA的斜率k=-7—= 4,[x=2y 2 1+1 4应选:C.根据余弦函数图象:工卫2" 8' B 2解得:T=兀. 利用周期公式:- ,■ 3解得:3=2.根据函数的图象,当 x='L 时,二o ,8 8贝u : 2?工f K kn+三〔k Cz 〕,82解得:氏kn+W-〔k &〕. 4由于回|<-^-, 解得0=21, 4 那么:., 「ill.,将函数f 〔X 〕的图象向左平移 三个单位,2得到। ,,整理得:g 〔i 〕=-2sin 〔2x-4^〕. 应选:A.【解答】解::Vx+Wy=〔Vx+Wy 〕〕〔JL+3〕 当x=4y,即x=36且y=9时,虫后取最小值16. <4+4>々>3-6口恒成立,贝U 16>m 2-6m,解关于m 的不等式可得-2vmv8, 应选:C.11 .【解答】解:,一点A (― 1, 1)在抛物线 C: x 2= ay (aw0)上,,a= 19. 10 【解答】 解:根据余弦函数的图象的对称性求得: A=2,>16,••・抛物线方程为:x2=y.•••抛物线C上异于点A的两点P, Q满足而工£了(入<0),直线OP与QA交于点R,可得图形如下,且OA//PQ, (P在第二象限).,「koA=-1,可设PQ 的方程为:y= - x+b, P (x1, y1), Q (x2, y2)OA II PQ, S AF AQ=S;A POQ, ? S A PAR= S A ORQ•--S APQR=3S A PRA,'-S A PQR=3S A ORQ••.PR: OR=3: 1? OA: PQ = 1: 3PQ= 30A = 3&由,r= *+b得x% b=o,JX可x1+x2= — 1, x1x2= - bPQ=<1 + 1 ./"])2_4"卜’=3,厄,解得b= 2可得P ( - 2, 4)12 .【解答】解:当a=- 2 时,函数f (x) = ( 1 - 2x+x2) ex-x2,显然x=1 时,f (1)=-1<0,满足题意,排除选项A, C.当2 = 3- 2 时,函数 f (x) = ( ex+1 — 2x+x2) e' — x2= (1—x) 2ex+ e^〔x — x2= (1—x)2ex+x (ex+1- x),x>0时,(1-x) 2ex>0, x (e x+1-x) >0,所以不存在满足题意的正数xo,使得f (xo) <0,排除选项B.应选:D.填空题〔每题 5分,?茜分20分,将答案填在做题纸上〕「2?22-「1?2=96. 故答案为:96.其焦点在x 轴上,2其标准方程为 箕2茎「二1, k 、21其离心率e 2= £—2a又由 kq-2, - 1], 那么有 Wwe 2w2, 2 即丞wg 加,2故答案为: 曲,收•【解答】解:由题意知,该三棱锥的直观图如图中的A- BCD 所示,那么$ABCD 至黑1 X 2二1,江的而乂近X 2=V^,①好匚至乂在X 1=^故其四个面中最大的面积为可得:a2= 8 - a, a3=1+a, a4=7—a, a5=2+a, a6= 6- a, a7= 3+a, as= 5 - a. :数歹U {an}各项都为正整数,13 【解答】解:〔x — 2〕 8=C?x8-;x 7?2+/?22-.x ?27i?28,(x-2) 8 (x+1)的展开式中,x 7的系数为14 【解答】解:根据题意,双曲线的方程为x 2+ky 2=1,且 kC[ —2, - 1],L I -I ,k15 ,△ABD =V * 近又^[2 _3那么有离心率eC16故答案为:,设 a1 = a,-,I _ *解得:1 w aw 4, a CN ,那么满足条件的数列{an}有4个.故答案为:4.三、解做题(本大题共6小题,共70分.解容许写出文字说明、证实过程或演算步骤.)a [ + 3, a 二1817 .【解答】(I)由题意知,〞已1%二行2%二32%<为’七二2解得1 1,射16设等比数列{an}的公比为q,111q = 2,由题意知,•. I :,那么等差数列{bn}的公差d=2,'1• bn= b2+ ( n - 2) d = 3+2 (n - 2) = 2n - 1.(n) r ---------- ------- -<-- ----- -% (2n-D(2n+l) 2 ^2n-l 2n+l)4吟(*i)+…4易r忌T)__ 之18 .【斛答】斛:(I )在^ ABD 中,.8S NADB==",5. 4sinN ADB 5sin / CAD = sin (/ ADB - / ACD& 乂返也乂返必--- A-■—A ".5 2 5 2 10在4ADC中,由正弦定理得——芈——二sinZADC AC_CD〞一返一叵,5 10 2解得:AC=8,CD=^.(n) CA,CB:48, C=—.4V2•・一’・,1:, )sinz_ADBcQs -cusz_ADBsin—£5 ________ AL, sinZCAD sinZACD解得:口二6b,二-1 : 1,在△ ABC 中,:叱2_2XgX6&X *二2疝, 〔2715产+ 〔5料〕2-〔研〕* /2X2后 X5VS 节19 .【解答】解:〔I 〕 设样本数据的平均数为:X , 那么 三二45 乂0. 05+55X0. 15+65 乂0.2+75X0.3+85X0. 2+95 乂0. 1=72. .,估计参赛学生的平均成绩为 72.5分.〔n 〕设样本数据的中位数为 a,由0.05+0.15+0.2+0.3 >0.5知aC 〔70, 80〕. • ・0.05+0.15+0.2+ 〔a — 70〕 X 0.03 = 0.5,解得 ^^^^73,3, 故估计参加这次知识竞赛的学生成绩的中位数约为73.3分.〔出〕由题意知,样本中 80分以上〔包括80分〕的概率为 旦, 10 那么随机抽取一名学生的成绩是优秀的概率为 旦,,hB 〔3,旦〕.1010・"需=.〕=喘〕3裁,p 〔a=i 〕=c ;x 磊X 〔4〕2二就;P02〕pX 扁号掇;pg 步号尸后a[〔.二3X 卷号.20.【解答】 证实:〔I 〕取PC 中点H,连接EH 、FH.・•.E 为AB 的中点,ABCD 是菱形,,AE//CD,且AE 』CD, 2又F 为PD 的中点,H 为PC 的中点,,FH // CD,且FHh^CD , AE// FH ,且AE=FH,那么四边形 AEHF 是平行四边形, AF // EH .又 AF?平面 PCE, EH?面 PCE,・•.AF//平面 PCE.解:〔n 〕取BC 的中点为 O, ABCD 是菱形,AC=AB,第12页〔共18页〕在4ABD 中,由余弦定理可得:G 口 s/BAD=令y=- 1,那么丑=2, .•・平面PCE 的一个法向量为 7=〔我,-L 2〕, 又平面PAD 的一个法向量为ir= 〔1, 0, 0〕..一,-一、—m *n cosv ip,门〉 ~I m I , I n |Vo V【解答】解:〔I 〕由题意知, 工妾,即一 / 4, •- a 2=4b 2, a / a "•.・由椭圆C1截直线y=x 所得的弦长为 丝°,5AO± BC,AO, AD , AP 所在直线分别为 x, y, z 轴,建立空间直角坐标系 A - xyz,B (V5, -i, o), c(V5,i, o), D (O ,PCO, 0, 1), E 除卷,0), T), EC=(淬,y* 0),访二(泥,2, 0).〕,设平面的法向量为7=21即平面PAD 与平面PCE 所成锐二面角的余弦值为・♦.弦在第一象限的端点的坐标为(2杏,等),—^―-I一=1,将a2=4b2代入上式,解得a=2, b=1.5a2 5b22.♦・椭圆Ci的方程为:+/二i;(n)由(I)知, A (― 2, 0),设M (xi, yi), N(X2, y2),• -* 4 —,, • -• 1 -r 40 .. 」一- AN=yMN,一姗万视,倚y2=4yi,设直线l的方程为x= ?y- 2 (入W 0),s= X y-2联立* 丫?9,得〔 ,+4〕 y2-4'=0, v 二―—全+ /=1 1联立*町,得〔?+1〕 y2— 12 少+36 — r2= 0,&-4产+/二产..A n . 2 36 口6 入• △= 0,• • r =_G—,且疗_$—X 2+12 X 2+1••• 6}二4・4:,解得了工得x2+l X 2+452 r2 = 2 0,,直线I的方程为:5K ±2浜片10二0,圆C2的半径r= 2泥.22.【解答】解:(I)由题意知,函数f(x)的定义域为(0, +8),£'〔¥〕二.