高等数学作业集第2章极限与连续及答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x+ x �
(4) 1 + x − 1 − x � x , 1 阶,等价 x = x1/8 ,1/8 阶,
12.求下列极限 (1) lim
x →+∞
x sin x 2x + 3
x sin x 2x + 3 1 sin x lim = � 0 (无穷小与有界量的乘积) x →+∞ x (2 + 3 / x)
(1/ 2) n 4 4n +1 + 2n 4 + (1/ 2) n 4 + nlim →+∞ 解: = lim lim = = n →+∞ 3 ⋅ 4 n − 3n n →+∞ 3 − (3 / 4) n 3 − lim(3 / 4) n 3
n →∞
(3) lim ( n + 1 − n − n )
2 1/2
− 1 (3) cos( x 2 ) − 1 ,(4) tan( x3 )
x�
3 3 (4) tan( x ) � x [3 阶]; (3) x [1/2 阶]; (2) (1 + x 2 )1/2 − 1 � x 2 / 2 [2 阶];
cos( x 2 ) − 1 � − x 4 / 2 [4 阶]
2 3 − x x2 2 3 − =1 + 0 − 0 =1 x x2
(5) lim
4 x3 + 3x 2 x →∞ 5 x 4 + 2 x
4 x3 + 3x 2 1 4 + 3(1/ x) 1 4 + 3(1/ x) 4 解: lim =lim =lim �lim =0 × =0 x →∞ 5 x 4 + 2 x x →∞ x 5 + 2(1/ x 3 ) x →∞ x x →∞ 5 + 2(1/ x 3 ) 5
2 2 n →+∞
解: lim ( n + 1 − n − n ) = = lim
2 2 n →+∞ n →+∞
1+ n
n +1 + n − n
2 2
n →+∞
1 + 1/ n 1 lim = 2 1 + 1/ n + 1 − 1/ n 2
n +1 (4) lim n →∞ n + 2
xn + 6 , n ∈ � + ,证明数列 {xn } 的极限存在,并求其极限. xn + 6 ,则 x2 ≥ 0 ,因此当 n ≥ 2 时,
2 xn + 6 − xn −( xn + 2)( xn − 3) ,如 0 ≤ x2 ≤ 3 ,则 n ≥ 2 时,数列 {xn } 是单 = xn + 6 + xn xn + 6 + xn
(8) lim (1 − x ) x
x →0 2
x
1 −2 解: lim (1 − x ) = lim (1 − x ) − x = e x →0 x →0 2 x
−2
10. 将下列 x → 0 的无穷小按低阶到高阶的次序排列起来: (1) sin 答: (1) sin
x
(2) (1 + x )
= ∃N max{2 K1 − 1, 2 K 2 } ,当 n > N 时, | xn − a |< ε �
4. 求极限 lim
n →+∞
∑
k =1
n
1 n2 + k
解:证法 1:
n n2 + n
≤∑
k =1
n
1 n2 + k
≤
n n2 + 1
< 1 ,即
n n 1 ≤∑ <1 n + 1 k =1 n 2 + k
2 2
ε �
ห้องสมุดไป่ตู้
2x2 + x (2) lim 2 =2 x →∞ x + 1
证: ∀ε > 0 , ∃X = 2 +
1
ε
,当 | x |> X 时,
2x2 + x − = 2 x2 + 1
x−2 x−2 1 1 < 2 = ≤ < ε .� 2 x + 1 x − 4 | x + 2 | | x | −2
2 2 n →+∞
解得 a = 3 . 综合得所求极
限为 3. � 6. 计算下列极限:
(1) lim
∑ (2k − 1)
k =1
n
n →+∞
n2
n
解: lim
∑ (2k − 1)
k =1
n →+∞
n2 = = = lim lim 1 1 n →+∞ n 2 n →+∞ n2
(2) lim
4n +1 + 2n n →+∞ 3 ⋅ 4 n − 3n
sin(3 x) x →0 x sin(3 x) sin(3 x) 解: = lim lim 3� 3 = x →0 x →0 x 3x arcsin x (2) lim x → 0 tan x
解: lim
x arcsin x arcsin x = lim cos x� = 1× 1× 1 = 1 x → 0 tan x x →0 sin x sin(arcsin x) x sin x x → 0 1 − cos(3 x )
n →+∞
2 xn+1 = xn + 6 两边取极限,得 a 2= a + 6
解得 a = 3 (舍去负的解 a = −2 ) ,
如 x2 > 3 , n ≥ 2 时,数列 {xn } 是严格单调减的正项数列,且数列有下界 0,根据有下界的单调增数列的 极限存在,设 lim xn = a , 对等式 xn+1 = xn + 6 两边取极限,得 a = a + 6
(4) lim 解:
x sin x x → 0 arctan(3 x 2 )
lim
1 3x 2 sin x 1 sin(arctan(3 x 2 ) sin x 1 1 x sin x lim lim = = = × 1× 1 = 2 2 2 2 x → 0 arctan(3 x ) x → 0 3 arctan(3 x ) x → 0 3cos(arctan(3 x )) arctan(3 x ) 3 3 x x
2. 用数列极限定义证明 lim ( n + 1 − n) = 0
2 n →+∞
证: ∀ε > 0, = ∃N
1 , 当 n > N 时 | n 2 += 1−n| 2ε
1 n2 + 1 + n
<
1 1 < = ε � 2n 2 N
3. 对于数列 {xn } ,若 x2 k −1 → a ( k → +∞), x2 k → a ( k → +∞) ,证明 xn → a ( n → +∞) 证 : 由 条 件 知 ∀ε > 0, ∃K1 , K 2 , 当 k > K1 时 | x2 k −1 − a |< ε , 当 k > K 2 时 | x2 k − a |< ε , 所 以
