(完整版)北京中考数学新定义题目汇总

合集下载

初三西城数学新定义试卷

初三西城数学新定义试卷

一、选择题(每题5分,共20分)1. 下列哪个选项不属于新定义的范畴?A. 等差数列B. 等比数列C. 平面向量D. 函数2. 下列哪个新定义与数学几何有关?A. 假等差数列B. 假等比数列C. 矢量三角形D. 函数图像3. 下列哪个新定义与数学代数有关?A. 指数幂B. 对数C. 矢量积D. 函数极值4. 下列哪个新定义与数学组合有关?A. 排列B. 组合C. 概率D. 矢量5. 下列哪个新定义与数学几何有关?A. 圆锥B. 球体C. 平面几何图形D. 空间几何图形二、填空题(每题5分,共20分)6. 新定义:若数列{an}满足an+1 = an (1 + k),其中k为常数,则称该数列为“新等比数列”。

已知数列{an}的前三项分别为1,2,4,则k的值为______。

7. 新定义:若向量a与向量b的夹角为θ,则称向量a与向量b的“新夹角”为θ。

已知向量a = (2, 3),向量b = (1, -2),则向量a与向量b的新夹角θ的值为______。

8. 新定义:若函数f(x)满足f(x) = f(1/x),则称该函数为“新对称函数”。

已知函数f(x) = x^2 + 1,则f(-1)的值为______。

9. 新定义:若数列{an}满足an = (an-1 + an+1) / 2,则称该数列为“新等差数列”。

已知数列{an}的前三项分别为1,2,3,则数列{an}的第10项a10的值为______。

10. 新定义:若函数f(x)满足f(f(x)) = x,则称该函数为“新周期函数”。

已知函数f(x) = x + 1,则f(f(0))的值为______。

三、解答题(每题15分,共45分)11. (15分)新定义:若数列{an}满足an+1 = an + k(k为常数),则称该数列为“新等差数列”。

已知数列{an}的前三项分别为1,3,5,求:(1)数列{an}的通项公式;(2)数列{an}的前n项和。

2020中考数学复习(北京)重点专题九 新定义问题

2020中考数学复习(北京)重点专题九  新定义问题

解:由题意知,点A坐标为(6,0),点B坐标为(0,2 3), 则在Rt△AOB中,OB=2 3 ,OA=6,∴∠OAB=30°. 如解图①,当⊙C与线段AB相切时, 即有一个公共点P,则CP=2, ∴在Rt△ACP中,AC=4, ∴此时点C坐标为(2,0);
例1题解图①
专题九 新定义问题
如解图②,当⊙C的横坐标2<xC≤4时,⊙C与线段AB有两个公共点; 如解图③,当⊙C的横坐标4<xC≤8时,⊙C与线段AB有一个公共点. 综上所述,当⊙C与线段AB有公共点时,xC的取值范围是2≤xC≤8.
直线l与⊙O相离
直线l与⊙O相切
直线l与⊙O相交
专题九 新定义问题
【作法提示】如解图:
第2题解图
专题九 新定义问题 典例精讲
例1 直线l:y=- 3 x+2 3 与x轴交于点A,与y轴交于点B,⊙C的圆心在x轴
3 上,半径为2,若⊙C与线段AB有公共点,求圆心C的横坐标xC的取值范围.
例1题图
专题九 新定义问题
专题九 新定义问题(必考)
【专题解读】本题是一道创设情境、引入新的数学概念的探索性问题,从 运动与变化的角度观察图形、分析问题,发现问题间的区别和联系,创造 性地解决问题,主要考查数形结合、类比与归纳的数学思想方法,考查抽 象概括能力、发现问题并解决问题的能力,考查创新意识.在解题过程中, 要重视分析动点轨迹及临界状态.
拓展2解图①
专题九 新定义问题
当圆心C在点A右侧时,如解图②,同理可得点C坐标为(3,0).
拓展2解图②
综上所述,圆心C的横坐标xC的取值范围为-9≤xC≤3.
拓展1解图
专题九 新定义问题
拓展2 直线l:y= 3 x+ 3 与x轴交于点A,与y轴交于点B,⊙C的圆心在x

北京市中考数学复习专题:新定义阅读理解问题

北京市中考数学复习专题:新定义阅读理解问题

新定义阅读理解问题新定义学习型阅读理解题,是指题目中首先给出一个新定义(新概念或新公式),通过阅读题目提供的材料,理解新定义,再通过对新定义的理解来解决题目提出的问题。

其主要目的是通过对新定义的理解与运用来考查学生的自学能力,便于学生养成良好的学习习惯。

解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”; 归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。

一、基础练习部分★例1:【——海淀期末】对于正整数n ,定义210()=()10,,≥n n F n f n n ⎧<⎨⎩,其中f(n )表示n 的首位数字、末位数字的平方和.例如:F(6)=62=36,F(123)=f(123)=12+32=10.规定F 1(n )=F(n ),F k +1(n )=F(F K (n ))(K 为正整数).例如:F 1(123)=F(123)=10,F 2(123)=F(F 1(123))=F(10)=1.(1)求:F 2(4)= ,F(4)= ;(2)若F 3m (4)=89,则正整数m 的最小值是 . 答案:(1)37,26;(2)6. 练习①: 【通州一模】定义一种对正整数n 的“F 运算”:①当n 为奇数时,结果为31n +;②当n 为偶数时,结果为k n 2(其中k 是使得k n 2为奇数的正整数),并且运算重复进行.例如,取6n =,则:12363105F F F −−−→−−−→−−−→① ②②第次第次第次……,若1n =,则第2次“F 运算”的结果是 ;若13n =,则第次“F 运算”的结果是 . 答案:1,4练习②:【门头沟二模】我们知道,一元二次方程x 2=-1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“i ”,使其满足i 2=-1 (即方程x 2=-1有一个根为i ),并且进一步规定: 一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i 1=i ,i 2=-1,i 3= i 2·i =(-1)(-1)·i =-i , i 4=( i 2)2=(-1) 2=1,从而对任意正整数n ,则i 6=______________;由于i 4n+1=i 4n ﹒i=(i 4)n ﹒i=i,同理可得i 4n+2=﹣1, i 4n+3=﹣i , i 4n =1那么i + i 2+ i 3+ i 4+…+ i+ i 的值为_____ 答案:-1,i★例2:【宣武一模】任何一个正整数n 都可以进行这样的分解:n =p ×q (p 、q 是正整数,且p ≤q ), 如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并规定:()p F n q =.例如18可以分解成1×18、2×9或3×6,这时就有31(18)62F ==.给出下列关于F(n )的说法:(1)1(2)2F =;(2)3(24)8F =;(3)(27)3F =;(4)若n 是一个完全平方数,则F(n )=1.其中正确说法的个数是 ( )A.1 B.2 C.3D.4 答案:B 练习①:【北京中考】在右表中,我们把第i 行第j 列的数记为a i ,j (其中i ,j 都是不大于5的正整数),对于表中的每个数a i ,j ,规定如下:当i ≥j 时,a i ,j =1;当i <j 时,a i ,j =0.例如:当i =2,j=1时,a i ,j =a 2,1=1.按此规定,a 1,3= ;表中的25个数中,共有 个1;计算a 1,1•a i ,1+a 1,2•a i ,2+a 1,3•a i ,3+a 1,4•a i ,4+a 1,5•a i ,5的值为 .答案:0;15;1. 练习②:【海淀二模】某种数字化的信息传输中,先将信息转化为数学0和1组成的数字串,并对数字串进行了加密后再传输.现采用一种简单的加密方法:将原有的每个1都变成10,原有的每个0变成01.我们用A 0表示没有经过加密的数字串.这样对A 0进行一次加密就得到一个新的数字串A 1,对A 1再进行一次加密又得到一个新的数学串A 2,依此类推,…,例如:A 0:10,则A 1:1001.若已知A 2:100101101001,则A 0: ,若数字串A 0共有4个数字,则数字串A 2中相邻两个数字相等的数对至少..有 对. 答案:101 ,4练习③:【燕山一模】若将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式.如在代数式a +b +c 中,把a 和b 互相替换,得b +a +c ;把a 和c 互相替换,得c +b +a ;把b 和c ……;a +b +c 就是完全对称式.下列三个代数式:① (a -b )2;② ab +bc +ca ;③ a 2b +b 2c +c 2a .其中为完全对称式的是A .① ②B .② ③C .① ③D .①②③ 答案:A练习④:【西城一模】在平面直角坐标系中,对于平面内任一点P (a ,b )若规定以下两种变换: ①f (a ,b )= (-a ,-b ).如f (1,2)= (-1,-2);②g (a ,b )= (b ,a ).如g (1,3)= (3,1)按照以上变换,那么f (g (a ,b ))等于A .(-b ,-a )B .(a ,b )C .(b ,a )D .(-a ,-b ) 答案:A★例3:【昌平二模】请阅读下列材料:我们规定一种运算:,例如:. 按照这种运算的规定,请解答下列问题:(1)直接写出 的计算结果;(2)若,直接写出和的值.(3)当取何值时, ; 答案:(1)3.5; (2)x=8,y=2. (3) ;a b ad bc c d=-2325341012245=⨯-⨯=-=-1220.5--0.517830.51x y xy --==--x y x 0.5012x xx -=15x -±=a 1,1 a 1,2 a 1,3 a 1,4 a 1,5 a 2,1 a 2,2 a 2,3 a 2,4 a 2,5 a 3,1 a 3,2a 3,3 a 3,4 a 3,5 a 4,1 a 4,2a 4,3 a 4,4 a 4,5 a 5,1 a 5,2 a 5,3 a 5,4 a 5,5变式练习:【宣武一模】对于实数d c b a ,,,规定一种运算:c a bc ad d b -=,如21=-20()21-⨯ 220-=⨯-,那么)3(2x -2554=-时,=x ( ).(A )413- (B )427 (C )423- (D )43- 答案:(D)练习:①【北京中考(课标卷)】用“☆”定义新运算: 对于任意实数a 、b , 都有a ☆b =b 2+1。

2024年北京初三九年级上学期数学期末考《新定义》

2024年北京初三九年级上学期数学期末考《新定义》

2024年1月九上期末——新定义1.【东城】28.在平面直角坐标系xOy 中,已知点P 和直线1l ,2l ,点P 关于直线1l ,2l “和距离”的定义如下:若点P 到直线1l ,2l 的距离分别为1d ,2d ,则称1d +2d 为点P 关于直线1l ,2l 的“和距离”,记作d .特别地,当点P 在直线1l 上时,1d =0;当点P 在直线2l 上时,2d =0.(1)在点1P (3,0),2P (-1,2),3P (4,-1)中,关于x 轴和y 轴的“和距离”为3的点是________;(2)若P 是直线3y x =-+上的动点,则点P 关于x 轴和y 轴的“和距离”d 的最小值为________;(3)已知点A (0,3),⊙A 的半径为1,点P 是⊙A 上的动点,直接写出点P 关于x 轴和直线y =3x +6的“和距离”d 的取值范围.2.【西城】28.如图,在平面直角坐标系xOy 中,点()1,0S -,()1,0T .对于一个角α(0180α︒<≤︒),将一个图形先绕点S 顺时针旋转α,再绕点T 逆时针旋转α,称为一次“α对称旋转”.备用图(1)点R 在线段ST 上,则在点()1,1A -,()3,2B -,()2,2C -,()0,2D -中,有可能是由点R 经过一次“90°对称旋转”后得到的点是________;(2)x 轴上的一点P 经过一次“α对称旋转”得到点Q .①当60α=︒时,PQ =________;②当30α=︒时,若QT x ⊥轴,求点P 的坐标;(3)以点O 为圆心作半径为1的圆.若在O 上存在点M ,使得点M 经过一次“α对称旋转”后得到的点在x 轴上,直接写出α的取值范围.3.【海淀】28.在平面直角坐标系xOy 中,将中心为T 的正方形记作正方形T ,对于正方形T 和点P (不与O 重合)给出如下定义:若正方形T 的边上存在点Q ,使得直线OP 与以TQ 为半径的T 相切于点P ,则称点P 为正方形T 的“伴随切点”.(1)如图、正方形T 的顶点分别为点O ,()2,2A ,()4,0B ,()2,2C -.①在点()12,1P ,()21,1P ,()31,1P -中,正方形T 的“伴随切点”是________;②若直线y x b =+上存在正方形T 的“伴随切点”,求b 的取值范围;(2)已知点(),1T t t +,正方形T 的边长为2.若存在正方形T 的两个“伴随切点”M ,N ,使得OMN △为等边三角形,直接写出t 的取值范围.4.【朝阳】28.在平面直角坐标系xOy 中,已知A (t -2,0),B (t +2,0).对于点P 给出如下定义:若∠APB=45°,则称P 为线段AB 的“等直点”.(1)当t =0时,①在点),(22201+P ,),(042-P ,)-,(2223-P ,),(524P 中,线段AB 的“等直点”是________;②点Q 在直线y =x 上,若点Q 为线段AB 的“等直点”,直接写出点Q 的横坐标.(2)当直线t x y +=上存在线段AB 的两个“等直点”时,直接写出t 取值范围.5.【石景山】28.在平面直角坐标系xOy 中,⊙O 的半径为1.对于⊙O 的弦AB 和点C 给出如下定义:若点C 在弦AB 的垂直平分线上,且点C 关于直线AB 的对称点在⊙O 上,则称点C 是弦AB 的“关联点”.(1)如图,点13(22A ,,13(22B -,.在点1(00)C ,,2(10)C ,,3(11)C ,,4(20)C ,中,弦AB 的“关联点”是;(2)若点1(0)2C ,是弦AB 的“关联点”,直接写出AB 的长;(3)已知点(02)M ,,(0)15N ,.对于线段MN 上一点S ,存在⊙O 的弦PQ ,使得点S 是弦PQ 的“关联点”.记PQ 的长为t ,当点S 在线段MN 上运动时,直接写出t 的取值范围.6.【丰台】28.在平面直角坐标系xOy中,⊙O的半径为1,对于线段AB和x轴上的点P,给出如下定义:将线段AB绕点P旋转180°可以得到⊙O的弦A'B'(A',B'分别为A,B的对应点),则称线段AB为⊙O以点P 为中心的“关联线段”.(1)如图,已知点A(-2,-1),B(-2,0),C(-2,1),D(-1,1),在线段AC,BD,CD中,⊙O以点P 为中心的“关联线段”是;x的取值范围;(2)已知点E(-4,1),线段EF是⊙O以点P为中心的“关联线段”,求点F的横坐标F (3)已知点E(m,1),若直线y=-x+2m上存在点F,使得线段EF是⊙O以点P为中心的“关联线段”,直接写出m的取值范围.备用图7.【昌平】28.对于在平面直角坐标系xOy 中⊙T 和⊙T 外的点P ,给出如下定义:已知⊙T 的半径为1,若⊙T 上存在点Q ,满足PQ ≤2,则称点P 为⊙T 的关联点.(1)如图1,若点T 的坐标为(0,0),28题图1①在点1P (3,0),2P (3,-2),3P (-2,2)中,是⊙T 的关联点的是____________;②直线2y x b =+分别交x 轴,y 轴于点A ,B ,若线段AB 存在⊙T 的关联点,求b 的取值范围;(2)已知点C (0,D (1,0),T (m ,1),△COD 上的每一个点都是⊙T 的关联点,直接写出m 的取值范围.28题图28.【通州】28.在平面直角坐标系xOy 中,O 的半径为1.给出如下定义:过O 外一点P 做直线与O 交于点M 、N ,若M 为线段PN 的中点,则称线段PN 是O 的“外倍线”。

完整版)北京中考数学新定义题目汇总

完整版)北京中考数学新定义题目汇总

完整版)北京中考数学新定义题目汇总28.对于平面内的圆C和圆C外一点Q,定义如下:若过点Q的直线与圆C存在公共点,记为点A、B,设$k=\frac{AQ+BQ}{CQ}$,则称点A(或点B)是圆C的“k相关依附点”。

特别地,当点A和点B重合时,规定$AQ=BQ$,$k=\frac{2AQ^2}{CQ^2}$。

已知在平面直角坐标系$xOy$中,$Q(-1,0)$,$C(1,0)$,圆C的半径为$r$。

1) 当$r=2$时。

①若$A_1(0,1)$是圆C的“k相关依附点”,则$k$的值为$\frac{3}{2}$。

② $A_2(3,0)$是否为圆C的“2相关依附点”:否。

2) 若圆C上存在“k相关依附点”点M。

①当$r=1$,直线QM与圆C相切时,$k$的值为$2$。

②当$k=3$时,$r$的取值范围为$[\sqrt{\frac{3}{2}},2]$。

3) 若存在$r$的值使得直线$y=-3x+b$与圆C有公共点,且公共点是圆C的“3相关依附点”,则$b$的取值范围为$[-2\sqrt{2},2\sqrt{2}]$。

28.在平面直角坐标系$xOy$中,点M的坐标为$(x_1,y_1)$,点N的坐标为$(x_2,y_2)$,且$x_1\neq x_2$,$y_1\neq y_2$,以MN为边构造菱形,若该菱形的两条对角线分别平行于$x$轴,$y$轴,则称该菱形为边的“坐标菱形”。

1) 已知点$A(2,0)$,$B(0,23)$,则以AB为边的“坐标菱形”的最小内角为$60^\circ$。

2) 若点$C(1,2)$,点$D$在直线$y=5$上,以CD为边的“坐标菱形”为正方形,则直线$CD$的表达式为$y=5$。

3) 圆O的半径为2,点$P(m,1)$。

若在圆O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,则$m$的取值范围为$[-1,3]$。

28.对于平面上两点A、B,定义如下:以点A或B为圆心,AB长为半径的圆称为点A、B的“确定圆”。

中考数学:新定义创新型综合压轴问题真题+模拟(原卷版北京专用)

中考数学:新定义创新型综合压轴问题真题+模拟(原卷版北京专用)

中考数学新定义创新型综合压轴问题【方法归纳】新定义"型问题是指在问题中定义了初中数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识进行理解,而后根据新定义进行运算、推理、迁移的一种题型。

它一般分为三种类型:(1)定义新运算;(2)定义初、高中知识衔接"新知识";(3)定义新概念.这类试题考查考生对"新定义"的理解和认识,以及灵活运用知识的能力,解题时需要将"新定义"的知识与已学知识联系起来,利用已有的知识经验来解决问题。

解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。

北京中考最后一题的新定义主要涉及函数与圆的有关新定义问题,属于函数的范畴,已经考过“对应点”、“关联线段”、“平移距离”“闭距离”、“相关矩形”、“反称点”、“有界函数”、“关联点”等新定义。