〔1口:_]〕+], f 〔1〕 = 1 - a= - 1,解得a=2. x2(n)假设函数卜6)二£@)+^—有两个零点,4z那么方程且皿^F+240—二0恰有两个不相等的正实根,x 4x2即方程-皂1口工+ x ^―(a_2) x+~~二0恰有两个不相等的正实根.4x2设函数晨K)=-&lnx+ J-Ca-2)工+^■,.』,%口 / 力、a_ 2s2-(a-2)x-a (2x-a) (x+1)g lx)=2K-(a-2) x------- ----------------- 二 ------------当aw.时,g' (x) >0恒成立,那么函数g (x)在(0, +°0)上是增函数,・♦・函数g (x)最多一个零点,不合题意,舍去;当a>0时,令g' (x) >0,解得x>—,令g' (x) < 0,解得.<算<且,2 2那么函数g (x)在(0, 内单调递减,在伊 +8)上单调递增.易知x—0时,g 〔x〕 >0恒成立,要使函数g 〔x〕有2个正零点, 2 2贝U g〔x〕的取小值名瑞.〕<o,即一皂]—〔0一2〕义"^"+今一<0, 即Flrr1+a<0,丁a> 0,1 成?1,解得a>2e,即实数a的取值范围为〔2e, +8〕■ ■>_>|, Z" .♦y ( 1—一"x2+(——— 5 0y -♦_x+y ~>一»♦_♦_■6—,第17页〔共18页〕'Ll - -一I,“1. ■■ ,■I a-i—IIS ■" .■■■I ,,"。
2018届江苏省扬州市高三第一次模拟考试 数学试题(附答案)
![2018届江苏省扬州市高三第一次模拟考试 数学试题(附答案)](https://img.taocdn.com/s3/m/5fb8c37e783e0912a2162aae.png)
2018届江苏省扬州市高三第一次模拟考试数学试题(满分160分,考试时间120分钟)参考公式:样本数据x 1,x 2,…,x n 的方差s 2=1n ∑n i =1(x i -x)2,其中x =1n ∑n i =1x i . 棱锥的体积V =13Sh ,其中S 是棱锥的底面积,h 是高. 一、 填空题:本大题共14小题,每小题5分,共70分.1.若集合A ={x|1<x<3},B ={0,1,2,3},则A ∩B =________.2.若复数(a -2i )(1+3i )(i 是虚数单位)是纯虚数,则实数a 的值为________.3.若数据31,37,33,a ,35的平均数是34,则这组数据的标准差是________.4.为了了解某学校男生的身体发育情况,随机抽查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图.根据此图估计该校2 000名男生中体重在70~78(kg )的人数为________.(第4题) (第5题)5. 运行如图所示的流程图,输出的结果是________.6. 已知从2名男生2名女生中任选2人,则恰有1男1女的概率为________.7. 若圆锥的侧面展开图是面积为3π且圆心角为2π3的扇形,则此圆锥的体积为________. 8. 若实数x ,y 满足⎩⎪⎨⎪⎧x ≤4,y ≤3,3x +4y ≥12,则x 2+y 2的取值范围是________.9.已知各项都是正数的等比数列{a n }的前n 项和为S n ,若4a 4,a 3,6a 5成等差数列,且a 3=3a 22,则S 3=________.10.在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2b 2=1(a>0,b>0)的渐近线与圆x 2+y 2-6y +5=0没有交点,则双曲线离心率的取值范围是________.11.已知函数f(x)=sin x -x +1-4x2x ,则关于x 的不等式f(1-x 2)+f(5x -7)<0的解集为________. 12.已知正△ABC 的边长为2,点P 为线段AB 中垂线上任意一点,Q 为射线AP 上一点,且满足AP →·AQ→=1,则|CQ →|的最大值为________.13.已知函数f(x)=⎩⎪⎨⎪⎧log 12(-x +1)-1,x ∈[-1,k],-2|x -1|, x ∈(k ,a],若存在实数k 使得该函数的值域为[-2,0],则实数a 的取值范围是________.14.已知正实数x ,y 满足5x 2+4xy -y 2=1,则12x 2+8xy -y 2的最小值为________.二、 解答题:本大题共6小题,计90分.解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)如图,在直三棱柱ABCA 1B 1C 1中,D ,E 分别为AB ,AC 的中点.(1) 证明:B 1C 1∥平面A 1DE ;(2) 若平面A 1DE ⊥平面ABB 1A 1,证明:AB ⊥DE.16. (本小题满分14分)已知在△ABC 中,AB =6,BC =5,且△ABC 的面积为9.(1) 求AC 的长度;(2) 当△ABC 为锐角三角形时,求cos ⎝⎛⎭⎫2A +π6的值.如图,射线OA 和OB 均为笔直的公路,扇形OPQ 区域(含边界)是一蔬菜种植园,其中P ,Q 分别在射线OA 和OB 上.经测量得,扇形OPQ 的圆心角(即∠POQ)为2π3、半径为1千米.为了方便菜农经营,打算在扇形OPQ 区域外修建一条公路MN ,分别与射线OA ,OB 交于M ,N 两点,并要求MN 与扇形弧PQ 相切于点S ,设∠POS =α(单位:弧度),假设所有公路的宽度均忽略不计.(1) 试将公路MN 的长度表示为α的函数,并写出α的取值范围;(2) 试确定α的值,使得公路MN 的长度最小,并求出其最小值.已知椭圆E 1:x 2a 2+y 2b 2=1(a>b>0),若椭圆E 2:x 2ma 2+y 2mb 2=1(a>b>0,m>1),则称椭圆E 2与椭圆E 1“相似”.(1) 求经过点(2,1),且与椭圆E 1:x 22+y 2=1“相似”的椭圆E 2的方程; (2) 若m =4,椭圆E 1的离心率为22,点P 在椭圆E 2上,过点P 的直线l 交椭圆E 1于A ,B 两点,且AP →=λAB →,①若点B 的坐标为(0,2),且λ=2,求直线l 的方程;②若直线OP ,OA 的斜率之积为-12,求实数λ的值.已知函数f(x)=e x,g(x)=ax+b,a,b∈R.(1) 若g(-1)=0,且函数g(x)的图象是函数f(x)图象的一条切线,求实数a的值:(2) 若不等式f(x)>x2+m对任意x∈(0,+∞)恒成立,求实数m的取值范围;(3) 若对任意实数a,函数F(x)=f(x)-g(x)在(0,+∞)上总有零点,求实数b的取值范围.已知各项都是正数的数列{a n}的前n项和为S n,且2S n=a2n+a n,数列{b n}满足b1=12,2b n+1=b n+b na n.(1) 求数列{a n},{b n}的通项公式;(2) 设数列{c n}满足c n=b n+2S n,求c1+c2+…+c n的值;(3) 是否存在正整数p,q,r(p<q<r),使得b p,b q,b r成等差数列?若存在,求出所有满足要求的p,q,r的值;若不存在,请说明理由.2018届高三年级第一次模拟考试(六)数学附加题(本部分满分40分,考试时间30分钟)21. B. [选修42:矩阵与变换](本小题满分10分)已知x ,y ∈R ,若点M (1,1)在矩阵A =⎣⎢⎡⎦⎥⎤2x 3y 对应的变换作用下得到点N (3,5),求矩阵A 的逆矩阵A -1.C. [选修44:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,直线l 的参数方程是⎩⎨⎧x =m +22t ,y =22t(t 是参数,m 是常数).以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=6cos θ.(1) 求直线l 的普通方程和曲线C 的直角坐标方程;(2) 若直线l 与曲线C 相交于P ,Q 两点,且PQ =2,求实数m 的值.22.(本小题满分10分)扬州大学数学系有6名大学生要去甲、乙两所中学实习,每名大学生都被随机分配到两所中学的其中一所.(1) 求6名大学生中至少有1名被分配到甲学校实习的概率;(2) 设X ,Y 分别表示分配到甲、乙两所中学的大学生人数,记ξ=|X -Y|,求随机变量ξ的分布列和数学期望E(ξ).23.(本小题满分10分)二进制规定:每个二进制数由若干个0,1组成,且最高位数字必须为1.