函数的概念学案
第01课函数的概念及其表示(学案)(原卷版)

第01课 函数的概念及其表示-2024年新高考数学一轮复习考点逐点突破经典学案 考试要求:1. 了解构成函数的要素,会求简单函数的定义域和值域.2. 在实际情景中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3. 了解简单的分段函数,并能简单应用.一、【考点逐点突破】【考点1】概念:一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.【典例】下列各曲线表示的y 与x 之间的关系中,y 不是x 的函数的是( )【考点2】同一个函数:(1)前提条件:①定义域相同;②对应关系相同.(2)结论:这两个函数为同一个函数.【典例】(多选)下列各组函数是同一个函数的是( )A .f (x )=x 2-2x -1,g (s )=s 2-2s -1B .f (x )=x -1,g (x )=x 2-1x +1C .f (x )=x 2,g (x )=⎩⎨⎧x ,x ≥0,-x ,x <0 D .f (x )=-x 3,g (x )=x -x【考点3】函数的表示方法:解析法、图象法和列表法.【典例】将一条长为10 cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各作一个正方形.试用多种方法表示两个正方形的面积之和S 与其中一段铁丝长x (x 属于正整数集)的函数关系.【考点4】分段函数:(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数表示的是一个函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集.【典例】已知函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,则f (f (1))=( ) A .-12B .2C .4D .11【考点5】 分式型函数定义域,分母不为零的实数集合.【典例】函数f (x )=1ln (x +1)+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2] 【考点6】偶次方根型函数定义域,被开方式非负的实数集合.【典例】函数f (x )=3x x -1+ln(2x -x 2)的定义域为( ) A .(2,+∞)B .(1,2)C .(0,2)D .[1,2]【考点7】f (x )为对数式时,函数的定义域是真数为正数、底数为正且不为1的实数集合.【典例】函数f (x )=3-x lg x 的定义域是( )A.(0,3)B.(0,1)∪(1,3)C.(0,3]D.(0,1)∪(1,3]【考点8】若f (x )=x 0,则定义域为{x |x ≠0}.【典例】函数f (x )=(x +1)02-x的定义域为________. 【考点9】抽象函数定义域【典例】“若函数f (x +1)的定义域为[0,2]”,则函数f (x -1)的定义域为________. 【考点10】已知函数定义域求参数的范围【典例】若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是________.【考点11】换元法求函数解析式 【典例】已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )的解析式为________. 【考点12】用待定系数法求函数的解析式【典例】已知y =f (x )是二次函数,若方程f (x )=0有两个相等实根,且f ′(x )=2x +2,则f (x )=________.【考点13】用解方程组的方法求函数的解析式【典例】已知函数对任意的x 都有f (x )-2f (-x )=2x ,则f (x )=________.【考点14】用配凑法求函数的解析式【典例】已知f ⎝ ⎛⎭⎪⎫x 2+1x 2=x 4+1x 4,则f (x )=__________. 【考点15】求分段函数的函数值【典例】设函数f (x )=⎩⎨⎧x 2-1(x ≥2),log 2x (0<x <2),若f (m )=3,则f ⎝ ⎛⎭⎪⎫52-m =________. 【考点16】分段函数与方程问题【典例】已知函数f (x )=⎩⎨⎧ 2x ,x >0,x +1,x ≤0.若f (a )+f (1)=0,则实数a 的值等于( ) A .-3 B .-1 C .1 D .3【考点17】分段函数与不等式问题【典例】已知函数f (x )=⎩⎪⎨⎪⎧ log 2x ,x ≥1,11-x,x <1,则不等式f (x )≤1的解集为( ) A .(-∞,2]B .(-∞,0]∪(1,2]C .[0,2]D .(-∞,0]∪[1,2]【考点18】分段函数求参数问题【典例】已知函数f (x )=⎩⎨⎧x 2+x ,x ≥0,-3x ,x <0,若a [f (a )-f (-a )]>0,则实数a 的取值范围为________. 【考点19】求初等函数在特定区间上的值域【典例】求函数y =x 2-2x +3,x ∈[0,3)的值域【考点20】用分离常数法求值域【典例】求函数y =2x +1x -3的值域 【考点21】用换元法求值域【典例】y =2x -x -1【考点22】用单调性求值域【典例】y =x +1+x -1【考点23】函数的新定义问题【典例】在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f (x )的图象恰好经过n (n ∈N *)个整点,则称函数f (x )为“n 阶整点函数”.给出下列函数:①f (x )=sin 2x ;②g (x )=x 3;③h (x )=⎝ ⎛⎭⎪⎫13x ;④φ(x )=ln x . 其中是一阶整点函数的是( )A .①②③④B .①③C .①④D .④二、【考点教材拓广】【典例1】【教材第73页第15题】如图所示, 一座小岛距离海岸线上最近的点P 的距离是2 km , 从点P 沿海岸正东12 km 处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3 km/h , 步行的速度是5 km/h,t (单位: h )表示他从小岛到城镇的时间, x (单位: km )表示此人将船停在海岸处距点P 的距离. 请将t 表示为x 的函数.(2)如果将船停在距点P4 km 处, 那么从小岛到城镇要多长时间 (精确到 1 h )?【典例2】【教材第74页第16题】给定数集 A =R,B =(−∞,0], 方程u 2+2v =0,(1) 任给 u ∈A , 对应关系f 使方程(1)的解v 与u 对应, 判断 v =f (u ) 是否为函数;(2) 任给 v ∈B , 对应关系g 使方程(1)的解u 与v 对应, 判断 u =g (v ) 是否为函数.【典例3】【教材第74页第17题】探究是否存在函数f (x ),g (x ) 满足条件:(1) 定义域相同, 值域相同,但对应关系不同;(2) 值域相同,对应关系相同,但定义域不同.【典例4】【教材第74页第18题】在一个展现人脑智力的综艺节目中, 一位参加节目的少年能将圆周率 π 准确地记忆到小数点后面 200 位, 更神奇的是, 当主持人说出小数点后面的位数时, 这位少年都能准确地说出该数位上的数字. 如果记圆周率π小数点后第n 位上的数字为y , 那么你认为y 是n 的函数吗? 如果是, 请写出函数的定义域、值域与对应关系; 如果不是, 请说明理由.三、【考点真题回归】【典例1】【2022·北京卷】函数f (x )=1x +1-x 的定义域是________.【典例2】【2018·高考全国卷Ⅰ】设函数f (x )=⎩⎨⎧2-x ,x ≤01,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)【典例3】【2023·扬州调研】已知g (x )=f (2x -1)+1,且g (x )的定义域为(1,4],值域为[3,+∞),设函数f (x )的定义域为A ,值域为B ,则A ∩B =( )A.∅B.[4,7]C.[2,7]D.⎣⎢⎡⎦⎥⎤2,52【典例4】【2023·长沙调考】(多选)下列说法中正确的是( )A.式子y =x -1+-x -1可表示自变量为x 、因变量为y 的函数B.函数y =f (x )的图象与直线x =1的交点最多有1个C.若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=1 D.f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数【典例5】【2023·长春检测】函数y =1+x -1-2x 的值域为________.【典例6】【2023·百校联盟联考】已知函数f (x )=⎩⎨⎧ x 3,x ≥0,-x 2,x <0,若对于任意的x ∈R ,|f (x )|≥ax ,则a =________.【典例7】【2023·重庆质检】已知函数f (x )=⎩⎨⎧ log 2x ,x >1,x 2-1,x ≤1,则f (x )<f (x +1)的解集为________. 【典例8】【2023·安徽江淮十校联考】设函数f (x )=⎩⎪⎨⎪⎧ 4x -12,x <1,a x ,x ≥1,若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=8,则a 等于( )A.12B.34 C .1 D .2。
3.1.1(第1课时)函数的概念 学案(含答案)

3.1.1(第1课时)函数的概念学案(含答案)3.13.1函数的概念与性质函数的概念与性质33..1.11.1函数及其表示方法函数及其表示方法第第11课时课时函数的概念函数的概念学习目标1.在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念.2.体会集合语言和对应关系在刻画函数概念中的作用.3.了解构成函数的要素,能求简单函数的定义域和值域.知识点一函数的有关概念函数的定义给定两个非空实数集A与B,以及对应关系f,如果对于集合A中的每一个实数x,在集合B中都有唯一确定的实数y与x对应,则称f为定义在集合A上的一个函数函数的记法yfx,xA定义域x 称为自变量,y称为因变量,自变量取值的范围即数集A称为函数的定义域值域所有函数值组成的集合yB|yfx,xA称为函数的值域知识点二同一个函数一般地,函数有三个要素定义域,对应关系与值域如果两个函数表达式表示的函数定义域相同,对应关系也相同,则称这两个函数表达式表示的就是同一个函数特别提醒两个函数的定义域和对应关系相同就决定了这两个函数的值域也相同思考定义域和值域分别相同的两个函数是同一个函数吗答案不一定,如果对应关系不同,这两个函数一定不是同一个函数1任何两个集合之间都可以建立函数关系2已知定义域和对应关系就可以确定一个函数3若函数的定义域只有一个元素,则值域也只有一个元素4函数yfxx2,xA与uftt2,tA表示的是同一个函数一.函数关系的判断例11多选下列两个集合间的对应中,是A 到B的函数的有AA1,0,1,B1,0,1,fA中的数的平方BA0,1,B1,0,1,fA中的数的开方CAZ,BQ,fA中的数的倒数DA1,2,3,4,B2,4,6,8,fA中的数的2倍答案AD解析A选项121,020,121,为一一对应关系,是A到B的函数B选项00,11,集合A中的元素1在集合B中有两个元素与之对应,不符合函数定义,不是A到B的函数C选项A中元素0的倒数没有意义,不符合函数定义,不是A到B的函数D选项122,224,326,428,为一一对应关系,是A到B的函数2设Mx|0x2,Ny|0y2,给出如图所示的四个图形其中,能表示从集合M到集合N的函数关系的个数是A0B1C2D3答案B解析中,因为在集合M中当1x2时,在N中无元素与之对应,所以不是;中,对于集合M中的任意一个数x,在N中都有唯一的数与之对应,所以是;中,x2对应元素y3N,所以不是;中,当x1时,在N中有两个元素与之对应,所以不是因此只有是反思感悟1判断对应关系是否为函数的两个条件A,B必须是非空实数集A中任意一元素在B中有且只有一个元素与之对应对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系2根据图形判断对应关系是否为函数的方法任取一条垂直于x轴的直线l.在定义域内平行移动直线l.若l与图形有且只有一个交点,则是函数;若在定义域内有两个或两个以上的交点,则不是函数跟踪训练11下列对应关系式中是A到B的函数的是AAR,BR,x2y21BA1,0,1,B1,2,y|x|1CAR,BR,y1x2DAZ,BZ,y2x1答案B解析对于A,x2y21可化为y1x2,显然对任意xAx1除外,y值不唯一,故不符合函数的定义;对于B,符合函数的定义;对于C,2A,在此时对应关系无意义,故不符合函数的定义;对于D,1A,但在集合B中找不到与之相对应的数,故不符合函数的定义2判断下列对应关系f是否为定义在集合A 上的函数AR,BR,对应关系fy1x2;A1,2,3,BR,f1f23,f34;A1,2,3,B4,5,6,对应关系如图所示解AR,BR,对于集合A中的元素x0,在对应关系fy1x2的作用下,在集合B中没有元素与之对应,故所给对应关系不是定义在A上的函数由f1f23,f34,知集合A中的每一个元素在对应关系f的作用下,在集合B中都有唯一的元素与之对应,故所给对应关系是定义在A上的函数集合A 中的元素3在集合B中没有与之对应的元素,且集合A中的元素2在集合B中有两个元素5和6与之对应,故所给对应关系不是定义在A上的函数二.求函数的定义域.函数值和值域命题角度1求函数的定义域例2求下列函数的定义域1fxx12x11x;2fx5x|x|3;3fx3xx1.解1要使函数有意义,自变量x的取值必须满足x10,1x0.解得x1,且x1,即函数定义域为x|x1,且x12要使函数有意义,自变量x的取值必须满足5x0,|x|30,解得x5,且x3,即函数定义域为x|x5,且x33要使函数有意义,自变量x的取值必须满足3x0,x10,解得1x3,所以这个函数的定义域为x|1x3延伸探究在本例3条件不变的前提下,求函数yfx1的定义域解由1x13得0x2.所以函数yfx1的定义域为0,2反思感悟求函数定义域的常用依据1若fx是分式,则应考虑使分母不为零2若fx是偶次根式,则被开方数大于或等于零3若fx是由几个式子构成的,则函数的定义域要使各个式子都有意义4若fx是实际问题的解析式,则应符合实际问题,使实际问题有意义跟踪训练2函数y2x23x214x的定义域为________________答案,122,4解析由2x23x20,4x0,4x0,得x12或2x4,所以定义域为,122,4命题角度2求函数值例3已知fx12xxR,且x2,gxx4xR1求f1,g1,gf1的值;2求fgx解1f11211,g1145,gf1g15.2fgxfx412x412x1x2xR,且x2反思感悟求函数值的方法1已知fx的表达式时,只需用a替换表达式中的x即得fa的值2求fga的值应遵循由里往外的原则跟踪训练3已知fx11xxR,且x1,gxx22xR,则f2______,fg2______,fgx________.答案13171x23解析fx11x,f211213.又gxx22,g22226,fg2f611617.fgx11gx1x23.命题角度3求值域例4求下列函数的值域1y2x1,x1,2,3,4;2y3x1x1;3yxx.解1当x1时,y3;当x2时,y5;当x3时,y7;当x4时,y9.所以函数y2x1,x1,2,3,4的值域为3,5,7,92借助反比例函数的特征y3x14x134x1x1,显然4x1可取0以外的一切实数,即所求函数的值域为y|y33设uxx0,则xu2u0,则yu2uu12214u0由u0,可知u12214,所以y0.所以函数yxx的值域为0,反思感悟求函数值域常用的四种方法1观察法对于一些比较简单的函数,其值域可通过观察得到2配方法当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法求其值域3分离常数法此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;4换元法即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域对于fxaxbcxd其中a,b,c,d为常数,且a0型的函数常用换元法跟踪训练4求下列函数的值域1y2x1x3;2y2xx1.解1分离常数法y2x1x32x37x327x3,显然7x30,所以y2.故函数的值域为,22,2换元法设tx1,则xt21,且t0,所以y2t21t2t142158,由t0,再结合函数的图像如图,可得函数的值域为158,.三.同一个函数的判定例5多选下列各组函数表示同一个函数的是Afxx,gxx2Bfxx21,gtt21Cfx1x0,gxxxDfxx,gx|x|答案BC 解析A中,由于fxx的定义域为R,gxx2的定义域为x|x0,它们的定义域不相同,所以它们不是同一个函数B中,函数的定义域.值域和对应关系都相同,所以它们是同一个函数C中,由于gxxx1的定义域为x|x0,故它们的定义域相同,所以它们是同一个函数D中,两个函数的定义域相同,但对应关系不同,所以它们不是同一个函数反思感悟在两个函数中,只有当定义域.对应关系都相同时,两函数才是同一个函数值域相等,只是前两个要素相等的必然结果跟踪训练5下列各组式子是否表示同一个函数为什么1fx|x|,tt2;2y1x1x,y1x2;3y3x2,yx3.解1fx与t的定义域相同,又tt2|t|,即fx与t的对应关系也相同,fx与t是同一个函数2y1x1x的定义域为x|1x1,y1x2的定义域为x|1x1,即两者定义域相同又y1x1x1x2,两函数的对应关系也相同故y1x1x与y1x2是同一个函数3y3x2|x3|与yx3的定义域相同,但对应关系不同,y3x2与yx3不是同一个函数1若Ax|0x2,By|1y2,下列图形中能表示以A为定义域,B为值域的函数的是答案B解析A中值域为y|0y2,故错误;C,D中值域为1,2,故错误2若fxx1,则f3等于A2B4C22D10答案A解析因为fxx1,所以f3312.3函数y1xx的定义域为Ax|x1Bx|x0Cx|x1或x0Dx|0x1答案D解析由题意可知1x0,x0,解得0x1.4如果函数yx22x的定义域为0,1,2,3,那么其值域为A1,0,3B0,1,2,3Cy|1y3Dy|0y3答案A解析当x取0,1,2,3时,y 的值分别为0,1,0,3,则其值域为1,0,35下列四个图像中,不是以x为自变量的函数的图像是答案C解析根据函数定义,可知对自变量x的任意一个值,都有唯一确定的实数函数值与之对应,显然选项A,B,D满足函数的定义,而选项C不满足1知识清单1函数的概念2函数的定义域.值域3同一个函数的判定2方法归纳观察法.换元法.配方法.分离常数法3常见误区1定义域中的每一个自变量都有唯一确定的值与其相对应2自变量用不同字母表示不影响相同函数的判断。
教学案8---2.1.1《函数的概念》