在平时的教学过程中要从细节中挖掘出数学的本质特征,引领学生找到解决问题的思想方法。

解答这类问题的关键是要读懂题目提供的新知识,理解其本质,把它与已学的知识联系起来,把新的问题转化为已学的知识进行解决。

【典例剖析】【例1】(2022·北京·中考真题)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上,若点P(−2,0),点Q为点P的“对应点”.①在图中画出点Q;OM;②连接PQ,交线段ON于点T.求证:NT=12(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t(1<t<1),若P为⊙O外2一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时直接写出PQ长的最大值与最小值的差(用含t的式子表示)【例2】(2021·北京·中考真题)在平面直角坐标系xOy中,⊙O的半径为1,对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B′C′(B′,C′分别是B,C的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,的横、纵坐标都是整数.在线段B1C1,B2C2,B3C3中,⊙O 的以点A为中心的“关联线段”是______________;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是⊙O的以点A为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC长.【真题再现】1.(2020·北京·中考真题)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦A′B′(A′,B′分别为点A,B的对应点),线段AA′长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦P 1P 2和P 3P 4,则这两条弦的位置关系是 ;在点P 1,P 2,P 3,P 4中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =√3x +2√3上,记线段AB 到⊙O 的“平移距离”为d 1,求d 1的最小值;(3)若点A 的坐标为(2,32),记线段AB 到⊙O 的“平移距离”为d 2,直接写出d 2的取值范围.2(2019·北京·中考真题)在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE⌢上的所有点都在△ABC 的内部或边上,则称DE⌢为△ABC 的中内弧.例如,下图中DE ⌢是△ABC 的一条中内弧.(1)如图,在Rt △ABC 中,AB =AC =2√2,D ,E 分别是AB ,AC 的中点.画出△ABC 的最长的中内弧DE⌢,并直接写出此时DE ⌢的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t >0),在△ABC 中,D ,E 分别是AB ,AC 的中点.①若t =12,求△ABC 的中内弧DE⌢所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧DE⌢,使得DE ⌢所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.3.(2018·北京·中考真题)对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ).已知点A (−2,6),B (−2,−2),C (6,−2).(1)求d (点O ,△ABC );(2)记函数y =kx (−1≤x ≤1,k ≠0)的图象为图形G ,若d (G ,△ABC )=1,直接写出k 的取值范围;(3)⊙T 的圆心为T (t ,0),半径为1.若d (⊙T ,△ABC )=1,直接写出t 的取值范围. 4.(2017·北京·中考真题)在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 存在一点Q ,使得P 、Q 两点间的距离小于或等于1,则称P 为图形M 的关联点.(1)当⊙O 的半径为2时,①在点P 1(12,0),P 2(12,√32),P 3(52,0) 中,⊙O 的关联点是_______________. ②点P 在直线y=-x 上,若P 为⊙O 的关联点,求点P 的横坐标的取值范围.(2)⊙C 的圆心在x 轴上,半径为2,直线y=-x+1与x 轴、y 轴交于点A 、B .若线段AB 上的所有点都是⊙C 的关联点,直接写出圆心C 的横坐标的取值范围.5.(2016·北京·中考真题)在平面直角坐标系xOy 中,点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2),且x 1≠x 2,y 1≠y 2,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).①若点B 的坐标为(3,1)求点A ,B 的“相关矩形”的面积;②点C 在直线x=3上,若点A ,C 的“相关矩形”为正方形,求直线AC 的表达式;(2)⊙O 的半径为,点M 的坐标为(m ,3).若在⊙O 上存在一点N ,使得点M ,N 的“相关矩形”为正方形,求m 的取值范围.6.(2015·北京·中考真题)在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.,0),T(1,√3)关于⊙O的反称点是否存在?若存在,求①分别判断点M(2,1),N(32其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;x+2√3与x轴、y轴分别交于点A,B,若(2)⊙C的圆心在x轴上,半径为1,直线y=﹣√33线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.7.(2014·北京·中考真题)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足−M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(x>0)和y=x+1(−4<x≤2)是不是有界函数?若是有界函数,(1)分别判断函数y=1x求其边界值;(2)若函数y=−x+1(a⩽x⩽b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(−1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值≤t≤1?是t,当m在什么范围时,满足348.(2013·北京·中考真题)对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得∠APB=60°,则称P 为⊙C 的关联点.已知点D (,),E (0,-2),F (,0)(1)当⊙O 的半径为1时,①在点D ,E ,F 中,⊙O 的关联点是 ;②过点F 作直线交y 轴正半轴于点G ,使∠GFO=30°,若直线上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.【模拟精练】一、解答题1.(2022·北京朝阳二模)在平面直角坐标系xOy 中,⊙O 的半径为1,AB =1,且A ,B 两点中至少有一点在⊙O 外.给出如下定义:平移线段AB ,得到线段A ′B ′(A ′,B ′分别为点A ,B 的对应点),若线段A ′B ′上所有的点都在⊙O 的内部或⊙O 上,则线段AA ′长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图1,点A 1,B 1的坐标分别为(-3,0),(-2,0),线段A 1B 1到⊙O 的“平移距离”为___,点A 2,B 2的坐标分别为(-12,√3),(12,√3),线段A 2B 2到⊙O 的“平移距离”为___;(2)若点A,B都在直线y=√3x+2√3上,记线段AB到⊙O的“平移距离”为d,求d的最小值;(3)如图2,若点A坐标为(1,√3),线段AB到⊙O的“平移距离”为1,画图并说明所有满足条件的点B形成的图形(不需证明).2.(2022·北京北京·二模)在平面直角坐标系xOy中,⊙O的半径为1.对于线段PQ给出如下定义:若线段PQ与⊙O有两个交点M,N,且PM=MN=NQ,则称线段PQ是⊙O的“倍弦线”.(1)如图,点A,B,C,D的横、纵坐标都是整数.在线段AB,AD,CB,CD中,⊙O的“倍弦线”是_____________;(2)⊙O的“倍弦线”PQ与直线x=2交于点E,求点E纵坐标y E的取值范围;(3)若⊙O的“倍弦线”PQ过点(1,0),直线y=x+b与线段PQ有公共点,直接写出b的取值范围.3.(2022·北京大兴·二模)在平面直角坐标系xOy中,对于点P和直线y=1,给出如下定义:若点P在直线y=1上,且以点P为顶点的角是45°,则称点P为直线y=1的“关联点”.(1)若在直线x=1上存在直线y=1的“关联点”P.则点P的坐标为_____;(2)过点P(2,1)作两条射线,一条射线垂直于x轴,垂足为A;另一条射线、交x轴于点B,若点P为直线y=1的“关联点”.求点B的坐标;(3)以点O为圆心,1为半径作圆,若在⊙O上存在点N,使得∠OPN的顶点P为直线y=1的“关联点”.则点P的横坐标a的取值范围是________.4.(2022·北京东城·二模)在平面直角坐标系xOy中,对于图形G及过定点P(3,0)的直线l,有如下定义:过图形G上任意一点Q作QH⊥l于点H,若QH+PH有最大值,那么称这个最大值为图形G关于直线l的最佳射影距离,记作d(G,l),此时点Q称为图形G关于直线l的最佳射影点.(1)如图1,已知A(2,2),B(3,3),写出线段AB关于x轴的最佳射影距离d(AB,x轴)=____________;(2)已知点C(3,2),⊙C的半径为√2,求⊙C关于x轴的最佳射影距离d(⊙C,x轴),并写出此时⊙C关于x轴的最佳射影点Q的坐标;(3)直接写出点D(0,√3)关于直线l的最佳射影距离d(点D,l)的最大值.5.(2022·北京·清华附中一模)在平面直角坐标系xOy中,对于两个点P,Q和图形W,如果在图形W上存在点M,N(M,N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对平衡点.(1)如图1,已知点A(0,3),B(2,3);①设点O与线段AB上一点的距离为d,则d的最小值是______,最大值是______;,0),P2(1,4),P3(−3,0)这三个点中,与点O是线段AB的一对平衡点的是______.②在P1(32(2)如图2,已知⊙O的半径为1,点D的坐标为(5,0).若点E(x,2)在第一象限,且点D 与点E是⊙O的一对平衡点,求x的取值范围;(3)如图3,已知点H(−3,0),以点O为圆心,OH长为半径画弧交x的正半轴于点K.点C(a,b)(其中b≥0)是坐标平面内一个动点,且OC=5,⊙C是以点C为圆心,半径为2的圆,若HK上的任意两个点都是⊙C的一对平衡点,直接写出b的取值范围.6.(2022·北京丰台·一模)在平面直角坐标系xOy中,⊙O的半径为1,T(0,t)为y轴上一点,P为平面上一点.给出如下定义:若在⊙O上存在一点Q,使得△TQP是等腰直角三角形,且∠TQP=90°,则称点P为⊙O的“等直点”,△TQP为⊙O的“等直三角形”.如图,点A,B,C,D的横、纵坐标都是整数.(1)当t=2时,在点A,B,C,D中,⊙O的“等直点”是;(2)当t=3时,若△TQP是⊙O“等直三角形”,且点P,Q都在第一象限,求CP的值.OQ 7.(2022·北京市第一六一中学分校一模)在平面直角坐标系xOy中,对于点P和图形W,如果线段OP与图形W无公共点,则称点P为关于图形W的“阳光点”;如果线段OP与图形W有公共点,则称点P为关于图形W的“阴影点”.(1)如图1,已知点A(1,3),B(1,1),连接AB.①在P1(1,4),P2(1,2),P3(2,3),P4(2,1)这四个点中,关于线段AB的“阳光点”是;②线段A1B1∥AB,A1B1上的所有点都是关于线段AB的“阴影点”,且当线段A1B1向上或向下平移时,都会有A1B1上的点成为关于线段AB的“阳光点”,若,A1B1的长为4,且点A1在B1的上方,则点A1的坐标为.(2)如图2,已知点C(1,√3),⊙C与y轴相切于点D,若⊙E的半径为3,圆心E在直线2l:y=−√3x+4√3上,且⊙E的所有点都是关于⊙C的“阴影点”,求点E的横坐标的取值范围;(3)如图3,⊙M的半径为3,点M到原点的距离为5,点N是⊙M上到原点距离最近的点,点Q和T是坐标平面的两个动点,且⊙M上的所有点都是关于△NQT的“阴影点”直接写出△NQT的周长的最小值.8.(2022·北京市第五中学分校模拟预测)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“冰雪距离”,已知O(0,0),A(1,√2),B (m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当m=2√2,n=√2时,如图1,线段BC与线段OA的“冰雪距离”是;②当m=2√2时,线段BC与线段OA的“冰雪距离”是√2,则n的取值范围是;(2)如图2,若点B落在圆心为A,半径为√2的圆上,当n≥√2时,线段BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”始终为√2,线段BC的中点为M.直接写出点M随线段BC运动所走过的路径长.9.(2022·北京市师达中学模拟预测)如果一个圆上所有的点都在一个角的内部或边上,那么称这个圆为该角的角内圆.特别地,当这个圆与角的至少..一边相切时,称这个圆为该角的角内相切圆.在平面直角坐标系xOy中,点E,F分别在x轴的正半轴和y轴的正半轴上.(1)分别以点A(1,0),B(1,1),C(3,2)为圆心,1为半径作圆,得到⊙A,⊙B和⊙C,其中是∠EOF的角内圆的是;(2)如果以点D(t,2)为圆心,以1为半径的⊙D为∠EOF的角内圆,且与直线y=x有公共点,求t的取值范围;(3)点M在第一象限内,如果存在一个半径为1且过点P(2,2√3)的圆为∠EMO的角内相切圆,直接写出∠EOM的取值范围.10.(2021·北京朝阳·二模)在平面直角坐标系xOy中,对于图形Q和∠P,给出如下定义:若图形Q上的所有的点都在∠P的内部或∠P的边上,则∠P的最小值称为点P对图形Q的可视度.如图1,∠AOB的度数为点O对线段AB的可视度.(1)已知点N(2,0),在点M1(0,2√3),M2(1,√3),M3(2,3)中,对线段ON的可视度为360º的点是______.(2)如图2,已知点A(-2,2),B(-2,-2),C(2,-2),D(2,2),E(0,4).①直接写出点E对四边形ABCD的可视度为______°;②已知点F(a,4),若点F对四边形ABCD的可视度为45°,求a的值.11.(2022·北京四中模拟预测)在平面内,对点组A1,A2,...,An和点P给出如下定义:点P与点A1,A2,...,An的距离分别记作d1,d2,...,dn,数组d1,d2,...,dn的中位数称为点P对点组A1,A2,...,An的中位距离.例如,对点组A1(0,0),A2(0,3),A3(4,1)和点P(4,3),有d1=5,d2=4,d3=2,故点P对点组A1,A2,A3的中位距离为4.(1)设Z1(0,0),Z2(4,0),Z304),Y(0,3),直接写出点Y对点组Z1,Z2,Z3的中位距离;(2)设C1(0,0),C2(8,0),C3(6,6),则点Q1(7,3),Q2(3,3),Q3(4,0),Q4(4,2)中,对点组C1,C2,C3的中位距离最小的点是,该点对点组C1,C2,C3的中位距离为;(3)设M(1,0),N(0,√3),T1(t,0),T2(t+2,0),T3(t,2),若线段MN上任意一点对点组T1,T2,T3的中位距离都不超过2,直接写出实数t的取值范围.12.(2020·北京·人大附中模拟预测)在平面直角坐标系xOy中,对于平面中的点P,Q和图形M,若图形M上存在一点C,使∠PQC=90°,则称点Q为点P关于图形M的“折转点”,称△PCQ为点P关于图形M的“折转三角形”(1)已知点A(4,0),B(2,0)①在点Q1(2,2),Q2(1,−√3),Q3(4,−1)中,点O关于点A的“折转点”是______;②点D在直线y=−x上,若点D是点O关于线段AB的“折转点”,求点D的横坐标x D的取值范围;(2)⊙T的圆心为(t,0),半径为3,直线y=x+2与x,y轴分别交于E,F两点,点P为⊙T 上一点,若线段EF上存在点P关于⊙T的“折转点”,且对应的“折转三角形”是底边长为2的等腰三角形,直接写出t的取值范围.13.(2020·北京市陈经纶中学分校三模)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”的对于图形W1和图形W2,若图形W1和图形W2分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形W1和图形W2是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点A(1,0),点C(2,1),①下列四个点P1(0,1),P2(2,2),P3(−12,0),P4(−12,−√32)中,与点A是“中心轴对称”的是________;②点E在射线OB上,若点E与正方形ABC D是“中心轴对称”的,求点E的横坐标x E的取值范围;(2)四边形GHJK的四个顶点的坐标分别为G(−2,2),H(2,2),J(2,−2),K(−2,−2),一次函数y=√3x+b图象与x轴交于点M,与y轴交于点N,若线段与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.14.(2022·北京房山·二模)对于平面直角坐标系xOy中的图形G和点Q,给出如下定义:将图形G绕点Q顺时针旋转90°得到图形N,图形N称为图形G关于点Q的“垂直图形”,例如,图1中线段OD为线段OC关于点O的“垂直图形”.(1)线段MN关于点M(1,1)的“垂直图形”为线段MP.①若点N的坐标为(1,2),则点P的坐标为__________;②若点P的坐标为(4,1),则点N的坐标为__________;(2)E(−3,3),F(−2,3),H(a,0).线段EF关于点H的“垂直图形”记为E′F′,点E的对应点为E′,点的对应点为F′.①求点E′的坐标(用含a的式子表示);②若⊙O的半径为2,E′F′上任意一点都在⊙O内部或圆上,直接写出满足条件的EE′的长度的最大值.15.(2022·北京丰台·xOy中,⊙O的半径为1,A为任意一点,B 为⊙O上任意一点,给出如下定义:记A,B两点间的距离的最小值为p(规定:点A在⊙O上时,p=0),最大值为q,那么把p+q的值称为点A与⊙O的“关联距离”,记作d(A,2⊙O)(1)如图,点D,E,F的横、纵坐标都是整数①d(D,⊙O)=__________;②若点M在线段EF上,求d(M,⊙O)的取值范围;(2)若点N在直线y=√3x+2√3上,直接写出d(N,⊙O)的取值范围;(3)正方形的边长为m,若点P在该正方形的边上运动时,满足d(P,⊙O)的最小值为1,最大值为√10,直接写出m的最小值和最大值.16.(2022·北京平谷·二模)对于平面直角坐标系xOy中的图形P,Q,给出如下定义:M为图形P上任意一点,N为图形Q上任意一点,如果M,N两点间的距离有最小值,那么称这个最小值为图形P,Q间的“非常距离”,记作d(P,Q).已知点A(−2,2),B(2,2),连接AB.(1)d(点O,AB)=;(2)⊙O半径为r,若d(⊙O,AB)=0,直接写出r的取值范围;(3)⊙O半径为r,若将点A绕点B逆时针旋转α°(0°<α<180°),得到点A′.①当α=30°时d(⊙O,A′)=0,求出此时r的值;②对于取定的r值,若存在两个α使d(⊙O,A′)=0,直接写出r的范围.17.(2022·北京密云·二模)对于平面直角坐标系xOy中的点P(2,3)与图形T,给出如下定义:在点P与图形T上各点连接的所有线段中,线段长度的最大值与最小值的差,称为图形T关于点P的“宽距”.(1)如图,⊙O的半径为2,且与x轴分别交于A,B两点.①线段AB关于点P的“宽距”为______;⊙O关于点P的“宽距”为______.②点M(m,0)为x轴正半轴上的一点,当线段AM关于点P的“宽距”为2时,求m的取值范围.(2)已知一次函数y=x+1的图象分别与x轴、y轴交于D、E两点,⊙C的圆心在x轴上,且⊙C的半径为1.若线段DE上的任意一点K都能使得⊙C关于点K的“宽距”为2,直接写出圆心C的横坐标x C的取值范围.18.(2022·北京门头沟·二模)我们规定:如图,点H在直线MN上,点P和点P′均在直线MN的上方,如果HP=HP′,∠PHM=∠P′HN,点P′就是点P关于直线MN的“反射点”,其中点H为“V点”,射线HP与射线HP′组成的图形为“V形”.在平面直角坐标系xOy中,(1)如果点P(0,3) ,H(1.5,0),那么点P关于x轴的反射点P′的坐标为;(2)已知点A(0,a) ,过点A作平行于x轴的直线l.①如果点B(5,3) 关于直线l的反射点B′和“V点”都在直线y=−x+4上,求点B′的坐标和a的值;②⊙W是以(3,2) 为圆心,1为半径的圆,如果某点关于直线l的反射点和“V点”都在直线y=−x+4上,且形成的“V形”恰好与⊙W有且只有两个交点,求a的取值范围.19.(2022·北京东城·一模)对于平面直角坐标系xOy中的点C及图形G,有如下定义:若图形G上存在A,B两点,使得△ABC为等腰直角三角形,且∠ABC=90°,则称点C为图形G的“友好点”.(1)已知点O(0,0),M(4,0),在点C1(0,4),C2(1,4),C3(2,−1)中,线段OM的“友好点”是_______;(2)直线y=−x+b分别交x轴、y轴于P,Q两点,若点C(2,1)为线段PQ的“友好点”,求b 的取值范围;(3)已知直线y=x+d(d>0)分别交x轴、y轴于E,F两点,若线段EF上的所有点都是半径为2的⊙O的“友好点”,直接写出d的取值范围.20.(2022·北京顺义·二模)在平面直角坐标系xOy中,对于点R和线段PQ,给出如下定义:M为线段PQ上任意一点,如果R,M两点间的距离的最小值恰好等于线段PQ的长,则称点R为线段PQ的“等距点”.(1)已知点A(5,0).①在点B1(−3,4),B2(1,5),B3(4,−3),B4(3,6)中,线段OA的“等距点”是______;②若点C在直线y=2x+5上,并且点C是线段OA的“等距点”,求点C的坐标;(2)已知点D(1,0),点E(0,−1),图形W是以点T(t,0)为圆心,1为半径的⊙T位于x轴及x 轴上方的部分.若图形W上存在线段DE的“等距点”,直接写出t的取值范围.21.(2022·北京市十一学校模拟预测)在平面直角坐标系xOy中,给出如下定义:点P为图形G上任意一点,将点P到原点O的最大距离与最小距离之差定义为图形G的“全距”.特别地,点P到原点O的最大距离与最小距离相等时,规定图形G的“全距”为0.(1)已知,点A(−4√2,2),B(2√2,2).①原点O到线段AB上一点的最大距离为_______,最小距离为_______;②当点C的坐标为(0,m)时,且△ABC的“全距”为4,求m的取值范围;(2)已知OM=7,等边△DEF的三个顶点均在半径为3的⊙M上.求△DEF的“全距”d的取值范围.22.(2022·北京房山·二模)对于平面直角坐标系xOy中的图形W1和图形W2.给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N,(点M、N 可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系(1)如图1,点C(√3,0),D(0,−1),E(0,1),点P在线段CE上运动(点P可以与点C,E重合),连接OP,DP.①线段OP的最小值为__________,最大值为__________;线段DP的取值范围是__________;②在点O,点D中,点__________与线段EC满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点F横坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,2为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r的取值范围.23.(2022·北京昌平·二模)在平面直角坐标系xOy中,⊙O的半径为1,对于△ABC和直线l给出如下定义:若△ABC的一条边关于直线l的对称线段PQ是⊙O的弦,则称△ABC是⊙O 的关于直线l的“关联三角形”“关联轴”.(1)如图1,若△ABC是⊙O的关于直线l的“关联三角形”,请画出△ABC与⊙O的“关联轴”(至少画两条);(2)若△ABC中,点A坐标为(2,3),点B坐标为(4,1),点C在直线y=−x+3的图像上,存在“关联轴l”使△ABC是⊙O的关联三角形,求点C横坐标的取值范围;(3)已知A(√3,1),将点A向上平移2个单位得到点M,以M为圆心MA为半径画圆,B,C为⊙M 上的两点,且AB=2(点B在点A右侧),若△ABC与⊙O的关联轴至少有两条,直接写出OC 的最小值和最大值,以及OC最大时AC的长.24.(2022·北京市十一学校二模)对于平面直角坐标系xOy中的图形W,给出如下定义:点P是图形W上任意一点,若存在点Q,使得∠OQP是直角,则称点Q是图形W的“直角点”.(1)已知点A(6,8),在点Q1(5,0),Q2(−2,4),Q3(9,5)中,________是点A的“直角点”;(2)已知点B(-4,4),C(3,4),若点Q是线段BC的“直角点”,求点Q的横坐标n的取值范围;(3)在(2)的条件下,已知点D(m-1,0),E(m,0),以线段DE为边在x轴上方作正方形DEFG.若正方形DEFG上的所有点均为线段BC的“直角点”,求m的取值范围.25.(2022·北京通州·一模)在平面直角坐标系xOy中,给出如下定义:点P为图形G上任意―点,将点P到原点O的最大距离与最小距离之差定义为图形G的“全距”.特别地,点P 到原点O的最大距离与最小距离相等时,规定图形G的“全距”为0.(1)如图,点A(−√3,1),B(√3,1).①原点O到线段AB上一点的最大距离为______,最小距离为______;②当点C的坐标为(0,m)时,且△ABC的“全距”为1,求m的取值范围;(2)已知OM=2,等边△DEF的三个顶点均在半径为1的⊙M上.请直接写出△DEF的“全距”d 的取值范围.26.(2022·北京石景山·一模)在平面直角坐标系xOy中,点P不在坐标轴上,点P关于x 轴的对称点为P1,点P关于y轴的对称点为P2,称△P1PP2为点P的“关联三角形”.(1)已知点A(1,2),求点A的“关联三角形”的面积;(2)如图,已知点B(m,n),⊙T的圆心为T(2,2),半径为2.若点B的“关联三角形”与⊙T 有公共点,直接写出m的取值范围;(3)已知⊙O的半径为r,OP=2r,若点P的“关联三角形”与⊙O有四个公共点,直接写出∠PP1P2的取值范围.27.(2022·北京一七一中一模)已知平面直角坐标系xOy中,对于线段MN及P、Q,若∠MPN= 45°且线段MN关于点P的中心对称线段M′N′恰好经过点Q,则称Q是点P的线段MN−45°对经点.(1)设点A(0,2),①Q1(4,0),Q2(2,2),Q3(2+√7,1),其中为某点P的线段OA−45°对经点的是___________.②选出①中一个符合题意的点Q,则此时所对应的对称中心P的坐标为.③已知B(0,1),设⊙B的半径是r,若⊙B上存在某点P的线段OA−45°对经点,求r的取值范围.(2)已知C(0,t),D(0,−t)(t>0),若点Q(4,0)同时是相异两点P1,P2的线段CD−45°对经点,直接写出t的取值范围.28.(2022·北京大兴·一模)在平面直角坐标系xOy中,⊙O的半径为1,已知点A,过点A 作直线MN.对于点A和直线MN,给出如下定义:若将直线MN绕点A顺时针旋转,直线MN与⊙O有两个交点时,则称MN是⊙O的“双关联直线”,与⊙O有一个交点P时,则称MN是⊙O的“单关联直线”,AP⊙O的“单关联线段”.(1)如图1,A(0,4),当MN与y轴重合时,设MN与⊙O交于C,D两点.则MN是⊙O的“______的值为______;关联直线”(填“双”或“单”);ACAD(2)如图2,点A为直线y=−3x+4上一动点,AP是⊙O的“单关联线段”.①求OA的最小值;②直接写出△APO面积的最小值.29.(2022·北京市燕山教研中心一模)对于平面直角坐标系xOy中的线段PQ,给出如下定义:若存在△PQR使得S△PQR=PQ2,则称△PQR为线段PQ的“等幂三角形”,点R称为线段PQ 的“等幂点”.(1)已知A(2,0).①在点P1(2,4),P2(1,2),P3(−4,1),P4(1,−4)中,线段OA的“等幂点”是____________;②若存在等腰△OAB是线段OA的“等幂三角形”,求点B的坐标;(2)已知点C的坐标为C(2,−1),点D在直线y=x−3上,记图形M为以点T(1,0)为圆心,2为半径的⊙T位于x轴上方的部分.若图形M上存在点E,使得线段CD的“等幂三角形”△CDE 为锐角三角形,直接写出点D的横坐标x D的取值范围.30.(2022·北京平谷·一模)在平面直角坐标系xOy中,⊙O的半径为r,对于平面上任一点P,我们定义:若在⊙O上存在一点A,使得点P关于点A的对称点点B在⊙O内,我们就称点P为⊙O的友好点.(1)如图1,若r为1.①已知点P1(0,0),P2(﹣1,1),P3(2,0)中,是⊙O的友好点的是;②若点P(t,0)为⊙O的友好点,求t的取值范围;(2)已知M(0,3),N(3,0),线段MN上所有的点都是⊙O的友好点,求r取值范围.。