若在二进制中,S n 是所有n 位二进制数构成的集合,对于a n ,b n ∈S n ,M(a n ,b n )表示a n 和b n 对应位置上数字不同的位置个数.例如当a 3=100,b 3=101时,M(a 3,b 3)=1;当a 3=100,b 3=111时,M(a 3,b 3)=2.(1) 令a 5=10 000,求所有满足b 5∈S 5,且M(a 5,b 5)=2的b 5的个数;(2) 给定a n (n ≥2),对于集合S n 中的所有b n ,求M(a n ,b n )的和.2018届扬州高三年级第一次模拟考试数学参考答案1.{2} 2. -6 3. 2 4. 240 5. 94 6.237. 22π3 8. ⎣⎡⎦⎤14425,25 9. 132710. ⎝⎛⎭⎫1,32 11.(2,3) 12.13+12 13. ⎝⎛⎦⎤12,2 14. 73 15. 解析:(1) 在直三棱柱ABCA 1B 1C 1中,四边形B 1BCC 1是矩形,所以B 1C 1∥BC.(2分) 在△ABC 中,D ,E 分别为AB ,AC 的中点,故BC ∥DE ,所以B 1C 1∥DE.(4分)又B 1C 1⊄平面A 1DE ,DE ⊂平面A 1DE ,所以B 1C 1∥平面A 1DE.(7分)(2) 在平面ABB 1A 1内,过点A 作AF ⊥A 1D ,垂足为F.因为平面A 1DE ⊥平面A 1ABB 1,平面A 1DE ∩平面A 1ABB 1=A 1D ,AF ⊂平面A 1ABB 1,所以AF ⊥平面A 1DE.(11分)又DE ⊂平面A 1DE ,所以AF ⊥DE.在直三棱柱ABCA 1B 1C 1中,A 1A ⊥平面ABC ,DE ⊂平面ABC ,所以A 1A ⊥DE.因为AF ∩A 1A =A ,AF ⊂平面A 1ABB 1,A 1A ⊂平面A 1ABB 1,所以DE ⊥平面A 1ABB 1.因为AB ⊂平面A 1ABB 1,所以DE ⊥AB.(14分)16. 解析:(1) 因为S △ABC =12AB ×BC ×sin B =9,又AB =6,BC =5,所以sin B =35.(2分) 又B ∈(0,π),所以cos B =±1-sin 2B =±45.(3分) 当cos B =45时, AC =AB 2+BC 2-2AB·BC cos B =36+25-2×6×5×45=13.(5分) 当cos B =-45时, AC =AB 2+BC 2-2AB·BC cos B =36+25+2×6×5×45=109. 所以AC =13或109.(7分)(2) 由△ABC 为锐角三角形得B 为锐角,所以AB =6,AC =13,BC =5,所以cos A =36+13-252×6×13=213. 又A ∈(0,π),所以sin A =1-cos 2A =313,(9分) 所以sin 2A =2×313×213=1213, cos 2A =⎝⎛⎭⎫2132-⎝⎛⎭⎫3132=-513,(12分) 所以cos ⎝⎛⎭⎫2A +π6=cos 2A cos π6-sin 2A sin π6=-53-1226.(14分) 17. 解析:(1) 因为MN 与扇形弧PQ 相切于点S ,所以OS ⊥MN.在Rt △OSM 中,因为OS =1,∠MOS =α,所以SM =tan α.在Rt △OSN 中,∠NOS =2π3-α,所以SN =tan ⎝⎛⎭⎫2π3-α, 所以MN =tan α+tan ⎝⎛⎭⎫2π3-α=3(tan 2α+1)3tan α-1,(4分) 其中π6<α<π2.(6分) (2) 因为π6<α<π2,所以3tan α-1>0. 令t =3tan α-1>0,则tan α=33(t +1),所以MN =33⎝⎛⎭⎫t +4t+2, (8分) 由基本不等式得MN ≥33·⎝⎛⎭⎫2t ×4t +2=23,(10分) 当且仅当t =4t,即t =2时等号成立. (12分) 此时tan α=3,由于π6<α<π2, 故α=π3,MN =23千米.(14分) 18. 解析:(1) 设椭圆E 2的方程为x 22m +y 2m =1,代入点(2,1)得m =2, 所以椭圆E 2的方程为x 24+y 22=1.(3分) (2) 因为椭圆E 1的离心率为22,故a 2=2b 2, 所以椭圆E 1:x 2+2y 2=2b 2.又椭圆E 2与椭圆E 1“相似”,且m =4,所以椭圆E 1:x 2+2y 2=8b 2.设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0),直线l 1:y =kx +2, ①方法一:由题意得b =2,所以椭圆E 1:x 2+2y 2=8,将直线l :y =kx +2,代入椭圆E 1:x 2+2y 2=8得(1+2k 2)x 2+8kx =0,解得x 1=-8k 1+2k 2,x 2=0,故y 1=2-4k 21+2k 2,y 2=2, 所以A ⎝ ⎛⎭⎪⎫-8k 1+2k 2,2-4k 21+2k 2.(5分) 又AP →=2AB →,即B 为AP 中点, 所以P ⎝ ⎛⎭⎪⎫8k 1+2k 2,2+12k 21+2k 2,(6分) 代入椭圆E 2:x 2+2y 2=32得⎝⎛⎭⎫8k 1+2k 22+2⎝ ⎛⎭⎪⎫2+12k 21+2k 22=32, 即20k 4+4k 2-3=0,即(10k 2-3)(2k 2+1)=0,所以k =±3010, 所以直线l 的方程为y =±3010x +2.(8分) 方法二:由题意得b =2,所以椭圆E 1:x 2+2y 2=8,E 2:x 2+2y 2=32, 设A(x ,y),B(0,2),则P(-x ,4-y),代入椭圆得⎩⎪⎨⎪⎧x 2+2y 2=8,x 2+2(4-y )2=32,解得y =12, 故x =±302,(6分) 所以k =±3010,所以直线l 的方程为y =±3010x +2.(8分) ②方法一: 由题意得x 20+2y 20=8b 2,x 21+2y 21=2b 2,x 22+2y 22=2b 2,y 0x 0·y 1x 1=-12,即x 0x 1+2y 0y 1=0, 因为AP →=λAB →,所以(x 0-x 1,y 0-y 1)=λ(x 2-x 1,y 2-y 1),解得⎩⎪⎨⎪⎧x 2=x 0+(λ-1)x1λ,y 2=y 0+(λ-1)y1λ,(12分)所以⎝ ⎛⎭⎪⎫x 0+(λ-1)x 1λ2+2⎝ ⎛⎭⎪⎫y 0+(λ-1)y 1λ2=2b 2,则x 20+2(λ-1)x 0x 1+(λ-1)2x 21+2y 20+4(λ-1)y 0y 1+2(λ-1)2y 21=2λ2b 2,(x 20+2y 20)+2(λ-1)(x 0x 1+2y 0y 1)+(λ-1)2(x 21+2y 21)=2λ2b 2,所以8b 2+(λ-1)2·2b 2=2λ2b 2,即4+(λ-1)2=λ2,所以λ=52.(16分)方法二:不妨设点P 在第一象限,设直线OP :y =kx(k>0),代入椭圆E 2:x 2+2y 2=8b 2,解得x 0=22b 1+2k 2,则y 0=22bk1+2k 2, 因为直线OP ,OA 的斜率之积为-12,所以直线OA :y =-12k x ,代入椭圆E 1:x 2+2y 2=2b 2,解得x 1=-2bk 1+2k 2,则y 1=b1+2k 2.因为AP →=λAB →,所以(x 0-x 1,y 0-y 1)=λ(x 2-x 1,y 2-y 1),解得⎩⎪⎨⎪⎧x 2=x 0+(λ-1)x 1λ,y 2=y 0+(λ-1)y1λ,所以⎝ ⎛⎭⎪⎫x 0+(λ-1)x 1λ2+2⎝ ⎛⎭⎪⎫y 0+(λ-1)y 1λ2=2b 2,则x 20+2(λ-1)x 0x 1+(λ-1)2x 21+2y 20+4(λ-1)y 0y 1+2(λ-1)2y 21=2λ2b 2,(x 20+2y 20)+2(λ-1)(x 0x 1+2y 0y 1)+(λ-1)2(x 21+2y 21)=2λ2b 2,所以8b 2+2(λ-1)[22b 1+2k 2·⎝ ⎛⎭⎪⎫-2bk 1+2k 2+2·22bk 1+2k 2·b 1+2k 2]+(λ-1)2·2b 2=2λ2b 2,即8b 2+(λ-1)2·2b 2=2λ2b 2,即4+(λ-1)2=λ2,所以λ=52.19. 解析:(1) 由g(-1)=0知,g(x)的直线图象过点(-1,0).设切点坐标为T(x 0,y 0),由f′(x)=e x 得切线方程是y -e x 0=e x 0(x -x 0),此直线过点(-1,0),故0-e x 0=e x 0(-1-x 0),解得x 0=0,所以a =f′(0)=1.