6、f (a)表示当 x = a 时,函数 f (x)的值,是一个常量. 例 7:求函数的解析式 1)已知函数 f(x)= x ,求 f(x-1)。
2
2)已知函数 f(x-1)= x ,求 f(x)。
2
6.如何检验给定两个变量之间是否具有函数关系? (1)定义域和对应法则是否给定; (2)根据给出的对应法则,自变量 x 在其定义域中的每一个值,是否都能确定唯一的函数值 y. 7.区间的概念: 设 a, b R, 且 a<b, ,叫闭区间,记作: ,叫开区间 ,记作: 叫半开半闭区间,分别记作: 其中 a 与 b 叫做区间的 。 , 例 8、分别满足 x a, x>a, x a, x<a 的全体实数的集合分别记作:
x
oxoFra bibliotekxo
x
A
B
C
D
练习: 设 M={x| 0 x 2 }, N={y| 1 y 2 },给出下列四个图像, 其中能表示从集合 M 到集合 N 的函数关系的有____ 个。
A. 题型二:相同函数的判断问题
B.
C.
D.
例 2:已知下列四组函数:① y
x 与 y=1 ② y x 2 与 y=x ③ y x 1 x 1 与 y 1 x 2 x
x 2 , y ( x )2 ;
x 1. x 1 , y x2 1 ;
4) y 1 x. 1 x , y 1 x 2 ;
例 10 :求下列函数的定义域: 1) y 2 x 1 7 x ; 2) y
1 x x
;
3)已知函数 f(x)=3x-4 的值域为[-10,5],则其定义域为 小结:求函数的定义域,就是求使这个解析式有意义的自变量的取值的集合,一般转化为解不等式(或不等式组) 例 11: 求函数 f(x)=3x-1({x| 1 x 1且x Z })的值域。
高中数学第二章函数 函数概念学案含解析北师大版必修1

§2对函数的进一步认识2.1函数概念知识点一函数的有关概念[填一填]1.定义2.相关名称(1)自变量是x.(2)函数的定义域是集合A.(3)函数的值域是集合B.3.函数的记法集合A上的函数可记作:f:A→B或y=f(x),x∈A.[答一答]1.任何两个集合之间都可以建立函数关系吗?提示:不是.首先这两个集合必须为数集,其次满足对一个集合中的任意一个数x,在另一个集合中都有唯一确定的数与之对应.2.对于一个函数y=f(x),在定义域内任取一个x值,有几个函数值与其对应?提示:有唯一确定的一个函数值与其对应.3.f(x)与f(a)的区别与联系是什么?提示:当x和a都表示自变量时,f(x)与f(a)为同一个函数,但自变量表示不同.f(x)表示以x为自变量的函数.f(a)表示以a为自变量的函数.当x表示自变量,a表示常量时,(1)区别:f(a)是当x=a时函数f(x)的值,是一个常量,而f(x)是自变量x的函数,一般情况下它是一个变量.(2)联系:f(a)是f(x)的一个特殊值.4.如何理解函数的对应法则?提示:对应法则指的是自变量与因变量之间的存在关系.知识点二区间及有关概念[填一填]1.区间的定义条件:a<b(a,b为实数).结论:区间闭区间开区间左闭右开区间左开右闭区间符号[a,b](a,b)[a,b)(a,b]定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a} 符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)5.数集都能用区间表示吗?提示:不能.连续不间断数集可以用区间表示.不连续数集不能用区间表示.6.“∞”是一个数吗?提示:“∞”不是一个数,它指的是“无穷大”.7.区间之间可以像集合之间那样进行“交、并、补”运算吗?若A=(1,+∞),B=(-∞,2],A∩B如何表示?提示:可以运算.A∩B=(1,2].1.对函数概念的三点说明(1)函数必须是建立在非空数集上的一个概念.若自变量的取值为空集,则这时函数是不存在的.(2)根据函数的概念,两个变量之间是否具有函数关系需要检验:定义域和对应法则是否给出;在对应法则之下每一个x是否只与唯一的y对应.(3)由于函数的值域被函数的定义域和对应法则完全确定,这样确定一个函数就只需要函数的定义域和对应法则,从而判定两个函数是否为同一个函数只需看其定义域和对应法则是否相同即可.2.对函数符号y=f(x)的理解在这个函数符号y=f(x)中,x是自变量,f表示的是对应法则,它可以看作是对x施行的某种运算法则,可以是一个代数式、也可以是一个表格,还可以是一个图像.3.f(x)与f(a)的区别与联系当x和a都表示自变量时,f(x)与f(a)为同一个函数,但自变量表示不同.f(x)表示以x为自变量的函数.f(a)表示以a为自变量的函数.当x表示自变量,a表示常量时,(1)区别:f(a)是当x=a时函数f(x)的值,是一个常量.而f(x)是自变量x的函数,一般情况下它是一个变量.(2)联系:f (a )是f (x )的一个特殊值. 4.对区间的四点说明(1)区间表示的就是一个集合,只是一个特殊的集合——非空数集. (2)区间的左端点对应的值一定比右端点对应的值小.(3)区间的端点在区间内则写成闭的,如果不在区间内则写成开的.(4)在数轴上表示区间时,用实心的点表示闭区间的端点,用空心点表示开区间的端点.类型一 相同函数的判断【例1】 下列各组函数是否表示同一个函数? (1)f (x )=2x +1与g (x )=4x 2+4x +1; (2)f (x )=x 2-xx与g (x )=x -1;(3)f (x )=|x -1|与g (x )=⎩⎪⎨⎪⎧x -1 (x ≥1),1-x (x <1);(4)f (n )=2n -1与g (n )=2n +1(n ∈Z ); (5)f (x )=x 2-2x 与g (t )=t 2-2t .【思路探究】 根据解析式判断两个函数f (x )和g (x )是否是同一个函数的步骤是:①先求函数f (x )和g (x )的定义域,如果定义域不同,那么它们不相同,如果定义域相同,再执行下一步;②化简函数的解析式,如果化简后的函数解析式相同,那么它们相同,否则它们不相同.【解】 (1)g (x )=|2x +1|,f (x )与g (x )的对应关系不同,因此是不同的函数. (2)f (x )=x -1(x ≠0),f (x )与g (x )的定义域不同,因此是不同的函数.(3)f (x )=⎩⎪⎨⎪⎧x -1 (x ≥1)1-x (x <1),f (x )与g (x )的定义域相同,对应关系相同,因此是相同的函数.(4)f (n )与g (n )的对应关系不同,因此是不同的函数.(5)f (x )与g (t )的定义域相同,对应关系相同,自变量用不同字母表示,仍为同一函数. 规律方法 函数概念含有三个要素,即定义域A ,值域C 和对应关系f ,其中核心是对应关系f ,它是函数关系的本质特征.只有当两个函数的定义域和对应关系都分别相同时,这两个函数才是同一函数.换言之就是:(1)定义域不同,两个函数也就不同. (2)对应关系不同,两个函数也是不同的.(3)即使定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应关系.(1)下列每组函数是同一函数的是( B ) A .f (x )=x -1,g (x )=(x -1)2B .f (x )=|x -3|,g (x )=(x -3)2C .f (x )=x 2-4x -2,g (x )=x +2D .f (x )=(x -1)(x -3),g (x )=x -1·x -3 (2)下列每组中两个函数是同一函数的组数为3. ①f (x )=x 2+1和f (v )=v 2+1 ②y =1-x 2|x +2|和y =1-x 2x +2③y =x 和y =x 3+x x 2+1解析:①中对应法则相同,定义域相同,只是表示自变量的字母不同,所以是同一函数. ②中定义域相同,化简后对应法则相同,所以是同一函数. ③化简后对应法则相同,定义域也都是R ,所以是同一函数. 类型二 求函数的定义域 【例2】 求下列函数的定义域. (1)f (x )=4-xx +1; (2)y =-x2x 2-3x -2;(3)f (x )=2x +3-12-x +1x; (4)y =31-1-x.【思路探究】 若一个函数是由两个或两个以上的数学式子的和、差、积、商构成的,则定义域是使各部分有意义的自变量的取值集合的交集.【解】 (1)由已知得⎩⎪⎨⎪⎧4-x ≥0,x +1≠0,解得x ≤4且x ≠-1.所求定义域为{x |x ≤4且x ≠-1}.(2)由已知得⎩⎪⎨⎪⎧-x ≥0,2x 2-3x -2≠0,解得x ≤0且x ≠-12.所求定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤0且x ≠-12. (3)由已知得⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0,解得-32≤x <2且x ≠0.所求定义域为⎩⎨⎧⎭⎬⎫x |-32≤x <2且x ≠0.(4)由已知得⎩⎨⎧1-x ≥0,1-1-x ≠0,解得x ≤1且x ≠0.所求定义域为{x |x ≤1且x ≠0}.规律方法 函数y =f (x )以解析式的形式给出时,函数的定义域就是使这个解析式有意义的自变量的取值范围,具体来说,常有以下几种情况:(1)f (x )为整式型函数时,定义域为R ;(2)f (x )为分式型函数时,定义域为使分母不为零的实数的集合; (3)f (x )为偶次根式型函数时,定义域为使被开方数非负的实数的集合; (4)函数y =x 0中的x 不为0;(5)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合,即列出不等式组求各不等式解集的交集.求下列函数的定义域: (1)f (x )=1x -2; (2)f (x )=2x +6; (3)f (x )=1-x +15+x ;(4)f (x )=4-x 22+x.解:(1)因为使式子1x -2有意义的实数的集合为{x |x ≠2},所以函数f (x )=1x -2的定义域为{x |x ≠2}.(2)因为使式子2x +6有意义的实数的集合为{x |x ≥-3},所以函数f (x )=2x +6的定义域为{x |x ≥-3}.(3)因为使式子1-x 有意义的实数的集合为{x |x ≤1},使式子15+x有意义的实数的集合为{x |x ≠-5},所以函数f (x )=1-x +15+x的定义域为{x |x ≤1,且x ≠-5}.(4)因为使式子4-x 22+x 有意义的实数的集合为{x |x ≠-2},所以函数f (x )=4-x 22+x 的定义域为{x |x ≠-2}.类型三 求函数的值域 【例3】 求下列函数的值域: (1)y =12x 2-1,x ∈{-1,0,1,2,3,4};(2)y =3+x 4-x ;(3)y =2x 2-4x +3; (4)y =1-x 21+x 2.【思路探究】 求函数的值域就是通过函数定义域中x 的取值,根据对应关系确定y 的取值.【解】 (1)(观察法)将x =-1,0,1,2,3,4分别代入y =12x 2-1,得y =-12,-1,-12,1,72,7.∴此函数的值域为⎩⎨⎧⎭⎬⎫-1,-12,1,72,7.(2)方法1(分离常数法):y =3+x 4-x =-(4-x )+74-x =-1+74-x. ∵74-x≠0,∴y ≠-1,∴此函数的值域为{y |y ≠-1}. 方法2(反解法):∵y =3+x4-x ,∴4y -xy =x +3,∴x =4y -3y +1,y ≠-1,∴此函数的值域为{y |y ≠-1}.(3)(配方法)∵2x 2-4x +3=2(x -1)2+1≥1, ∴y =2x 2-4x +3≥1=1, ∴此函数的值域为[1,+∞).(4)(分离常数法)∵y =1-x 21+x 2=-1+21+x 2,而该函数的定义域为R , ∴1+x 2≥1,∴0<21+x 2≤2,∴-1<-1+21+x 2≤1,∴此函数的值域为(-1,1].规律方法 求函数的值域时,一定要将最终的结果表示成集合或者区间的形式.在用列举法表示函数的值域时,如(1),要注意相同的元素归入一个集合时,只能算作一个.(1)如果f (x )=x 2-x -6,则f (5)=14. (2)函数y =8x 2(1≤x ≤2)的值域为[2,8].(3)函数y =2x 3x -4的值域是(-∞,23)∪(23,+∞).解析:(1)由f (x )=x 2-x -6得f (5)=25-5-6=14. (2)因为1≤x ≤2,所以1≤x 2≤4,14≤1x 2≤1,故2≤8x2≤8.(3)y =2x 3x -4=23(3x -4)+833x -4=23+83(3x -4),因为83(3x -4)恒不为零,而且可以取到其他的所有实数,所以y ≠23.——易错误区—— 忽视函数的定义域导致的错误【例4】 若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图像可能是( )【错解】 选A 或选D.【正解】 B 选项A 中,在集合M 中,当x >0时的元素在N 中没有数与之对应①,不符合函数的定义; 选项C 中,一个变量x 可能对应着两个y 的值,也不符合函数的定义; 选项D 中,一个x 对应着一个y ,但N 为值域②,所以集合N 中的每一个数在M 中也必须有数与之对应,但是N 中存在数在M 中没有数与之对应.故选B.【错因分析】 1.忽视①处即函数定义域中的每一个元素都要有元素与之对应; 2.忽视题目给出的条件即②处N 是函数的值域,而导致错选D. 【防范措施】 1.深刻理解函数定义中的条件对于定义域中的每一个数在对应法则之下都要有唯一一个数与之对应,只要在定义域中存在一个数找不到与之对应的元素,或者是一个数对应着两个或以上的数时均不能称为函数.如本例中的A 项在x >0时,没有数与之对应,故不是函数y =f (x )的图像.2.认真审题解题时,除了掌握常规的知识外,还要认真审题,如本例中的集合N 为值域,故也要保证N 中的每个数在M 中也要有数与之对应.设M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出如图所示的四个图形,其中能表示从集合M 到集合N 的函数关系的有( B )A .0个B .1个C .2个D .3个解析:由函数的定义知,M 中任一元素在N 中都有唯一的元素与之对应,即在x 轴上的区间[0,2]内任取一点作y 轴的平行线,与图像只有一个交点即可.由函数定义知①不是,因为集合M 中1<x ≤2时,在N 中无元素与之对应;③中的x =2对应元素y =3∉N ,所以③不是;④中x =1时,在N 中有两个元素与之对应,所以④不是.一、选择题1.下列关于函数与区间的说法正确的是( D ) A .函数定义域必不是空集,但值域可以是空集 B .函数定义域和值域确定后,其对应法则也就确定了 C .数集都能用区间表示D .函数中一个函数值可以有多个自变量值与之对应解析:函数的定义域和值域都是非空的数值,故A 错;函数的定义域和对应法则确定后,函数的值域也就确定了,故B 错;数集不一定能用区间表示,故C 错,选D.2.符号y =f (x )表示( B ) A .y 等于f 与x 的积 B .y 是x 的函数C .对于同一个x ,y 的取值可能不同D .f (1)表示当x =1时,y =1解析:符号y =f (x )是一个整体符号,表示y 是x 的函数,则A 错,B 正确;由函数的定义知,对于同一个自变量x 的取值,变量y 有唯一确定的值,则C 错; f (1)表示x =1对应的函数值,则D 错.故选B.3.与y =x 是同一个函数的是( D ) A .y =|x | B .y =x 2 C .y =x 2xD .y =t解析:对于函数y =x 定义域和值域均为R ,而选项A 与B 的值域为[0,+∞),故A 与B 错;对选项C,定义域为{x |x ∈R 且x ≠0},只有D 正确.二、填空题4.函数y =x +1x的定义域为{x |x ≥-1,且x ≠0}. 解析:本题考查函数定义域,要使y =x +1x 有意义,则⎩⎪⎨⎪⎧x +1≥0x ≠0,所以解得x ≥-1且x ≠0,即函数定义域为{x |x ≥-1,且x ≠0},求函数定义域和值域的结果都应写成“解集”形式.本题结果还可表示为[-1,0)∪(0,+∞)等.5.下列函数是同一函数的序号为(3).(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 x ≥0,-1 x <0;(2)f (x )=x 2与g (x )=3x 3; (3)f (x )=x 2-2x +1与g (t )=(t -1)2.解析:对于(1)来说,f (x )的定义域中不含有0,而g (x )的定义域为R ,定义域不同. 对于(2)来说,两个函数的定义域都为R ,但f (x )=|x |,而g (x )=x ,解析式不同. 故(1)(2)都不是同一函数.而对于(3)来说,尽管两个函数的自变量一个用x 表示,另一个用t 表示,但它们定义域相同,对定义域内同一个自变量,根据表达式,都能得到同一函数值,因此二者是同一函数.三、解答题6.已知函数f (x )=x 2+x -1,求 (1)f (2); (2)f (1x+1);(3)若f (x )=5,求x 的值. 解:(1)f (2)=4+2-1=5.(2)f (1x +1)=(1x +1)2+(1x +1)-1=1x 2+3x +1.(3)f (x )=5,即x 2+x -1=5. 由x 2+x -6=0得x =2或x =-3.。
高中数学第三章函数的概念与性质函数的概念学案新人教A版必修第一册