北京中考数学新定义题目汇总

北京中考数学新定义题目汇总

2018西城一模28.对于平面内的⊙和⊙外一点,给出如下定义:若过点的直线与⊙存在公共点,记为点,,设,则称点(或点)是⊙的“相关依附点”,特别地,当点和点重合时,规定,(或). 已知在平面直角坐标系中,,,⊙的半径为. (1)如图,当时,①若是⊙的“相关依附点”,则的值为__________.②是否为⊙的“相关依附点”.答:__________(填“是”或“否”). (2)若⊙上存在“相关依附点”点, ①当,直线与⊙相切时,求的值. ②当时,求的取值范围.(3)若存在的值使得直线与⊙有公共点,且公共点时⊙的附点”,直接写出的取值范围.C C Q Q C A B AQ BQk CQ+=A B C k A B AQ BQ =2AQ k CQ =2BQCQxOy (1,0)Q -(1,0)C C r1r 1(0,1)A C k k 2(1A +C 2C k M 1r =QM C k k =r r y b =+C C b x2018平谷一模28. 在平面直角坐标系xOy 中,点M 的坐标为,点N 的坐标为,且,,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (),则以AB 为边的“坐标菱形”的最小内角为_______;(2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O ,点P的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.2018石景山一模28.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心, AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图.... (1)已知点A 的坐标为,点的坐标为, 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为,若直线上只存在一个点B ,使得点A ,B 的“确定圆”的面积为,求点B 的坐标;(3)已知点A 在以为圆心,以1为半径的圆上,点B 在直线上, 若要使所有点A ,B 的“确定圆”的面积都不小于,直接写出的取值范围.()11,x y ()22,x y 12x x ≠12y y ≠(1,0)-B (3,3)(0,0)y x b =+9π(0)P m ,y x =9πm2018怀柔一模28. P 是⊙C 外一点,若射线..PC 交⊙C 于点A ,B 两点,则给出如下定义:若0<PA PB ≤3,则点P 为⊙C 的“特征点”. (1)当⊙O 的半径为1时.①在点P 1(,0)、P 2(0,2)、P 3(4,0)中,⊙O 的“特征点”是 ;②点P 在直线y=x+b 上,若点P 为⊙O 的“特征点”.求b 的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y=x+1与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是...⊙C 的“特征点”,直接写出点C 的横坐标的取值范围.2018海淀一模28.在平面直角坐标系中,对于点和⊙,给出如下定义:若⊙上存在一点不与重合,使点关于直线的对称点在⊙上,则称为⊙的反射点.下图为⊙的反射点的示意图.(1)已知点的坐标为,⊙的半径为,①在点,,中,⊙的反射点是____________; ②点在直线上,若为⊙的反射点,求点的横坐标的取值范围; (2)⊙的圆心在轴上,半径为,轴上存在点是⊙的反射点,直接写出圆心的横坐标的取值范围.⋅2xOy P C C T O P OT 'P C P C C P A (1,0)A 2(0,0)O (1,2)M (0,3)N -A P y x =-P A P C x 2y P C C x2018朝阳一模28. 对于平面直角坐标系中的点P 和线段AB ,其中A (t ,0)、B (t +2,0)两点,给出如下定义:若在线段AB 上存在一点Q ,使得P ,Q 两点间的距离小于或等于1,则称P 为线段AB 的伴随点. (1)当t =-3时,①在点P 1(1,1),P 2(0,0),P 3(-2,-1)中,线段AB 的伴随点是 ; ②在直线y =2x+b 上存在线段AB 的伴随点M 、N , 且MN ,求b 的取值范围;(2)线段AB 的中点关于点(2,0)的对称点是C ,将射线CO 以点C 为中心,顺时针旋转30°得到射线l ,若射线l 上存在线段AB 的伴随点,直接写出t 的取值范围.2018东城一模28.给出如下定义:对于⊙O 的弦MN 和⊙O 外一点P (M ,O ,N 三点不共线,且P ,O 在直线MN 的异侧),当∠MPN +∠MON=180°时,则称点 P 是线段MN 关于点O 的关联点.图1是点P 为线段MN 关于点O 的关联点的示意图.在平面直角坐标系xOy 中,⊙O 的半径为1.(1)如图2, ,.在A (1,0),B (1,1),三点中,是线段MN 关于点O 的关联点的是 ;(2)如图3, M (0,1),N ,点D 是线段 MN 关于点O 的关联点.①∠MDN 的大小为 °; ②在第一象限内有一点E,点E 是线段MN 关于点O 的关联点,判断△MNE 的形状,并直接写出点E 的坐标;xOy 5=22,22M ⎛⎫ ⎪ ⎪⎝⎭22,22N ⎛⎫- ⎪ ⎪⎝⎭()2,0C 31,2⎛⎫- ⎪ ⎪⎝⎭()3,m m③点F 在直线上,当∠MFN ≥∠MDN 时,求点F 的横坐标的取值范围.2018丰台一模28.对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P 为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x . 已知,点A (-3,0),B (0,4),C (4,0). (1)连接BC ,在点D (,0),E (0,1),F (0,)中,可以成为点A 和线段BC 的“中立点”的是____________;(2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点K 可以成为点A 和⊙G 的“中立点”,求点K 的坐标;(3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.2018房山一模 28. 在平面直角坐标系xOy P 为图形W 的“梦之点”. (1)已知⊙O 的半径为1. ①在点E (1,1),F (-22 ,-22),M (-2,-2)中,⊙O 的“梦之点”为 ; ②若点P 位于⊙O 内部,且为双曲线(k ≠0)的“梦之点”,求k 的取值范围. (2)已知点C 的坐标为(1,t ),⊙C 的半径为 2 ,若在⊙C 上存在“梦之点”P ,直接写出t 的取值范围.(3)若二次函数的图象上存在两个“梦之点”,,且23y x =-+F x 1212ky x=21y ax ax =-+()11Ax ,y ()22B x ,y,求二次函数图象的顶点坐标.2018门头沟一模28. 在平面直角坐标系xOy 中,点M 的坐标为,点N 的坐标为,且,,我们规定:如果存在点P ,使是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的 “和谐点”. (1)已知点A 的坐标为)3,1(,①若点B 的坐标为)3,3(,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标;②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为,点D 为点E 、F ),(n m 的“和谐点”,若使得△DEF 与⊙O 有交点,画出示意图直接.....写出半径的取值范围.备用图1 备用图2018顺义一模28.如图1,对于平面内的点P 和两条曲线、给出如下定义:若从点P 任意引出一条射线分别与、交于、,总有是定值,我们称曲线与“曲似”,定值为“曲似比”,点P 为“曲心”. 122x x -=11(,)x y 22(,)x y 12x x ≠12y y =MNP ∆r (1,4)(1,2)r 1L 2L 1L 2L 1Q 2Q 12PQ PQ 1L 2L 12PQ PQ图12L 1例如:如图2,以点O'为圆心,半径分别为、(都是常数)的两个同心圆、,从点O'任意引出一条射线分别与两圆交于点M 、N ,因为总有是定值,所以同心圆与曲似,曲似比为,“曲心”为O'.(1)在平面直角坐标系xOy 中,直线与抛物线、分别交于点A 、B ,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O 为圆心,OA 为半径作圆,过点B 作x 轴的垂线,垂足为C ,是否存在k 值,使⊙O 与直线BC 相切?若存在,求出k 的值;若不存在,说明理由; (3)在(1)、(2)的条件下,若将“”改为“”,其他条件不变,当存在⊙O 与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.2018通州一模28.在平面直角坐标系xOy 中有不重合的两个点()11,y x Q 与()22y x P ,.若Q ,P 为某个直角三角形的两个锐角顶点,且该直角三角形的直角边均与或轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和定义为点Q 与点P 之间的“直距”.例如在下图中,点,,则该直角三角形的两条直角边长为1和2,此时点Q 与点P 之间的“直距”.特别地,当与某条坐标轴平行(或重合)时,线段的长即为点Q 与点P 之间的“直距”.(1)①已知O 为坐标原点,点,,则_______=AO D ,_______=BO D ; ② 点在直线上,请你求出的最小值;(2)点是以原点O 为圆心,1为半径的圆上的一个动点;点是直线上一动点.请你直接写出点与点之间“直距”的最小值.1r 2r 1C 2C 12''r O M O N r =1C 2C 12r r y kx =2y x =212y x =212y x =21y x m=x y PQ D ()1,1P ()3,2Q =3PQ D PQ PQ ()2,1A -()2,0B -C 3y x =-+CO D E F 24y x =+E F EF 图2C 2C 1NMO'。

北京初中中考数学29题新定义综合练习.docx

北京初中中考数学29题新定义综合练习.docx

.寒假作业之新定义1.在平面直角坐标系xOy 中,对于点 P( x, y)(x≥0)的每一个整数点,给出如下定义:如果 P'( x , y ) 也是整数点,则称点P ' 为点P的“整根点”.例如:点( 25,36 )的“整根点”为点(5,6).(1)点 A( 4,8), B( 0, 16),C(25,- 9)的整根点是否存在,若存在请写出整根点的坐标;(2)如果点 M 对应的整根点M '的坐标为( 2, 3),则点 M 的坐标;(3)在坐标系有一开口朝下的二次函数y ax24x(a≠0),如果在第一象限的二次函数图像部(不在图像上),若存在整根点的点只有三个y请求出实数 a 的取值围 .xO备用图.2..如图,对于平面直角坐标系xOy 中的点 P 和线段 AB,给出如下定义:如果线段 AB 上存在两个点 M,N,使得∠ MPN=30 °,那么称点 P 为线段 AB 的伴随点.y4P32A M N B1–1O1234x–1( 1)已知点A(-1 , 0),(1,0)及D(1, -1 ),E53,(0,3),B,F22①在点 D,E,F 中,线段 AB 的伴随点是;②作直线 AF,若直线 AF 上的点 P( m,n)是线段 AB 的伴随点,求m 的取值围;(2)平面有一个腰长为 1 的等腰直角三角形,若该三角形边上的任意一点都是某条线段a.的伴随点,请直接写出这条线段 a 的长度的围.y4321-4 -3 -2 -1 O1234 x-1-2-3-43. 若抛物线 L:y ax 2bx c a,b,c是常数,且 abc 0 与直线l都经过y轴上的同一点,且抛物线L 的顶点在直线 l 上,则称此抛物线 L 与直线 l 具有“一带一路”关系,并且将直线l 叫做抛物线L 的“路线”,抛物线 L 叫做直线 l 的“带线”.(1) 若“路线l”的表达式为y2x 4 ,它的“带线”L的顶点在反比例函数 y 6(x<0)的图象上,求x“带线L”的表达式;(2)如果抛物线y mx22mx m 1 与直线y nx 1具有“一带一路”关系,求m,n的值;(3)设(2) 中的“带线”与它的“路线”在y 轴上的交点为. 已知点P为“带线”上的点,当以点L l A L P 为圆心的圆与“路线”l相切于点 A 时,求出点 P 的坐标 .y 321–2–1O123x –1备用图′4.在平面直角坐标系xOy 中,定义点 P( x,y)的变换点为 P (x+y, x-y) .(1)如图 1,如果⊙ O 的半径为2 2,①请你判断M (2,0),N (-2,-1) 两个点的变换点与⊙ O 的位置关系;′②若点 P 在直线 y=x+2 上,点 P 的变换点 P在⊙O 的,求点 P 横坐标的取值围 .(2)如图 2,如果⊙O 的半径为 1,且 P 的变换点 P’在直线 y=-2x+6 上,求点 P 与⊙O 上任意一点距离的最小值.5.在平面直角坐标系 xOy 中,点 P 的坐标为 x 1, y 1 ,点 Q 的坐标为 x 2 , y 2 ,且 x 1 x 2 ,y 1 y 2 ,若 P,Q 为某 个菱形的两个相对顶点,且该菱形的一边与x 轴平行,则称该菱形为点 P,Q 的“相关菱形”,下图为点 P, Q 的“相关菱形”的示意图.( 1)已知点 A 的坐标为 0,1 ,点 B 的坐标为 3,4 ,且点 A, B 的“相关菱形”为形,则此“相关菱形”的周长为;( 2)若点 C 的坐标为0,3 ,点 D 在直线 y 43 上,且 C, D 的“相关菱形”有一个角为60o ,求点 D 的坐标;( 3)⊙ O 的半径为 3 ,点 M 的坐标为m,3 3(其中 m 0 ),若在⊙ O 上存在一点 N ,使m得点 M , N 的“相关菱形”有一个角为60o ,直接写出 m 的取值围.6.阅读材料:①直线l 外一点P到直线l的垂线段的长度,叫做点P到直线l的距离,记作d(,)P l②两条平行线 l1,l 2,直线上 l1任意一点到直线 l2的距离,叫做这两条平行线 l1,l2之间的距离,记住 d(l1,l2);③若直线 l1, l2相交,则定义d(l1,l2)=0④对于同一条直线 l ,我们定义 d( l , l ) =0。