(3分) (2) 由题意得m<e x -x 2,x ∈(0,+∞)恒成立,令m(x)=e x -x 2,x ∈(0,+∞),则m′(x)=e x -2x ,再令n(x)=m′(x)=e x -2x ,则n′(x)=e x -2, 故当x ∈(0,ln 2)时,n ′(x)<0,n(x)单调递减;当x ∈(ln 2,+∞)时,n ′(x)>0,n(x)单调递增, 从而n(x)在(0,+∞)上有最小值n(ln 2)=2-2ln 2>0, 所以m(x)在(0,+∞)上单调递增,(6分) 所以m ≤m(0),即m ≤1.(8分)(3) 若a<0,F(x)=f(x)-g(x)=e x -ax -b 在(0,+∞)上单调递增,故F(x)=f(x)-g(x)在(0,+∞)上总有零点的必要条件是F(0)<0,即b>1,(10分) 以下证明当b>1时,F(x)=f(x)-g(x)在(0,+∞)上总有零点. ①若a<0,由于F(0)=1-b<0,F ⎝⎛⎭⎫-b a =e -b a -a ⎝⎛⎭⎫-b a -b =e -ba >0,且F(x)在(0,+∞)上连续, 故F(x)在⎝⎛⎭⎫0,-ba 上必有零点;(12分) ②若a ≥0,F(0)=1-b<0,由(2)知e x >x 2+1>x 2在x ∈(0,+∞)上恒成立,取x 0=a +b ,则F(x 0)=F(a +b)=e a +b -a(a +b)-b>(a +b)2-a 2-ab -b =ab +b(b -1)>0, 由于F(0)=1-b<0,F(a +b)>0,且F(x)在(0,+∞)上连续, 故F(x)在(0,a +b)上必有零点,综上得,实数b 的取值范围是(1,+∞).(16分) 20. 解析:(1) 2S n =a 2n +a n ,① 2S n +1=a 2n +1+a n +1 ,②②-①得2a n +1=a 2n +1-a 2n +a n +1-a n , 即(a n +1+a n )(a n +1-a n -1)=0.因为{a n }是正数数列,所以a n +1-a n -1=0, 即a n +1-a n =1,所以{a n }是等差数列,其中公差为1. 在2S n =a 2n +a n 中,令n =1,得a 1=1, 所以a n =n.(2分)由2b n +1=b n +b n a n 得b n +1n +1=12·b nn,所以数列⎩⎨⎧⎭⎬⎫b n n 是等比数列,其中首项为12,公比为12,所以b n n =⎝⎛⎭⎫12n ,即b n =n2n .(5分)(2) c n =b n +2S n =n +2(n 2+n )2n +1,裂项得c n =1n ·2n -1(n +1)2n +1,(7分) 所以c 1+c 2+…+c n =12-1(n +1)2n +1.(9分)(3) 假设存在正整数p ,q ,r(p<q<r),使得b p ,b q ,b r 成等差数列,则b p +b r =2b q , 即p 2p +r 2r =2q 2q . 因为b n +1-b n =n +12n +1-n 2n =1-n 2n +1, 所以数列{b n }从第二项起单调递减, 当p =1时,12+r 2r =2q2q ,若q =2,则r 2r =12,此时无解;若q =3,则r 2r =14,因为{b n }从第二项起递减,所以r =4,所以p =1,q =3,r =4符合要求.(11分)若q ≥4,则b 1b q ≥b 1b 4≥2,即b 1≥2b q ,不符合要求,此时无解;当p ≥2时,一定有q -p =1,否则若q -p ≥2,则b p b q ≥b p b p +2=4p p +2=41+2p ≥2,即b p ≥2b q ,矛盾,所以q -p =1,此时r 2r =12p ,令r -p =m +1,则r =2m +1,所以p =2m +1-m -1,q =2m +1-m ,综上得,存在p =1,q =3,r =4或p =2m +1-m -1,q =2m +1-m ,r =2m+1满足要求.(16分)21.B. 解析:因为A ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤35,即⎣⎢⎡⎦⎥⎤2x 3y ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤35,即⎩⎪⎨⎪⎧2+x =3,3+y =5,解得⎩⎪⎨⎪⎧x =1,y =2, 所以A =⎣⎢⎡⎦⎥⎤2132.(5分) 方法一:设A -1=⎣⎢⎡⎦⎥⎤a b c d,则AA -1=⎣⎢⎡⎦⎥⎤2132⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1001,即⎩⎪⎨⎪⎧2a +c =1,3a +2c =0,2b +d =0,3b +2d =1,(7分) 解得⎩⎪⎨⎪⎧a =2,b =-1,c =-3,d =2,所以A-1=⎣⎢⎡⎦⎥⎤2-1-32.(10分) 方法二:因为⎣⎢⎡⎦⎥⎤a b c d -1=⎣⎢⎢⎡⎦⎥⎥⎤ dad -bc -b ad -bc -c ad -bca ad -bc , 且det(A)=⎪⎪⎪⎪⎪⎪2132=2×2-1×3=1, 所以A -1=⎣⎢⎡⎦⎥⎤2132-1=⎣⎢⎡⎦⎥⎤2-1-32.(10分) C. 解析:(1) 因为直线l 的参数方程是:⎩⎨⎧x =m +22t ,y =22t(t 是参数),所以直线l 的普通方程为x -y -m =0.(2分)因为曲线C 的极坐标方程为ρ=6cos θ,所以ρ2=6ρcos θ ,所以x 2+y 2=6x , 所以曲线C 的直角坐标方程是(x -3)2+y 2=9.(5分) (2) 设圆心到直线l 的距离为d ,则d =32-12=2 2.又d =|3-m |2=2 2.(8分)所以|3-m |=4,即 m =-1或m =7.(10分)22.解析:(1) 记 “6名大学生中至少有1名被分配到甲学校实习” 为事件A ,则P(A)=1-126=6364.故6名大学生中至少有1名被分配到甲学校实习的概率为6364.(3分)(2) ξ所有可能取值是0,2,4,6,记“6名学生中恰有i 名被分到甲学校实习”为事件A i (i =0,1,…,6),则P (ξ=0)=P(A 3)=C 36C 3326=516,P (ξ=2)=P(A 2+A 4)=P(A 2)+P(A 4)=C 26C 4426+C 46C 2226=1532, P (ξ=4)=P(A 1+A 5)=P(A 1)+P(A 5)=C 16C 5526+C 56C 1126=316, P (ξ=6)=P(A 0+A 6)=P(A 0)+P(A 6)=C 06C 6626+C 66C 0626=132,(7分) 所以随机变量ξ所以随机变量ξ的数学期望E(ξ)=0×516+2×1532+4×316+6×132=158.(9分)故随机变量ξ的数学期望E(ξ)=158.(10分)23.解析:(1) 因为M(a 5,b 5)=2,所以b 5为5位数且与a 5有2项不同. 因为首项为1,所以a 5与b 5在后四项中有两项不同,所以b 5的个数为C 24=6.(3分) (2) 当M(a n ,b n )=0时,b n 的个数为C 0n -1; 当M(a n ,b n )=1时,b n 的个数为C 1n -1, 当M(a n ,b n )=2时,b n 的个数为C 2n -1, …当M(a n ,b n )=n -1时,b n 的个数为C n -1n -1.设M(a n ,b n )的和为S, 则S =0C 0n -1+1C 1n -1+2C 2n -1+…+(n -1)C n -1n -1,(6分)倒序得S =(n -1)C n -1n -1+…+2C 2n -1+1C 1n -1+0C 0n -1,倒序相加得2S =(n -1)(C 0n -1+C 1n -1…+C n -1n -1)=(n -1)·2n -1,即S =(n -1)·2n -2, 所以M(a n ,b n )的和为(n -1)·2n -2.(10分)。
精品解析:【全国百强校】河北省衡水中学2023届高三9月大联考数学(理)试题(解析版)
![精品解析:【全国百强校】河北省衡水中学2023届高三9月大联考数学(理)试题(解析版)](https://img.taocdn.com/s3/m/bef3f366f11dc281e53a580216fc700abb685230.png)