3.1.1 函数的概念课程标准(1)通过丰富实例,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.(2)了解构成函数的三要素,能求简单函数的定义域.(3)能够正确使用“区间”的符号表示某些集合.(4)理解同一个函数的概念,能判断两个函数是否是同一个函数.新知初探·课前预习——突出基础性教材要点要点一函数的概念要点二同一个函数如果两个函数的________相同,并且________完全一致,即相同的自变量对应的函数值相同,那么这两个函数是同一个函数❷.要点三区间及有关概念1.一般区间的表示设a,b∈R,且a<b,规定如下:2.特殊区间的表示助学批注批注❶抓住两点:(1)可以“多对一”、“不可一对多”;(2)集合A中的元素无剩余,集合B中的元素可剩余.批注❷只有当两个函数的定义域和对应关系分别相同时,这两个函数才是同一个函数.定义域和值域都分别相同的两个函数,它们不一定是相同的函数,因为函数对应关系不一定相同.批注❸这里的实数a与b都叫做相应区间的端点.区间的左端点一定要小于右端点,即a <b.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)任何两个集合之间都可以建立函数关系.( )(2)函数的定义域必须是数集,值域可以为其他集合.( )(3)根据函数的定义,定义域中的任何一个x可以对应着值域中不同的y.( )(4)区间是数集的另一种表示方法,任何数集都能用区间表示.( )2.下列选项中(横轴表示x轴,纵轴表示y轴),表示y是x的函数的是( )A B C D3.区间(0,1)等于 ( )A.{0,1}B.{(0,1)}C.{x|0<x<1}D.{x|0≤x≤1}4.若f(x)=x-√x+1,则f(3)=________.题型探究·课堂解透——强化创新性题型 1 函数的概念例1 (1)(多选)下列图形中是函数图象的是( )(2)下列从集合A到集合B的对应关系f是函数的是( ) A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A={平行四边形},B=R,f:求A中平行四边形的面积方法归纳1.根据图形判断对应关系是否为函数的一般步骤2.判断一个对应关系是否为函数的方法巩固训练1 (多选)下列对应关系是集合A到集合B的函数的是( )A.A=R,B={x|x≥0},f:x→y=|x|B.A=Z,B=Z,f:x→y=x2C.A=Z,B=Z,f:x→y=√xD.A={x|-1≤x≤1},B={0},f:x→y=0题型 2 求函数值(x∈R,且x≠-1),g(x)=x2+2(x 例2 [2022·山东青岛高一期中]已知f(x)=11+x∈R).(1)求f(2),g(2)的值;(2)求f(g(3))的值.方法归纳求函数值的2种策略巩固训练2 已知函数f(x)=x+1.x+2(1)求f(2);(2)求f(f(1)).题型 3 求函数的定义域例3 求下列函数的定义域.; (2)y=√x2−2x−3;(1)y=2+3x−2(3)y=√3−x·√x−1; (4)y=(x-1)0+√2.x+1方法归纳求函数定义域的常用策略巩固训练3 (1)函数f (x )=√1+x −1x的定义域是( )A .[-1,0)∪(0,+∞)B .[-1,+∞)C .(-∞,0)∪(0,+∞)D .R(2)函数f (x )=√−x 2+6x −5的定义域为________.题型 4 同一函数的判断例4 下面各组函数中表示同一个函数的是( ) A .f (x )=x ,g (x )=(√x )2B .f (t )=|t |,g (x )=√x 2C .f (x )=x 2−1x−1,g (x )=x +1 D .f (x )=|x |x ,g (x )={1,x ≥0−1,x <0方法归纳判断同一函数的三个步骤和两个注意点(1)判断同一函数的三个步骤(2)两个注意点:①在化简解析式时,必须是等价变形; ②与用哪个字母表示无关.巩固训练4 下列函数中与函数y =x 2是同一函数的是( ) A .u =v 2B .y =x ·|x |C .y =x 3x D .y =(√x )43.1.1 函数的概念新知初探·课前预习[教材要点]要点一实数集 任意一个数x 唯一 要点二定义域 对应关系 要点三1.(a ,b ) (a ,b ]2.(-∞,+∞) [a ,+∞) (a ,+∞) (-∞,a ] (-∞,a )[基础自测]1.答案:(1)× (2)× (3)× (4)×2.解析:只有D 的函数图象与垂直于x 轴的直线至多有一个交点,故选D. 答案:D 3.答案:C4.解析:f (3)=3-√3+1=3-2=1. 答案:1题型探究·课堂解透例1 解析:(1)A 中至少存在一处如x =0,一个横坐标对应两个纵坐标,这相当于集合A 中至少有一个元素在集合B 中对应的元素不唯一,故A 不是函数图象,其余B ,C ,D 均符合函数定义.(2)对于选项B ,集合A 中的元素1对应集合B 中的元素±1,不符合函数的定义;对于选项C ,集合A 中的元素0取倒数没有意义,在集合B 中没有元素与之对应,不符合函数的定义;对于选项D ,A 集合不是数集,故不符合函数的定义.答案:(1)BCD (2)A巩固训练1 解析:选项A 中,对于A 中的任意一个实数x ,在B 中都有唯一确定的数y 与之对应,故是A 到B 的函数.选项B 中,对于集合A 中的任意一个整数x ,按照对应关系f :x →y =x 2在集合B 中都有唯一一个确定的整数x 2与其对应,故是集合A 到集合B 的函数.选项C 中,集合A 中的负整数没有平方根,在集合B 中没有对应的元素,故不是集合A 到集合B 的函数.选项D 中,对于集合A 中任意一个实数x ,按照对应关系f :x →y =0在集合B 中都有唯一一个确定的数0和它对应,故是集合A 到集合B 的函数.答案:ABD例2 解析:(1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6. (2)∵g (3)=32+2=11,∴f (g (3))=f (11)=11+11=112.巩固训练2 解析:(1)f (2)=2+12+2=34; (2)∵f (1)=1+11+2=23;∴f (f (1))=f (23)=23+123+2=58.例3 解析:(1)当且仅当x -2≠0,即x ≠2时,函数y =2+3x−2有意义,所以这个函数的定义域为{x |x ≠2}.(2)要使函数有意义,需x 2-2x -3≥0,即(x -3)(x +1)≥0,所以x ≥3或x ≤-1,即函数的定义域为{x |x ≥3或x ≤-1}.(3)函数有意义,当且仅当{3−x ≥0,x −1≥0,解得1≤x ≤3,所以这个函数的定义域为{x |1≤x ≤3}.(4)函数有意义,当且仅当{x −1≠0,2x+1≥0,x +1≠0,解得x >-1,且x ≠1,所以这个函数的定义域为{x |x >-1且x ≠1}.巩固训练3 解析:(1)由{1+x ≥0x ≠0,解得:x ≥-1且x ≠0.∴函数f (x )=√1+x −1x 的定义域是[-1,0)∪(0,+∞). (2)由-x 2+6x -5≥0,得x 2-6x +5≤0,(x -1)(x -5)≤0, 解得1≤x ≤5,所以函数的定义域为[1,5]. 答案:(1)A (2)[1,5]例4 解析:对于A ,f (x )=x 的定义域为R ,而g (x )=(√x )2的定义域为[0,+∞),两函数的定义域不相同,所以不是同一个函数;对于B ,两个函数的定义域都为R ,定义域相同,g (x )=√x 2=|x |,这两个函数是同一个函数;对于C ,f (x )=x 2−1x−1的定义域为{x |x ≠1},而g (x )=x +1的定义域是R ,两个函数的定义域不相同,所以不是同一个函数;对于D ,f (x )=|x |x 的定义域为{x |x ≠0},而g (x )={1,x ≥0−1,x <0的定义域是R ,两个函数的定义域不相同,所以不是同一个函数.答案:B巩固训练4 解析:函数y =x 2的定义域为R ,对于A 项,u =v 2的定义域为R ,对应法则与y =x 2一致,则A 正确;对于B 项,y =x ·|x |的对应法则与y =x 2不一致,则B 错误;对于C 项,y =x 3x 的定义域为{x |x ≠0},则C 错误;对于D 项,y =(√x )4的定义域为{x |x ≥0},则D 错误;故选A.答案:A。
高中数学第三章函数函数及其表示方法第1课时函数的概念学案新人教B版必修第一册