2022-2022北京初三期末29题新定义汇总

2022-2022北京初三期末29题新定义汇总

2022-2022北京初三期末29题新定义汇总1.定义:点P为△ABC内部或边上的点,若满足△PAB,△PBC,△PAC至少有一个三角形与△ABC相似(点P不与△ABC顶点重合),则称点P为△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P为△ABC的自相似点.在平面直角坐标系某Oy中,(1)点A坐标为(2,),AB⊥某轴于B点,在E(2,1),F(322),G(12,2)这三个点中,其中是△AOB的自相似点的是(填字母);(2)若点M是曲线C:ky某=(0k>,0某>)上的一个动点,N为某轴正半轴上一个动点;①如图2,k=M点横坐标为3,且NM=NO,若点P是△MON的自相似点,求点P的坐标;②若1k=,点N为(2,0),且△MON的自相似点有2个,则曲线C上满足这样条件的点M共有个,请在图3中画出这些点(保留必要的画图痕迹).PBCA图1图2y某N1234512345O2.在平面直角坐标系某Oy中,给出如下定义:对于⊙C及⊙C外一点P,M,N是⊙C上两点,当∠MPN最大,称∠MPN为点.P.关于⊙C的“视角”.直线l与⊙C相离,点Q在直线l上运动,当点Q关于⊙C的“视角”最大时,则称这个最大的“视角”为直线..l.关于⊙C的“视角”.(1)如图,⊙O的半径为1,①已知点A(1,1),直接写出点A关于⊙O的“视角”;已知直线y=2,直接写出直线y=2关于⊙O的“视角”;②若点B关于⊙O的“视角”为60°,直接写出一个符合条件的B点坐标;(2)⊙C的半径为1,①点C的坐标为(1,2),直线l:y=k某+b(k>0)经过点D(231-+,0),若直线l关于⊙C的“视角”为60°,求的值;②圆心C在某轴正半轴上运动,若直线yC的“视角”大于120°,直接写出圆心C的横坐标某C的取值范围.备用图3.在平面直角坐标系某Oy中,有如下定义:若直线l和图形W相交于两点,且这两点的距离不小于定值k,则称直线l与图形W成“k相关”,此时称直线与图形W的相关系数为k.(1)若图形W是由()12--,A,()1,2-B,()12,C,()12-,D顺次连线而成的矩形:○1l1:y=某+2,l2:y=某+1,l3:y=-某-3这三条直线中,与图形W 成“2相关”的直线有________;○2画出一条经过()10,的直线,使得这条直线与W成“5相关”;○3若存在直线与图形W成“2相关”,且该直线与直线y=平行,与y轴交于点Q,求点Q纵坐标Qy的取值范围;(2)若图形W为一个半径为2的圆,其圆心K位于某轴上.若直线333+=某y与图形W成“3相关”,请直接写出圆心K的横坐标K某的取值范围.备用图4.在平面直角坐标系某Oy中,C的半径为r(r>1),P是圆内与圆心C不重合的点,C的“完美点”的定义如下:若直线..CP与C交于点A,B,满足2PAPB-=,则称点P为C的“完美点”,下图为C及其“完美点”P的示意图.(1)当O的半径为2时,①在点M(32,0),N(0,1),1()2T-中,O的“完美点”是;②若O的“完美点”P在直线y上,求PO的长及点P的坐标;(2)C的圆心在直线1y+上,半径为2,若y轴上存在C的“完美点”,求圆心C的纵坐标t的取值范围.5.已知⊙C的半径为r,点P是与圆心C不重合的点,点P关于⊙C的反演点的定义如下:若点P"在射线CP上,满足2CPCPr"=,则称点P"是点P关于⊙C的反演点.图1为点P及其关于⊙C的反演点P"的示意图.(1)在平面直角坐标系某Oy中,⊙O的半径为6,⊙O与某轴的正半轴交于点A.∠=,18OB=,若点A",B"分别是点A,B关于⊙O的反演点,则点A"的坐标是,点B"的坐标是;②如图3,点P关于⊙O的反演点为点P",点P"在正比例函数y=位于第一象限内的图象上,△POA"的面积为P的坐标;(2)点P是二次函数22314y某某某=---(≤≤)的图象上的动点,以O为圆心,12OP为半径作圆,若点P关于⊙O的反演点P"的坐标是(,)mn,请直写出n的取值范围.图1图2图36.如图,对于平面直角坐标系某Oy中的点P和线段AB,给出如下定义:如果线段AB上存在两个点M,N,使得∠MPN=30°,那么称点P为线段AB的伴随点.(1)已知点A(-1,0),B(1,0)及D(1,-1),E-325,,F(0,32+),①在点D,E,F中,线段AB的伴随点是_________;②作直线AF,若直线AF上的点P(m,n)是线段AB的伴随点,求m的取值范围;(2)平面内有一个腰长为1的等腰直角三角形,若该三角形边上的任意一点都是某条线段a的伴随点,请直接写出这条线段a的长度的范围.备用图7.若抛物线L:()02≠++=abccbacb某a某y是常数,且,,与直线l都经过y轴上的同一点,且抛物线L的顶点在直线l上,则称此抛物线L与直线l具有“一带一路”关系,并且将直线l叫做抛物线L的“路线”,抛物线L叫做直线l的“带线”.(1)若“路线”l的表达式为42-=某y,它的“带线”L的顶点在反比例函数某y6=(某<0)的图象上,求“带线”L的表达式;(2)如果抛物线122-+-=mm某m某y与直线1+=n某y具有“一带一路”关系,求m,n的值;(3)设(2)中的“带线”L与它的“路线”l在y轴上的交点为A.已知点P为“带线”L上的点,当以点P为圆心的圆与“路线”l相切于点A时,求出点P的坐标.备用图8.在平面直角坐标系某Oy中,点A为平面内一点,给出如下定义:过点A作AB⊥y轴于点B,作正方形ABCD(点A、B、C、D顺时针排列),即称正方形ABCD为以A为圆心,OA为半径的⊙A的“友好正方形”.(1)如图1,若点A的坐标为(1,1),则⊙A的半径为.(2)如图2,点A在双曲线y=某(某>0)上,它的横坐标是2,正方形ABCD是⊙A的“友好正方形”,试判断点C与⊙A的位置关系,并说明理由.(3)如图3,若点A是直线y=-某+2上一动点,正方形ABCD为⊙A 的“友好正方形”,且正方形ABCD在⊙A的内部时,请直接写出点A的横坐标m的取值范围.图1图39.在平面直角坐标系某Oy中,对于点P(某,y)(某≥0)的每一个整数点,给出如下定义:如果P也是整数点,则称点"P为点P的“整根点”.例如:点(25,36)的“整根点”为点(5,6).(1)点A(4,8),B(0,16),C(25,-9)的整根点是否存在,若存在请写出整根点的坐标;(2)如果点M对应的整根点"M的坐标为(2,3),则点M的坐标;(3)在坐标系内有一开口朝下的二次函数24(0ya某某a=+≠),如果在第一象限内的二次函数图像内部(不在图像上),若存在整根点的点只有三个请求出实数a的取值范围.备用图10.在平面直角坐标系某Oy中,若P和Q两点关于原点对称,则称点P与点Q是一个“和谐点对”,表示为[P,Q],比如[P(1,2),Q(-1,-2)]是一个“和谐点对”.(1)写出反比例函数1y某=图象上的一个“和谐点对”;(2)已知二次函数2y某m某n=++,①若此函数图象上存在一个和谐点对[A,B],其中点A的坐标为(2,4),求m,n的值;②在①的条件下,在y轴上取一点M(0,b),当∠AMB为锐角时,求b的取值范围.11.在平面直角坐标系某Oy中,点P的坐标为(某1,y1),点Q的坐标为(某2,y2),若a=|某1-某2|,b=|y1-y2|,则记作(P,Q)→{a,b}.(1)已知(P,Q)→{a,b},且点P(1,1),点Q(4,3),求a,b的值;(2)点P(0,-1),a=2,b=1,且(P,Q)→{a,b},求符合条件的点Q的坐标;(3)⊙O的半径为5,点P在⊙O上,点Q(m,n)在直线y=-某21+29上,若(P,Q)→{a,b},且a=2k,b=k(k>0),求m的取值范围.12.如图,在平面直角坐标系某Oy中,若抛物线2(0)ya某b某ca=++≠与某轴交于A、B两点,与y轴交于C点,则称ABC△为抛物线的“交轴三角形”.(1)求抛物线21y某=-的“交轴三角形”的面积;(2)写出抛物线2(0)ya某b某ca=++≠存在“交轴三角形”的条件;(3)已知:抛物线24ya某b某=++过点M(3,0).①若此抛物线的“交轴三角形”是以y轴为对称轴的等腰三角形,求抛物线的表达式;②若此抛物线的“交轴三角形”是不以y轴为对称轴的等腰三角形,求“交轴三角形”的面积.13.定义:若点P(a,b)在函数y某=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=a某2+b某称为函数y某=的一个“二次派生函数”.(1)点(2,12)在函数y某=的图象上,则它的“二次派生函数”是;(2)若“二次派生函数”y=a某2+b某经过点(1,2),求a,b的值;(3)若函数y=a某+b是函数y某=的一个“一次派生函数”,在平面直角坐标系某Oy中,同时画出“一次派生函数”y=a某+b和“二次派生函数”y=a某2+b某的图象,当﹣4<某<1时,“一次派生函数”始终大于“二次派生函数”,求点P的坐标.【2022.1海淀期末】1.(1)F,G.(每对1个得1分)------------------------------------------2分(2)①如图1,过点M作MH⊥某轴于H点.∵M点的横坐标为3,∴3y==∴3M(.∴OM=OM的表达式为y某=.∵MH⊥某轴,∴在Rt△MHN中,90MHN∠=°,222NHMHMN+=设NM=NO=m,则3NHOHONm=-=-.∴()2223mm-+=.∴ON=MN=m=2.--------------------------------------------3分如图2,1PON△∽NOM△,过点1P作1PQ⊥某轴于Q点,∴11POPN=,112OQON==.∵1P的横坐标为1,∴1y==∴113P,.------------------------------------------------4分如图3,2PNMNOM△∽△,∴2PNMNONMO=.∴2PN=.∵2P∴33某=.∴2某=.图1图2图3∴22P.----------------------------------------------------------------------------------5分综上所述,1P或2.②4.-------------------------------------------------------------------------------------------6分(每标对两个点得1分)-----------------------------------------------------------------------8分【2022.1西城期末】2.解:(1)①90,60.···········································2分②本题答案不唯一,如:B(0,2).··········································3分(2)解:①∵直线l:y=k某+b(k>0)经过点D(1-,0),∴(1)0kb-+=.∴bk=-.∴直线l:yk某k=+-.对于⊙C外的点P,点P关于⊙C的“视角”为60°,则点P在以C 为圆心,2为半径的圆上.又直线l关于⊙C的“视角”为60°,此时,点P是直线l上与圆心C∴CP⊥直线l.则直线l是以C为圆心,2为半径的圆的一条切线,如图所示.作CH⊥某轴于点H,∴点H的坐标为(1,0),∴DH=∴∠CDH=30°,∠PDH=60°,可求得点P的坐标(1,3).进而求得k·································································6分(3)圆心C的横坐标某C的取值范围是113C某-<【2022.1东城期末】3.解:(1)①1l和2l.…………2分②符合题意的直线如下图所示.…………4分夹在直线a和b或c和d之间的(含直线a,b,c,d)都是符合题意的.○3设符合题意的直线的解析式为.yb=+由题意可知符合题意的临界直线分别经过点(-1,1),(1,-1).分别代入可求出1211bb==-.∴11Qy-≤…………6分(2)33K某-≤≤-…………8分【2022.1朝阳期末】4.解:(1)①N,T.②如图,根据题意,2PAPB-=,∴∣OP+2-(2-OP)∣=2.∴OP=1.若点P在第一象限内,作PQ⊥某轴于点Q,∵点P在直线y上,OP=1,∴OQ=12,PQ.∴P(12若点P在第三象限内,根据对称性可知其坐标为(-1 2,2).综上所述,PO的长为1,,点P的坐标为(12,或(-2,(2)对于C的任意一个“完美点”P都有2PAPB-=,即2(2)2CPCP+-=-.可得CP=1.对于任意的点P,满足CP=1,都有2(2)2CPCP+-=-,即2PAPB-=,故此时点P为C的“完美点”.因此,C的“完美点”的集合是以点C为圆心,1为半径的圆.设直线1y=+与y轴交于点D,如图,当C移动到与y轴相切且切点在点D的下方时,t的值最小.设切点为E,连接CE,可得DE的最小值为1当C移动到与y轴相切且切点在点D的上方时,t的值最大.同理可得t的最大值为1综上所述,t的取值范围为1t≤1【2022.1石景山期末】5.(1)①(60)A",,(B".……………2分②解法一:过点P"作PE"⊥某轴于点E,如图1.∵12POASOAPE""==△∴PE"=……………3分∵点P"在正比例函数y位于第一象限内的图象上,∴"Py∴"=2P某.∴4OP"=,"60POE∠=.∵点P关于⊙O的反演点是P"点,∴26OPOP"=.9OP=.………………………………5分过点P作PF⊥某轴于点F.∴92OF=,2PF=∴点P的坐标为92P(.………………………………6分解法二:过点A作AH⊥PP"于点H,如图2.∵点P"在正比例函数y位于第一象限内的图象上,∴设点P的坐标为t(,其中0t>.∴tanPOA∠==∴60POA∠=.………………………………4分在Rt△OHA中,inAHOAAOH=∠=.∵12POASOPAH""==△∴4OP"=.∵点P关于⊙O的反演点是P"点,∴26OPOP"=.∴9OP=.图1过点P作PF⊥某轴于点F.在Rt△OFP中,222t+=9.解得192t=,292t-=(舍去).∴点P的坐标为922P(,.………………………………6分(2)1-≤n≤54.………………………………8分【2022.1丰台期末】6.解:(1)○1D、F;-----2分○2以AB为一边,在某轴上方、下方分别构造等边△ABO1和等边△ABO2,分别以点O1,点O2为圆心,线段AB∵线段AB关于y轴对称,∴点O1,点O2都在∵AB=AO1=2,AO=1,∴OO1∴O1(0同理O2(0,.∵F(2,0)+,∴O1F=22AB==.∴点F在⊙1O上.设直线AF交⊙2O于点C,∴线段FC上除点A以外的点都是线段AB的“伴随点”,∴点P(m,n)是线段FC上除点A以外的任意一点.连接O2C,作CG⊥y轴于点G,∵等边△O1AB和等边△O2AB,且y轴垂直AB,∴∠AO1B=∠AO2B=∠O1AB=∠O2AB=60°,∠AO1O=∠AO2O=30°.∵O1A=O1F,∴∠AFO1=∠FAO1=15°.∴∠CAO2=∠AFO2+∠AO2F=15°+30°=45°.∵O2A =O2C,∴∠CAO2=∠ACO2=45°.∴∠O2CG=180°-∠CFG-∠FGC-∠ACO2=30°.∴CG=O2C·co30°=3232=.0m≤≤且1m≠-.-----6分(2)22≥a.-----8分图2。

专题11 新定义(原卷版)北京中考数学一模专题复习历年真题分类汇编

专题11 新定义(原卷版)北京中考数学一模专题复习历年真题分类汇编

专题11 新定义一.解答题(共15小题)1.(2020•丰台区一模)如果一个圆上所有的点都在一个角的内部或边上,那么称这个圆为该角的角内圆.特别地,当这个圆与角的至少一边相切时,称这个圆为该角的角内相切圆.在平面直角坐标系xOy 中,点E ,F 分别在x 轴的正半轴和y 轴的正半轴上.(1)分别以点(1,0)A ,(1,1)B ,(3,2)C 为圆心,1为半径作圆,得到A ,B 和C ,其中是EOF ∠的角内圆的是 ;(2)如果以点(,2)D t 为圆心,以1为半径的D 为EOF ∠的角内圆,且与直线y x =有公共点,求t 的取值范围;(3)点M 在第一象限内,如果存在一个半径为1且过点(2P ,的圆为EMO ∠的角内相切圆,直接写出EOM ∠的取值范围.2.(2020•北京一模)在平面直角坐标系xOy 中,过T (半径为)r 外一点P 引它的一条切线,切点为Q ,若02PQ r <,则称点P 为T 的伴随点. (1)当O 的半径为1时,①在点(4,0)A ,B ,C 中,O 的伴随点是 ;②点D 在直线3y x =+上,且点D 是O 的伴随点,求点D 的横坐标d 的取值范围;(2)M 的圆心为(,0)M m ,半径为2,直线22y x =-与x 轴,y 轴分别交于点E ,F .若线段EF 上的所有点都是M 的伴随点,直接写出m 的取值范围.3.(2020•海淀区一模)A ,B 是C 上的两个点,点P 在C 的内部.若APB ∠为直角,则称APB ∠为AB 关于C 的内直角,特别地,当圆心C 在APB ∠边(含顶点)上时,称APB ∠为AB 关于C 的最佳内直角.如图1,AMB ∠是AB 关于C 的内直角,ANB ∠是AB 关于C 的最佳内直角.在平面直角坐标系xOy 中. (1)如图2,O 的半径为5,(0,5)A -,(4,3)B 是O 上两点.①已知1(1,0)P ,2(0,3)P ,3(2,1)P -,在1APB ∠,2AP B ∠,3AP B ∠,中,是AB 关于O 的内直角的是 ; ②若在直线2y x b =+上存在一点P ,使得APB ∠是AB 关于O 的内直角,求b 的取值范围.(2)点E 是以(,0)T t 为圆心,4为半径的圆上一个动点,T 与x 轴交于点D (点D 在点T 的右边).现有点(1,0)M ,(0,)N n ,对于线段MN 上每一点H ,都存在点T ,使DHE ∠是DE 关于T 的最佳内直角,请直接写出n 的最大值,以及n 取得最大值时t 的取值范围.4.(2020•平谷区一模)在ABM ∆中,90ABM ∠=︒,以AB 为一边向ABM ∆的异侧作正方形ABCD ,以A 为圆心,AM 为半径作A ,我们称正方形ABCD 为A 的“关于ABM ∆的友好正方形”,如果正方形ABCD 恰好落在A 的内部(或圆上),我们称正方形ABCD 为A 的“关于ABM ∆的绝对友好正方形”, 例如,图1中正方形ABCD 是A 的“关于ABM ∆的友好正方形”. (1)图2中,ABM ∆中,BA BM =,90ABM ∠=︒,在图中画出A 的“关于ABM ∆的友好正方形ABCD ”.(2)若点A 在反比例函数(0,0)k y k x x =>>上,它的横坐标是2,过点A 作AB y ⊥轴于B ,若正方形ABCD为A 的“关于ABO ∆的绝对友好正方形”,求k 的取值范围. (3)若点A 是直线2y x =-+上的一个动点,过点A 作AB y ⊥轴于B ,若正方形ABCD 为A 的“关于ABO ∆的绝对友好正方形”,求出点A 的横坐标m 的取值范围.5.(2020•顺义区一模)已知:点P 为图形M 上任意一点,点Q 为图形N 上任意一点,若点P 与点Q 之间的距离PQ 始终满足0PQ >,则称图形M 与图形N 相离. (1)已知点(1,2)A 、(0,5)B -、(2,1)C -、(3,4)D . ①与直线35y x =-相离的点是 ;②若直线3y x b =+与ABC ∆相离,求b 的取值范围;(2)设直线3y =+、直线3y =+及直线2y =-围成的图形为W ,T 的半径为1,圆心T 的坐标为(,0)t ,直接写出T 与图形W 相离的t 的取值范围.6.(2020•东城区一模)在ABC ∆中,CD 是ABC ∆的中线,如果CD 上的所有点都在ABC ∆的内部或边上,则称CD 为ABC ∆的中线弧.(1)在Rt ABC ∆中,90ACB ∠=︒,1AC =,D 是AB 的中点.①如图1,若45A ∠=︒,画出ABC ∆的一条中线弧CD ,直接写出ABC ∆的中线弧CD 所在圆的半径r 的最小值;②如图2,若60A ∠=︒,求出ABC ∆的最长的中线弧CD 的弧长l .(2)在平面直角坐标系中,已知点(2,2)A ,(4,0)B ,(0,0)C ,在ABC ∆中,D 是AB 的中点.求ABC ∆的中线弧CD 所在圆的圆心P 的纵坐标t 的取值范围.7.(2020•石景山区一模)在ABC ∆中,以AB 边上的中线CD 为直径作圆,如果与边AB 有交点E (不与点D 重合),那么称DE 为ABC ∆的C -中线弧.例如,如图中DE 是ABC ∆的C -中线弧.在平面直角坐标系xOy 中,已知ABC ∆存在C -中线弧,其中点A 与坐标原点O 重合,点B 的坐标为(2t ,0)(0)t >.(1)当2t =时,①在点1(3,2)C -,2(0C ,,3(2,4)C ,4(4,2)C 中,满足条件的点C 是 ;②若在直线(0)y kx k =>上存在点P 是ABC ∆的C -中线弧DE 所在圆的圆心,其中4CD =,求k 的取值范围;(2)若ABC ∆的C -中线弧DE 所在圆的圆心为定点(2,2)P ,直接写出t 的取值范围.8.(2020•西城区一模)对于平面直角坐标系xOy 中的图形1W 和图形2W ,给出如下定义:在图形1W 上存在两点A ,B (点A 与点B 可以重合),在图形2W 上存在两点M ,N (点M 与点N 可以重合),使得2AM BN =,则称图形1W 和图形2W 满足限距关系.(1)如图1,点(1,0)C ,(1,0)D -,E ,点P 在线段DE 上运动(点P 可以与点D ,E 重合),连接OP ,CP .①线段OP 的最小值为 ,最大值为 ,线段CP 的取值范围是 ; ②在点O ,点C 中,点 与线段DE 满足限距关系;(2)如图2,O 的半径为1,直线(0)y b b =+>与x 轴、y 轴分别交于点F ,G .若线段FG 与O 满足限距关系,求b 的取值范围;(3)O 的半径为(0)r r >,点H ,K 是O 上的两点,分别以H ,K 为圆心,1为半径作圆得到H 和K ,若对于任意点H ,K ,H 和K 都满足限距关系,直接写出r 的取值范围.9.(2020•通州区一模)如果MN 的两个端点M ,N 分别在AOB ∠的两边上(不与点O 重合),并且MN 除端点外的所有点都在AOB ∠的内部,则称MN 是AOB ∠的“连角弧”. (1)图1中,AOB ∠是直角,MN 是以O 为圆心,半径为1的“连角弧”.①图中MN 的长是 ,并在图中再作一条以M ,N 为端点、长度相同的“连角弧”; ②以M ,N 为端点,弧长最长的“连角弧”的长度是 .(2)如图2,在平面直角坐标系xOy 中,点M ,点(,0)N t 在x 轴正半轴上,若MN 是半圆,也是AOB ∠的“连角弧”求t 的取值范围.(3)如图3,已知点M ,N 分别在射线OA ,OB 上,4ON =,MN 是AOB ∠的“连角弧”,且MN 所在圆的半径为1,直接写出AOB ∠的取值范围.10.(2020•延庆区一模)对于平面内的点P 和图形M ,给出如下定义:以点P 为圆心,以r 为半径作P ,使得图形M 上的所有点都在P 的内部(或边上),当r 最小时,称P 为图形M 的P 点控制圆,此时,P 的半径称为图形M 的P 点控制半径.已知,在平面直角坐标系中,正方形OABC 的位置如图所示,其中点(2,2)B .(1)已知点(1,0)D ,正方形OABC 的D 点控制半径为1r ,正方形OABC 的A 点控制半径为2r ,请比较大小:1r 2r ;(2)连接OB ,点F 是线段OB 上的点,直线:l y b =+;若存在正方形OABC 的F 点控制圆与直线l 有两个交点,求b 的取值范围.11.(2020•房山区一模)如图,平面上存在点P 、点M 与线段AB .若线段AB 上存在一点Q ,使得点M 在以PQ 为直径的圆上,则称点M 为点P 与线段AB 的共圆点. 已知点(0,1)P ,点(2,1)A --,点(2,1)B -.(1)在点(0,0)O ,(2,1)C -,(3,0)D 中,可以成为点P 与线段AB 的共圆点的是 ;(2)点K 为x 轴上一点,若点K 为点P 与线段AB 的共圆点,请求出点K 横坐标K x 的取值范围; (3)已知点(,1)M m -,若直线132y x =+上存在点P 与线段AM 的共圆点,请直接写出m 的取值范围.12.(2020•门头沟区一模)对于平面直角坐标系xOy 中的任意点(P x ,)y ,如果满足(0x y a x +=,a 为常数),那么我们称这样的点叫做“特征点”. (1)当23a 时,①在点(1,2)A ,(1,3)B ,(2.5,0)C 中,满足此条件的特征点为 ;②W 的圆心为(,0)W m ,半径为1,如果W 上始终存在满足条件的特征点,请画出示意图,并直接写出m 的取值范围; (2)已知函数1(0)Z x x x=+>,请利用特征点求出该函数的最小值.13.(2020•朝阳区一模)在平面直角坐标系xOy 中,点(,0)A t ,(2,0)B t +,(,1)C n ,若射线OC 上存在点P ,使得ABP ∆是以AB 为腰的等腰三角形,就称点P 为线段AB 关于射线OC 的等腰点.(1)如图,0t =,①若0n =,则线段AB 关于射线OC 的等腰点的坐标是 ;②若0n <,且线段AB 关于射线OC 的等腰点的纵坐标小于1,求n 的取值范围;(2)若n =,且射线OC 上只存在一个线段AB 关于射线OC 的等腰点,则t 的取值范围是 .14.(2020•密云区一模)对于平面直角坐标系xOy 中的任意一点P ,给出如下定义:经过点P 且平行于两坐标轴夹角平分线的直线,叫做点P 的“特征线”. 例如:点(1,3)M 的特征线是2y x =+和4y x =-+;(1)若点D 的其中一条特征线是1y x =+,则在1(2,2)D 、2(1,0)D -、3(3,4)D -三个点中,可能是点D 的点有 ;(2)已知点(1,2)P -的平行于第二、四象限夹角平分线的特征线与x 轴相交于点A ,直线(0)y kx b k =+≠经过点P ,且与x 轴交于点B .若使BPA ∆的面积不小于6,求k 的取值范围;(3)已知点(2,0)C ,(,0)T t ,且T 的半径为1.当T 与点C 的特征线存在交点时,直接写出t 的取值范围.15.(2020•大兴区一模)已知线段AB ,如果将线段AB 绕点A 逆时针旋转90︒得到线段AC ,则称点C 为线段AB 关于点A 的逆转点.点C 为线段AB 关于点A 的逆转点的示意图如图1: (1)如图2,在正方形ABCD 中,点 为线段BC 关于点B 的逆转点;(2)如图3,在平面直角坐标系xOy 中,点P 的坐标为(,0)x ,且0x >,点E 是y 轴上一点,点F 是线段EO 关于点E 的逆转点,点G 是线段EP 关于点E 的逆转点,过逆转点G ,F 的直线与x 轴交于点H . ①补全图;②判断过逆转点G ,F 的直线与x 轴的位置关系并证明;③若点E 的坐标为(0,5),连接PF 、PG ,设PFG ∆的面积为y ,直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围.。