衡水金卷2018届全国高三大联考理数第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1. 已知集合,,则()A. B.C. D.【解析】C【解析】..................................所以,.故选C.2. 记复数地虚部为,已知复数(为虚数单位),则为()A. B. C. D.【解析】B【解析】.故地虚部为-3,即.故选B.3. 已知曲线在点处地切线地倾斜角为,则()A. B. C. D.【解析】C【解析】由,得,故.故选C.4. 2023年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题地金银纪念币.如下图所示是一枚8克圆形金质纪念币,直径,面额100元.为了测算图中军旗部分地面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗地面积大约是()A. B. C. D.【解析】B【解析】利用古典概型近似几何概型可得,芝麻落在军旗内地概率为,设军旗地面积为S,由题意可得:.本题选择B选项.5. 已知双曲线:(,)地渐近线经过圆:地圆心,则双曲线地离心率为()A. B. C. D.【解析】A【解析】圆:地圆心为,双曲线地渐近线为.依题意得.故其离心率为.故选A.6. 已知数列为等比数列,且,则()A. B. C. D.【解析】A【解析】依题意,得,所以.由,得,或(由于与同号,故舍去).所以..故选A.7. 执行如图地程序框图,若输出地地值为,则①中应填()A. B. C. D.【解析】C【解析】由图,可知.故①中应填.故选C.8. 已知函数为内地奇函数,且当时,,记,,,则,,间地大小关系是()A. B. C. D.【解析】D【解析】函数是奇函数,则,即当时,,构造函数,满足,则函数是偶函数,则,当时,,据此可得:,即偶函数在区间上单调递减,且:,结合函数地单调性可得:,即:.本题选择D选项.点睛:对于比较大小、求值或范围地问题,一般先利用函数地奇偶性得出区间上地单调性,再利用其单调性脱去函数地符号"f",转化为考查函数地单调性地问题或解不等式(组)地问题,若f(x)为偶函数,则f(-x)=f(x)=f(|x|).9. 已知一几何体地三视图如下图所示,俯视图是一个等腰直角三角形和半圆,则该几何体地体积为()A. B. C. D.【解析】A【解析】由三视图可知该几何体是一个半圆柱与一个地面是等腰直角三角形地三棱锥构成地组合体,故其体积.故选A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间地关系,遵循"长对正,高平齐,宽相等"地基本原则,其内涵为正视图地高是几何体地高,长是几何体地长;俯视图地长是几何体地长,宽是几何体地宽;侧视图地高是几何体地高,宽是几何体地宽.由三视图画出直观图地步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面地直观图;2、观察正视图和侧视图找到几何体前、后、左、右地高度;3、画出整体,然后再根据三视图进行调整.10. 已知函数(,)地部分图像如下图所示,其中.记命题:,命题:将地图象向右平移个单位,得到函数地图象,则以下判断正确地是()A. 为真B. 为假C. 为真D. 为真【解析】D【解析】由,可得.解得.因为,所以,故为真命题;将图象所有点向右平移个单位,得.地图象,故为假命题,所以为假,为真,为假,为真.故选D.11. 抛物线有如下光学性质:过焦点地光线经抛物线反射后得到地光线平行于抛物线地对称轴;反之,平行于抛物线地对称轴地入射光线经抛物线反射后必过抛物线地焦点.已知抛物线地焦点为,一条平行于轴地光线从点射出,经过抛物线上地点反射后,再经抛物线上地另一点射出,则地周长为()A. B. C. D.【解析】B【解析】令,得,即.由抛物线地光学性质可知经过焦点,设直线地方程为,代入.消去,得.则,所以..将代入得,故.故.故地周长为.故选B.点睛:抛物线地光学性质:从抛物线地焦点发出地光线或声波在经过抛物线周上反射后,反射光线平行于抛物线地对称轴.12. 已知数列与地前项和分别为,,且,,,,若,恒成立,则地最小值是()A. B. C. D.【解析】B【解析】已知,,两式子做差得到,故数列是等差数列,由等差数列地通项公式得到,故,故裂项求和得到,由条件恒成立,得到K 地最小值为.故解析选B .点睛:本题考查到了通项公式地求法,从而得到数列是等差数列,再求出,根据裂项求和地方法可以求出前n 项和。
2017-2018学年河南省天一大联考高三(上)10月段考数学试卷(理科)
![2017-2018学年河南省天一大联考高三(上)10月段考数学试卷(理科)](https://img.taocdn.com/s3/m/fa1d59ccb9f3f90f76c61b33.png)
2017-2018学年河南省天一大联考高三(上)10月段考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)已知向量,若,则m=()A.﹣4 B.4 C.﹣3 D.32.(5分)函数f(x)=x+lnx﹣3的零点位于区间()A.(0,1) B.(1,2) C.(2,3) D.(3,4)3.(5分)已知等比数列{a n}的前n项和为S n,若a5=3,S6=28S3,则a3=()A.B.C.3 D.94.(5分)将函数f(x)=3sin(5x+φ)的图象向右平移个单位后关于y轴对称,则φ的值可以是()A. B.C. D.5.(5分)已知m>n>0,则下列说法错误的是()A. B.C.D.6.(5分)已知等差数列{a n}的前n项和为S n,若S6=4a2,a3=3,则a10=()A.﹣3 B.3 C.﹣6 D.67.(5分)已知函数,若a<﹣2,b>2,则“f(a)>f(b)”是“a+b<0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(5分)已知函数f(x)=,若关于x的方程f(x)﹣k(x+2)=0有3个实数根,则实数k的取值范围是()A.(0,)B.(0,)C.(0,1) D.(0,)9.(5分)已知sinα=﹣(α∈[,2π]),若=2,则tan(α+β)=()A.B.C.﹣D.﹣10.(5分)已知实数x,y满足,若z=mx+y的最大值为10,则m=()A.1 B.2 C.3 D.411.(5分)已知数列{a n}满足a1=﹣1,a n+1=|1﹣a n|+2a n+1,其前n项和为S n,则下列说法正确的个数为()①数列{a n}是等差数列;②a n=3n﹣2;③S n=.A.0 B.1 C.2 D.312.(5分)已知m,n∈(0,+∞).若m=+2.则当+2n2﹣﹣取得最小值时,m+n=()A.2 B.4 C.6 D.8二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)不等式2x2﹣9x+9>0的解集为.14.(5分)已知实数a∈(﹣3,1),b∈(,),则的取值范围是.15.(5分)若函数在(1,+∞)上单调递增,则实数m的取值范围是.16.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,若,且,记h为AC边上的高,则h的取值范围为.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(10分)已知数列{a n}的首项为a1=1,且a n+1=2(a n+1)(n∈N*).(1)求数列{a n}的通项公式;(2)若,求数列的前n项和T n.18.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且a=4,D在线段AC上,∠DBC=.(1)若△BCD的面积为24,求CD的长;(2)若,且c=12,求CD的长.19.(12分)已知向量.(1)若m=4,求函数f(x)=的单调递减区间;(2)若向量满足,求m的值.20.(12分)已知等比数列{a n}的前n项和为,等差数列{b n}的前5项和为30,b7=14.(1)求数列{a n},{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.21.(12分)已知函数.(1)讨论函数f(x)的单调性;(2)已知点M(1,0),曲线Y=f(x)在点P(x0,y0)(﹣1≤x0≤1)处的切线l与直线x=1交于点N,求△OMN(O为坐标原点)的面积最小时x0的值,并求出面积的最小值.22.