3.1 函数的概念与性质 3.1.1 函数及其表示方法第1课时 函数的概念课程标准在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用.了解构成函数的要素,能求简单函数的定义域.新知初探·自主学习——突出基础性教材要点知识点一 函数的概念1.函数的概念一般地,给定两个非空实数集A与B,以及对应关系f,如果对于集合A中的每一个实数x,在集合B中都有唯一确定的实数y与x对应,则称f为定义在集合A上的一个函数,记作y=f(x),x∈A.2.函数的定义域和值域函数y=f(x)中x称为自变量,y称为因变量,自变量取值的范围(即数集A)称为这个函数的定义域,所有函数值组成的集合{y|y=f(x),x∈A}称为函数的值域.状元随笔 对函数概念的3点说明(1)当A , B为非空实数集时,符号“ f :A→B ”表示A到B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f ”表示对应关系,在不同的函数中f的具体含义不一样.知识点二 同一函数一般地,如果两个函数的定义域相同,对应关系也相同(即对自变量的每一个值,两个函数对应的函数值都相等),则称这两个函数就是同一个函数.知识点三 常见函数的定义域和值域函数一次函数反比例函数二次函数a<0基础自测1.下列从集合A到集合B的对应关系f是函数的是( )A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A={平行四边形},B=R,f:求A中平行四边形的面积2.函数f(x)=√x−1x−2的定义域为( )A.(1,+∞) B.[1,+∞)C.[1,2) D.[1,2)∪(2,+∞) 3.下列各组函数表示同一函数的是( )A.y=x2−9x−3与y=x+3B.y=√x2-1与y=x-1C.y=x0(x≠0)与y=1(x≠0)D.y=x+1,x∈Z与y=x-1,x∈Z4.若函数f(x)=√x+6x−1,求f(4)=________.课堂探究·素养提升——强化创新性题型1 函数的定义[经典例题]例1 根据函数的定义判断下列对应关系是否为从集合A到集合B的函数:(1)A={1,2,3},B={7,8,9},f(1)=f(2)=7,f(3)=8;状元随笔 从本题可以看出函数f(x)的定义域是非空数集A,但值域不一定是非空数集B,也可以是集合B的子集.(2)A={1,2,3},B={4,5,6},对应关系如图所示;状元随笔 判断从集合A到集合B的对应是否为函数,一定要以函数的概念为准则,另外也要看A中的元素是否有意义,同时,一定要注意对特殊值的分析.(3)A=R,B={y|y>0},f:x→y=|x|;(4)A=Z,B={-1,1},n为奇数时,f(n)=-1,n为偶数时,f(n)=1.方法归纳(1)判断一个集合A到集合B的对应关系是不是函数关系的方法:①A,B必须都是非空数集;②A中任意一个数在B中必须有并且是唯一的实数和它对应.注意:A中元素无剩余,B中元素允许有剩余.(2)函数的定义中“任意一个x”与“有唯一确定的y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”,而不能是“一对多”.跟踪训练1 (1)设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合M到集合N的函数关系的有( )A.0个 B.1个 C.2个 D.3个(1)①x∈[0,1]取不到[1,2].③y∈[0,3]超出了N∈[0,2]范围.④可取一个x值,y有2个对应,不符合题意.(2)关键是否符合函数定义.①x→3x,x≠0,x∈R;②x→y,其中y2=x,x∈R,y∈R.(2)下列对应是否是函数?题型2 求函数的定义域[教材P87例题1]例2 求下列函数的定义域:(1)f(x)=1√(2)g(x)=1x+1x+2.方法归纳求函数的定义域(1)要明确使各函数表达式有意义的条件是什么,函数有意义的准则一般有:①分式的分母不为0;②偶次根式的被开方数非负;③y=x0要求x≠0.(2)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(3)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.跟踪训练2 求下列函数的定义域:(1)f(x)=6x2−3x+2;(2)f(x)=0√||(3)f(x)=√2x+3-√1 x .(1)分母不为0(2){偶次根式被开方数≥0(x+1)0底数不为0分母不为0 (3){偶次根式被开方数≥0分母不为0题型3 同一函数例3 下面各组函数中为相同函数的是( )A .f (x )=√(x −1)2,g (x )=x -1B .f (x )=√x 2−1,g (x )=√x +1·√x−1C .f (x )=x ,g (x )=x 2xD .f (x )=x 0与g (x )=1x 0方法归纳判断同一函数的三个步骤和两个注意点(1)判断同一函数的三个步骤(2)两个注意点:①在化简解析式时,必须是等价变形;②与用哪个字母表示无关.跟踪训练3 试判断下列函数是否为同一函数.(1)f (x )=x 2−xx ,g (x )=x -1;(2)f(x)=√xx,g(x)√(3)f(x)=x2,g(x)=(x+1)2;(4)f(x)=|x|,g(x)=√x2.状元随笔 判断两个函数是否为同一函数,要看三要素是否对应相同.函数的值域可由定义域及对应关系来确定,因而只要判断定义域和对应关系是否对应相同即可.题型4 求函数的值域[经典例题]状元随笔 求函数值域的注意事项①数形结合求值域一定要注意函数的定义域;②值域一定要用集合或区间来表示.例4 求下列函数的值域.(1)y=3-4x,x∈(-1,3];(2)f(x)=1x,x∈[3,5];(3)y=2xx+1;(4)y=x2-4x+5,x∈{1,2,3};(5)y=x2-2x+3,x∈[0,3);(6)y=2x-√x−1;(7)f(x)=1x2+2.状元随笔 (1)用不等式的性质先由x∈(-1,3]求-4x的取值范围,再求3-4x的取值范围即为所求.(2)先分离常数将函数解析式变形,再求值域.(3)将自变量x=1,2,3代入解析式求值,即可得值域.(4)先配方,然后根据任意实数的平方都是非负数求值域.方法归纳求函数值域的方法(1)观察法:通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数图象的“最高点”和“最低点”观察函数的值域.如函数y=11+x2的值域为{y|0<y≤1}.(2)配方法:求形如F(x)=a[f(x)]2+bf(x)+c的函数的值域可用配方法,但要注意f(x)的取值范围.如求函数y=x-2√x+3的值域,因为y=(√x-1)2+2≥2,故所求值域为{y|y≥2}.对于形如y=ax2+bx+c(a≠0)的函数,尤其要注意在给定区间上二次函数最值的求法.(3)分离常数法:此方法主要是针对分子分母同次的分式,即将分式转化为“反比例函数类”的形式,便于求值域.(4)换元法:形如y=ax+b+√cx+d的函数常用换元法求值域,即先令t=√cx+d,求出x,并注明t的取值范围,再代入上式表示成关于t的二次函数,最后用配方法求值域.注意:分离常数法的目的是将分式函数变为反比例函数类,换元法的目的是将函数变为二次函数类.即将函数解析式变为已经熟悉的简单函数类型求值域.(5)反表示法:根据函数解析式反解出x,根据x的取值范围转化为关于y的不等式求解.(6)中间变量法:根据函数解析式确定一个已知范围的中间变量(如x2),用y表示出该中间变量,根据中间变量的取值范围转化为关于y的不等式求解.跟踪训练4 求下列函数的值域:(1)y=2x+1,x∈{1,2,3,4,5};(2)y=√x+1;(3)y=1−x21+x2;先分离再求值域(4)y=-x2-2x+3(-5≤x≤-2);配方法求值域(5)f(x)=5x+4 x−1.第三章 函数3.1 函数的概念与性质3.1.1 函数及其表示方法第1课时 函数的概念新知初探·自主学习[教材要点]知识点三{x|x≠0} R {y|y≤4ac−b24a}[基础自测]1.解析:对B,集合A中的元素1对应集合B中的元素±1,不符合函数的定义;对C,集合A中的元素0取倒数没有意义,在集合B中没有元素与之对应,不符合函数的定义;对D,A集合不是数集,故不符合函数的定义.综上,选A.答案:A2.解析:使函数f(x)=√x−1x−2有意义,则{x−1≥0,x−2≠0,即x≥1,且x≠2.所以函数的定义域为{x|x≥1且x≠2}.故选D.答案:D3.解析:A中两函数定义域不同;B中两函数值域不同;D中两函数对应法则不同.答案:C4.解析:f(4)=√4+64−1=2+2=4.答案:4课堂探究·素养提升例1 【解析】 (1)(4)对于集合A中的任意一个值,在集合B中都有唯一的值与之对应,因此(1)(4)中对应关系f是从集合A到集合B的一个函数.(2)集合A中的元素3在集合B中没有对应元素,且集合A中的元素2在集合B中有两个元素(5和6)与之对应,故所给对应关系不是集合A到集合B的函数.(3)A中的元素0在B中没有对应元素,故所给对应关系不是集合A到集合B的函数.跟踪训练1 解析:(1)图号正误原因①×x=2时,在N中无元素与之对应,不满足任意性②√同时满足任意性与唯一性③×x=2时,对应元素y=3∉N,不满足任意性④×x=1时,在N中有两个元素与之对应,不满足唯一性解析:(2)①是函数.因为任取一个非零实数x,都有唯一确定的3x与之对应,符合函数定义.②不是函数.当x=1时,y=±1,即一个非零自然数x,对应两个y的值,不符合函数的概念.答案:(1)B (2)①是函数②不是函数例2 【解析】 (1)因为函数有意义当且仅当{x+1≥0,√x+1≠0,解得x>-1,所以函数的定义域为(-1,+∞).(2)因为函数有意义当且仅当{x≠0,x+2≠0,解得x≠0且x≠-2,因此函数的定义域为(-∞,-2)∪(−2,0)∪(0,+∞).跟踪训练2 解析:(1)要使函数有意义,只需x2-3x+2≠0,即x≠1且x≠2,故函数的定义域为{x|x≠1且x≠2}.(2)要使函数有意义,则{x+1≠0,|x|−x>0,解得x<0且x≠-1.所以定义域为(-∞,-1)∪(−1,0).(3)要使函数有意义,则{2x +3≥0,2−x >0,x≠0,解得-32≤x <2,且x ≠0.故定义域为[−32,0)∪(0,2).例3 【解析】 函数的三要素相同的函数为相同函数,对于选项A ,f (x )=|x -1|与g (x )对应关系不同,故排除选项A ,选项B 、C 中两函数的定义域不同,排除选项B 、C ,故选D.【答案】 D跟踪训练3 解析:所以函数y =3-4x ,x ∈(-1,3]的值域是[-9,7).(2)因为f (x )=1x 在[3,5]上单调递减,所以其值域为[15,13].(3)因为y =2x x +1=2(x +1)−2x +1=2-2x +1≠2,所以函数y =2x x +1的值域为{y |y ∈R 且y ≠2}. (4)函数的定义域为{1,2,3},当x =1时,y =12-4×1+5=2,当x =2时,y =22-4×2+5=1,当x =3时,y =32-4×3+5=2,所以这个函数的值域为{1,2},(5)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).(6)设t =√x −1,则x =t 2+1,且t ≥0,所以y =2(t 2+1)-t =2(t -14)2+158,由t ≥0,再结合函数的图象(如图),可得函数的值域为[158,+∞).【解析】(7)方法一 因为x 2+2≥2,所以0<1x 2+2≤12,所以f (x )的值域为(0,12].方法二 设t 是所求值域中的元素,则关于x 的方程1x 2+2=t 应该有解,即x 2=1t -2应该有解,所以1t -2≥0,即1−2t t ≥0,解得0<t ≤12,所以所求值域为(0,12].跟踪训练4 解析:(1)将x =1,2,3,4,5分别代入y =2x +1,计算得函数的值域为{3,5,7,9,11}.(2)因为√x ≥0,所以√x +1≥1,即所求函数的值域为[1,+∞).(3)因为y =1−x 21+x 2=-1+21+x 2,所以函数的定义域为R ,因为x 2+1≥1,所以0<21+x2≤2.所以y ∈(-1,1].所以所求函数的值域为(-1,1].(4)y =-x 2-2x +3=-(x +1)2+4.因为-5≤x≤-2,所以-4≤x+1≤-1.所以1≤(x+1)2≤16.所以-12≤4-(x+1)2≤3.所以所求函数的值域为[-12,3].解析:(5)函数f(x)=5x+4x−1=5(x−1)+9x−1=5+9x−1,因为x≠1,所以9x−1≠0,所以f(x)≠5,所以函数f(x)=5x+4x−1的值域为(-∞,5)∪(5,+∞).。
【优化课堂】高一数学人教A版必修1 学案:第一章 1.2.1 函数的概念 Word版含答案[ 高考]
![【优化课堂】高一数学人教A版必修1 学案:第一章 1.2.1 函数的概念 Word版含答案[ 高考]](https://img.taocdn.com/s3/m/35b09323763231126edb11ac.png)
1.2函数及其表示1.2.1函数的概念[学习目标] 1.进一步体会函数是描述变量之间的依赖关系的重要数学模型.能用集合与对应的语言刻画出函数,体会对应关系在刻画数学概念中的作用.(重点、难点)2.了解构成函数的要素,会求一些简单函数的定义域和值域(重点).3.能够正确使用区间表示数集.(易混点)一、函数的有关概念f,使对于集合A中的任意的一个数x,在集合B中都有唯一确定的数f(x)和它对应结论称f:A―→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A 相关概念定义域x的取值范围A值域函数值的集合{}f(x)|x∈A二、两个函数相等的条件1.定义域相同;2.对应关系完全一致.三、区间的概念及表示1.一般区间的表示设a,b∈R,且a<b,规定如下:2.特殊区间的表示1.判断(正确的打“√”,错误的打“×”) (1)函数的定义域和值域一定是无限集合.( )(2)根据函数有定义,定义域中的一个x 可以对应着不同的y .( ) (3)f (a )表示当x =a 时函数f (x )的值,是一个常量.( ) 【答案】 (1)× (2)× (3)√ 2.已知f (x )=x +1,则f (3)=( )A .2B .4C .±6D .10 【解析】 ∵f (x )=x +1,∴f (3)=3+1=2.【答案】 A 3.函数f (x )=11-2x有定义域是________(用区间表示). 【解析】 由题意,需1-2x >0,解得x <12.故f (x )的定义域为⎝⎛⎭⎫-∞,12. 【答案】 ⎝⎛⎭⎫-∞,12 4.集合{}x |1<x ≤10用区间表示为________. 【解析】 集合{}x |1<x ≤10用区间表示为(1,10]. 【答案】 (1,10]预习完成后,请把你认为难以解决的问题记录在下面的表格中(1)(2014·长沙高一检测)设M =x -2≤x ≤2,N =}y 0≤y ≤2,函数y =f (x )的定义域为M ,值域为N ,对于下列四个图象,可作为函数y =f (x )的图象为( )(2)下列函数中,f (x )与g (x )相等的是( ) A .f (x )=x ,g (x )=(x )2 B .f (x )=x ,g (x )=x 2 C .f (x )=x +2,g (x )=x 2-4x -2D .f (x )=x ,g (x )=3x 3 (3)判断下列对应是否为函数. ①A =R ,B =R ,f :x →y =1x 2;②A =N ,B =R ,f :x →y =±x ; ③A =N ,B =N *,f :x →y =|x -2|;④A ={1,2,3},B =R ,f (1)=f (2)=3,f (3)=4.【解析】 (1)由函数定义可知任意作一条直线x =a 与函数图象至多有一个交点,故选项C 错误.由题设定义域中有元素-2,2知选项A 错误.由值域为{}y |0≤y ≤2知选项B 错误. (2)对于A ,f (x )=x 的定义域为R ,g (x )=(x )2的定义域为{}x |x ≥0,两函数的定义域不相同,所以不是相等函数;对于B ,g (x )=x 2=|x |,与f (x )=x 的对应关系不相同,所以不是相等函数;对于C ,g (x )=x 2-4x -2=x +2(x ≠2),与f (x )=x +2的定义域不同,所以不是相等函数;对于D ,g(x)=3x3=x,与f(x)=x的对应关系和定义域都相同,所以是相等函数,故选D.【答案】(1)D(2)D(3)①因为A=R,B=R,对于A中的元素x=0,在对应关系f:x→y=1x2之下,在B 中没有元素与之对应,因而不能构成函数.②对于A中的元素,如x=9,y的值为y=±9=±3,即在对应关系f之下,B中有两个元素与之对应,不符合函数定义,故不能构成函数.③对于A中的元素x=2,在对应关系f的作用下,|2-2|=0∉B,从而不能构成函数.④依题意,f(1)=f(2)=3,f(3)=4,即A中的每一个元素在对应关系f之下,在B中都有唯一的元素与之对应,虽然B中有很多元素在A中无元素与之对应,但依函数的定义,仍能构成函数.1.判断一个对应关系是否为函数的步骤:(1)判断A,B是否是非空数集;(2)判断A中任一元素在B中是否有元素与之对应;(3)判断A是任一元素在B中是否有唯一确定的元素与之对应.2.判断函数是否相同的步骤:(1)看定义域是否相同;(2)看对应关系是否相同;(3)下结论.(1)f(x)=1x-2;(2)f(x)=3x+2;(3)f(x)=x+1+12-x.【思路探究】解答本题可根据函数解析式的结构特点,构造使解析式有意义的不等式(组),进而解不等式求解.【解】 (1)∵x ≠2时,分式1x -2有意义,∴这个函数的定义域是{}x |x ≠2. (2)∵3x +2≥0,即x ≥-23时,根式3x +2才有意义,∴这个函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥-23. (3)∵要使函数有意义,必须⎩⎪⎨⎪⎧x +1≥02-x ≠0⇒⎩⎪⎨⎪⎧x ≥-1,x ≠2.∴这个函数的定义域是{}x |x ≥-1且x ≠2.1.求解析式给出的函数的定义域就是求使函数表达式有意义的自变量的取值集合.已知函数y =f (x ):(1)若f (x )为整式,则定义域为R ;(2)若f (x )为分式,则定义域是使分母不为零的实数的集合;(3)若f (x )是偶次根式,那么函数的定义域是根号内的式子不小于零的实数的集合; (4)若f (x )是由几个部分的数字式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合;5.若f (x )是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.(2014·济宁高一检测)函数y =1-x2x 2-3x -2定义域为( )A .(-∞,1]B .(-∞,2]C.⎝⎛⎭⎫-∞,12∪⎝⎛⎭⎫-12,1 D.⎝⎛⎫-∞,-12∪⎝⎛⎦⎤-12,1 【解析】 要使函数y =1-x 2x 2-3x -2有意义,则⎩⎪⎨⎪⎧1-x ≥0,2x 2-3x -2≠0,即⎩⎪⎨⎪⎧x ≤1,x ≠-12且x ≠2,所以x ≤1且x ≠-12,故选D.【答案】 Df (2x +1)的定义域;(2)已知函数f (2x +1)的定义域为[1,3],求函数f (x )的定义域.【思路探究】 (1)函数f (2x +1)的自变量是x ,而非2x +1,解不等式1≤2x +1≤3即可.(2)函数f (2x +1)的自变量是x ,本题实质是知1≤x ≤3,求2x +1的取值范围. 【解】 (1)∵函数f (x )的定义域为[1,3],即x ∈[1,3],函数f (2x +1)中2x +1的范围与函数f (x )中x 的范围相同,∴2x +1∈[1,3],∴x ∈[0,1], 即函数f (2x +1)的定义域是[0,1]. (2)∵x ∈[1,3],∴2x +1∈[3,7], 即函数 f (x )的定义域是[3,7].若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出;若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.已知函数f (x )的定义域为(0,1),则f (2x )的定义域为__________.【解析】 因为f (x )的定义域为(0,1),所以要使f (2x )有意义,须使0<2x <1,即0<x <12,所以函数f (2x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12.【答案】 ⎝⎛⎭⎫0,12已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R).(1)求f (2),g (2)的值; (2)求f [g (3)]的值.【思路探究】 (1)令x =2代入f (x ),g (x )→得出f (2),g (2) (2)求g (3)→求f [g (3)] 【解】 (1)∵f (x )=11+x ,∴f (2)=11+2=13, 又∵g (x )=x 2+2,∴g (2)=22+2=6.(2)g (3)=32+2=11,∴f [g (3)]=f (11)=11+11=112.1.f (x )表示自变量为x 的函数,如f (x )=2x ,而f (a )表示的是当x =a 时的函数值,如f (x )=2x 中f (3)=2×3=6.2.求f {f [f (x )]}时,一般要遵循由里到外的原则.在题设条件不变的情况下,求g [f (3)]的值. 【解】 ∵f (3)=11+3=14, ∴g [f (3)]=g ⎝⎛⎭⎫14=⎝⎛⎭⎫142+2=3316.1.函数的本质:两个非空数集间的一种确定的对应关系.由于函数的定义域和对应关系一经确定,值域随之确定,所以判断两个函数是否相等,只须两个函数的定义域和对应关系一致即可.2.f(x)是函数符号,f表示对应关系,“y=f(x)”为“y是x的函数”这句话的数学表示,它仅仅是函数符号,并不表示“y等于f 与x的乘积”.3.对于用关系式表示的函数.如果没有给出定义域,那么就认为函数的定义域是指使函数表达式有意义的自变量取值的集合,这是求某函数定义域的依据.相等函数判断中的误区下列各组函数相等函数的是()A.y=x+1与y=x2-1 x-1B.y=|x|+1和y=(x-1)2+1 C.y=2x和y=2x(x≤0) D.y=x2+1和y=t2+1【易错分析】 易失分点一:忽视函数定义域,误认为y =x 2-1x -1=x +1,而误选A.易失分点二:忽视对应关系,误认为定义域和值域相同就是相等函数,而误选B. 【防范措施】 1.判断函数相等时,对较为复杂的函数解析式的化简要慎重,注意其等价性,本例对选项A 中第二个函数解析式的化简易把定义域扩大,由解析式相同而误认为是相等函数.2.定义域相同,并且对应关系完全一致的两个函数才相等.【解析】 A 错误,由于函数y =x 2-1x -1中要求x -1≠0,即x ≠1,故两个函数的定义域不同,故不表示相等函数.B 错误,虽然定义域和值域相同,但对应关系不相同,因而不是相等函数.C 错误,显然定义域不同,因此不是相等函数.D 正确,虽然表示自变量的字母不同,但它们定义域和对应关系相同,因此是相等函数. 【答案】 D——[类题尝试]————————————————— 下列各组中的两个函数为相等函数的是( ) A .f (x )=x +1·x -1,g (x )=(x +1)(x -1) B .f (x )=(2x -5)2,g (x )=2x -5 C .f (x )=1-x x 2+1与g (x )=1+x x 2+1D .f (x )=(x )4x 与g (t )=⎝⎛⎭⎫t t 2 【解析】 A 中,f (x )=x +1·x -1的定义域为{x |x ≥1},g (x )=(x +1)(x -1)的定义域为{x |x ≥1或x ≤-1},它们的定义域不相同;B 中,f (x )=(2x -5)2的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥52,g (x )=2x -5的定义域为R ,定义域不同,不是相等函数.C 中,f (x )=1-xx 2+1与g (x )=1+xx 2+1的对应关系不同,不相等.D 中,f (x )=(x )4x =x (x>0)与g (x )=⎝⎛⎭⎫t t 2=t (t >0)的定义域与对应关系都相同,它们相等.【答案】 D。
2020-2021学年苏教版必修1 2.1.1 第1课时 函数的概念 学案