(3) lim
5 x3 + 2 x 2 + x x →0 4 x3 + 3x 5 x3 + 2 x 2 + x x →0 4 x + 3x 5x2 + 2 x + 1 x →0 4x + 3 1 3
解: lim = lim = 3 2
(4) lim 1 + x →∞ 解: lim 1 + x →∞
解: = lim
x →+∞
(2) lim
x − sin x x →∞ x + cos x x − sin x 1 − sin x / x 解: = = 1 lim lim x →∞ x + cos x x →∞ 1 + cos x / x
2
(3) lim
x sin x x sin x 2 3 x / 2 sin x 2 2 2 解: lim � = lim = lim = ×1 ×1 = 2 x → 0 1 − cos(3 x ) x → 0 2sin (3 x / 2) x → 0 9 sin(3 x / 2) x 9 9
3 1 − 3 1− x 1− x 3 −( x − 1)( x + 2) −( x + 2) 1 − = lim = lim = −1 3 2 2 1 − x 1 − x x →1 ( x − 1)(1 + x + x ) x →1 1 + x + x
2
解: lim x →1
2
ε
n n 1 1 1 k 1 1 = − 1 = − < = < ε, ∑ ∑ ∑ k 1= k 1 = n2 + k n 2 + k n k 1 n n 2 + k ( n + n 2 + k ) 2n 2 N
n
所以所求极限为 1. 5. 设 x1 ≥ −6 , x = n +1 解:由 x1 ≥ −6 , x = n +1
第2章
n →+∞
极限与连续
1. 证明 lim xn = a ⇔ ∀ε > 0, 数列{xn }中只有有限项在a的ε 邻域之外 证: lim xn = a ⇔ ∀ε > 0, ∃N ∈ � ,使得n>N时|xn -a|<ε
+ n →+∞
⇔ ∀ε > 0, ∃N ∈ � +,数列{xn }中只可能在前N 项中的有限项在a的ε 邻域之外 �
(8) lim ( x + 2 x −
x →−∞
x2 − x )
解: lim ( x + 2 x −
2 x →−∞
x2 − x ) = lim
3x x2 + 2x + x2 − x
x →−∞
= lim
−3 1 + 2 x −1 + 1 − x −1
x →−∞
3 = − 2
9.
求下列极限:
(1) lim
xn +1 − xn =
xn + 6 − xn =
调增的正项数列,故当 n ≥ 3 时 x = n
2 ≤ xn + 6 ,即 ( xn + 2)( xn − 3) ≤ 0 ,解 xn −1 + 6 ≤ xn + 6 ,即 xn
得当 n ≥ 3 时, xn ≤ 3 ,即数列有上界,根据有上界的单调增数列的极限存在,设 lim xn = a , 对等式
n 1 时, −1 ∀ε > 0, ∃N = ,使得 n > N= n +1 2ε
lim
n 1 n =1 = 1 ,由迫敛性, lim ∑ 2 n →+∞ n +1 k =1 n +k
1 1 1 = < < ε ,即 n + 1( n + 1 + n ) 2n 2 N
n →+∞
证法二: ∀ε > 0, ∃N = ,使得 n > N 时,
(5) lim +
x →0
1 − cos x 2x 1 − cos x 2x
1
解: = = lim lim + +
x →0 x →0
2 sin( x / 2) 4 x/2
2 (注:当 x → 0 极限不存在) 4
(6) lim (1 − 2 x ) x
x →0
解: lim (1 − 2 x ) x = lim (1 − 2 x ) −2 x x →0 x →0
n
n
1 + 1/ (n + 1) 1 n +1 解: lim = = lim n →∞ n + 2 n →∞ (1 + 1/ ( n + 1)) n +1 e
7. 用函数极限的 ε − δ 定义证明: (1) lim x + 3 = 12
2 x →3
证:∀ε > 0 , ∃δ = min{ε / 7,1} ,当 | x − 3 |< δ 时,| x + 3 − 12 |= | x − 9 |= | ( x − 3)( x + 3) |< 7δ =
4 x3 + 2 x 2 + 1 (6) lim x →∞ 5 x 3 − 3 x + 2
解: = lim 3 lim = −2 −3
4 x3 + 2 x 2 + 1 x →∞ 5 x − 3 x + 2
4 + 2 x −1 + x −2 x →∞ 5 − 3 x + 2x
4 5
(7) lim
x →1
8. 求下列极限:
x2 + 1 (1) lim x →3 x − 2
解: lim =
x →3
x2 + 1 x−2
9 +1 = 10 3− 2
(2) lim
x→2
x 2 − 3x + 2 x2 − 4
解: lim
x→2
x 2 − 3x + 2 ( x − 2)( x − 1) x −1 2 −1 1 = lim lim = = 2 x → 2 x → 2 x −4 ( x − 2)( x + 2) x+2 2+2 4
1
1
= e −2
−2
2x +1 (7) lim x →∞ 2 x + 3
x
[1 + 1/ ( x + 1/ 2)]1/2 1 2x +1 解: lim = = lim x →∞ 2 x + 3 x →∞ [1 + 1/ ( x + 1/ 2)]( x +1/2) e
11. 当 x → 0 时,下列函数分别是 x 的几阶无穷小? (1) 1 − cos x , 答: (2) x + x � x ,1 阶,等价, (1) 1 − cos x � − x / 2 ,2 阶,
2 2
(2) x + x
2
, (3)
(4) 1 + x − 1 − x x+ x+ x ,
(3) x +