(12分)已知函数.(1)若m=1,求曲线y=f(x)在(2,f(2))处的切线方程;(2)探究函数F(x)=xf(x)的极值点的情况,并说明理由.2017-2018学年河南省天一大联考高三(上)10月段考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)已知向量,若,则m=()A.﹣4 B.4 C.﹣3 D.3【解答】解:根据题意,向量,若,则•=2×(﹣6)+(﹣3)m=0,解可得m=﹣4,故选:A.2.(5分)函数f(x)=x+lnx﹣3的零点位于区间()A.(0,1) B.(1,2) C.(2,3) D.(3,4)【解答】解:函数f(x)=x+lnx﹣3,(x>0)∴f′(x)=1+,可得f′(x)>0,f(x)为增函数,f(1)=1+0﹣3=﹣2<0,f(2)=2+ln2﹣3=ln2﹣1<0,f(3)=3+ln3﹣3=ln3>0,∵f(2)f(3)<0,所以f(x)的零点所在区间为(2,3),故选B;3.(5分)已知等比数列{a n}的前n项和为S n,若a5=3,S6=28S3,则a3=()A.B.C.3 D.9【解答】解:若q=1时,a5=3,∴a1=3,∴6a1=28a1,显然不成立,∴q≠1,由a5=3,S6=28S3,可得,解得q=3,a1=,∴a3=×9=,故选:B4.(5分)将函数f(x)=3sin(5x+φ)的图象向右平移个单位后关于y轴对称,则φ的值可以是()A. B.C. D.【解答】解:将函数f(x)=3sin(5x+φ)的图象向右平移个单位,得到:y=3sin[5(x﹣)+φ]=3sin(5x﹣+φ),得到的图象关于y轴对称,则:φ﹣=k(k∈Z),解得:φ=k(k∈Z),当k=﹣2时,φ=﹣.故选:D.5.(5分)已知m>n>0,则下列说法错误的是()A. B.C.D.【解答】解:根据对数函数的单调性可得A正确,∵m>n>0,∴m+1>n+1∴m(m+1)>n(n+1),∴>,故B正确,根据幂函数的单调性可得C正确,对于D,﹣==,∵1﹣mn与0无法比较大小,故D错误,故选:D.6.(5分)已知等差数列{a n}的前n项和为S n,若S6=4a2,a3=3,则a10=()A.﹣3 B.3 C.﹣6 D.6【解答】解:设等差数列{a n}的公差为d,∵S6=4a2,a3=3,∴6a1+d=4(a1+d),a1+2d=3,解得a1=,d=﹣.则a10=﹣×9=﹣3.故选:A.7.(5分)已知函数,若a<﹣2,b>2,则“f(a)>f(b)”是“a+b<0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由2|x|﹣4>0,解得x>2或x<﹣2,关于原点对称.又f(﹣x)=f(x).可得函数f(x)在定义域内为偶函数.x>2时,f(x)=5x﹣在(2,+∞)上单调递增.∴a+b<0⇔2<b<﹣a⇔f(b)<f(﹣a)=f(a),∴“f(a)>f(b)”是“a+b<0”的充要条件.故选:C.8.(5分)已知函数f(x)=,若关于x的方程f(x)﹣k(x+2)=0有3个实数根,则实数k的取值范围是()A.(0,)B.(0,)C.(0,1) D.(0,)【解答】解:在同一坐标系中画出分段函数y=f(x)的图象与y=k(x+2)的图象,由图可知:当k∈(0,k AQ)时,分段函数f(x)的图象与y=k(x+2)的图象有三个交点,A(0,1),Q(﹣2,0),k AQ==,实数k的取值范围是(0,).故选:D.9.(5分)已知sinα=﹣(α∈[,2π]),若=2,则tan(α+β)=()A.B.C.﹣D.﹣【解答】解:∵sinα=﹣(α∈[,2π]),∴cosα==,∴tanα==﹣,∵==sinα+cosα•tanβ═﹣+tanβ=2,∴tanβ=,则tan(α+β)===,故选:A.10.(5分)已知实数x,y满足,若z=mx+y的最大值为10,则m=()A.1 B.2 C.3 D.4【解答】解:由实数x,y满足,作出可行域如图,易知A(3,1),B(3,4),C(0,1).化目标函数z=mx+y为y=﹣mx+z,当直线z=mx+y经过B点时,取得最大值10;∴10=3m+4,解得m=2.故选:B.11.(5分)已知数列{a n}满足a1=﹣1,a n+1=|1﹣a n|+2a n+1,其前n项和为S n,则下列说法正确的个数为()①数列{a n}是等差数列;②a n=3n﹣2;③S n=.A.0 B.1 C.2 D.3【解答】解:数列{a n}满足a1=﹣1,a n+1=|1﹣a n|+2a n+1,可得a2=|1﹣a1|+2a1+1=2﹣2+1=1,a3=|1﹣a2|+2a2+1=0+2+1=3,a4=|1﹣a3|+2a3+1=2+6+1=9,则a4﹣a3=6,a3﹣a2=2,即有a4﹣a3≠a3﹣a2,则数列{a n}不是等差数列,故①不正确;a n=3n﹣2,不满足a1=﹣1,故②不正确;若S n=满足n=1时,a1=S1=﹣1,但n=2时,a2=S2﹣S1=﹣(﹣1)=1,当n≥2时,a n=S n﹣S n﹣1=﹣=3n﹣2,n≥2,n∈N*.=|1﹣a n|+2a n+1,代入a n+1左边=3n﹣1,右边=3n﹣2﹣1+2•3n﹣2+1=3n﹣1,=|1﹣a n|+2a n+1恒成立.则a n+1故③正确.故选:B.12.(5分)已知m,n∈(0,+∞).若m=+2.则当+2n2﹣﹣取得最小值时,m+n=()A.2 B.4 C.6 D.8【解答】解:m,n∈(0,+∞).若m=+2.则m=>0,解得n>1.则+2n2﹣﹣=+2n2﹣﹣=+2n2=f(n).f′(n)==,令f′(n)≥0,解得n≥2,可得n=2,m=4时,f(n)取得最小值时,m+n=6.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)不等式2x2﹣9x+9>0的解集为(﹣∞,)∪(3,+∞).【解答】解:不等式2x2﹣9x+9>0,即为(x﹣3)(2x﹣3)>0,解得x>3或x<,解集为(﹣∞,)∪(3,+∞).故答案为:(﹣∞,)∪(3,+∞).14.(5分)已知实数a∈(﹣3,1),b∈(,),则的取值范围是(﹣12,8).【解答】解:∵b∈(,),∴∈(4,8),∵a∈(﹣3,1),∴∈(﹣12,8).故答案为:(﹣12,8).15.(5分)若函数在(1,+∞)上单调递增,则实数m的取值范围是[,+∞).【解答】解:∵函数在(1,+∞)上单调递增,∴≥0在(1,+∞)上恒成立,即m≥在(1,+∞)上恒成立,令g(x)=,则g′(x)=,当x∈(1,)时,g′(x)>0,当x∈(,+∞)时,g′(x)<0,故当x=时,g(x)取最大值,故实数m的取值范围是[,+∞),故答案为:[,+∞).16.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,若,且,记h为AC边上的高,则h的取值范围为(0,] .【解答】解:∵,∴sinBcosC=2sinAcosB﹣sinCcosB,即sinBcosC+sinCcosB=2sinAcosB,∴sin(B+C)=2sinAcosB,即sinA=2sinAcosB,∴cosB=,∴B=.=acsinB=bh,∵S△ABC∴h=,由余弦定理可得cosB==,∴a2+c2=ac+3≥2ac,∴0<ac≤3.∴0<h≤.故答案为:(0,].三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(10分)已知数列{a n}的首项为a1=1,且a n+1=2(a n+1)(n∈N*).(1)求数列{a n}的通项公式;(2)若,求数列的前n项和T n.【解答】解:(1)数列{a n}的首项为a1=1,且a n+1=2(a n+1)(n∈N*).+2=2(a n+2),则:a n+1所以:{a n+2}是以3为首项,2为公比的等比数列.则:,解得:.(2)由于=n,则:=,所以:+…+,解得:.18.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且a=4,D在线段AC上,∠DBC=.(1)若△BCD的面积为24,求CD的长;(2)若,且c=12,求CD的长.