2.1函数的概念2.1.1函数的概念和图象第1课时函数的概念1.了解构成函数的三要素:定义域、对应法则、值域.2.理解函数的概念.3.掌握求函数定义域的方法.[学生用书P15]函数的概念一般地,设A、B是两个非空的数集,如果按某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,那么这样的对应叫做从A到B的一个函数,通常记为y=f(x),x∈A.其中,所有的输入值x组成的集合A叫做函数y=f(x)的定义域,与输入值x对应的所有输出值y组成的集合称为函数的值域.1.判断(正确的打“√”,错误的打“×”)(1)区间表示数集,数集一定能用区间表示.()(2)数集{x|x≥2}可用区间表示为[2,+∞].()(3)函数的定义域和对应法则确定后,函数的值域也就确定了.()(4)函数值域中每一个数在定义域中一定只有一个数与之对应.()(5)函数的定义域和值域一定是无限集合.()答案:(1)×(2)×(3)√(4)×(5)×2.函数f(x)=xx-1的定义域为()A.[0,1)B.(1,+∞)C.[0,1)∪(1,+∞) D.(0,1)∪(1,+∞)答案:C3.已知f(x)=x2+1,则f(2)=________,若f(x)=3,则x=________.答案:5 ±2相同函数的判断[学生用书P15]下列各组函数是否表示同一函数? (1)f (x )=2x +1与g (x )=4x 2+4x +1; (2)f (x )=x 2-xx与g (x )=x -1;(3)f (x )=2x -1(x ∈Z )与g (x )=2x +1(x ∈Z ).【解】 (1)g (x )=(2x +1)2=|2x +1|与f (x )=2x +1对应法则不同,因此f (x )与g (x )不是同一个函数.(2)f (x )=x 2-xx =x -1(x ≠0)与g (x )定义域不同,因此f (x )与g (x )不是同一个函数.(3)f (x )与g (x )对应法则不同,不是同一个函数.(1)当一个函数的对应法则和定义域确定后,其值域也随之得到确定,所以两个函数当且仅当定义域和对应法则相同时,为同一个函数.(2)讨论函数是否为同一个函数问题时,要保持定义域优先的原则,判断两个函数是否相等,要先求定义域,若定义域不同,则不相等;若定义域相同,再化简函数的解析式,看对应法则是否相同.1.下列函数与函数g (x )=2x -1(x >2)相等的是( )A .f (m )=2m -1(m >2)B .f (x )=2x -1(x ∈R )C .f (x )=2x +1(x >2)D .f (x )=x -2(x <-1)解析:选A.对于A ,函数y =f (m )与y =g (x )的定义域与对应关系均相同,故为相等的函数;对于B ,两函数的定义域不同,因此不是相等的函数;对于C ,两函数的对应关系不同,因此不是相等的函数;对于D ,两函数的定义域与对应关系都不相同,故也不是相等的函数.求函数的定义域[学生用书P16]求下列函数的定义域: (1)y =(x +1)2x +1-1-x ;(2)y =5-x|x |-3.【解】 (1)要使函数式有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,解得x ≤1,且x ≠-1,即函数的定义域为{x |x ≤1,且x ≠-1}.(2)要使函数式有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,即函数的定义域为{x |x ≤5,且x ≠±3}.(1)①求函数的定义域,其实质是以使函数的表达式所含运算有意义为准则,其原则有:a.分式中分母不为零;b .偶次根式中,被开方数非负;c.对于y =x 0要求x ≠0.d.实际问题中函数定义域,要考虑实际意义.②函数的定义域一定要用集合或区间的形式表示.(2)第(1)题易出现y =x +1-1-x ,错求定义域{x |x ≤1},在求函数定义域时,不能盲目对函数式变形.2.求下列函数的定义域:(1)f (x )=11-x +x ;(2)f (x )=1-x +11+x.解:(1)因为⎩⎪⎨⎪⎧1-x ≠0,x ≥0,所以x ≥0且x ≠1,所以f (x )=11-x+x 的定义域为[0,1)∪(1,+∞).(2)因为⎩⎪⎨⎪⎧1-x ≥0,1+x >0,所以⎩⎪⎨⎪⎧x ≤1,x >-1,即-1<x ≤1,所以f (x )=1-x +11+x的定义域为(-1,1]. 求函数值和值域[学生用书P16]已知f (x )=12-x (x ∈R ,x ≠2),g (x )=x +4(x ∈R ).(1)求f (1),g (1)的值; (2)求f [g (x )].【解】 (1)f (1)=12-1=1,g (1)=1+4=5.(2)f [g (x )]=f (x +4)=12-(x +4)=1-2-x =-1x +2(x ∈R ,且x ≠-2).1.在本例条件下,求g [f (1)]的值及f (2x +1)的表达式. 解:g [f (1)]=g (1)=1+4=5.f (2x +1)=12-(2x +1)=-12x -1⎝⎛⎭⎫x ∈R ,且x ≠12. 2.若将本例g (x )的定义域改为{0,1,2,3},求g (x )的值域. 解:因为g (x )=x +4,x ∈{0,1,2,3}, 所以g (0)=4,g (1)=5,g (2)=6,g (3)=7. 所以g (x )的值域为{4,5,6,7}.(1)求函数值的方法①先要确定出函数的对应关系f 的具体含义,②然后将变量取值代入解析式计算,对于f [g (x )]型的求值,按“由内到外”的顺序进行,要注意f [g (x )]与g [f (x )]的区别.(2)求函数值域的常用方法①观察法:对于一些比较简单的函数,其值域可通过观察得到;②配方法:此法是求“二次函数类”值域的基本方法,即把函数通过配方转化为能直接看出其值域的方法;③分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;④换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.3.求下列函数的值域:(1)y =2x +1;(2)y =x 2-4x +6,x ∈[1,5); (3)y =3x -1x +1;(4)y =x +x .解:(1)因为x ∈R ,所以2x +1∈R , 即函数的值域为R .(2)配方:y =x 2-4x +6=(x -2)2+2,因为x ∈[1,5),如图所示. 所以所求函数的值域为[2,11). (3)借助反比例函数的特征求.y =3(x +1)-4x +1=3-4x +1,显然4x +1可取0以外的一切实数,即所求函数的值域为{y |y ≠3}. (4)设u =x (x ≥0),则x =u 2(u ≥0), y =u 2+u =⎝⎛⎭⎫u +122-14(u ≥0). 因为由u ≥0,可知⎝⎛⎭⎫u +122≥14,所以y ≥0.所以函数y =x +x 的值域为[0,+∞).理解函数的概念应关注五点(1)“A ,B 是非空的数集”,一方面强调了A ,B 只能是数集,即A ,B 中的元素只能是实数;另一方面指出了定义域、值域都不能是空集,也就是说定义域为空集的函数是不存在的.(2)理解函数的概念要注意函数的定义域是非空数集A ,但函数的值域不一定是非空数集B ,而是集合B 的子集.(3)函数定义中强调“三性”:任意性、存在性、唯一性,即对于非空数集A 中的任意一个(任意性)元素x ,在非空数集B 中都有(存在性)唯一(唯一性)的元素y 与之对应.这三性只要有一个不满足,便不能构成函数.(4)y =f (x )仅仅是函数符号,不是表示“y 等于f 与x 的乘积”,f (x )也不一定就是解析式. (5)除f (x )外,有时还用g (x )、u (x )、F (x )、G (x )等符号来表示函数.判断下列对应是否为函数: (1)x →2x,x ≠0,x ∈R ;(2)x →y ,这里y 2=x ,x ∈N ,y ∈R ;(3)集合A =R ,B ={-1,1},对应关系f :当x 为有理数时,f (x )=-1;当x 为无理数时,f (x )=1,该对应是不是从A 到B 的函数?(4)A ={(x ,y )|x ,y ∈R },B =R .对任意的(x ,y )∈A ,(x ,y )→x +y .[解] (1)是,对于任意一个非零实数x ,2x 被x 唯一确定,所以当x ≠0时,x →2x 是函数.这个函数也可以表示为f (x )=2x(x ≠0).(2)不是,当x =4时,y 2=4,得y =2或y =-2,不是有唯一值和x 对应,所以x →y (y 2=x )不是函数.(3)是,满足函数的定义,在A 中任取一个值,B 中有唯一确定的值和它对应. (4)不是,因为集合A 不是数集.(1)错因:判断一个从A 到B 的对应是否为函数,易忽视定义域应为非空数集的要求,还容易忽视A 中任一元素在B 中都要有元素与之对应的判断,好多同学只判断A 中元素在B 中的对应元素是否唯一.(2)防范:函数是一种特殊的对应,要检验给定两个变量之间是否具有函数关系,只要检验:①定义域和对应关系是否给出;②对定义域内的任一x ,是否在B 中存在唯一的值与之对应.1.函数f (x )=1+x -2x 的定义域是( )A .[-1,+∞)B .(-∞,0)∪(0,+∞)C .[-1,0)∪(0,+∞)D .R解析:选C.要使函数有意义,x 的取值需满足⎩⎪⎨⎪⎧1+x ≥0,x ≠0,解得x ≥-1,且x ≠0,则函数的定义域是[-1,0)∪(0,+∞).2.设f (x )=x 2-1x 2+1,则f (2)f ⎝⎛⎭⎫12等于( )A .1B .-1 C.35D .-35解析:选B.f (2)=35,f ⎝⎛⎭⎫12=-35,所以f (2)f ⎝⎛⎭⎫12=-1.故选B.3.已知函数f (x )=x +2x -6,则f (f (14))=________;若f (x )=3,则x =________.解析:f (14)=14+214-6=168=2,故f (f (14))=f (2)=2+22-6=-1;由f (x )=x +2x -6=3,解得x =10.答案:-1 104.设一个函数的解析式为f (x )=2x +3,它的值域为{-1,2,5,8},则此函数的定义域为__________.解析:分别令y =-1,2,5,8解出x =-2,-12,1,52.答案:⎩⎨⎧⎭⎬⎫-2,-12,1,52[学生用书P88(单独成册)])[A 基础达标]1.下列各组函数中,表示同一函数的是( ) A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z解析:选C.A 项中两函数的定义域不同;B 项,D 项中两函数的对应关系不同.故选C.2.下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x解析:选C.若f (x )=|x |,则f (2x )=|2x |=2|x |=2f (x );若f (x )=x -|x |,则f (2x )=2x -|2x |=2(x -|x |)=2f (x );若f (x )=-x ,则f (2x )=-2x =2f (x );若f (x )=x +1,则f (2x )=2x +1,不满足f (2x )=2f (x ).3.下列函数中,值域为(0,+∞)的是( ) A .y =x B .y =1xC .y =1xD .y =x 2+1解析:选 B.y =x 的值域为[0,+∞),y =1x 的值域为(-∞,0)∪(0,+∞),y =x 2+1的值域为[1,+∞).4.若函数f (x )=ax 2-1,a 为一个正数,且f (f (-1))=-1,那么a 的值是( ) A .1 B .0 C .-1D .2解析:选A.因为f (x )=ax 2-1,所以f (-1)=a -1, f (f (-1))=f (a -1)=a ·(a -1)2-1=-1. 所以a (a -1)2=0.又因为a 为正数,所以a =1.5.函数f (x )=(x -1)04-2x的定义域用区间表示为________.解析:要使函数有意义,需满足⎩⎪⎨⎪⎧x -1≠0,x ≥0,4-2x >0,即⎩⎪⎨⎪⎧x ≠1,x ≥0,x <2.所以函数的定义域为[0,1)∪(1,2). 答案:[0,1)∪(1,2) 6.函数y =1-1x的值域为________.解析:定义域要求1-1x ≥0且x ≠0,故有1-1x ≥0且1-1x ≠1,所以函数的值域为{y |y ≥0且y ≠1}. 答案:{y |y ≥0且y ≠1}7.如果函数f :A →B ,其中A ={-3,-2,-1,1,2,3,4},对于任意a ∈A ,在B 中都有唯一确定的|a |和它对应,则函数的值域为________.解析:由题意知,对a ∈A ,|a |∈B , 故函数值域为{1,2,3,4}. 答案:{1,2,3,4}8.若函数f (x )的定义域为[-2,1],则g (x )=f (x )+f (-x )的定义域为________.解析:由题意,得⎩⎪⎨⎪⎧-2≤x ≤1,-2≤-x ≤1,即-1≤x ≤1.故g (x )=f (x )+f (-x )的定义域为[-1,1]. 答案:[-1,1]9.已知函数y =kx +1k 2x 2+3kx +1的定义域为R ,求实数k 的值.解:函数y =kx +1k 2x 2+3kx +1的定义域即是使k 2x 2+3kx +1≠0的实数x 的集合.由函数的定义域为R ,得方程k 2x 2+3kx +1=0无解. 当k =0时,函数y =kx +1k 2x 2+3kx +1=1,函数定义域为R ,因此k =0符合题意;当k ≠0时,k 2x 2+3kx +1=0无解,即Δ=9k 2-4k 2=5k 2<0,不等式不成立.所以实数k 的值为0.10.求下列函数的定义域. (1)f (x )=6x 2-3x +2;(2)f (x )=3x -1+1-2x ; (3)f (x )=(x -2)0+2x +1. 解:(1)要使函数有意义,只需x 2-3x +2≠0, 即x ≠2且x ≠1.所以函数的定义域为{x |x ∈R ,x ≠2且x ≠1}.(2)要使函数有意义,只需⎩⎪⎨⎪⎧3x -1≥0,1-2x ≥0,解得13≤x ≤12,所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x ≤12. (3)要使函数有意义,只需⎩⎪⎨⎪⎧x -2≠0,2x +1≥0,x +1≠0,解得x >-1且x ≠2,所以函数的定义域为{x |x >-1且x ≠2}.[B 能力提升]1.已知f (x )满足f (ab )=f (a )+f (b ),且f (2)=p ,f (3)=q ,那么f (72)等于( ) A .p +q B .3p +2q C .2p +3qD .p 3+q 2解析:选B.因为f (ab )=f (a )+f (b ), 所以f (9)=f (3)+f (3)=2q , f (8)=f (2)+f (2)+f (2)=3p ,所以f (72)=f (8×9)=f (8)+f (9)=3p +2q .2.已知f (x )=1x +1,则f (f (x ))的定义域为________.解析:法一:因为f (x )=1x +1,所以f (x )的定义域为{x |x ≠-1}, 则在f (f (x ))中,f (x )≠-1,即1x +1≠-1, 解得x ≠-2.所以f (f (x ))的定义域为{x |x ≠-2且x ≠-1}.法二:因为f (x )=1x +1,则f (f (x ))=f ⎝⎛⎭⎫1x +1=x +1x +2,所以x +2≠0 且x +1≠0,即x ≠-2且x ≠-1.所以f (f (x ))的定义域为{x |x ≠-2且x ≠-1}. 答案:{x |x ≠-2且x ≠-1}3.若函数y =f (x +1)的定义域为[-1,2],则函数y =f (x )的定义域为________. 解析:由题意易得y =f (x +1)中的x 满足-1≤x ≤2,所以0≤x +1≤3,所以函数y =f (x )的定义域为[0,3].答案:[0,3]4.(选做题)已知函数f (x )=x 21+x 2.(1)求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13的值; (2)求证:f (x )+f ⎝⎛⎭⎫1x 是定值;(3)求2f (1)+f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2 016)+f ⎝⎛⎭⎫12 016+f (2 017)+f ⎝⎛⎭⎫12 017的值. 解:(1)因为f (x )=x 21+x 2,所以f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=1, f (3)+f ⎝⎛⎭⎫13=321+32+⎝⎛⎭⎫1321+⎝⎛⎭⎫132=1. (2)证明:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1,是定值. (3)由(2)知,f (x )+f ⎝⎛⎭⎫1x =1, 因为f (1)+f (1)=1, f (2)+f ⎝⎛⎭⎫12=1, f (3)+f ⎝⎛⎭⎫13=1, f (4)+f ⎝⎛⎭⎫14=1, …f (2 017)+f ⎝⎛⎭⎫12 017=1,所以2f (1)+f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2 016)+f ⎝⎛⎭⎫12 016+f (2 017)+f ⎝⎛⎭⎫12 017=2 017.。
高中数学2.3函数的概念及其表示方法(学案)

2.3函数的概念及其表示方法(学案) 姓名【概念与方法】1.函数的定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使得对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()f x 与之对应,则称:f A B →为从集合A 到B 的一个函数。
记作()y f x =。
2. 函数的三要素:定义域、值域和对应关系.对应法则是核心,定义域是灵魂3. 相等函数:当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数为同一个函数.4.函数的三种表示法:①解析法;②列表法;③图象法.5. 分段函数6. 复合函数:【题组一:函数的概念】1.下列函数中哪个与函数y x =(0)x ≥是同一个函数 ( )A .y=(x )2B .y=xx 2C .y=33xD .y=2x 2.}30|{},20|{≤≤=≤≤=y y N x x M 给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有( ) A. 0个 B. 1个 C. 2个D.3个3.已知函数y=f(x)的定义域为[-1,5],在同一坐标系下,函数)(x f y =的图象与直线a x =的交点个数为 ( )(A )0个 (B )1个(C )至多1个 (D )至少1个4.右图中,是函数的图象的是( )【题组二:分段函数】5(2013年高考福建卷(文))已知函数⎪⎩⎪⎨⎧<≤-<=20,tan 0,2)(3πx x x x x f ,则=))4((πf f ________ 6.已知⎩⎨⎧>-<+=0404)(x x x x x f ,则)3([-f f ]的值为 7.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤ ;则1(2)f f ⎛⎫ ⎪⎝⎭的值为 8.定义在R 上的函数()f x 满足)2(2)(3+=x f x f ,(1)2f =,则)5(f 等于【题组三:求函数的解析式】9.若xx x f 1)(-=,则不等式0)1(>+x f 的解集是 10.(2013年高考安徽(文))定义在R 上的函数()f x 满足(1)2()f x f x +=.若当01x ≤≤时.()(1)f x x x =-,则当10x -≤≤时,()f x =________________.11.若)(,)1()2(,32)(x g x f x g x x f 则-=++=的表达式为g(x)=12.已知1)1(+=+x x f ,则函数)(x f 的解析式为13.若331)1(xx x x f -=-,则函数)1(-x f =___ ____.14.已知12)(3)(+=-+x x f x f ,求)(x f .15.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x );2.3函数的概念及其表示方法(作业) 姓名 1.下列函数中,与函数y x =相同的函数是 ( ) A.2x y x = B.2()y x = C.lg10x y = D.2log 2x y = 2.与函数y =10lg(2x -1)的图象相同的函数是 ( )A .y =12x -1B .y =2x -1 ⎝ ⎛⎭⎪⎫x >12C .y =⎪⎪⎪⎪⎪⎪12x -1 D .y =12x -1 ⎝ ⎛⎭⎪⎫x >12 3.下列各函数解析式中,满足)(21)1(x f x f =+的是 ( ) A. 2x B.21+x C. x -2 D.x 21log 4.(2013年高考浙江卷(文))已知函数f(x)=x-1 若f(a)=3,则实数a= ____________. 5.已知32)121(+=-x x f ,且 6)(=m f ,则m 等于 ( )A. -1/4B.1/4C.3/2D.-3/26.定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),(1)2f =, 则(3)f -等于 ( )A .2B .3C .6D .97.已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x 2,则f (x )的解析式为 ( ) A.x 1+x 2 B .-2x 1+x 2 C.2x 1+x 2 D .-x 1+x2 8.已知f (1-cos x )=sin 2x ,则f (x )=9.函数)(x f 满足关系式x xf x f 3)1(2)(=+,)(x f 的表达式为 10.422,(4)()log (1),(4)x x f x x x -⎧≤=⎨-+>⎩ ,若f (a )= 18,则f (a+6)= _ 11.已知函数f (x )=⎩⎪⎨⎪⎧x 2 x ≤02cos x 0<x <π,若))43((πf f 的值为____ ____. 12.设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为,13.已知(1)2f x x x =+)5(f 、()f x 及2()f x ;。
函数及其表示