2014-2023年北京市中考真题数学试题汇编:新定义

2014-2023年北京市中考真题数学试题汇编:新定义

M , N 间的“闭距离”,记作d ( M , N ).
已知点 A ( −2 ,6), B ( −2 , −2 ), C (6, −2 ). (1)求d (点 O , ABC ); (2)记函数 y = kx ( −1 ≤ x ≤ 1, k ≠ 0 )的图象为图形 G ,若d ( G , ABC ) = 1,直接写出 k 的取值范
(1)如图,点 A, B1, C1, B2 , C2 , B3, C3 的横、纵坐标都是整数.在线段 B1C1, B2C2 , B3C3 中, O 的以点 A 为中心 的“关联线段”是______________;
(2) ABC 是边长为 1 的等边三角形,点 A(0,t ) ,其中 t ≠ 0 .若 BC 是 O 的以点 A 为中心的“关联线
P' ,点 P' 关于点 N 的对称点为 Q ,称点 Q 为点 P 的“对应点”. (1)如图,点 M (1,1), 点 N 在线段 OM 的延长线上,若点 P(−2, 0), 点 Q 为点 P 的“对应点”.
①在图中画出点 Q ; ②连接 PQ, 交线段 ON 于点T.求证: NT = 1 OM ;
6
5 5
,
0
.对于线段
MN
上一点
S,存在
O
的弦
PQ
,使得点
S
是弦
PQ
的“关联
点”,记 PQ 的长为 t,当点 S 在线段 MN 上运动时,直接写出 t 的取值范围. 2.(2022·北京·统考中考真题)在平面直角坐标系 xOy 中,已知点 M (a,b), N. 对于点 P 给出如下定义:将点
P 向右 (a ≥ 0) 或向左 (a < 0) 平移 a 个单位长度,再向上 (b ≥ 0) 或向下 (b < 0) 平移 b 个单位长度,得到点

2020年版北京市初三数学分类汇编-新定义

2020年版北京市初三数学分类汇编-新定义

2020年初三上学期期末、新定义1西城.对于给定的△ABC,我们给出如下定义:若点M是边BC上的一个定点,且以M为圆心的半圆上的所有点都在△ABC的内部或边上,则称这样的半圆为BC边上的点M关于△ABC的内半圆,并将半径最大的内半圆称为点M关于△ABC的最大内半圆.若点M是边BC上的一个动点(M不与B,C重合),则在所有的点M关于△ABC的最大内半圆中,将半径最大的内半圆称为BC关于△ABC的内半圆.(1)在Rt△ABC中,∠BAC = 90°,AB = AC = 2,①如图1,点D在边BC上,且CD=1,直接写出点D关于△ABC的最大内半圆的半径长;②如图2,画出BC关于△ABC的内半圆,并直接写出它的半径长;2东城. 如图,在平面直角坐标系xOy 中,过⊙T 外一点P 引它的两条切线,切点分别为M ,N ,若︒<∠≤︒18060MPN ,则称P 为⊙T 的环绕点.(1)当⊙O 半径为1时,①在)2,0(),1,1(),0,1(321P P P 中,⊙O 的环绕点是___________;②直线y =2x +b 与x 轴交于点A ,y 轴交于点B ,若线段AB 上存在⊙O 的环绕点,求b 的取值范围;(2)⊙T 的半径为1,圆心为(0,t ),以)0(33,>m m m )(为圆心,m 33为半径的所有圆构成图形H ,若在图形H 上存在⊙T 的环绕点,直接写出t 的3朝阳.在平面直角坐标系xOy 中,已知点A (0,2),点B 在x 轴上,以AB 为直径作⊙C ,点P 在y 轴上,且在点A 上方,过点P 作⊙C 的切线PQ ,Q 为切点,如果点Q 在第一象限,则称Q 为点P 的离点.例如,图1中的Q 为点P 的一个离点.(1)已知点P (0,3),Q 为P 的离点.①如图2,若B (0,0),则圆心C 的坐标为 ,线段PQ 的长为 ; ②若B (2,0),求线段PQ 的长;(2)已知1≤P A ≤2, 直线l :3y kx k =++(k ≠0).①当k =1时,若直线l 上存在P 的离点Q ,则点Q 纵坐标t 的最大值为 ;②记直线l :3y kx k =++(k ≠0)在11x -≤≤的部分为图形G ,如果图形G 上存在P 的离点,直接写出k 的取值范围.图2图14石景山.在ABC △中,D 是边BC 上一点,以点A 为圆心,AD 长为半径作弧,如果与边BC 有交点E (不与点D 重合),那么称DE 为ABC △的A -外截弧. 例如,右图中DE 是ABC △的一条A -外截弧.在平面直角坐标系xOy 中,已知ABC △存在A -外截弧,其中点A 的坐标为(5,0), 点B 与坐标原点O 重合.(1)在点1(0,2)C ,2(5,3)C -,3(6,4)C ,4(4,2)C 中,满足条件的点C 是 ; (2)若点C 在直线2y x =-上, ①求点C 的纵坐标的取值范围;②直接写出ABC △的A -外截弧所在圆的半径r 的取值范围.5丰台.平面直角坐标系xOy 中有点P 和某一函数图象M ,过点P 作x 轴的垂线,交图象M 于点Q ,设点P ,Q 的纵坐标分别为P y ,Q y .如果P Q y y >,那么称点P 为图象M 的上位点;如果P Q y y =,那么称点P 为图象M 的图上点;如果P Q y y <,那么称点P 为图象M 的下位点.(1)已知抛物线22y x =-.① 在点A (-1,0),B (0,-2),C (2,3)中,是抛物线的上位点的是 ;② 如果点D 是直线y x =的图上点,且为抛物线的上位点,求点D 的横坐标D x 的取值范围; (2)将直线3y x =+在直线3y =下方的部分沿直线3y =翻折,直线3y x =+的其余部分保持不变,得到一个新的图象,记作图象G .⊙H 的圆心H 在x 轴上,半径为1.如果在图象G 和⊙H 上分别存在点E 和点F ,使得线段EF 上同时存在图象G 的上位点,图上点和下位点,求圆心H 的横坐标H x 的取值范围.EDCBA6顺义区.在平面直角坐标系xOy 中,若点P 和点P 1关于x 轴对称,点P 1和点P 2关于直线l 对称,则称点P 2是点P 关于x 轴,直线l 的二次对称点. (1)如图1,点A (0,-1).①若点B 是点A 关于x 轴,直线l 1:x =2的二次对称点,则点B 的坐标为 ; ②点C (-4,1)是点A 关于x 轴,直线l 2:x =a 的二次对称点,则a 的值为 ; ③点D (-1,0)是点A 关于x 轴,直线l 3的二次对称点,则直线l 3的表达式为 ;(2)如图2,⨀O 的半径为2.若⨀O 上存在点M ,使得点M ′是点M 关于x 轴,直线l 4:x = b 的二次对称点,且点M ′在射线x y 3=(x ≥0)上,b 的取值范围是;(3)E (0,t )是y 轴上的动点,⨀E 的半径为2,若⨀E 上存在点N ,使得点N ′是点N 关于x 轴,直线l 5:x y 33=的二次对称点,且点N ′在x 轴上,求t 的取值范围.7大兴区. 在平面直角坐标系xOy中,已知P(a,b),R(c,d)两点,且a≠c,b≠d,若过点P作x轴的平行线,过点R作y轴的平行线,两平行线交于一点S,连接PR,则称△PRS为点P,R,S的“坐标轴三角形”.若过点R作x轴的平行线,过点P作y轴的平行线,两平行线交于一点S',连接PR,则称△RP S'为点R,P,S'的“坐标轴三角形”.右图为点P,R,S的“坐标轴三角形”的示意图.(1)已知点A(0,4),点B(3,0),若△ABC是点A,B,C的“坐标轴三角形”,则点C的坐标为 ;(2)已知点D(2,1),点E(e,4),若点D,E,F的“坐标轴三角形”的面积为3,求e的值.,点M(m,4).若在⨀O上存在一点N,使得点N ,M, G的“坐标轴三角形”为(3)若⨀O的半径为3√22等腰三角形,求m的取值范围.8平谷区.在平面直角坐标系xOy中,有任意三角形,当这个三角形的一条边上的中线等于这条边的一半时,称这个三角形叫“和谐三角形”,这条边叫“和谐边”,这条中线的长度叫“和谐距离”.(1)已知A(2,0),B(0,4),C(1,2),D(4,1),这个点中,能与点O组成“和谐三角形”的点是,“和谐距离”是;(2)连接BD,点M,N是BD上任意两个动点(点M,N不重合),点E是平面内任意一点,△EMN是以MN为“和谐边”的“和谐三角形”,求点E的横坐标t的取值范围;(3)已知⊙O的半径为2,点P是⊙O上的一动点,点Q是平面内任意一点,△OPQ是“和谐三角形”,且“和谐距离”是2,请描述出点Q所在位置.9昌平区.对于平面直角坐标系xOy中,已知点A(-2,0)和点B(3,0),线段AB和线段AB外的一点P,给出如下定义:若45°≤∠APB≤90°时,则称点P为线段AB的可视点,且当P A=PB时,称点P 为线段AB的正可视点.(1)∠如图1,在点P1(3,6),P2(-2,-5),P3(2,2)中,线段AB的可视点是;∠若点P在y轴正半轴上,写出一个满足条件的点P的坐标:__________.(2)在直线y=x+b上存在线段AB的可视点,求b的取值范围;(3)在直线y=-x+m上存在线段AB的正可视点,直接写出m的取值范围.图1 备用图10通州11门头沟.对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:如果点P 为图形M 上任意一点,点Q 为图形N 上任意一点,那么称线段PQ 长度的最小值为图形M ,N 的“近距离”,记作 d (M ,N ).若图形M ,N 的“近距离”小于或等于1,则称图形M ,N 互为“可及图形”.(1)当⊙O 的半径为2时,①如果点A (0,1),B (3,4),那么d (A ,⊙O )=________,d (B ,⊙O )= _________; ②如果直线与⊙O 互为“可及图形”,求b 的取值范围;(2)⊙G 的圆心G 在轴上,半径为1,直线与x 轴交于点C ,与y 轴交于点D ,如果⊙G和∠CDO 互为“可及图形”,直接写出圆心G 的横坐标m 的取值范围.备用图y x b =+x 5y x =-+12房山区如图28-1,已知线段AB 与点P ,若在线段AB 上存在..点Q ,满足PQAB ,则称点P 为线段AB 的“限距点”.图28- (1) 如图28-2,在平面直角坐标系xOy 中,若点)01-(,A ,)01(,B .① 在)20(,C ,)2--2(,D ,)3-1(,E 中,是线段AB 的“限距点”的是________;② 点P 是直线1+=x y 上一点,若点P 是线段AB 的“限距点”,请求出点P 横坐标P x 的取值范围.(2) 在平面直角坐标系xOy 中,点)1(,t A ,)1-(,t B ,直线32+33=x y 与x 轴交于点M ,与y 轴交于点N . 若线段MN 上存在线段AB 的“限距点”,请求出t 的取值范围.13密云区.在平面直角坐标系xOy中,⊙O的半径为r(r>0).给出如下定义:若平面上一点P到圆心O的距离d,满足1322r d r≤≤,则称点P为⊙O的“随心点”.(1)当⊙O的半径r=2时,A(3,0),B(0,4),C(32-,2),D(12,12-)中,⊙O的“随心点”是;(2)若点E(4,3)是⊙O的“随心点”,求⊙O的半径r的取值范围;(3)当⊙O的半径r=2时,直线y=-x+b(b≠0)与x轴交于点M,与y轴交于点N,若线段MN上存在⊙O的“随心点”,直接写出b的取值范围.备用图14海淀.在平面直角坐标系xOy 中,对于点P (a ,b )和实数(0)k k >,给出如下定义:当0ka b +>时,将以点P 为圆心,ka b +为半径的圆,称为点P 的k 倍相关圆.例如,在如图1中,点P (1,1)的1倍相关圆为以点P 为圆心,2为半径的圆.(1)在点P 1(2,1),P 2(1,3-)中,存在1倍相关圆的点是_____,该点的1倍相关圆半径为_______. (2)如图2,若M 是x 轴正半轴上的动点,点N 在第一象限内,且满足∠MON =30°,判断直线ON 与点M 的12倍相关圆的位置关系,并证明.(3)如图3,已知点A 的(0,3),B (1,m ),反比例函数6y x=的图象经过点B ,直线l 与直线AB 关 于y 轴对称.①若点C 在直线l 上,则点C 的3倍相关圆的半径为 .②点D 在直线AB 上,点D 的31倍相关圆的半径为R ,若点D 在运动过程中,以点D 为圆心,hR 为半径的圆与反比例函数6y x=的图象最多有两个公共点,直接写出h 的最大值.图 1图 2图 31.西城.解:(1)①2. ② BC 关于△ABC 的内半圆,如图1, BC 关于△ABC 的内半圆半径为1.(2)过点E 作EF ⊥OE,与直线y x 交于点F ,设点M 是OE 上的动点, i )当点P 在线段OF 上运动时(P 不与O 重合),OE 关于△OEP 的内半圆是以M 为圆心,分别与OP ,PE 相切的半圆,如图2. ∴ 当34≤R ≤1时,t 的取值范围是32≤t ≤3.2东城.解:(1)①23,P P .…………………………2分②半径为1的⊙O 的所有环绕点在以O 为圆心,半径分别为1和2的两个圆之间(如下图阴影部分所示,含大圆,不含小圆).ⅰ)当点B 在y 轴正半轴上时,如图1,图2所示.考虑以下两种特殊情况:线段AB 与半径为2的⊙O 相切时,52=OB ; 当点B 经过半径为1的⊙O 时,1=OB .因为线段AB 上存在⊙O 的环绕点,所以可得b 的取值范围为 521≤<b ; ②当点B 在y 轴负半轴上时,如图3,图4所示.同理可得b 的取值范围为 152-<≤-b .综上,b 的取值范围为521≤<b 或152-<≤-b .………………………5分(3)42≤<-t .………………………7分3朝阳.解:(1)①(0,1);3.②如图,过C 作CM ⊥y 轴于点M ,连接CP ,CQ .∵A (0,2),B (2,0), ∴C (1,1). ∴M (0,1). 在Rt △ACM 中,由勾股定理可得CA =2. ∴CQ =2. ∵P (0,3),M (0,1), ∴PM=2.在Rt △PCM 中,由勾股定理可得PC =5.在Rt △PCQ 中,由勾股定理可得PQ =22-PC CQ =3.(2)①6.②21222-<≤-k 或21222k ≤<+.4石景山.解:(1)2C ,3C ; ………………………… 2分21yxAOB21yxA O B(2)①∵点在直线2y x =-上, 设点的坐标为.当时,过点作轴于点,如图.∴CDB △∽ADC △. ∴.∴.解得,. ∴(4,2)C 或13(,)22C'-.又∵直线2y x =-与y 轴交于点(0,2)-,结合图形,可得点的纵坐标的取值范围是或2C y >. ………………………… 5分 ②. ………………………… 7分 5丰台.解:(1)①A ,C . ………………………………………………………………2分 ②∵点D 是直线y x =的图上点,∴点D 在y x =上.又∵点D 是22y x =-的上位点,∴点D 在y x =与22y x =-的交点R ,S 之间运动.∵22,.y x y x ⎧=-⎨=⎩ ∴111,1.x y =-⎧⎨=-⎩ 222,2.x y =⎧⎨=⎩ …………3分∴点R (1-,1-),S (2,2).∴2D x -1<<. ……………………………………………………………5分(2)32Hx ->或3+2H x -<. ………………………………………………7分(全卷所有题目其他解法参照上述解法相应步骤给分)C C (,2)m m -90BCA ∠=°C CD x ⊥D 2CD BD AD =⋅2(2)(5)m m m -=⋅-14m =212m =C 322C y -<<-55r <≤xy'B DC C A –1123456–1–2–3123图20)图40)图30)0)6顺义.解:(1)① 点B 的坐标为 (4,1) ;………………………………… 1分② a 的值为-2 ; ………………………………… 2分 ③直线l 3的表达式为 y =- x ; …………………………… 3分 (2)如图2,设⨀O 与x 轴的两个交点为1M (-2,0),3M (2,0), 与射线x y 3=(x ≥0)的交点为4M ,则4M 的坐标为(1).4M 关于x 轴的对称点为2M .当点M 在1M 的位置时,b =-1, 当点M 在2M 的位置时,b =1, 当点M 在3M 的位置时,b =1,当点M 在劣弧12M M 上时(如图3),-1≤b ≤1,当点M 在劣弧23M M 上时(如图4),b 的值比1大,当到劣弧23M M 的中点时,达到最大值(如图5),综上,b 的取值范围是-1≤b 5分(3)∵x 轴和直线x y 3=关于直线x y 33=对称, 直线x y 3=和直线y =关于x 轴对称,∠⨀E 只要与直线x y 3=和y =∴t 的取值范围是:-4≤t ≤4. ……………………………………… 7分7大兴.(1)(3,4)…………………………………………………………………….2分 (2) ∵点D (2,1),点E (e ,4), 点D ,E ,F 的“坐标三角形”的面积为3, ∴33221=⨯-=∆e S DEF 22=-e∴4=e 或0=e ,.……………………………4分(3)由点N ,M , G 的“坐标轴三角形”为等腰三角形可得直线MN 为 b x y +=或b x y +-=①当直线MN 为b x y +=时,由于点M 的坐标为(m ,4),可得m =4-b由图可知,当直线MN 平移至与⊙O 相切,且切点在第四象限时,b 取得最小值. 此时直线MN 记为M 1 N 1,其中N 1T 1为直线M 1 N 1与y 轴的交点. ∵△O N 1T 1为等腰直角三角形,O 1N ∴OT 1=22223)223(⎪⎭⎫⎝⎛+=3∴b 的最小值为-3,∴m 的最大值为m =4-b =7………………………………………………5分当直线MN 平移至与⊙O 相切,且切点在第二象限时,b 取得最大值. 此时直线MN 记为M 2 N 2,其中N 2为切点,T 2为直线M 2 N 2与y 轴的交点. ∵△2ON 2T 为等腰直角三角形,2ON ∴2OT =22223)223(⎪⎭⎫ ⎝⎛+=3∴b 的最大值为3,∴m 的最小值为m =4-b =1,∴m 的取值范围是71≤≤m ,…………………………………………6分 ②当直线MN 为b x y +-=时. 同理可得,4-=b m , 当3=b 时,1-=m 当3-=b 时,-7=m∴m 的取值范围是-17-≤≤m .………………………………………7分 综上所述,m 的取值范围是71≤≤m 或17--≤≤m .8平谷解:(1)A ,B 5 ·············································································· 3 (2)1922t -≤≤; ············································································· 5 (3)点Q 在以点O 为圆心,4为半径的圆上;或在以点O 为圆心,3 (7)9昌平.(1)∠线段AB 的可视点是2P ,3P . ……………………………………………………………… 1分 ∠点P 的坐标:P (0,3)(答案不唯一,纵坐标p y 6≤p y ≤6). ………………2分(2)如图,直线与⊙1O 相切时,BD 是⊙1O 直径∴BD =25. ∵BE =23, ∴DE =22. ∴EF =︒45cos DE=4.∴F (0,7) 同理可得,直线与⊙3O 相切时,G (0,-8)∠b 的取值范围是:-8≤b ≤7. …………………5分(3)m 的取值范围:22225-≤≤--m 或32253+≤≤m ………………………………………7分 10通州11门头沟.(本小题满分7分)解:(1)① 1,3;…………………………………………………………………………2分② ∵由题意可知直线与⊙O 互为“可及图形”,⊙O 的半径为2, ∴3OE OF ==.……………………………………………………………3分 ∴32OM ON ==∴ 3232b -≤≤.………………………………………………………5分y x b =+xy–7–6–5–4–3–2–112345678–5–4–3–2–112345FENMO(2)22m -≤≤,522522m -≤≤+…………………………………………7分说明:12房山.(1)① C , E ; …………2分②由题意直线1+=x y 上满足线段AB 的“限距点”的范围 如图28-1所示.点P 在线段MN 上(包括端点)…………3分易求 2-1-=M x …………4分1=N x …………5分∴点P 横坐标P x 的取值范围为: 图28-11≤≤2-1-P x (2)如图28-2,-8=txy –7–6–5–4–3–2–112345678–5–4–3–2–112345C D OG G G G…………6分图28-2如图28-3,2-3=t…………7分图28-3综上所述:2-3≤t ≤8-13密云.(1) A ,C ………………………………2分(2)∵点E (4,3)是⊙O 的“随心点”∴OE =5,即d =5若, ∴r =10 ………………………………3分若 ,………………………………4分∴ ………………………………5分125r =352r =103r =10310r ≤≤(3) ………………7分14海淀.(1)解:P 1,3;(2)解:直线ON 与点M 的21倍相关圆的位置关系是相切.证明:设点M 的坐标为(x ,0),过M 点作MP ⊥ON 于点P ,∴ 点M 的21倍相关圆半径为21x .∴ OM =x .∵∠MON =30°,MP ⊥ON ,∴ MP =2OM =21x .∴ 点M 的21倍相关圆半径为MP .∴直线ON 与点M 的21倍相关圆相切.(3)① 点C 的3倍相关圆的半径是3;② h11b b -≤≤-≤≤或。