【解答】解:(1)由S=•BD•BC•=24,△BCD解得:BD=12,在△BCD中,CD2=BC2+BD2﹣2BC•BD•cos45°,即CD2=32+BD2﹣8BD,故CD2=32+144﹣8×12,解得:CD=4;(2)∵tanA=,且A∈(0,π),故sinA=,cosA=,由题意得=,即=,解得:sinC=,∵C∈(0,),∴cosC=,∴sin∠BDC=sin(C+)=,在△BCD中,由正弦定理得=,解得:CD=2.19.(12分)已知向量.(1)若m=4,求函数f(x)=的单调递减区间;(2)若向量满足,求m的值.【解答】解:(1)向量.∴函数f(x)==4sinxcosx+msin2x=2sin2x﹣当m=4时,可得f(x)=2sin2x﹣2cos2x+2=2sin(2x﹣)+2.由≤2x﹣,得:≤x≤+kπ.∴函数f(x)=的单调递减区间为[,],k∈Z.(2)由=(),即,∵x∈(0,)由sin2x+cos2x=1可得sinx=,cosx=.那么m=sin2x=.20.(12分)已知等比数列{a n}的前n项和为,等差数列{b n}的前5项和为30,b7=14.(1)求数列{a n},{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.【解答】解:(1)等比数列{a n}的前n项和为,∴n≥2时,a n=S n﹣S n=﹣=3n﹣1,﹣1n=1时,a1=S1=1对于上式也成立.∴a n=3n﹣1.设等差数列{b n}的公差为d,∵前5项和为30,b7=14.∴5b1+=30,b1+6d=14,联立解得:b1=d=2.∴b n=2+2(n﹣1)=2n.(2)a n b n=2n•3n﹣1.∴T n=2(1+2×3+3×32+…+n•3n﹣1),3T n=2[3+2×32+…+(n﹣1)•3n﹣1+n•3n],﹣2T n=2(1+3+32+…+3n﹣1)﹣2n•3n=﹣2n•3n,解得:T n=+.21.(12分)已知函数.(1)讨论函数f(x)的单调性;(2)已知点M(1,0),曲线Y=f(x)在点P(x0,y0)(﹣1≤x0≤1)处的切线l与直线x=1交于点N,求△OMN(O为坐标原点)的面积最小时x0的值,并求出面积的最小值.【解答】解:(1)由题意得:f′(x)=e x﹣x,令m(x)=e x﹣x,故m′(x)=e x﹣1,令m′(x)=0,解得:x=0,故m(x)在(﹣∞,0)递减,在(0,+∞)递增,故[m(x)]min=m(0)=1,故e x﹣x>0,即f′(x)>0,故函数f(x)在R递增;(2)由题意,切线l的斜率为f′(x0)=﹣x0,由此得切线l的方程为y=(﹣)=(﹣x0)(x﹣x0),令x=1,得y=(2﹣x0)(﹣x0),=|OM|•|y|=|(1﹣x0)(﹣x0)|,x0∈[﹣1,1],∴S△MON设g(x)=(1﹣x)(e x﹣x),x∈[﹣1,1],则g′(x)=﹣(x﹣1)(e x﹣1),令g′(x)=0,解得:x=0或x=1,故g(x)在(﹣1,0)递减,在(0,1)递增,故g(x)min=g(0)=1,即x0=1时,△MON的面积有最小值1.22.(12分)已知函数.(1)若m=1,求曲线y=f(x)在(2,f(2))处的切线方程;(2)探究函数F(x)=xf(x)的极值点的情况,并说明理由.【解答】解:(1)由题意,f′(x)=+1,故f′(2)=2,由f(2)=3,故所求切线方程为:y﹣3=2(x﹣2),即2x﹣y﹣1=0,∴曲线y=f(x)在(2,f(2))处的切线方程2x﹣y﹣1=0;(2)F(x)=xf(x)=xln(x﹣1)+x2+mx,F′(x)=ln(x﹣1)++2x+m,记g(x)=F′(x)﹣m,g′(x)=﹣+2=,令g′(x)=0,则x=,当x∈(1+,)时,g′(x)<0,当x∈(,e+1)时,g′(x)>0,∴当x=时,g(x)取的极小值6﹣ln2,由g(+1)=e++2,g(e+1)=2e++4,F′(x)=0,则g(x)=﹣m,①当﹣m≤6﹣ln2,即m≥ln2﹣6,F′(x)≥0恒成立,函数F(x)在(+1,e+1)上无极值点,②当6﹣ln2<﹣m<e++2,即﹣e﹣﹣2<m<ln2﹣6,F′(x)有两个不同解,函数F(x)在区间(+1,e+1)有两个极值点;③当e++2≤﹣m<2e++4,即﹣2e﹣﹣4<m<﹣e﹣﹣2时,F′(x)有一个解,函数F(x)在区间(+1,e+1)有一个极值点;④当﹣m≥2e++4,即m≤﹣2e﹣﹣4,F′(x)≤0,函数F(x)在区间(+1,e+1)上无极值点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鄂南高中 华师一附中 黄冈中学 黄石二中荆州中学 孝感高中 襄阳四中 襄阳五中2018届高三第一次联考数学试题(理)命题学校:荆州中学 命题人:刘学勇 审题人:朱代文审定学校:孝感高中 审定人:幸芹一、选择题 (本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知集合1{,},(),3x M y y x x x R N y y x R ⎧⎫==-∈==∈⎨⎬⎩⎭,则( ) A .M N = B .N M ⊆ C .R M C N = D .R C NM 2. 复数(12)(2)z i i =++的共轭复数为( )A .-5iB .5iC .15i +D .15i -3. 将函数()3sin(2)3f x x π=-的图像向右平移(0)m m >个单位后得到的图像关于原点对称,则m 的最小值是( )A .6πB .3πC .23πD .56π 4. 已知函数22()log f x x x =+,则不等式(1)(2)0f x f +-<的解集为( )A .(,1)(3,)-∞-+∞UB .(,3)(1,)-∞-+∞U⊂≠C .(3,1)(1,1)---UD .(1,1)(1,3)-U5. 已知命题:,p a b R ∃∈, a b >且11a b >,命题:q x R ∀∈,3sin cos 2x x +<.下列命题是真命题的是( ) A .p q ∧ B .p q ⌝∧ C .p q ∧⌝ D .p q ⌝∧⌝6. 将正方体(如图1)截去三个三棱锥后,得到如图2所示的几何体,侧视图的视线方向如图2所示,则该几何体的侧视图为( )7. 下列说法错误的是( )A .“函数()f x 的奇函数”是“(0)0f =”的充分不必要条件.B .已知A BC 、、不共线,若0PA PB PC ++=u u u r u u u r u u u r r 则P 是△ABC 的重心.C .命题“0x R ∃∈,0sin 1x ≥”的否定是:“x R ∀∈,sin 1x <”.D .命题“若3πα=,则1cos 2α=”的逆否命题是:“若1cos 2α≠,则3πα≠”. 8. 已知等比数列{}n a 的前n 项和为n S ,已知103010,130S S ==,则40S =( )A .-510B .400C . 400或-510D .30或409. 南宋数学家秦九韶在《数书九章》中提出的秦九韶,算法至今仍是多项式求值比较先进的算法.已知20172016()2018201721f x x x x =++++L L ,下列程序框图设计的是求0()f x 的值,在“ ”中应填的执行语句是( )A .n i =B .1n i =+C .n =2018i -D .n =2017i -10. 已知34πθπ≤≤=θ=( ) A . 101133ππ或 B .37471212ππ或 C .131544ππ或 D . 192366ππ或11. 已知△ABC 中,,,a b c 为角,,A B C 的对边,0aBC bCA c AB ++=u u u r u u r u u u r r ,则△ABC 的形状为( )A. 锐角三角形B. 直角三角形C. 钝角三角形 D . 无法确定12. 我国古代太极图是一种优美的对称图.如果一个函数的图像能够将圆的面积和周长分成两个相等的部分,我们称这样的函数为圆的“太极函数”.下列命题中错误..命题的个数是( ) 1:P 对于任意一个圆其对应的太极函数不唯一;2:P 如果一个函数是两个圆的太极函数,那么这两个圆为同心圆;3:P 圆22(1)(1)4x y -+-=的一个太极函数为32()33f x x x x =-+;4:P 圆的太极函数均是中心对称图形;5:P 奇函数都是太极函数;6:P 偶函数不可能是太极函数.A. 2B. 3C.4D.5二、填空题(本大题共4小题,每小题5分,共20分)13.已知平面向量(2,1),(2,).a b x ==r r 且(2)()a b a b +⊥-r r r r ,则x = .14.曲线2y x =与直线2y x =所围成的封闭图形的面积为 .15.已知等差数列{}n a 是递增数列,且1233a a a ++≤,7338a a -≤,则4a 的取值范围为 . 16.()f x 是R 上可导的奇函数,()f x '是()f x 的导函数.已知0x >时()(),(1)f x f x f e '<=,不等式()ln(0ln(x f x e<+≤的解集为M ,则在M 上()sin6g x x =的零点的个数为 .三、解答题(本大题共70分,解答应写出文字说明、证明过程或演算步骤。