x· x +1 的定义域为 的定义域为{x|x≥0} ; 而函数
的定义域为{x|x≤-1或x≥0} , 它们的定义域 或 x2 + x 的定义域为
不同,所以不是同一函数 不同 所以不是同一函数. 所以不是同一函数 (4)∵g(x)=f-1(x)= ∵
{
x-1,(0<x<1) x+1,(-1<x<0),
5、定义域优先原则:函数定义域是函数的灵魂,它是 、定义域优先原则:函数定义域是函数的灵魂, 研究函数的基础依据,对函数性质的讨论, 研究函数的基础依据,对函数性质的讨论,必须在定义 域上进行,坚持定义域优先的原则, 域上进行,坚持定义域优先的原则,之所以要做到这一 不仅是为了防止出现错误,有时, 点,不仅是为了防止出现错误,有时,优先考虑定义域 还会解题带来很大的方便。 还会解题带来很大的方便。
f(x)与g(x)定义域、值域、对应法则分别相同 ,故它 与 定义域、 定义域 值域、 们是同一函数. 们是同一函数 返回目录
对函数要注意: 对函数要注意: 1、函数是映射,映射不一定是函数,只有两非 、函数是映射,映射不一定是函数, 空数集之间的映射才是函数; 空数集之间的映射才是函数; 2、要克服“函数就是解析式”的片面认识,有 、要克服“函数就是解析式”的片面认识, 此对应法则很难甚至于无法用解析式表达( 此对应法则很难甚至于无法用解析式表达(可 用列表法图象法表示出来) 用列表法图象法表示出来) 3、定义域=原象集合 ,值域 、定义域 原象集合 原象集合A,值域C
( 3) A = {平面 α 内的三角形 }, B = {平面 α 内的圆 }, f : 三角形 → 该三角形的内切圆 ; ( 4 ) A = {0 , π }, B {0 ,1}, f : y = sin x
人教A版高中学案数学必修第一册精品课件 第三章 函数的概念与性质 函数的概念-第2课时函数概念的应用

[解析]由ቊ
得 > ,且 ≠ .故选C.
− ≠ ,
2.函数() =
1
(
2 +1
∈ )的值域是() B
A.(−∞, 1]B.(0,1]C.[0,1)D.[0,1]
[解析]因为
(, ].故选B.
+ ≥ ,所以 <
+
≤ ,故函数() =
为函数 = − 2 + 4 + 1的图象开口向下,对称轴方程为 = 2 ∈ [0, +∞),所以当 = 2时,
函数 = − 2 + 4 + 1取到最大值,max = 5,所以原函数的值域为(−∞, 5].
1.知识清单:(1)求函数的定义域.
(2)求简单函数的值域.
2.方法归纳:配方法、换元法、基本不等式法、数形结合、转化与化归.
=
=2+
,
−3
−3
−3
7
7
2 +1
∵
≠ 0,∴ 2 +
≠ 2,∴ =
的值域为(−∞, 2)
−3
−3
−3
∪ (2, +∞).
(4) = 2 − − 1.
1
4
解 令 − 1 = ,则 ≥ 0且 = 2 + 1,∴ = 2( 2 + 1) − = 2 2 − + 2 = 2( − )2 +
1
4
则当 = 时,min =
15
,∴
8
15
, +∞).
8
= 2 − − 1的值域为[
15
,
新课标人教A版高中数学必修1第一章第2节《函数的概念》学案

函数的概念※ 知识梳理 1.函数的概念:设A ,B 是非空的_____,如果按照某种确定的对应关系f ,使对于集合A 中的________数x ,在集合B 中都有________的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .其中x 叫做______,x 的取值范围A 叫做函数y =f (x )的______;与x 的值相对应的y 值叫做_____,函数值的集合{f (x )|x ∈A }叫做函数y =f (x )的______,则值域是集合B 的____. 2.常见函数的定义域和值域函数关系式图象定义域值域反比例函数y =kx(k ≠0)一次函数y =kx +b (k ≠0)二次函数y =ax 2+bx +c (a ≠0)3.相等函数:一个函数的构成要素为:定义域、对应关系和值域,其中值域是由______和________决定的.如果两个函数的定义域相同,并且________完全一致,我们就称这两个函数相等.(1)只要两个函数的定义域相同,对应法则相同,其值域就________.故判断两个函数是否相等时,一看定义域,二看对应法则.如y =1与y =xx 不是相等函数,因为____________.y =3t +4与y =3x +4是相等函数.(2)求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示.4.区间与无穷大:(1)区间的几何表示定义 名称 符号 数轴表示{x |a ≤x ≤b } 闭区间 [a ,b ] {x |a <x <b }开区间(a ,b ){x |a ≤x <b }半开半 闭区间 [a ,b ){x |a <x ≤b } 半开半 闭区间(a ,b ]这里的实数a 与b 都叫做相应区间的端点.(2)实数集R 的区间表示:实数集R 可以用区间表示为____________,“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.(3)无穷大的几何表示定义 符号 数轴表示{x |x ≥a } [a ,+∞) {x |x >a } (a ,+∞) {x |x ≤b } (-∞,b ]{x |x <b }(-∞,b )※ 典例分析【题型一】函数的基本概念【例1】1. 如图所示,能够作为函数y =f (x )的图象的有________.[答案] ①⑤ 解:根据函数的定义,一个函数图象与垂直于x 轴的直线最多有一个交点,这是通过图象判断其是否构成函数的基本方法.2. 下列对应或关系式中是A 到B 的函数的是( )A .A ∈R ,B ∈R ,x 2+y 2=1 B . A={(x ,y)|x ,y ∈R },对任意的(x ,y)∈A ,(x,y)→x+y.C .A =R ,B =R ,f :x →y =1x -2D .A ={1,2,3,4},B ={0,1},对应关系如图:答案:D3. 下列各对函数中,是相等函数的序号是________.① f (x )=x +1与g (x )=x +x 0 ② f (x )=22x 1)+(与g (x )=|2x +1| ③ f (n )=2n +1(n ∈Z )与g (n )=2n -1(n ∈Z ) ④ f (x )=3x +2与g (t )=3t +2 ⑤ y =x -1与y =x 2-1x +1[答案] ②④4. 已知一个函数的解析式为2)(x x f =2,它的值域为{1,4},这样的函数有 个.[答案]9[解析]列举法:定义域可能是{1,2},{-1,2},{1,-2},{-1,-2},{1,-2,2},{-1,-2,2},{-1,1,2},{-1,1,-2},{-1,1,-2,2}.【课堂练习1】1. 下列对应是否为A 到B 的函数:①A =R ,B ={x|x>0},f :x→y =|x|; ②A =Z ,B =Z ,f :x→y =x 2; ③A =Z ,B =Z ,f :x→y =x ; ④A =[-1,1],B ={0},f :x→y =0.答:(1)①③不是 ②④是2. 以下给出的同组函数中,是否表示同一函数?为什么?(1)f 1:y =xx ;f 2:y =1.(2)f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2.f 2:x x ≤1 1<x <2 x ≥2 y123(3)f 1:y =2x ;f 2:如图所示.【解】(1)不同函数.f 1(x )的定义域为{x ∈R |x ≠0},f 2(x )的定义域为R .(2)同一函数,x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式. (3)同一函数.理由同(2).【题型二】 求函数定义域 【例2】1. 求下列函数的定义域:①y =4-x ; ②y =1|x |-x ; ③y =5-x +x -1-1x 2-9.[解析] (1)①4-x ≥0,即x ≤4,故函数的定义域为{x |x ≤4}.②分母|x |-x ≠0,即|x |≠x ,所以x <0.故函数的定义域为{x |x <0}.③解不等式组⎩⎨⎧ 5-x ≥0,x -1≥0,x 2-9≠0,得⎩⎨⎧x ≤5,x ≥1,x ≠±3.故函数的定义域是{x |1≤x ≤5且x ≠3}.【课堂练习2】1. 将长为a 的铁丝折成矩形,求矩形面积y 关于一边长x 的解析式,并写出此函数的定义域.解:设矩形一边长为x ,则另一边长为12(a -2x ),所以y =x ·12(a -2x )=-x 2+12ax ,定义域为(0,a2).2. (2016年高考江苏卷) 函数y =232x x --的定义域是 .【答案】[]3,1-3. 若函数86-)(2++=m mx mx x f 的定义域为R ,则实数m 的取值范围是 .4. 已知函数32341++-=ax ax ax y 的定义域为R ,则实数a 的取值范围是 .【题型三】复合函数的定义域【例3】1. 已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )A. (-1,1)B. )21,1(--C. (-1,0)D. )1,21(解析:由题意知-1<2x +1<0,则-1<x <-12.答案:B2. 已知f (x 2-1)的定义域为[0,3],则函数y =f (x )的定义域为__________.解析:∵0≤x ≤3,∴0≤x 2≤9,∴-1≤x 2-1≤8,∴函数y =f (x )的定义域是[-1,8].【课堂练习3】1. 已知函数f (2x +1)的定义域为(0,1),则f (x )的定义域是______________.[解析]因为f (2x +1)的定义域为(0,1),即其中的函数自变量x 的取值范围是0<x <1,令t =2x +1,所以1<t <3,所以f (t )的定义域为{t |1<t <3},所以函数f (x )的定义域为{x |1<x <3}.2. 已知函数f (x )的定义域是[0,1],求g(x)=f (2x )+f (x +23)的定义域;解: 解不等式组0212013x x ≤≤⎧⎪⎨≤+≤⎪⎩,∴g(x) 的定义域是[0,13]. 【题型四】求函数的解析式 【例4】1. 已知f (x )=21xx+,求f (2x +1); 解析:f (2x +1)=244122+++x x x .2. f (x +1)=x +2x . 求f (x )的解析式;解:方法一:设u =x +1,则x =u -1(u ≥1),∴f (u )=(u -1)2+2(u -1)=u 2-1(u ≥1),即f (x )=x 2-1(x ≥1). 方法二:∵x +2x =(x +1)2-1,由于x ≥0,所以x +1≥1.∴ f (x )=x 2-1(x ≥1)3. y =f (x )是一次函数,且f (f (x ))=9x +8,求f (x )的解析式;解:由条件可设f (x )=ax +b (a ≠0),∵f [f (x )]=9x +8,∴有a (ax +b )+b =9x +8.比较系数可得⎩⎨⎧ a =3,b =2;或⎩⎨⎧a =-3,b =-4.故f (x )=3x +2或f (x )=-3x -4,4. f (x )=2f (1x)·x -1,求f (x )的解析式;解:在f (x )=2f (1x )x -1中,用1x 代替x ,得f (1x )=2f (x )1x -1,将f (1x )=2()f x x-1代入f (x )=2f (1x)x -1中,可求得f (x )=23x +13.(x>0) 5. f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.解:令x=0,y=-x,则f(x)=f(0)+x(0+x+1)=1+2xx +课堂小结:函数解析式的求法:(1)凑配法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(4)方程思想:已知关于f (x )与f (1x )或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).(5)赋值法:赋x,y 特殊值,适用于解抽象函数。
初中函数的概念学案

函数的概念(1)在某变化过程中 ,有两个变量x 、y ,对于某一d 定范围内的x 的每一个值,y 都有唯一的值与x 对应,我们说y 是x 的函数,其中x 是自变量,y 是函数,x 的取值范围,叫做定义域。
(2)函数的表示方法通常有有三种形式,分别是__________、__________、__________ (3)函数自变量的取值范围是:对于用数学式子表示的函数有以下几种情况:①函数2322-+-=x x y 的自变量x 的取值范围是__________;②函数21-=x y 的自变量x 的取值范围是__________;③函数x y -=1的自变量x 的取值范围是__________;④函数212-+-=x x y 的自变量x 的取值范围是__________;⑤实际问题要根据具体条件。
如:路程s 一定时,时间t 与速度v 的关系是__________,自变量v 的取值范围是__________,图象在第________象限。
4、函数自变量的取值范围,要依据函数表达式确定其自变量的取值范围时,一般方法是: ①若函数为整式,则自变量可取全体实数; ②若函数为分式,则自变量可取使得分母不等于零的实数;③若函数为算术平方根,则自变量可取使得被开方数为非负数的实数;④若函数由几种代数式组合而成,则应先求出各部分的自变量的取值范围,再取其公共部分,这个公共部分就是这个函数的自变量的取值范围。
⑤若函数由实际问题所得,则自变量的取值范围既要考虑使得解析式有意义,还要考虑使实际问题有意义。
【跟踪练习】:一、选择题1.下列变量之间的关系中,具有函数关系的有( )①三角形的面积与底边 ②多边形的内角和与边数 ③圆的面积与半径④y =12 x 中的y 与xA.1个B.2个C.3个D.4个2.对于圆的面积公式S =πR 2,下列说法中,正确的为( )A.π是自变量B.R 2是自变量C.R 是自变量D.πR 2是自变量 3.(1)下列函数中,自变量x 的取值范围是x ≥2的是( )A.y =x -2B.y =21-xC.y =24xD.y =2+x ·2-x(2) (杭州)已知点P (x ,y )在函数xx y -+=21的图象上,那么点P 应在平面直角坐标系中的A.第一象限B. 第二象限C.第三象限 D. 第四象限(3)(09青海)在函数2y x=中,自变量x 的取值范围是( )(4)(2009年哈尔滨)函数y =22x x -+的自变量x 的取值范围是(5)(2010年安徽省芜湖市)要使式子a +2a 有意义,a 的取值范围是( )A .a ≠0B .a >-2且a ≠0C .a >-2或a ≠0 D .a ≥-2且a ≠0(6). (2009仙桃)函数2x x 4y --=中,自变量x 的取值范围是__________________4.已知函数y =212+-x x ,当x =a 时的函数值为1,则a的值为( )A.3B.-1C.-3D.15、(河北)在平面直角坐标系中,若点()2P x x -,在第二象限,则x 的取值范围为( )A.0x > B.2x < C.02x << D.2x>6、(成都) 某航空公司规定,旅客乘机所携行李的质量x (kg)与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为 (A)20kg (B)25kg (C)28kg (D)30kg7 如图,从矩形纸片AMEF 中剪去矩形BCDM 后, 动点P 从点B 出发,沿BC 、CD 、DE 、EF 运动到点F 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图5所示,则图形FE DCBAMABCDEF 的面积是A .32B .34C .36D .488.(牡丹江)如图,平面直角坐标系中,在边长为1的正方形ABCD的边上有一动点P沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P走过的路程s 之间的函数关系用图象表示大致是( )9.(内江)打开某洗衣机开关(洗衣机内无水),在洗A .B .C .D.涤衣服时,洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x (分钟)之间满足某种函数关系,其函数图象大致为( )【课堂检测】 一、选择题 1.(成都)在函数3y x=中,自变量x 的取值范围是( )A.2x -≥且0x ≠ B.2x ≤且0x ≠ C.0x ≠ D.2x -≤2.(常德)如图1,正方形OABC 的边长为2,则该正方形绕点O 逆时针旋转45后,BA .(22), B.(0C. D .(02),4.(南昌)若点(2)A n -,在x 轴上,则点(11)B n n -+,在( ) A.第一象限 B.第二象限 C.第三象限x图1A .B .C .D .D.第四象限5.(青岛)已知ABC △在直角坐标系中的位置如图3所示,如果A B C '''△与ABC △关于y 轴对称,那么点A 的对应点A '的坐标为( )A.(42)-,B (42)--, C.(42)-,D.(42), 8、(梅州)我市大部分地区今年5月中、下旬的天气情况是:前5天小雨,后5天暴雨.那么能反映我市主要河流水位变化情况的图象大致是( )9、(肇庆)将点(22)P -,沿x 轴的正方向平移4个单位得到点P '的坐标是( )A.(26)-,B.(62)-, C.(22), D.(22)-,10、(潍坊).观察下列等式:A .B .C .D .16115-=;-=;25421-=;36927-=;491633… …用自然数n(其中1n≥)表示上面一系列等式所反映出来的规律是.。
人教A版高中数学第一册(必修1)学案1:3.1.1 函数的概念