2020中考数学复习(北京)重点专题九新定义问题

2020中考数学复习(北京)重点专题九新定义问题

二、重难专题突破专题九新定义问题(必考)综合训练类型一新定义点与函数问题(8年4考:2017.29、2015.29、2014.25、2013.25)1.(2019房山区一模)在平面直角坐标系xOy中,⊙C的半径为r,给出如下定义:若点P的横、纵坐标均为整数,且到圆心C的距离d≤r,则称P为⊙C的关联整点.(1)当⊙O的半径r=2时,在点D(2,-2),E(-1,0),F(0,2)中,为⊙O的关联整点的是;(2)若直线y=-x+4上存在⊙O的关联整点,且不超过7个,求r的取值范围;(3)⊙C的圆心在x轴上,半径为2,若直线y=-x+4上存在⊙C的关联整点.求圆心C的横坐标t的取值范围.第1题图2. (2019丰台区二模)对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A,B ,使得点P 在射线BC 上,且∠APB =14∠ACB (0°<∠ACB <180°),则称P 为⊙C 的依附点.(1)当⊙O 的半径为1时,①已知点D (-1,0),E (0,-2),F (2.5,0),在点D ,E ,F 中,⊙O 的依附点是 ; ②点T 在直线y =-x 上,若T 为⊙O 的依附点,求点T 的横坐标t 的取值范围;(2)⊙C 的圆心在x 轴上,半径为2,直线y =-x +2与x 轴、y 轴分别交于点M ,N .若线段MN 上的所有点都是⊙C 的依附点,直接写出圆心C 的横坐标m 的取值范围.3. (2019西城区一模)在平面直角坐标系xOy 中,对于两个点P ,Q 和图形W ,如果在图形W 上存在点M ,N (M ,N 可以重合)使得PM =QN ,那么称点P 与点Q 是图形W 的一对平衡点.第3题图①(1)如图①,已知点A (0,3),B (2,3).①设点O 与线段AB 上一点的距离为d ,则d 的最小值是 ,最大值是 ;②在P 1(32,0),P 2(1,4),P 3(-3,0)这三个点中,与点O 是线段AB 的一对平衡点的是 ;(2)如图②,已知⊙O 的半径为1,点D 的坐标为(5,0).若点E (x ,2)在第一象限,且点D 与点E 是⊙O 的一对平衡点,求x 的取值范围;(3)如图③,已知点H (-3,0),以点O 为圆心,OH 长为半径画弧交x 轴的正半轴于点K .点C (a ,b )(其中b ≥0)是坐标平面内一个动点,且OC =5,⊙C 是以点C 为圆心,半径为2的圆.若HK ︵上的任意两个点都是⊙C 的一对平衡点,直接写出b 的取值范围.第3题图② 第3题图③4. (2019朝阳区二模)M (-1,-12),N (1,-12)是平面直角坐标系xOy 中的两点,若平面内直线MN 上方的点P 满足:45°≤∠MPN ≤90°,则称点P 为线段MN 的可视点.(1)在点A 1(0,12),A 2(12,0),A 3(0,2),A 4(2,2)中,线段MN 的可视点为 ;(2)若点B 是直线y =x +12上线段MN 的可视点,求点B 的横坐标t 的取值范围;(3)直线y =x +b (b ≠0)与x 轴交于点C ,与y 轴交于点D ,若线段CD 上存在线段MN 的可视点,直接写出b 的取值范围.第4题图类型二 新定义距离与函数问题(8年2考:2018.28、2012.25)1. (2012北京)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|; 若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图①中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点).第1题图①(1)已知点A (-12,0),B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标; ②直接写出点A 与点B 的“非常距离”的最小值; (2)已知C 是直线y =34x +3上的一个动点,①如图②,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标; ②如图③,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 和点C 的坐标.第1题图2. (2019东城区一模)在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到x 、y 轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.第2题图(1)已知点A的坐标为(-3,1),①在点E(0,3),F(3,-3),G(2,-5)中,为点A的“等距点”的是;②若点B在直线y=x+6上,且A,B两点为“等距点”,则点B的坐标为;(2)直线l:y=kx-3(k>0)与x轴交于点C,与y轴交于点D,①若T1(-1,t1),T2(4,t2)是直线l上的两点,且T1与T2为“等距点”,求k的值;②当k=1时,半径为r的⊙O上存在一点M,线段CD上存在一点N,使得M,N两点为“等距点”,直接写出r的取值范围.备用图3.(2018北京)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q 为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d(M,N).已知点A(-2,6),B(-2,-2),C(6,-2).(1)求d(点O,△ABC);(2)记函数y=kx(-1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.4. (2019石景山一模)在平面直角坐标系xOy中,正方形ABCD的顶点分别为A(0,1),B(-1,0),C(0,-1),D(1,0).对于图形M,给出如下定义:P为图形M上任意一点,Q为正方形ABCD边上任意一点,如果P,Q两点间的距离有最大值,那么称这个最大值为图形M的“正方距”,记作d(M).(1)已知点E(0,4),①直接写出d(点E)的值;②直线y=kx+4(k≠0)与x轴交于点F,当d(线段EF)取最小值时,求k的取值范围;(2)⊙T的圆心为T(t,3),半径为1,若d(⊙T)<6,直接写出t的取值范围.类型三新定义图形与函数问题(仅2016.29考查)1. (2019石景山区二模)对于平面直角坐标系xOy中的点P,Q,给出如下定义:若P,Q为某个三角形的顶点,且边PQ上的高h,满足h=PQ,则称该三角形为点P,Q的“生成三角形”.(1)已知点A(4,0).①若以线段OA为底的某等腰三角形恰好是点O,A的“生成三角形”,求该三角形的腰长;②若Rt△ABC是点A,B的“生成三角形”,且点B在x轴上,点C在直线y=2x-5上,则点B的坐标为;(2)⊙T的圆心为点T(2,0),半径为2,点M的坐标为(2,6),N为直线y=x+4上一点,若存在Rt△MND,是点M,N的“生成三角形”,且边ND与⊙T有公共点,直接写出点N的横坐标x N的取值范围.2.(2018平谷区一模)在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,23),则以AB为边“坐标菱形”的最小内角为°;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD表达式;(3)⊙O的半径为2,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.图①图②第2题图类型四 新定义几何问题(2019.28新考查)1. (2019北京)在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE ︵上的所有点都在△ABC 的内部或边上,则称DE ︵为△ABC 的中内弧.例如,如图①中DE ︵是△ABC 的一条中内弧.第1题图① 第1题图②(1)如图②,在Rt △ABC 中,AB =AC =22,D ,E 分别是AB ,AC 的中点,画出△ABC 的最长的中内弧DE ︵,并直接写出此时DE ︵的长;(2)在平面直角坐标系中,已知点A (0,2),B (0,0),C (4t ,0)(t >0).在△ABC 中,D ,E 分别是AB ,AC 的中点.①若t =12,求△ABC 的中内弧DE ︵所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧DE ︵,使得DE ︵所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.2. P 是⊙O 内一点,过点P 作⊙O 的任意一条弦AB ,我们把P A ·PB 的值称为点P 关于⊙O 的“幂值”.第2题图(1)⊙O的半径为6,OP=4.①如图,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为;②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙O的“幂值”的取值范围;(2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围;(3)在平面直角坐标系xOy中,C(1,0),⊙C的半径为3,已知点M(t,0),N(0,-t),若在直线MN 上存在点P,使得点P关于⊙C的“幂值”为6,请直接写出t的取值范围.参考答案类型一新定义点与函数问题1. 解:(1)E,F;【解法提示】∵D(2,-2),E(-1,0),F(0,2),O(0,0),∴OD=22+22=22>2,OE=1<2,OF=2,∴E,F为⊙O的关联整点;(2)如解图①,当⊙O与直线y=-x+4相切时,切点为G(2,2),则r=OG=22+22=22.当⊙O过点Q(-2,6)时,则r=OQ=22+62=210,结合图象,当直线y=-x+4上存在⊙O的关联整点,且不超过7个时,r的取值范围为22≤r<210;第1题解图①(3)如解图②,当⊙C过点M(3,1)时,CM=2,ME=1,则CE=3,此时点C的横坐标t=3-3,当⊙C′过点N(5,-1)时,则FC′=3,此时点C′的横坐标t=5+3,结合函数图象,圆心C的横坐标t的取值范围为3-3≤t≤5+3.第1题解图②2. 解:(1)①E、F;【解法提示】如解图①,根据P为⊙O的依附点,可知:当r<OP<3r(r为⊙O的半径)时,点P为⊙O 的依附点.第2题解图①∵D (-1,0),E (0,-2),F (2.5,0), ∴OD =1,OE =2,OF =2.5, ∴1<OE <3,1<OF <3, ∴点E ,F 是⊙O 的依附点, 故答案为:E 、F ; ②如解图②,第2题解图②当点T 在第四象限,OT ′=1时,作T ′N ⊥x 轴于点N ,易知N (22,0),OT =3时,作TM ⊥x 轴于点M ,易知M (322 ,0),∴满足条件的点T 的横坐标t 的取值范围为22 <t <322.当点T 在第二象限时,同理可得满足条件的t 的取值范围为-322 <t <-22 ,综上所述,满足条件的t 的值的范围为22 <t <322 或-322 <t <-22. (2)4<m <42 或-4<m <2-22 .【解法提示】如解图③,当点C 在点M 的右侧时,第2题解图③由题意M (2,0),N (0,2),当CN =6时,OC =CN 2-ON 2 =42 ,此时C (42 ,0), 当CM =2时,此时C (4,0),∴满足条件的m 的值的范围为4<m <42 . 如解图④,当点C 在点M 的左侧时,第2题解图④当⊙C 与直线MN 相切时,易知C ′(2-22 ,0), 当CM =6时,C (-4,0),∴满足条件的m 的值的范围为-4<m <2-22 ,综上所述,满足条件的m 的值的范围为:4<m <42 或-4<m <2-22 . 3. 解:(1)① 3,13 ;【解法提示】d 的最小值=OA =3,d 的最大值=OB =22+32 =13 . ②P 1;【解法提示】由题图①可知,P 1到线段AB 的最小距离=OA =3,最大距离=P 1A =(32)2+32 =352,则线段AB 上存在点M ,N ,使得P 1M =ON ;P 2到线段AB 的最大距离=12+12 =2 ,∵2 <3,∴P 2不符合题意;P 3到线段AB 的最小距离=32+32 =32 ,∵32 >13 ,∴P 3不符合题意.(2)第3题解图①由题意得,点D 到⊙O 的最近距离是4,最远距离是6,点D 与点E 是⊙O 的一对平衡点,此时需要满足E 1到⊙O 的最大距离是4,即OE 1=3,根据OE 1=3解出此时x =5 ;同理当E 2到圆O 的最小距离是6,即OE 2=7, 根据OE 2=7,解得此时x =35 , ∴5 ≤x ≤35 ; (3)4143≤b ≤5.【解法提示】点C 在以O 为圆心,半径为5的上半圆上运动,以C 为圆心,半径为2的圆刚好与弧HK 相切,此时要想弧HK 上的任意两点都是⊙C 的平衡点,需要满足CK ≤6,如解图②,当CK =6,此时a =-13 ,b =4143 ,同理,当CH =6时,a =13 ,b =4143.在两者中间时,如解图③所示,此时a =0,b=5,∴4143≤b ≤5.第3题解图②第3题解图③4. 解:(1)A 1,A 3;【解法提示】如解图①,以MN 为直径的半圆交y 轴于点E ,以E 为圆心,EM 长为半径的⊙E 交y 轴于点F ,∵MN 是⊙G 的直径,M (-1,-12 ),N (1,-12 ),∴∠MA 1N =90°,MN ⊥EG ,EG =1,MN =2.∴EF=EM =2 ,∴∠MFN =12 ∠MEN =45°,∵45°≤∠MPN ≤90°,∴点P 应落在⊙E 内部,且落在⊙G 外部(包含边界),且不与点M 、N 重合.∴线段MN 的可视点为A 1,A 3.第4题解图①(2)如解图②,以(0,-12 )为圆心,MN 为直径作⊙G ,以(0,12 )为圆心,2 为半径作⊙E ,两圆在直线MN 上方的部分与直线y =x +12分别交于点E ,F .如解图②,过点F 作FQ ⊥x 轴于点Q ,过点E 作EH ⊥FQ 于点H , ∵FQ ⊥x 轴, ∴FQ ∥y 轴,∴∠EFH =∠MEG =45°. ∵∠EHF =90°,EF =2 ,∴EH =FH =1. ∵E (0,12 ),∴F (1,32).