)17.(12分)已知向量3sin((),(sin ,cos ),()22a x x b x x f x a b ππ⎛⎫=--==⋅ ⎪⎝⎭r r r r . (1)求()f x 的最大值及()f x 取最大值时x 的取值集合M ;(2)在△ABC 中,,,a b c 是角,,A B C 的对边若24C M π+∈且1c =,求△ABC 的周长的取值范围. 18.(12分)已知数列{}n a 满足12211,4,44n n n a a a a a ++===-.(1)求证:1{2}n n a a +-是等比数列;(2)求{}n a 的通项公式.19.(12分)四棱锥S ABCD -中,AD ∥BC ,,BC CD ⊥060SDA SDC ∠=∠=,AD DC =1122BC SD ==,E 为SD 的中点.(1)求证:平面AEC ⊥平面ABCD ;(2)求BC 与平面CDE 所成角的余弦值. 20.(12分)已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂每件产品的出厂价定为a 元时,生产x 件产品的销售收入是21()5004R x x x =-+(元),()P x 为每天生产x 件产品的平均利润(平均利润=总利润总产量).销售商从工厂每件a 元进货后又以每件b 元销售, ()b a c a λ=+-,其中c 为最高限价()a b c <<,λ为销售乐观系数,据市场调查,λ是由当b a -是c b -,c a -的比例中项时来确定.(1)每天生产量x 为多少时,平均利润()P x 取得最大值?并求()P x 的最大值;(2)求乐观系数λ的值;(3)若600c =,当厂家平均利润最大时,求a b 与的值.21.(12分)已知函数2()(2),1x f x x e ax bx x =-++=是()f x 的一个极值点.(1)若1x =是()f x 的唯一极值点,求实数a 的取值范围;(2)讨论()f x 的单调性;(3)若存在正数0x ,使得0()f x a <,求实数a 的取值范围.请考生在22、23两题中任选一题作答。
如果多做,则按所做第一个题目计分。
22.(10分)已知曲线1C 的极坐标方程为22cos sin θρθ=,2C的参数方程为22x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).(1)将曲线1C 与2C 的方程化为直角坐标系下的普通方程;(2)若1C 与2C 相交于A B 、两点,求AB .23.(10分)已知()211f x x x =++-.(1)求()f x 在[]1,1-上的最大值m 及最小值n .(2),a b R ∈,设1am bn +=,求22a b +的最小值.鄂南高中 华师一附中 黄冈中学 黄石二中荆州中学 孝感高中 襄阳四中 襄阳五中2018届高三第一次联考数学参考答案(理)一、选择题C A B C A ——D A B C D —— B C二、填空题 13.12- 14.4315.(]4,11- 16. 2 三、解答题17.(1)(cos )a x x =-r ,2()sin cos f x a b x x x =⋅=-r r1sin 2sin(2)23x x x π=-=--()f x ∴的最大值为1 ………………4分 此时22,32x k πππ-=+ 即512x k ππ=+ k z ∈ 5,12M x x k k z ππ⎧⎫∴=+∈⎨⎬⎩⎭………………6分 (2)24C M π+∈Q 52412C k πππ∴+=+ 23C k ππ=+, (0,)C π∈Q 3C π∴= ………………7分1c =Q 由2222cos c b a ab c =+-得222c a b ab =+-22223()()()3()44a b a b a b ab a b ++=+-≥+-= 2a b ∴+≤ ………………10分 又1a b +>Q ………………11分故23a b c <++≤,即周长l 的范围为(]2,3∈l . ………………12分18.(1)由2144n n n a a a ++=-得21112242(2)n n n n n n a a a a a a ++++-=-=-21212(2)2()0n n n a a a a -=-==-≠L 211222n n n n a a a a +++-∴=- {}12n n a a +∴-是等比数列. ………………6分(2)由(1)可得112122(2)2n n n n a a a a -+-=-=111222n n n n a a ++∴-= 2n n a ⎧⎫⎨⎬⎩⎭是首项为12,公差为12的等差数列 22n n a n ∴= 12n n a n -=⋅. ………………12分19.(1)E Q 为SD 的中点,01,602AD DC SD SDA SDC ==∠=∠= .ED EC AD DC ∴===设O 为AC 的中点,连接,EO DO 则EO AC ⊥//,AD BC BC CD ⊥Q .AD BC ∴⊥又OD OA OC ==EOC EOD ∴∆≅∆ 从而EO OD ⊥AC ABCD =Q DO ⊂面ABCD 0AC DO =IEO ∴⊥面ABCD EO ⊂Q 面AEC∴面EAC ⊥面ABCD ………………6分(2)设F 为CD 的中点,连接OF EF 、,则OF 平行且等于 12AD AD Q ∥BC EF ∴∥BC不难得出CD ⊥面OEF (EO CD ⊥Q FO CD ⊥)∴面ECD ⊥面OEFOF 在面ECD 射影为EF ,EFO ∠的大小为BC 与面ECD 改成角的大小设AD a =,则2a OF =EF =os OF c EFO EF <==即BC 与ECD 改成角的余弦值为3.(亦可以建系完成) ………………12分20.依题意总利润=21500100400004x x x -+-- =21400400004x x -+- 21400400001400004()4004x x P x x x x-+-∴==--+ 200400200.≥-+= 此时1400004x x= 400x =即,每天生产量为400件时,平均利润最大,最大值为200元 ………………6分(2)由()b a c a λ=+-得b a c aλ-=- b a -Q 是,c b c a --的比例中项2()()()b a c b c a ∴-=--两边除以2()b a -得()()1(1)c a b a c a c a c a b a b a b a b a------==----- 111(1)λλ∴=-⋅解得λ=. ………………8分 (3)厂家平均利润最大,4000040000100()100200400400a x P x x ∴=++=++=元 每件产品的毛利为b a -()1)b a c a λ∴-=-=-3)b ∴=元400a ∴=(元),3)b =+元. ………………12分21.(1)()(1)2x f x x e ax b '=-++, 1x =Q 是极值点()0f x '∴= ,故20a b +=, 2b a =-()(1)(2)x f x x e a '=-+1x =Q 是唯一的极值点20x e a ∴+≥恒成立或20x e a +≤恒成立由20x e a +≥恒成立得2x a e ≥-,又0x e > 0a ∴≥由20x e a +≤恒成立得2x a e ≤-,而x e -不存在最小值, 20x e a ∴+≤不可能恒成立. 0a ∴≥ ………………4分(2)由(1)知,当0a ≥时,1x < , ()0f x '< ; 1x > , ()0f x '>. ()f x ∴在(,1)-∞递减,在(1,)+∞上递增. 当02e a -<<时,ln(2)1a -< ln(2)x a <-,()0f x '>; ln(2)1a x -<< , ()0f x '<; 1x >, ()0f x '>. ()f x ∴在(,ln(2))a -∞-、(1,)+∞上递增,在(ln(2),1)a -上递减。