第三章函数的概念与性质3.1 函数的概念及其表示3.1.1函数的概念课前自主学习知识点1函数的定义及相关概念(1)函数的定义:一般地,设A,B是非空的实数集,如果对于集合A中的任意一个实数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B 为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)相关概念:x叫做,x的取值范围A叫做函数的;与x的值相对应的y值叫做,函数值的集合{f(x)| x∈A }叫做函数的. 显然,值域是集合B的.(3)同一个函数:如果两个函数的相同,并且完全一致,即相同的自变量对应的函数值相同,那么这两个函数是同一个函数.『微思考』(1)任何两个集合之间都可以建立函数关系吗?(2)什么样的对应可以构成函数关系?知识点2区间及相关概念(1)一般区间的表示设a,b是两个实数,而且,我们规定:定义名称符号数轴表示{x|a≤x≤b}闭区间{x|a<x<b}开区间{x|a≤x<b}半闭半开区间{x|a<x≤b}半开半闭区间(2)实数集R可以用区间表示为,“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.(3)特殊区间的表示定义区间数轴表示{x|x≥a}{x|x>a}{x|x≤b}{x|x<b}『微体验』1.下列区间与集合{x|x<-2或x≥0}相对应的是()A.(-2,0)B.(-∞,-2』∪『0,+∞)C.(-∞,-2)∪『0,+∞)D.(-∞,-2』∪(0,+∞)2.下列集合不能用区间的形式表示的个数为()①A={0,1,5,10};②{x|2<x≤10,x∈N};③∅;④{x|x是等边三角形};⑤{x|x≤0或x≥3};⑥{x|x>1,x∈Q}.A.2B.3 C.4D.53.{x|x>1且x≠2}用区间表示为________.课堂互动探究探究一函数关系的判断例1 下列对应中是A 到B 的函数的个数为( ) (1)A =R ,B ={x |x >0},f :x →y =|x |; (2)A =Z ,B =Z ,f :x →y =x 2; (3)A =『-1,1』,B ={0},f :x →y =0;(4)A ={1,2,3},B ={a ,b },对应关系如下图所示:(5)A ={1,2,3},B ={4,5,6},对应关系如下图所示:A .1B .2C .3D .4『方法总结』判断对应关系是否为函数,主要从以下三个方面去判断 (1)A ,B 必须是非空数集;(2)A 中任何一个元素在B 中必须有元素与其对应; (3)A 中任何一个元素在B 中的对应元素必须唯一. 跟踪训练1 对于函数y =f (x ),以下说法正确的有( )①y 是x 的函数;②对于不同的x 值,y 的值也不同;③f (a )表示当x =a 时函数f (x )的值,是一个常量;④f (x )一定可以用一个具体的式子表示出来. A .1个B .2个C .3个D .4个探究二 求函数定义域问题 例2 求下列函数的定义域:(1)y =(x +1)2x +1-1-x ;(2)y =5-x |x |-3;(3)y =ax -3(a 为常数).变式探究 将本例(1)改为y =(x +1)2x +1-1-x 2,其定义域如何?『方法总结』求函数定义域的常用依据(1)若f (x )是分式,则应考虑使分母不为零; (2)若f (x )是偶次根式,则被开方数大于或等于零;(3)若f (x )是指数幂,则函数的定义域是使指数幂运算有意义的实数集合; (4)若f (x )是由几个式子构成的,则函数的定义域要使各个式子都有意义; (5)若f (x )是实际问题的『解 析』式,则应符合实际问题,使实际问题有意义. 跟踪训练2 (1)设全集为R ,函数f (x )=2-x 的定义域为M ,则∁R M 为( ) A .(2,+∞)B .(-∞,2)C .(-∞,2』D .『2,+∞)(2)函数f (x )=xx -1的定义域为________.探究三 求函数值和函数值域问题例3 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f (g (2))的值; (3)求f (x ),g (x )的值域.『方法总结』求函数值域的原则及常用方法(1)原则:①先确定相应的定义域;②再根据函数的具体形式及运算确定其值域.(2)常用方法:①逐个求法:当定义域为有限集时,常用此法;②观察法:如y=x2,可观察出y≥0;③配方法:对于求二次函数值域的问题常用此法;④换元法:对于形如y=ax+b+cx+d的函数,求值域时常用换元法,令t=cx+d,将原函数转化为关于t的二次函数;⑤分离常数法:对于形如y=cx+dax+b的函数,常用分离常数法求值域;⑥图象法:对于易作图象的函数,可用此法,如y=1x-1.跟踪训练3求下列函数的值域:(1)y=3x-1,x∈{1,3,5,7};(2)y=-x2+2x+1,x∈R;(3)y=x+1-2x.探究四同一个函数的判定例4 下列各组函数是同一个函数的是________.(填序号)①f(x)=-2x3与g(x)=x-2x;②f(x)=x0与g(x)=1x0;③f(x)=x2-2x-1与g(t)=t2-2t-1.『方法总结』判断同一个函数的三个步骤和两个注意点(1)判断函数是否相等的三个步骤.(2)两个注意点.①在化简『解析』式时,必须是等价变形;②与用哪个字母表示变量无关.跟踪训练4下列各组中的两个函数是否为同一个函数?(1)y1=(x+3)(x-5)x+3,y2=x-5;(2)y1=x+1·x-1,y2=(x+1)(x-1).随堂本课小结1.对函数概念的五点说明(1)对数集的要求:集合A,B为非空数集.(2)任意性和唯一性:集合A中的数具有任意性,集合B中的数具有唯一性.(3)对符号“f”的认识:它表示对应关系,在不同的函数中f的具体含义不一样.(4)一个区别:f(x)是一个符号,不表示f与x的乘积,而f(a)表示函数f(x)当自变量x取a时的一个函数值.(5)函数三要素:定义域、对应关系和值域是函数的三要素,三者缺一不可.2.求函数的定义域就是求使函数『解析』式有意义的自变量的取值范围,列不等式(组)是求函数定义域的基本方法.3.求函数的值域常用的方法有:观察法、配方法、换元法、分离常数法、图象法等.——★参*考*答*案★——课前自主学习知识点1函数的定义及相关概念(2)自变量定义域函数值值域子集(3)定义域对应关系『微思考』(1)提示:不一定,两个集合必须是非空的数集.(2)提示:两个非空数集之间是一一对应关系或多对一可构成函数关系.知识点2区间及相关概念(1)a<b『a,b』(a,b) 『a,b) (a,b』(2) (-∞,+∞)(3) 『a,+∞)(a,+∞)(-∞,b』(-∞,b)『微体验』1.C『『解析』』集合{ x|x<-2或x≥0}可表示为(-∞,-2)∪『0,+∞).2.D『『解析』』用区间表示的集合必须是连续的实数构成的集合,只有⑤是连续实数构成的集合,因此只有⑤可以用区间表示.3.(1,2)∪(2,+∞)『『解析』』{x|x>1且x≠2}用区间表示为(1,2)∪(2,+∞).课堂互动探究探究一函数关系的判断例1 B『『解析』』(1)A中的元素0在B中没有对应元素,故不是A到B的函数;(2)对于集合A中的任意一个整数x,按照对应关系f:x→y=x2,在集合B中都有唯一确定的整数x2与其对应,故是集合A到集合B的函数;(3)对于集合A中任意一个实数x,按照对应关系f:x→y=0,在集合B中都有唯一确定的数0和它对应,故是集合A到集合B的函数;(4)集合B 不是确定的数集,故不是A 到B 的函数;(5)集合A 中的元素3在B 中没有对应元素,且A 中元素2在B 中有两个元素5和6与之对应,故不是A 到B 的函数. 跟踪训练1 B『『解 析』』①③正确,②是错误的,对于不同的x 值,y 的值可以相同,这符合函数的定义,④是错误的,f (x )表示的是函数,而函数并不是都能用具体的式子表示出来. 探究二 求函数定义域问题例2 解 (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,解得x ≤1,且x ≠-1,即函数的定义域为{x |x ≤1,且x ≠-1}.(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,即函数的定义域为{x |x ≤5,且x ≠±3}.(3)要使函数有意义,必须使ax -3≥0.当a >0时,原函数的定义域为⎩⎨⎧x ⎪⎪⎭⎬⎫x ≥3a ; 当a <0时,原函数的定义域为⎩⎨⎧ x ⎪⎪⎭⎬⎫x ≤3a; 当a =0时,ax -3≥0的解集为∅,不符合函数的定义,故此时不是函数.变式探究 解 由⎩⎪⎨⎪⎧x +1≠0,1-x 2≥0,解得{x |-1<x ≤1}.跟踪训练2 (1)A『『解 析』』由2-x ≥0,解得x ≤2,所以M =(-∞,2』,所以∁R M =(2,+∞). (2){x |x ≥0,且x ≠1}『『解 析』』要使xx -1有意义,需满足⎩⎪⎨⎪⎧x ≥0,x -1≠0,解得x ≥0,且x ≠1,故函数f (x )的定义域为{x |x ≥0,且x ≠1}.探究三 求函数值和函数值域问题例3 解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6.(2)f (g (2))=f (6)=11+6=17. (3)f (x )=11+x 的定义域为{x |x ≠-1},∴值域是{y |y ≠0}.g (x )=x 2+2的定义域为R ,最小值为2,∴值域是{y |y ≥2}.跟踪训练3 解 (1)(逐个求法)将x =1,3,5,7依次代入『解 析』式,得y =2,8,14,20.∴函数的值域是{2,8,14,20}.(2)(配方法)∵y =-x 2+2x +1=-(x -1)2+2≤2, ∴函数的值域是(-∞,2』.(3)(换元法或配方法)令1-2x =t ,则x =1-t 22,且t ≥0,∴原函数化为y =1-t 22+t =-12t 2+t +12=-12(t -1)2+1≤1.∴所求函数的值域是(-∞,1』. 探究四 同一个函数的判定 例4 ②③『『解 析』』①f (x )=-x -2x ,g (x )=x -2x ,对应关系不同,故f (x )与g (x )不是同一个函数;②f (x )=x 0=1(x ≠0),g (x )=1x 0=1(x ≠0),对应关系与定义域均相同,故是同一个函数;③f (x )=x 2-2x -1与g (t )=t 2-2t -1,对应关系和定义域均相同,故是同一个函数. 跟踪训练4 解 (1)两函数定义域不同,所以不是同一个函数.(2)y 1=x +1·x -1的定义域为{x |x ≥1},而y 2=(x +1)(x -1)的定义域为{x |x ≥1或x ≤-1},定义域不同,所以不是同一个函数.。
高中数学 第一章 集合与函数概念 12 函数及其表示 121 函数的概念学案(含解析)新人教版必修1