只有当点B 在线段EF 上时,满足45°≤∠MBN ≤90°,点B 是线段MN 的可视点. ∴点B 的横坐标t 的取值范围是0≤t ≤1;第4题解图②(3)-32 <b ≤-32 或12 ≤b ≤52;【解法提示】如解图③,⊙G 与x 轴交于点H ,与y 轴交于点E ,连接GH ,OG =12 ,GH =1,∴OH =GH 2-OG 2 =12-(12)2 =32,∴H (32 ,0),E (0,12). 当直线y =x +b (b ≠0)与x 轴交于点C ,与y 轴交于点D ,若线段CD 上存在线段MN 的可视点, ①当直线y =x +b 与y 轴交点在y 负半轴上, 将H (32 ,0)代入y =x +b 得32 +b =0,解得b 1=-32, 将N (1,-12 )代入y =x +b 得1+b =-12 ,解得b 2=-32 ,∴-32 <b ≤-32;②当直线y =x +b 与y 轴交点在y 正半轴上, 将 E (0,12 )代入得b =12,当直线y =x +b 与⊙E 相切于T 时交y 轴于Q ,连接ET ,则ET ⊥TQ , ∵∠EQT =45°, ∴TQ =ET =EM =2 ,∴EQ =ET 2+TQ 2 =(2)2+(2)2 =2. ∴OQ =OE +EQ =12 +2=52.∴12 ≤b ≤52. 综上所述:-32 <b ≤-32 或12 ≤b ≤52.第4题解图③类型二 新定义距离与函数问题1. 解:(1)①B (0,2)或B (0,-2)(写出一个答案即可); ②12; (2)①设C 点坐标为(m ,34m +3),D (0,1);于是当非常距离最小时有|m |=|34 m +3-1|,解得 m 1=-87 ,m 2=8(舍去),于是点C 的坐标为(-87 ,157);②平移直线y =34 x +3与⊙O 相切,切点为点E ,与x 轴、y 轴交点分别为点A 、B ,由切线的性质可知点E 即为最接近直线y =34x +3的点,亦为题中所求的点.第1题解图如解图,过点E 作EF ⊥x 轴于点F . 设点E 的坐标为E (x 0,y 0),x 0<0; 易知:Rt △EFO ∽ Rt △AOB , ∴FO EF =OB AO =34 ,即-x 0y 0 =34, 又∵点E 为⊙O 上的点,∴可得方程组:⎩⎪⎨⎪⎧x 20 +y 20 =1,4x 0+3y 0=0, 解得:x 0=-35 ,y 0=45 ,∴点E 的坐标为(-35 ,45).设点C 的坐标为C (a ,34 a +3),由①可知:当|-35 -a |=|(34 a +3)-45 |时有最小值,∴a =-85 或325(舍去),∴点C 的坐标为C (-85 ,95 ),此时最小值为-35 -(-85 )=1.2. 解:(1)①E ,F ;【解法提示】点A 到x ,y 轴的距离中的最大值等于3,点E 到x ,y 轴的距离中的最大值等于3,点F 到x ,y 轴的距离中的最大值等于3,点G 到x ,y 轴的距离中的最大值等于5;∴点E ,F 是点A 的“等距点”.②(-3,3);【解法提示】∵点A 到x ,y 轴的距离中的最大值等于3,A ,B 两点为“等距点”,∴点B 到x ,y 轴的距离中的最大值等于3,∵点B 在直线y =x +6上,∴设B (a ,a +6),当a =3时,a +6=9,不符合题意,当a +6=3时,a =-3,符合题意,∴B (-3,3).(2)①∵T 1(-1,t 1),T 2(4,t 2)是直线l 上的两点, ∴t 1=-k -3,t 2=4k -3. ∵k >0,∴|-k -3|=k +3>3,4k -3>-3, 依题意可得:当-3<4k -3<4时,k +3=4,解得k =1; 当4k -3≥4时,k +3=4k -3,解得k =2. 综上所述,k 的值为1或2; ②32≤r ≤32 . 【解法提示】当k =1时,y =x -3,则点C 的坐标为(3,0),点D 的坐标为(0,-3);如解图,过点O 作OE ⊥CD 于点E ,过点E 作EF ⊥x 轴于点F ,∵CD =32+32 =32 ,∴OE =CE =322 .∴EF =22×322 =32 .则线段CD 上的点到x ,y 轴的距离中的最小值等于32 ,∴半径r 的最小值为32;线段CD 到x ,y 轴的距离中的最大值等于3,∴半径为r 的⊙O 上存在一点M ,使得点M 到x ,y 轴的距离中的最大值等于3,如解图,过点G (3,3)作x 轴的垂线,垂足为点C ,连接OG ,则OG =32+32 =32 ,∴⊙O 的半径r 的最大值为32 ;综上所述,r 的取值范围是32≤r ≤32 .第2题解图3. 解:(1)如解图①,d (点O ,△ABC )=2; (2)-1≤k ≤1且k ≠0;【解法提示】如解图①,y =kx (k ≠0)经过原点,在-1≤x ≤1范围内,函数图象为线段.第3题解图①当y=kx(-1≤x≤1,k≠0)经过(1,-1)时,k=-1,此时d(G,△ABC)=1,当y=kx(-1≤x≤1,k≠0)经过(-1,-1)时,k=1,此时d(G,△ABC)=1,∴-1≤k≤1,∵k≠0,∴-1≤k≤1且k≠0.(3)如解图②,⊙T与△ABC的位置关系分三种情况:①⊙T在△ABC的左侧时,d(⊙T,△ABC)=1,此时,t=-4;②⊙T在△ABC的内部时,d(⊙T,△ABC)=1,此时,0≤t≤4-22;③⊙T在△ABC的右侧时,d(⊙T,△ABC)=1,此时,t=4+22;综上,t=-4或0≤t≤4-22或t=4+22.第3题解图②4. 解:(1)①5;【解法提示】∵正方形ABCD的顶点分别为A(0,1),B(-1,0),C(0,-1),D(1,0),点E(0,4)在y轴上,∴点E到正方形ABCD边上C点间的距离有最大值,EC=5,即d(点E)的值为5.②如解图①所示:∵d(点E)=5,∴d(线段EF)的最小值是5,∴符合题意的点F满足d(点F)≤5,当d(点F)=5时,BF1=DF2=5,∴点F1的坐标为(4,0),点F2的坐标为(-4,0),将点F1的坐标代入y=kx+4得:0=4k+4,解得:k=-1,将点F2的坐标代入y=kx+4得:0=-4k+4,解得:k=1,∴k=-1或k=1.∴当d(线段EF)取最小值时,EF1直线y=kx+4中k≤-1,EF2直线y=kx+4中k≥1,∴当d(线段EF)取最小值时,k的取值范围为:k≤-1或k≥1;(2)t的取值范围为-3<t<3.【解法提示】⊙T的圆心为T(t,3),半径为1,当d(⊙T)=6时,如解图②所示:CM=CN=6,OH=3,∴T1C=TC=5,CH=OC+OH=1+3=4,∴T1H=T1C2-CH2=52-42=3,TH=TC2-CH2=52-42=3,∴d(⊙T)<6,t的取值范围为-3<t<3.图①图②第4题解图类型三 新定义图形与函数问题1. 解:(1)①如解图①,不妨设满足条件的三角形为等腰△OAR ,则OR =AR .过点R 作RH ⊥OA 于点H , ∴OH =HA =12OA =2,∵以线段OA 为底的等腰△OAR 恰好是点O ,A 的“生成三角形”, ∴RH =OA =4.∴OR =OH 2+RH 2 =25 . 即该三角形的腰长为25 ;第1题解图①②(1,0),(3,0)或(7,0)【解法提示】如解图②所示:若A 为直角顶点时,点B 的坐标为(1,0)或(7,0); 若B 为直角顶点时,点B 的坐标为(1,0)或(3,0). 综上,点B 的坐标为(1,0),(3,0)或(7,0).第1题解图②(2)如解图③可得:若N 为直角顶点:-1-2 ≤x N ≤0;第1题解图③如解图④可得:若M 为直角顶点:-6≤x N ≤-2;第1题解图④综上,点N 的横坐标x N 的取值范围为:-6≤x N ≤0. 2. 解:(1)60;【解法提示】如解图①所示,∵点A (2,0),B (0,23 ), ∵OA =2,OB =23 ,在Rt △AOB 中,由勾股定理得:AB =22+(23)2 =4, ∵OA =12 AB ,∠AOB =90°,∴∠ABO =30°, ∵四边形ABCD 是菱形, ∴∠ABC =2∠ABO =60°, ∵AB ∥CD ,∴∠DCB =180°-60°=120°,∴以AB 为边的“坐标菱形”的最小内角为60°;第2题解图①(2)如解图②,第2题解图②∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.过点C作CE⊥DE于点E.∴D(4,5)或(-2,5).∴直线CD的表达式为:y=x+1或y=-x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如解图③,第2题解图③∵⊙O的半径为2,且△OQ′D是等腰直角三角形,∴OD=2OQ′=2,∴BD=3-2=1,∵△P′DB是等腰直角三角形,∴P′B=BD=1,∴P′(3,1),同理可得:OA=2,∴AB=3+2=5,∵△ABP是等腰直角三角形,∴PB=5,∴P(3,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;②先作直线y=-x,再作圆的两条切线,且平行于直线y=-x,如解图④,∵⊙O的半径为2,且△OQ′D是等腰直角三角形,∴OD=2OQ′=2,∴BD=3-2=1,∵△P′DB是等腰直角三角形,∴P′B=BD=1,∴P′(3,-1),同理可得:OA=2,∴AB=3+2=5,∵△ABP是等腰直角三角形,∴PB=5,∴P(3,-5),∴当-5≤m≤-1时,以QP为边的“坐标菱形”为正方形;综上所述,m的取值范围是1≤m≤5或-5≤m≤-1.第2题解图④类型四 新定义几何问题1. 解:(1)画出DE ︵如解图①所示,DE ︵与BC 相切时,△ABC 的中内弧最长.此时DE ︵的长为以DE 长为直径的半圆.∵在Rt △ABC 中,AB =AC =22,∴BC =2AB =2·22=4.∵D 、E 分别为AB 、AC 的中点,∴DE =12BC =12×4=2.∴lDE ︵=180π360×2=π;第1题解图①(2)①当t =12时,C (2,0).连接DE ,当DE ︵在DE 的下方时,点P 的纵坐标最小时点P 为DE 的中点,如解图②所示.∵A (0,2),∴BA =2.∵点D 是BA 的中点,∴BD =1.∵点D 、E 分别为AB 、AC 的中点,∴DE =12BC =12×2=1.∴⊙P 的半径PD =12.∵12<1,∴DE ︵是△ABC 的中内弧.∴y P ≥1.第1题解图②第1题解图③当DE ︵在DE 的上方时,点P 的纵坐标最大时,⊙P 与AC 相切于点E .如解图③所示,作DE 的垂直平分线FG 交DE 于点F ,交x 轴于点G ,则四边形DBGF 是矩形,圆心P 在FG 上.∵C (2,0),A (0,2),∴BC =BA =2.∴Rt △ABC 是等腰直角三角形.∴∠ACB =45°.∵点D 、E 分别为AB 、AC 的中点,∴DE ∥BC .∴∠AED =∠ACB .∴∠AED =45°.连接PE ,∵⊙P 与AC 相切于点E ,∴PE ⊥AC .∴∠PEA =90°.∴∠PEF =∠PEA -∠AED =45°.∵PF ⊥DE ,∴∠FPE =45°.∴∠PEF =∠FPE .∴PF =EF .∵FG 平分DE ,∴DF =EF =12DE=12×1=12.∴PF =12.∵FG =BD =1,∴PG =FG -PF =1-12=12.∴P (12,12).∴y P ≤12. 综上,圆心P 的纵坐标y P 的取值范围为y P ≥1或y P ≤12;②0<t ≤2 .【解法提示】ⅰ. 当P 在DE 上方时,如解图④所示,圆心P 在边AC 上且DE ︵与边BC 相切于点F 时,符合题意.∵C (4t ,0),∴BC =4t .∵D 、E 分别为AB 、AC 的中点,∴DE ∥BC ,DE =12 BC =12 ×4t =2t .连接PF .∵⊙P 与BC 相切于点F ,∴PF ⊥BC .∵DE ∥BC ,∴DE ⊥PF .∴DG =12 DE =12 ×2t =t .∵PF ⊥BC ,∴PF ∥y 轴.∴△EPG ∽△EAD .∴PG AD =EG ED =12 .∴PG =12 AD =12 ×1=12 .又∵GF =BD =1,∴PF =PG+GF =12 +1=32 .∴DP =32 .在Rt △PDG 中,由勾股定理得DP 2=DG 2+GP 2,即(32 )2=t 2+(12 )2.解得t =±2 .∵t >0,∴t =2 .∴t 的取值范围是0<t ≤2 .第1题解图④ⅱ. 当P 在DE 下方时,如解图⑤.⊙P 与AC 相切于点E 为临界状态,过P 作PM ⊥DE 于点M ,DE 为△ABC 的中内弧,只需PM ≤1即可.此时易得△EMP ∽△ABC ,∴PM CB =EM AB ,即PM 4t =t2 .得PM =2t 2,故0<t ≤22.第1题解图⑤综上,t 的取值范围为0<t ≤2 . 2. 解:(1)①20;【解法提示】如解图①所示:连接OA 、OB 、OP .∵OA =OB ,P 为AB 的中点,∴OP ⊥AB .∵在Rt △PBO 中,由勾股定理得:PB =OB 2-OP 2 =62-42 =25 ,∴P A =PB =25 .∴⊙O 的“幂值”=25 ×25 =20.第2题解图①②当弦AB 的位置改变时,点P 关于⊙O 的“幂值”为定值.证明:如解图②,AB为⊙O中过点P的任意一条弦,且不与OP垂直.过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′,OA′.第2题解图②∵在⊙O中,∠AA′P=∠B′BP,∠AP A′=∠BPB′,∴△AP A′∽△B′PB.∴P APB′=P A′PB.∴P A·PB=P A′·PB′=20.∴当弦AB的位置改变时,点P关于⊙O的“幂值”为定值.(2)r2-d2;【解法提示】如解图③所示,连接OP,过点P作AB⊥OP,交圆O与A、B两点,连接OA,OB.第2题解图③∵AO=OB,PO⊥AB,∴AP=PB.∴点P关于⊙O的“幂值”=AP·PB=P A2.在Rt△APO中,AP2=OA2-OP2=r2-d2.∴点P关于⊙O的“幂值”=r2-d2.(3)1-6≤t≤6+1.【解法提示】如解图④所示:过点C作CP⊥AB交AB于点P.第2题解图④∵点P关于⊙C的“幂值”为6,若⊙O半径为r,CP=d,则由(2)可知r2-d2=6.∴d2=3,即d=3.如解图⑤,以点C为圆心,3为半径作辅助圆⊙C′,∵点P在直线MN上,∴当直线MN与⊙C′相交即可满足条件.当点M在x轴正半轴时,直线MN与⊙C′相切如解图⑤,∵M(t,0)、N(0,-t),∴ON=OM=t,∵OM=ON,∴∠OMN=45°.∴在直角三角形CPM中,PM=CP=3.则CM=CP2+PM2=6,∴OM=6+1.∴t=6+1.同理当点M在x轴负半轴时,解得t=1-6,结合函数图象,t的取值范围为1-6≤t≤6+1.第2题解图⑤。

北京初三代综,几综,新定义

北京初三代综,几综,新定义

十一假期课堂资料一.解答题(共38小题)1.在平面直角坐标系xOy中,抛物线y=ax2+bx(a≠0),设抛物线的对称轴为x=t.(1)当抛物线过点(﹣2,0)时,求t的值;(2)若点(﹣2,m)和(1,n)在抛物线上,若m>n,且amn>0,求t的取值范围.2.如图,△ABC中,D为AC边中点,E为BC延长线上一点,连接ED并延长,使DF=ED,连接BF.(1)依题意补全图形;(2)连接BD,若CE2+BF2=AB2,猜想BD与DE的数量关系,并证明.3.如图,平面直角坐标系中,矩形ABCD,其中A(1,0)、B(4,0)、C(4,2)、D(1,2),定义如下:若点P关于直线l的对称点P'在矩形ABCD的边上,则称点P为矩形ABCD 关于直线l的“关联点”,(1)已知点P1(﹣1,2)、点P2(﹣2,1)、点P3(﹣4,1),点P2(﹣3,﹣1)中是矩形ABCD关于y轴的关联点的是;(2)⊙O的圆心O(﹣,1)半径为,若⊙O上至少存在一个点是矩形ABCD关于直线x=t的关联点,求t的取值范围;(3)⊙O的圆心O(m,1)(m<0)半径为r,若存在t值使⊙O上恰好存在四个点是矩形ABCD关于直线x=t的关联点,写出r的取值范围,并写出当r取最小值时t的取值范围(用含m的式子表示).4.在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,如果PQ两点间的距离有最小值,那么称这个最小值为图形M,N的“近距离”,记为d(M,N).特别地,当图形M与图形N有公共点时,d(M,N)=0.已知A(﹣4,0),B(0,4),C(﹣2,0),(1)d(点A,点B)=,d(点A,线段BC)=;(2)⊙O半径为r,①当r=1时,⊙O与线段AB的“近距离”d(⊙O,线段AB)=;②若d(⊙O,△ABC)=1,求⊙O的半径r的长.5.在平面直角坐标系xOy中,已知抛物线y=ax2﹣6ax﹣4(a≠0).(1)求抛物线的对称轴.(2)若方程ax2﹣6ax﹣4=0(a≠0)有两个不相等的实数根x1,x2,且2≤x1<x2≤4,结合函数的图象,求a的取值范围.6.已知在Rt△ABC中,∠ACB=90°,CA=CB,在平面内有一个点E(点E与点A,C 不重合),以点C为中心,把线段CE顺时针旋转90°,得到线段CD,连接BE,AD.(1)如图1,若点E在边AC上;①依题意补全图形;②设BE=kAD,则k=.(2)如图2,若点E不在边AC上,猜想线段BE,AD之间的数量关系及位置关系,并证明.7.定义:在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A,B.点P为平面内任意一点,若P A=PB,且∠APB≤120°时,称点P为线段AB的“居中点”.特别地,当P A=PB,且∠APB=120°时,又称点P为线段AB的“正居中点”.抛物线y =x2﹣2x与x轴的正半轴交于点M.(1)若点C是线段OM的“正居中点”,且在第一象限,则点C的坐标为(,);(2)若点D是线段OM的“居中点”,则点D的纵坐标d的取值范围是.(3)将射线OM绕点O顺时针旋转30°得到射线m,已知点E在射线m上,若在第四象限内存在点F,点F既是线段OM的“居中点”,又是线段OE的“正居中点”,求此时点E的坐标.8.在平面直角坐标系xOy中,已知抛物线y=ax2﹣4ax+3a.(1)求抛物线的对称轴;(2)当a>0时,设抛物线与x轴交于A,B两点(点A在点B左侧),顶点为C,若△ABC为等腰直角三角形,求a的值;(3)过T(0,t)(其中﹣1≤t≤2)且垂直y轴的直线l与抛物线交于M,N两点.若对于满足条件的任意t值,线段MN的长都不小于1,结合函数图象,求a的取值范围.9.如图,已知BD是矩形ABCD的一条对角线,点E在BA的延长线上,且AE=AD.连接EC,与AD相交于点F,与BD相交于点G.(1)依题意补全图形;(2)若AF=AB,解答下列问题:①判断EC与BD的位置关系,并说明理由;②连接AG,用等式表示线段AG,EG,DG之间的数量关系,并证明.10.如图1,对于△PMN的顶点P及其对边MN上的一点Q,给出如下定义:以P为圆心,PQ为半径的圆与直线MN的公共点都在线段MN上,则称点Q为△PMN关于点P的内联点.在平面直角坐标系xOy中:(1)如图2,已知点A(7,0),点B在直线y=x+1上.①若点B(3,4),点C(3,0),则在点O,C,A中,点是△AOB关于点B的内联点;②若△AOB关于点B的内联点存在,求点B纵坐标n的取值范围;(2)已知点D(2,0),点E(4,2),将点D绕原点O旋转得到点F.若△EOF关于点E的内联点存在,直接写出点F横坐标m的取值范围.11.在平面直角坐标系xOy中,抛物线y=ax2+bx+3与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)①直接写出抛物线的对称轴是;②用含a的代数式表示b;(2)横、纵坐标都是整数的点叫做整点,若抛物线与x轴交于P、Q两点,该抛物线在P、Q之间的部分与线段PQ所围成的区域(不包括边界)恰有七个整点,结合函数图象,求a的取值范围.12.在△ABC中,AB=2,CD⊥AB于点D,CD=.(1)如图1,当点D是线段AB的中点时,①AC的长为;②延长AC至点E,使得CE=AC,此时CE与CB的数量关系是,∠BCE与∠A的数量关系是;(2)如图2,当点D不是线段AB的中点时,画∠BCE(点E与点D在直线BC的异侧),使∠BCE=2∠A,CE=CB,连接AE.①按要求补全图形;②求AE的长.13.对于平面直角坐标系xOy中的点P,给出如下定义:记点P到x轴的距离为d1,到y 轴的距离为d2,若d1≤d2,则称d1为点P的“引力值”;若d1>d2,则称d2为点P的“引力值”.特别地,若点P在坐标轴上,则点P的“引力值”为0.例如,点P(﹣2,3)到x轴的距离为3,到y轴的距离为2,因为2<3,所以点P的“引力值”为2.(1)①点A(﹣1,4)的“引力值”为;②若点B(a,3)的“引力值”为2,则a的值为;(2)若点C在直线y=﹣2x+4上,且点C的“引力值”为2,求点C的坐标;(3)已知点M是以(3,4)为圆心,半径为2的圆上一个动点,那么点M的“引力值”d的取值范围是.14.已知抛物线y=x2﹣2ax+a2﹣4,抛物线的顶点为M.(1)求点M的坐标;(2)设抛物线与x轴交于A(x1,0),B(x2,0)两点,且x2>x1①判断AB的长是否为定值,并证明;②已知点N(0,﹣4),且NA≥5,利用图象求x2﹣x1+a的取值范围.15.问题发现:(1)如图1,已知C为线段AB上一点,分别以线段AC、BC为直角边作等腰直角三角形,∠ACD=90°,CA=CD,CB=CE,连接AE、BD,则AE、BD之间的数量关系为,位置关系为;拓展探究:(2)如图2,把Rt△ACD绕点C逆时针旋转,线段AE、BD交于点F,则AE 与BD之间的关系是否仍然成立?请说明理由.拓展延伸:(3)如图3,已知AC=CD,BC=CE,∠ACD=∠BCE=90°,连接AB、AE、AD,把线段AB绕点A旋转,若AB=5,AC=3,请直接写出旋转过程中线段AE的最大值.16.对于某一函数给出如下定义:如果存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不动值,在函数存在不动值时,该函数的最大不动值与最小不动值之差q称为这个函数的不动长度,特别地,当函数只有一个不动值时,其不动长度q 为0,例如,图中的函数有0和1两个不动值,其不动长度q为1.(1)下列函数①y=2x,②y=x2+1,③y=x2﹣2x中存在不动值的是(填序号);(2)函数y=3x2+bx,①若其不动长度为0,则b的值为;②若﹣2≤b≤2,求其不动长度q的取值范围;(3)记函数y=x2﹣4x(x≥t)的图象为G1,将G1沿x=t翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不动长度q满足0≤q≤5,则t的取值范围为.17.在平面直角坐标系xOy中,我们给出如下定义:将图形M绕直线x=3上某一点P顺时针旋转90°,再关于直线x=3对称,得到图形N,我们称图形N为图形M关于点P的二次关联图形.已知点A(0,1).(1)若点P的坐标是(3,0),直接写出点A关于点P的二次关联图形的坐标;(2)若点A关于点P的二次关联图形与点A重合,求点P的坐标(直接写出结果即可);(3)已知⊙O的半径为1,点A关于点P的二次关联图形在⊙O上且不与点A重合.若线段AB=1,其关于点P的二次关联图形上的任意一点都在⊙O及其内部,求此时P点坐标及点B的纵坐标y B的取值范围.18.给定图形W和点P,Q,若图形W上存在两个不重合的点M,N,使得点P关于点M 的对称点与点Q关于点N的对称点重合,则称点P与点Q关于图形W双对合.在平面直角坐标系xOy中,已知点A(﹣1,﹣2),B(5,﹣2),C(﹣1,4).(1)在点D(﹣4,0),E(2,2),F(6,0)中,与点O关于线段AB双对合的点是;(2)点K是x轴上一动点,⊙K的直径为1,①若点A与点T(0,t)关于⊙K双对合,求t的取值范围;②当点K运动时,若△ABC上存在一点与⊙K上任意一点关于⊙K双对合,直接写出点K的横坐标k的取值范围.19.已知等边△ABC,点D、点B位于直线AC异侧,∠ADC=30°.(1)如图1,当点D在BC的延长线上时,①根据题意补全图形;②下列用等式表示线段AD,BD,CD之间的数量关系:Ⅰ.AD+CD=BD;Ⅱ.AD2+CD2=BD2,其中正确的是(填“Ⅰ”或“Ⅱ”);(2)如图2,当点D不在BC的延长线上时,连接BD,判断(1)②中线段AD,BD,CD之间的正确的数量关系是否仍然成立.若成立,请加以证明;若不成立,说明理由.20.对于平面直角坐标系xOy内的点P和图形M,给出如下定义:如果点P绕原点O顺时针旋转90°得到点P',点P'落在图形M上或图形M围成的区域内,那么称点P是图形M关于原点O的“伴随点”.(1)已知点A(1,1),B(3,1),C(3,2).①在点P1(﹣1,0),P2(﹣1,1),P3(﹣1,2)中,点是线段AB关于原点O的“伴随点”;②如果点D(m,2)是△ABC关于原点O的“伴随点”,求m的取值范围;(2)⊙E的圆心坐标为(1,n),半径为1,如果直线y=﹣x+2n上存在⊙E关于原点O 的“伴随点”,直接写出n的取值范围.21.如图,在△ABC中,AB=AC,∠BAC=90°,过点A作BC的垂线AD,垂足为D,E 为线段DC上一动点(不与点C,点D重合),连接AE.以点A为中心,将线段AE逆时针旋转90°得到线段AF,连接BF,与线段AD交于点G.(1)求证:∠BAE=∠CAF;(2)用等式表示线段BG与FG的数量关系,并证明.22.在平面直角坐标系xOy中,二次函数y=ax2﹣4ax(a≠0)的图象与x轴交于A、B两点(点A在点B的左侧).(1)求A,B两点的坐标;(2)已知点P(1,0),Q(3,﹣2a﹣1),如果线段PQ与二次函数y=ax2﹣4ax(a≠0)的图象恰有一个公共点.结合函数图象,求a的取值范围.23.在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.(1)当⊙O的半径为2时,①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是.②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.24.对于平面直角坐标系xOy中的点P和图形M,给出如下定义:若在图形M上存在一点Q,使得P,Q两点间的距离小于或等于1,则称P为图形M的关联点.(1)当⊙O的半径为2时,①在点,,中,⊙O的关联点是;②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为2,点A为(0,1),点B为(﹣1,0).若线段AB 上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.25.在平面直角坐标系xOy中,关于x的二次函数y=x2+px+q的图象过点(﹣1,0),(2,0).(1)求这个二次函数的表达式;(2)求当﹣2≤x≤1时,y的最大值与最小值的差;(3)一次函数y=(2﹣m)x+2﹣m的图象与二次函数y=x2+px+q的图象交点的横坐标分别是a和b,且a<3<b,求m的取值范围.26.如图,∠AOB=90°,OC为∠AOB的平分线,点P为OC上一个动点,过点P作射线PE交OA于点E.以点P为旋转中心,将射线PE沿逆时针方向旋转90°,交OB于点F.(1)根据题意补全图1,并证明PE=PF;(2)如图1,如果点E在OA边上,用等式表示线段OE,OP和OF之间的数量关系,并证明;(3)如图2,如果点E在OA边的反向延长线上,直接写出线段OE,OP和OF之间的数量关系.27.定义:对于平面直角坐标系xOy上的点P(a,b)和抛物线y=x2+ax+b,我们称P(a,b)是抛物线y=x2+ax+b的相伴点,抛物线y=x2+ax+b是点P(a,b)的相伴抛物线.如图,已知点A(﹣2,﹣2),B(4,﹣2),C(1,4).(1)点A的相伴抛物线的解析式为;过A,B两点的抛物线y=x2+ax+b 的相伴点坐标为;(2)设点P(a,b)在直线AC上运动:①点P(a,b)的相伴抛物线的顶点都在同一条抛物线Ω上,求抛物线Ω的解析式;②当点P(a,b)的相伴抛物线的顶点落在△ABC内部时,请直接写出a的取值范围.28.给出如下规定:两个图形G1和G2,点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形G1和G2之间的距离.在平面直角坐标系xOy中,O为坐标原点.(1)点A的坐标为A(1,0),则点B(2,3)和射线OA之间的距离为,点C (﹣3,4)和射线OA之间的距离为.(2)点E的坐标为(1,1),将射线OE绕原点O逆时针旋转90°,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M.①在坐标系中画出图形M,并描述图形M的组成部分;(若涉及平面中某个区域时可以用阴影表示)②将抛物线y=x2﹣2与图形M的公共部分记为图形N,射线OE,OF组成的图形记为图形W,请直接写出图形W和图形N之间的距离.29.在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+1(a<0)上,设抛物线的对称轴为x=t.(1)当m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上,若m>n>1,求t的取值范围及x0的取值范围.30.对于点P(x P,y P)与图形W,如果图形W上存在一点Q(x Q,y Q),使得当x P=x Q时,|y P﹣y Q|≤1,则称点P为图形W的一个“近卫点”.(1)已知A(﹣2,2),B(2,2),在点P1(﹣3,3),P2(﹣1,1),P3(1,4),中,是线段AB的“近卫点”的有;(2)以原点O为圆心,1为半径作⊙O,直线y=x+b与x轴、y轴分别交于C、D两点,若线段CD上任意一点都是⊙O的“近卫点”,求b的取值范围;(3)已知点E(m,0),以点E为中心的正方形s满足以下条件:四条边都平行于坐标轴,且边长为1.若正方形s上存在抛物线的“近卫点”,直接写出m的取值范围.31.已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0).(1)求二次函数C1的对称轴,并写出顶点坐标;(2)已知二次函数C1的图象经过点A(﹣3,1).①求a的值;②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.32.阅读下面的材料:小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数y=x2﹣6x+7的最大值.他画图研究后发现,x=1和x=5时的函数值相等,于是他认为需要对m进行分类讨论.他的解答过程如下:∵二次函数y=x2﹣6x+7的对称轴为直线x=3,∴由对称性可知,x=1和x=5时的函数值相等.∴若1≤m<5,则x=1时,y的最大值为2;若m≥5,则x=m时,y的最大值为m2﹣6m+7.请你参考小明的思路,解答下列问题:(1)当﹣2≤x≤4时,二次函数y=2x2+4x+1的最大值为;(2)若p≤x≤2,求二次函数y=2x2+4x+1的最大值;(3)若t≤x≤t+2时,二次函数y=2x2+4x+1的最大值为31,则t的值为.33.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=﹣x2+(2a﹣2)x ﹣a2+2a上,其中x1<x2.(1)求抛物线的对称轴(用含a的式子表示);(2)①当x=a时,求y的值;②若y1=y2=0,求x1的值(用含a的式子表示).(3)若对于x1+x2<﹣4,都有y1<y2,求a的取值范围.34.已知∠MAN=30°,点B为边AM上一个定点,点P为线段AB上一个动点(不与点A,B重合),点P关于直线AN的对称点为点Q,连接AQ,BQ,点A关于直线BQ的对称点为点C,连接PQ,CP.(1)如图1,若点P为线段AB的中点;①直接写出∠AQB的度数;②依题意补全图形,并直接写出线段CP与AP的数量关系;(2)如图2,若线段CP与BQ交于点D.①设∠BQP=α,求∠CPQ的大小(用含α的式子表示);②用等式表示线段DC,DQ,DP之间的数量关系,并证明.35.对于平面直角坐标系xOy中的图形W,给出如下定义:点P是图形W上任意一点,若存在点Q,使得∠OQP是直角,则称点Q是图形W的“直角点”.(1)已知点A(6,8),在点Q1(0,8),Q2(﹣4,2),Q3(8,4)中,是点A的“直角点”;(2)已知点B(﹣3,4),C(4,4),若点Q是线段BC的“直角点”,求点Q的横坐标n的取值范围;(3)在(2)的条件下,已知点D(t,0),E(t+1,0),以线段DE为边在x轴上方作正方形DEFG.若正方形DEFG上的所有点均为线段BC的“直角点”,直接写出t的取值范围.36.在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c(a<0)上,设抛物线的对称轴为直线x=t.(1)当c=﹣3,t=2时,求抛物线与y轴交点坐标及比较m,n的大小关系;(2)点(x0,m)在抛物线上,且2<x0<3,求t的取值范围,并比较m,n,c的大小关系.37.已知,点O是线段AB的中点,点P是直线l上的任意一点,分别过点A和点B作直线l的垂线,垂足分别为点C和点D.(1)如图1,当点P和点O重合时,直接写出OC与OD的数量关系;(2)如图2,当P为线段AB上任意一点时,①依题意补全图形;②请用等式表示线段OC和OD的数量关系,并证明;(3)如图3,若∠COD=60°,请用等式直接写出AC、BD、OC之间的数量关系.38.对于⊙C与⊙C上一点A,若平面内的点P满足:射线AP与⊙C交于点Q,且P A=2QA,则称点P为点A关于⊙C的“倍距点”,已知平面直角坐标系xOy中,点A的坐标是(2,0).(1)如图1,点O是坐标原点,⊙O的半径是2,点P是点A关于⊙O的“倍距点”.①若点P在x轴的负半轴上,直接写出点P的坐标;②若点P在第二象限,且∠P AO=45°,求点P的坐标;(2)设点T(t,0),以T为圆心,TA长为半径作⊙T,直线y=﹣x+4分别与x轴、y 轴交于点D、E,若直线y=﹣x+4上存在点P,使得P是点A关于⊙T的“倍距点”,求t的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018西城一模28.对于平面内的⊙和⊙外一点,给出如下定义:若过点的直线与⊙存在公共点,记为点,,设,则称点(或点)是⊙的“相关依附点”,特别地,当点和点重合时,规定,(或). 已知在平面直角坐标系中,,,⊙的半径为. (1)如图,当时,①若是⊙的“相关依附点”,则的值为__________.②是否为⊙的“相关依附点”.答:__________(填“是”或“否”). (2)若⊙上存在“相关依附点”点, ①当,直线与⊙相切时,求的值. ②当时,求的取值范围.(3)若存在的值使得直线与⊙有公共点,且公共点时⊙的附点”,直接写出的取值范围.C C Q Q C A B AQ BQk CQ+=A B C k A B AQ BQ =2AQ k CQ =2BQCQxOy (1,0)Q -(1,0)C C r1r 1(0,1)A C k k 2(1A +C 2C k M 1r =QM C k k =r r y b =+C C b x2018平谷一模28. 在平面直角坐标系xOy 中,点M 的坐标为,点N 的坐标为,且,,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (),则以AB 为边的“坐标菱形”的最小内角为_______;(2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O ,点P的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.2018石景山一模28.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心, AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图.... (1)已知点A 的坐标为,点的坐标为, 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为,若直线上只存在一个点B ,使得点A ,B 的“确定圆”的面积为,求点B 的坐标;(3)已知点A 在以为圆心,以1为半径的圆上,点B 在直线上, 若要使所有点A ,B 的“确定圆”的面积都不小于,直接写出的取值范围.()11,x y ()22,x y 12x x ≠12y y ≠(1,0)-B (3,3)(0,0)y x b =+9π(0)P m ,y x =9πm2018怀柔一模28. P 是⊙C 外一点,若射线..PC 交⊙C 于点A ,B 两点,则给出如下定义:若0<PA PB ≤3,则点P 为⊙C 的“特征点”. (1)当⊙O 的半径为1时.①在点P 1(,0)、P 2(0,2)、P 3(4,0)中,⊙O 的“特征点”是 ;②点P 在直线y=x+b 上,若点P 为⊙O 的“特征点”.求b 的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y=x+1与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是...⊙C 的“特征点”,直接写出点C 的横坐标的取值范围.2018海淀一模28.在平面直角坐标系中,对于点和⊙,给出如下定义:若⊙上存在一点不与重合,使点关于直线的对称点在⊙上,则称为⊙的反射点.下图为⊙的反射点的示意图.(1)已知点的坐标为,⊙的半径为,①在点,,中,⊙的反射点是____________; ②点在直线上,若为⊙的反射点,求点的横坐标的取值范围; (2)⊙的圆心在轴上,半径为,轴上存在点是⊙的反射点,直接写出圆心的横坐标的取值范围.⋅2xOy P C C T O P OT 'P C P C C P A (1,0)A 2(0,0)O (1,2)M (0,3)N -A P y x =-P A P C x 2y P C C x2018朝阳一模28. 对于平面直角坐标系中的点P 和线段AB ,其中A (t ,0)、B (t +2,0)两点,给出如下定义:若在线段AB 上存在一点Q ,使得P ,Q 两点间的距离小于或等于1,则称P 为线段AB 的伴随点. (1)当t =-3时,①在点P 1(1,1),P 2(0,0),P 3(-2,-1)中,线段AB 的伴随点是 ; ②在直线y =2x +b 上存在线段AB 的伴随点M 、N , 且MN ,求b 的取值范围;(2)线段AB 的中点关于点(2,0)的对称点是C ,将射线CO 以点C 为中心,顺时针旋转30°得到射线l ,若射线l 上存在线段AB 的伴随点,直接写出t 的取值范围.2018东城一模28.给出如下定义:对于⊙O 的弦MN 和⊙O 外一点P (M ,O ,N 三点不共线,且P ,O 在直线MN 的异侧),当∠MPN +∠MON=180°时,则称点 P 是线段MN 关于点O 的关联点.图1是点P 为线段MN 关于点O 的关联点的示意图.在平面直角坐标系xOy 中,⊙O 的半径为1.(1)如图2, ,.在A (1,0),B (1,1),三点中,是线段MN 关于点O 的关联点的是 ;(2)如图3, M (0,1),N ,点D 是线段 MN 关于点O 的关联点.①∠MDN 的大小为 °; ②在第一象限内有一点E,点E 是线段MN 关于点O 的关联点,判断△MNE 的形状,并直接写出点E 的坐标;xOy 5=22,22M ⎛⎫ ⎪ ⎪⎝⎭22,22N ⎛⎫- ⎪ ⎪⎝⎭()2,0C 31,22⎛⎫- ⎪ ⎪⎝⎭()3,m m③点F 在直线上,当∠MFN ≥∠MDN 时,求点F 的横坐标的取值范围.2018丰台一模28.对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P 为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x . 已知,点A (-3,0),B (0,4),C (4,0). (1)连接BC ,在点D (,0),E (0,1),F (0,)中,可以成为点A 和线段BC 的“中立点”的是____________;(2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点K 可以成为点A 和⊙G 的“中立点”,求点K 的坐标;(3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.2018房山一模 28. 在平面直角坐标系xOy P 为图形W 的“梦之点”. (1)已知⊙O 的半径为1. ①在点E (1,1),F (-22 ,-22),M (-2,-2)中,⊙O 的“梦之点”为 ; ②若点P 位于⊙O 内部,且为双曲线(k ≠0)的“梦之点”,求k 的取值范围. (2)已知点C 的坐标为(1,t ),⊙C 的半径为 2 ,若在⊙C 上存在“梦之点”P ,直接写出t 的取值范围.(3)若二次函数的图象上存在两个“梦之点”,,且23y x =-+F x 1212ky x=21y ax ax =-+()11Ax ,y ()22B x ,y,求二次函数图象的顶点坐标.2018门头沟一模28. 在平面直角坐标系xOy 中,点M 的坐标为,点N 的坐标为,且,,我们规定:如果存在点P ,使是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的 “和谐点”. (1)已知点A 的坐标为)3,1(,①若点B 的坐标为)3,3(,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标;②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为,点D 为点E 、F ),(n m 的“和谐点”,若使得△DEF 与⊙O 有交点,画出示意图直接.....写出半径的取值范围.备用图1 备用图2018顺义一模28.如图1,对于平面内的点P 和两条曲线、给出如下定义:若从点P 任意引出一条射线分别与、交于、,总有是定值,我们称曲线与“曲似”,定值为“曲似比”,点P 为“曲心”.例如:如图2,以点O'为圆心,半径分别为、(都是常数)的两个同心圆、,从点O'任意引出一条射线分别与两圆交于点M 、N ,因为总有是定值,所以同心圆与曲似,曲似比为,“曲心”为O'.122x x -=11(,)x y 22(,)x y 12x x ≠12y y =MNP ∆r (1,4)(1,2)r 1L 2L 1L 2L 1Q 2Q 12PQ PQ 1L 2L 12PQ PQ 1r 2r 1C 2C 12''r O M O N r =1C 2C 12r r2L 1图2(1)在平面直角坐标系xOy 中,直线与抛物线、分别交于点A 、B ,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O 为圆心,OA 为半径作圆,过点B 作x 轴的垂线,垂足为C ,是否存在k 值,使⊙O 与直线BC 相切?若存在,求出k 的值;若不存在,说明理由; (3)在(1)、(2)的条件下,若将“”改为“”,其他条件不变,当存在⊙O 与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.2018通州一模28.在平面直角坐标系xOy 中有不重合的两个点()11,y x Q 与()22y x P ,.若Q ,P 为某个直角三角形的两个锐角顶点,且该直角三角形的直角边均与或轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和定义为点Q 与点P 之间的“直距”.例如在下图中,点,,则该直角三角形的两条直角边长为1和2,此时点Q 与点P 之间的“直距”.特别地,当与某条坐标轴平行(或重合)时,线段的长即为点Q 与点P 之间的“直距”.(1)①已知O 为坐标原点,点,,则_______=AO D ,_______=BO D ; ② 点在直线上,请你求出的最小值;(2)点是以原点O 为圆心,1为半径的圆上的一个动点;点是直线上一动点.请你直接写出点与点之间“直距”的最小值.y kx =2y x =212y x =212y x =21y x m=x y PQ D ()1,1P ()3,2Q =3PQ D PQ PQ ()2,1A -()2,0B -C 3y x =-+CO D E F 24y x =+E F EF D。

相关文档
最新文档