§1.2函数及其表示1.2.1 函数的概念学习目标 1.理解函数的概念(重点、难点).2.了解构成函数的三要素(重点).3.正确使用函数、区间符号(易错点).知识点1 函数的概念(1)函数的概念概念设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数三要素对应关系y=f(x),x∈A定义域x的取值X围值域与x对应的y的值的集合{f(x)|x∈A}如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等.【预习评价】(正确的打“√”,错误的打“×”)(1)函数的定义域和值域一定是无限集合.( )(2)根据函数的定义,定义域中的任何一个x可以对应着值域中不同的y.( )(3)在函数的定义中,集合B是函数的值域.( )提示(1)×函数的定义域和值域也可能是有限集,如f(x)=1;(2)×根据函数的定义,对于定义域中的任何一个x,在值域中都有唯一确定的y与之对应;(3)×在函数的定义中,函数的值域是集合B的子集.知识点2 区间及有关概念(1)一般区间的表示.设a,b∈R,且a<b,规定如下:定义 名称 符号 数轴表示{x |a ≤x ≤b } 闭区间 [a ,b ] {x |a <x <b }开区间 (a ,b ){x |a ≤x <b }半开半闭区间 [a ,b ){x |a <x ≤b }半开半闭区间(a ,b ](2)特殊区间的表示. 定义 R {x |x ≥a } {x |x >a } {x |x ≤a } {x |x <a } 符号(-∞,+∞)[a ,+∞)(a ,+∞)(-∞,a ](-∞,a )【预习评价】已知全集U =R ,A ={x |1<x ≤3},则∁U A 用区间表示为________. 解析 ∁U A ={x |x ≤1或x >3},用区间可表示为(-∞,1]∪(3,+∞). 答案 (-∞,1]∪(3,+∞)题型一 函数关系的判定【例1】 (1)下列图形中,不能确定y 是x 的函数的是( )(2)下列各题的对应关系是否给出了实数集R 上的一个函数?为什么? ①f :把x 对应到3x +1;②g :把x 对应到|x |+1; ③h :把x 对应到1x;④r :把x 对应到x .(1)解析 任作一条垂直于x 轴的直线x =a ,移动直线,根据函数的定义可知,此直线与函数图象至多有一个交点.结合选项可知D 不满足要求,因此不表示函数关系. 答案 D(2)解 ①是实数集R 上的一个函数.它的对应关系f 是:把x 乘3再加1,对于任意x ∈R ,3x +1都有唯一确定的值与之对应,如当x =-1时,有3x +1=-2与之对应. 同理,②也是实数集R 上的一个函数. ③不是实数集R x =0时,1x的值不存在.④不是实数集R x <0时,x 的值不存在.(1)任取一条垂直于x 轴的直线l ; (2)在定义域内平行移动直线l ;(3)若l 与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.【训练1】 设M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有( )解析 ①错,x =2时,在N 中无元素与之对应,不满足任意性.②对,同时满足任意性与唯一性.③错,x =2时,对应元素y =3∉N ,不满足任意性.④错,x =1时,在N 中有两个元素与之对应,不满足唯一性. 答案 B题型二 相等函数【例2】(1)下列各组函数:①f (x )=x 2-xx,g (x )=x -1;②f (x )=x x ,g (x )=x x;③f (x )=(x +3)2,g (x )=x +3; ④f (x )=x +1,g (x )=x +x 0;⑤汽车匀速运动时,路程与时间的函数关系f (t )=80t (0≤t ≤5)与一次函数g (x )=80x (0≤x ≤5).其中表示相等函数的是________(填上所有正确的序号).(2)试判断函数y =x -1·x +1与函数y =(x +1)(x -1)是否相等,并说明理由. (1)解析 ①f (x )与g (x )的定义域不同,不是相等函数;②f (x )与g (x )的解析式不同,不是相等函数;③f (x )=|x +3|,与g (x )的解析式不同,不是相等函数;④f (x )与g (x )的定义域不同,不是相等函数;⑤f (t )与g (x )的定义域、值域、对应关系皆相同,故是相等函数. 答案 ⑤y =x -1·x +1,由⎩⎪⎨⎪⎧x -1≥0,x +1≥0,解得x ≥1,故定义域为{x |x ≥1},对于函数y =(x +1)(x -1),由(x +1)(x -1)≥0解得x ≥1或x ≤-1,故定义域为{x |x ≥1或x ≤-1},显然两个函数定义域不同,故不是相等函数. 规律方法 判断两个函数为相等函数应注意的三点(1)定义域、对应关系两者中只要有一个不相同就不是相等函数,即使定义域与值域都相同,也不一定是相等函数.(2)函数是两个数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的. (3)在化简解析式时,必须是等价变形.【训练2】 判断以下各组函数是否表示相等函数: (1)f (x )=(x )2;g (x )=x 2.(2)f (x )=x 2-2x -1;g (t )=t 2-2t -1.解 (1)由于函数f (x )=(x )2的定义域为{x |x ≥0},而g (x )=x 2的定义域为{x |x ∈R },它们的定义域不同,所以它们不表示相等函数.(2)两个函数的定义域和对应关系都相同,所以它们表示相等函数. 题型三 求函数值【例3】 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f (g (3))的值.解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6. (2)∵g (3)=32+2=11, ∴f (g (3))=f (11)=11+11=112. 规律方法 求函数值的方法及关注点(1)方法:①已知f (x )的解析式时,只需用a 替换解析式中的x 即得f (a )的值;②求f (g (a ))的值应遵循由里往外的原则.(2)关注点:用来替换解析式中x 的数a 必须是函数定义域内的值,否则函数无意义. 【训练3】 已知函数f (x )=x +1x +2. (1)求f (2);(2)求f (f (1)). 解 (1)∵f (x )=x +1x +2,∴f (2)=2+12+2=34. (2)f (1)=1+11+2=23,f (f (1))=f ⎝ ⎛⎭⎪⎫23=23+123+2=58.【例4-1】 求下列函数的定义域: (1)y =(x +1)2x +1-1-x ;(2)y =5-x |x |-3.解 (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0.解得x ≤1,且x ≠-1,即函数定义域为{x |x ≤1,且x ≠-1}.(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}. 规律方法 求函数定义域的实质及结果要求(1)求函数的定义域实质是解不等式(组),即将满足的条件转化为解不等式(组)的问题,要求把满足条件的不等式列全.(2)结果要求:定义域的表达形式可以是集合形式,也可以是区间形式. 方向2 求抽象函数的定义域【例4-2】 (1)设函数f (x )=x ,则f (x +1)等于什么?f (x +1)的定义域是什么? (2)若函数y =f (x )的定义域是[0,+∞),那么函数y =f (x +1)的定义域是什么? 解 (1)f (x +1)=x +1.令x +1≥0,解得x ≥-1,所以f (x +1)=x +1的定义域为[-1,+∞).(2)函数y =f (x )的定义域是[0,+∞),所以令x +1≥0,解得x ≥-1,所以函数y =f (x +1)的定义域是[-1,+∞).【例4-3】 若函数y =f (x +1)的定义域是[1,2],根据函数定义域的定义,这里的“[1,2]”是指谁的取值X 围?使对应关系f 有意义的自变量t =x +1的X 围是什么?函数y =f (x )的定义域是什么?解 这里的“[1,2]”是自变量xx ∈[1,2],所以x +1∈[2,3],所以使对应关系f 有意义的自变量t =x +1的X 围是[2,3],所以函数y =f (x )的定义域是[2,3].【例4-4】 (1)已知函数y =f (x )的定义域为[-2,3],求函数y =f (2x -3)的定义域; (2)已知函数y =f (2x -3)的定义域是[-2,3],求函数y =f (x +2)的定义域.解 (1)因为函数y =f (x )的定义域为[-2,3],即x ∈[-2,3],函数y =f (2x -3)中2x -3的X 围与函数y =f (x )中x 的X 围相同,所以-2≤2x -3≤3,解得12≤x ≤3,所以函数y =f (2x -3)的定义域为⎣⎢⎡⎦⎥⎤12,3. (2)因为x ∈[-2,3],所以2x -3∈[-7,3],即函数y =f (x )的定义域为[-7,3]. 令-7≤x +2≤3,解得-9≤x ≤1,所以函数y =f (x +2)的定义域为[-9,1]. 规律方法 两类抽象函数的定义域的求法(1)已知f (x )的定义域,求f (g (x ))的定义域:若f (x )的定义域为[a ,b ],则f (g (x ))中a ≤g (x )≤b ,从中解得x 的取值集合即为f (g (x ))的定义域.(2)已知f (g (x ))的定义域,求f (x )的定义域:若f (g (x ))的定义域为[a ,b ],即a ≤x ≤b ,求得g (x )的取值X 围,g (x )的值域即为f (x )的定义域.课堂达标1.下列图象中表示函数图象的是( )解析 根据函数的定义,对定义域中任意的一个x 都存在唯一的y 与之对应,而A ,B ,D 都存在一对多,只有C 满足函数的定义.故选C. 答案 C2.下列各组函数中表示相等函数的是( ) A.f (x )=x 与g (x )=(x )2B.f (x )=|x |与g (x )=x (x >0)C.f (x )=2x -1与g (x )=2x +1(x ∈N *)D.f (x )=x 2-1x -1与g (x )=x +1(x ≠1)解析 选项A ,B ,C 中两个函数的定义域均不相同,故选D. 答案 Df (x )=x -4+1x -5的定义域是________.解析 ∵函数f (x )=x -4+1x -5,∴⎩⎪⎨⎪⎧x -4≥0,x -5≠0,解得x ≥4,且x ≠5.∴函数f (x )的定义域是[4,5)∪(5,+∞). 答案 [4,5)∪(5,+∞)f (x )的定义域为(0,2),则f (x -1)的定义域为________.解析 由题意知0<x -1<2,解得1<x <3,故f (x -1)的定义域为(1,3). 答案 (1,3)f (x )=x 2+x -1.(1)求f (2),f ⎝ ⎛⎭⎪⎫1x ;(2)若f (x )=5,求x 的值. 解 (1)f (2)=22+2-1=5, f ⎝ ⎛⎭⎪⎫1x =1x 2+1x-1=1+x -x 2x 2.(2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0, ∴x =2或x =-3.课堂小结1.函数的本质:两个非空数集间的一种确定的对应关系.由于函数的定义域和对应关系一经确定,值域随之确定,所以判断两个函数是否相等只须两个函数的定义域和对应法则一样即可.2.f (x )是函数符号,f 表示对应关系,f (x )表示x 对应的函数值,绝对不能理解为f 与xff (x )表示外,还可用g (x ),F (x )等表示.基础过关1.下列函数中,与函数y =x 相等的是( ) A.y =(x )2B.y =x 2C.y =⎩⎪⎨⎪⎧x ,x >0-x ,x <0D.y =3x 3解析 函数y =x 的定义域为R ;y =(x )2的定义域为[0,+∞);y =x 2=|x |,对应关系不同;y =⎩⎪⎨⎪⎧x ,x >0,-x ,x <0,对应关系不同;y =3x 3=x ,且定义域为R .故选D.答案 D2.下列四个图象中,是函数图象的是( )A.①B.①③④C.①②③D.③④解析 由每一个自变量x 对应唯一一个f (x )可知②不是函数图象,①③④是函数图象. 答案 By =1-x +x 的定义域为( )A.{x |x ≤1}B.{x |x ≥0}C.{x |x ≥1或x ≤0}D.{x |0≤x ≤1}解析 由题意可知⎩⎪⎨⎪⎧1-x ≥0,x ≥0,解得0≤x ≤1.答案 Df (x )=2x -1,g (x )=x 2,则g (f (2)-1)=________.解析 f (2)-1=2×2-1-1=2,所以g (f (2)-1)=g (2)=22=4. 答案 45.用区间表示下列集合: (1){x |-12≤x <5}=________;(2){x |x <1或2<x ≤3}=________.解析 (1)注意到包括不包括区间的端点与不等式含不含等号对应,则{x |-12≤x <5}=⎣⎢⎡⎭⎪⎫-12,5. (2)注意到集合中的“或”对应区间中的“∪”,则{x |x <1或2<x ≤3}=(-∞,1)∪(2,3].答案 (1)⎣⎢⎡⎭⎪⎫-12,5 (2)(-∞,1)∪(2,3]f (x )=x +5+1x -2.(1)求函数的定义域;(2)求f (-4),f ⎝ ⎛⎭⎪⎫23的值. 解 (1)使根式x +5有意义的实数x 的取值集合是{x |x ≥-5},使分式1x -2有意义的实数x 的取值集合是{x |x ≠2},所以这个函数的定义域是{x |x ≥-5}∩{x |x ≠2}={x |x ≥-5且x ≠2}. (2)f (-4)=-4+5+1-4-2=1-16=56. f ⎝ ⎛⎭⎪⎫23=23+5+123-2=173-34=513-34.f (x )=x 21+x2.(1)求f (2)+f ⎝ ⎛⎭⎪⎫12,f (3)+f ⎝ ⎛⎭⎪⎫13的值; (2)求证f (x )+f ⎝ ⎛⎭⎪⎫1x 是定值.(1)解 ∵f (x )=x 21+x2, ∴f (2)+f ⎝ ⎛⎭⎪⎫12=221+22+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1. f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)证明 f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2 =x 21+x 2+1x 2+1=x 2+1x 2+1=1. 能力提升f (x )=ax 2-1,a 为一个正常数,且f (f (-1))=-1,那么a 的值是( )A.1B.0解析 f (-1)=a ·(-1)2-1=a -1,f (f (-1))=a ·(a -1)2-1=a 3-2a 2+a -1=-1. ∴a 3-2a 2+a =0,∴a =1或a =0(舍去). 答案 Af (x )=x -4mx 2+4x +3的定义域为R ,则实数m 的取值X 围是( )A.(-∞,+∞)B.⎝ ⎛⎭⎪⎫0,43C.⎝ ⎛⎭⎪⎫43,+∞ D.⎣⎢⎡⎭⎪⎫0,43 解析 (1)当m =0时,分母为4x +3,此时定义域不为R ,故m =0不符合题意.(2)当m ≠0时,由题意,得⎩⎪⎨⎪⎧m ≠0,Δ=16-4×3m <0,解得m >43. 由(1)(2)知,实数m 的取值X 围是⎝ ⎛⎭⎪⎫43,+∞. 答案 Cf (x )的定义域为(-1,1),则函数g (x )=f ⎝ ⎛⎭⎪⎫x 2+f (x -1)的定义域是________. 解析 由题意知⎩⎪⎨⎪⎧-1<x 2<1,-1<x -1<1,即⎩⎪⎨⎪⎧-2<x <2,0<x <2.从而0<x <2, 于是函数g (x )的定义域为(0,2).答案 (0,2)f (x )满足f (x )+f (y )=f (xy ),且f (5)=m ,f (7)=n ,则f (175)=________.解析 ∵f (x )满足f (x )+f (y )=f (xy ),且f (5)=m ,f (7)=n ,∴把x =5,y =7代入得f (5)+f (7)=f (35),∴m +n =f (35),把x =5,y =35代入得f (5)+f (35)=f (175),∴m +m +n =f (175),即2m +n =f (175),∴f (175)=2m +n .答案 2m +n数的定义域:(1)y =(x +1)0x +2; (2)y =2x +3-12-x +1x . 解 (1)由于00无意义,故x +1≠0,即x ≠-1.又x +2>0,x >-2,所以x >-2且x ≠-1.所以函数y =(x +1)0x +2的定义域为{x |x >-2,且x ≠-1}. (2)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0,解得-32≤x <2,且x ≠0,所以函数y =2x +3-12-x +1x 的定义域为⎩⎨⎧⎭⎬⎫x |-32≤x <2,且x ≠0. 13.(选做题)已知甲地到乙地的高速公路长1 500 km ,现有一辆汽车以100 km/h 的速度从甲地驶往乙地,写出汽车离开甲地的距离s (单位:km)与时间t (单位:h)的函数解析式,并求出函数的定义域.解 ∵汽车在甲、乙两地之间匀速行驶,∴s =100 t .∵汽车行驶速度为100 km/h ,两地之间的距离为1 500 km ,∴从甲地到乙地所用时间为15小时.∴所求函数解析式为s =100t ,0≤t ≤15.。
311函数的概念学案-河北省献县第一中学人教A版【2019新教材】高一数学必修第一册

高中数学第一册[新教材]人教A版(2019)必修一第三章函数的概念和性质3.1函数的概念及其表示3.1.1函数的概念【学习目标】1.在初中的基础之上,进一步体会函数描述的是变量之间的依赖关系,会用集合与对应的语言来刻画函数,2.了解构成函数的要素,会求一些简单函数的定义域和值域3.理解函数的三要素及函数符号的深刻含义【核心素养】1,通过学习函数的概念,培养数学抽象素养2,借助函数定义域的求解,培养数学运算素养.3.借助f(x)与f(a)的关系,培养逻辑推理素养【知识导学】知识点一函数的概念一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.【名师点拨】(1)对应中的两个集合A,B是非空的实数集,(2)函数概念中明确要求对于非空实数集A中的任意一个(任意性)元素x,在非空实数集B中都有(存在性)唯一(唯一性)的元素y与之对应.注意其中的(任意性)、(存在性)、(唯一性)(3)集合A是函数的定义域,因为给定A中每一个x值都有唯一的y值与之对应;集合B不一定是函数的值域,因为B中的元素可以在A中没有与之对应的x,也就是说,B中的某些元素可以不是函数值,即{f(x)|x∈A}⊆B.(4)在函数定义中,我们用符号y=f(x)表示函数,其中f(x)表示“x对应的函数值”,而不是“f乘x”,也就是说:对应关系f是函数的本质特征,好比计算机的某种程序(或解决某问题的方法),当我们在f( )中括号里面放入某个x,就会按照这个程序得到一个结果即y值(5)函数的三要素,从函数的定义可以看出,函数有三个要素:定义域、对应关系、值域,判定函数和函数相等的依据知识点二区间的概念(1)设a,b是两个实数,而且a<b.我们规定:定义名称符号数轴表示{x|a≤x≤b}闭区间{x|a<x<b}开区间{x|a≤x<b}半开半闭区间{x|a<x≤b}半开半闭区间(2)特殊区间的表示定R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a}义符(-∞,+∞) [a,+∞)(a,+∞)(-∞,a](-∞,a)号注意:(1)无穷大“∞”只是一个符号,而不是一个数,因而它不具备数的一些性质和运算法则.(2)以“-∞”或“+∞”为区间一端时,这一端必须用小括号.【初试身手】1.(2020·浙江高一开学考试)下列各曲线中,不能表示y是x的函数的是()A.B.C.D.【答案】C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,与 x 值相对应的 y 值叫做 .
2 3 4 5 6 序号(数) 1 90 93 90 98 92 分数 集合 A={1,2,3,4,5,6},B={90,93,98,92},f:每次考试成绩.这能否算 作一个函数的例子,为什么? (2) 高一(1)班的同学组成集合 A,教室里的凳子组成集合 B,每一位同学都有 唯一的一个凳子.这能否算作一个函数的例子,为什么?
【当堂训练】
1. 已知函数 g (t ) 2t 2 1 ,则 g (1) ( A. -1 B. 0 ). C. 1 ). C. 1 。 , 值域是 ( . 用区间表示) D. 2 D. 2
2. 已知函数 f ( x) 2 x 3 ,若 f (a) 1 ,则 a=( A. -2 B. -1
2. y x ( x 0) 是函数吗?
3. y
x - 3 1 x 是函数吗?
)
4.下列给出的四个图形中,是函数图象的是: (
A、①
B、①③④
B、①②③
D、③④
5.下列对应是否是 A 到 B 的函数 A:A=Z,B= N ,f:x→y=|x| B:A={0,1,2,4},B={0,1,4,9,64},f:x→y=(x-1) C:A=B=R,f:x→y=
3)定义在 R 上的 f ( x) 满足 f ( x y ) = f ( x) + f ( y ) +2xy,若 f (1) =2,求 f (3) 值
2
鸡西市第十九中学高一数学组
(2)已知函数 f(x)=5x-2,求 f 3, f 0, f a , f a 1 的值。
(3)已知函数 f x x 2 2x 3 , x 1,0,1,2 ,求该函数的值域。
【强调】①值域由_________和______________唯一确定;f(x)是函数符号,f 表示对应 关系,f(x)表示 x 对应的函数值,绝对不能理解为 f 与 x 的乘积.在不同的函数中 f 的具 体含义不同,对应关系可以是解析式、图象、表格等.函数除了可用符号 f(x)表示外, 还可用 g(x),F(x)等表示. ②常见函数的定义域与值域. 函数 一次函数 解析式 定义域 值域
1
鸡西市第十九中学高一数学组
【重点理解】 ① 关键词:A,B 是非空的数集。对应关系 ② 思考:“按照某种确定的对应关系”是什么意思? ③ f 可以看作是对“x”施加的某种运算或法则。例如: f ( x) x2 ,f 就是对自变量 x 求平方。 试一试:1. y 1( x R) 是函数吗?
2
x
2
D:A=Z,B=Z,f:x→y=x
例 1 : 已 知 f x x2 3x 1 , 则 f 1
f
2
; f 5 。
;
; f a
; f 2a 1
例 1. (1)已知 f ( x) x2 2 x 3 ,求 f 0, f 1, f 2, f 1 的值。
3.函数 y x2 , x {2, 1,0,1, 2}的值域是
2 4. 函数 y 的定义域是 x
5.求值:1) f x
x 1 1 f 2 , f , f 2 求 1 x 2 x
2 2) f x x 2x a, f 3 1 求 a.
y ax b (a 0)
二次函数
y ax2 bx c ,
其中 a 0
反比例函数
y
k (k 0) x
【区间的相关概念】 设 a,b 是两个实数,a<b,我们规定: (1) 满足不等式 a≤x≤b 的实数 x 的集合表示为 (2) 满足不等式 a<x<b 的实数 x 的集合表示为 (3) 满足不等式 a≤x<b 或 a<x≤b 的实数的集合表示为 【无穷区间的表示】 实数集 R 可以用区间表示为 , “∞”读作“无穷大” , “-∞”读作“负无穷大” , “+∞”读作“正无穷大” ,我们可以把满足 x≥a,x>a,x≤b,x<b 的实数 x 的集合分 别表示为 、 、 、 。 定义 {x|a≤x≤b} {x|a<x<b} {x|a≤x<b} {x|<x≤b} {x|x≥a}
鸡西市第十九中学高一数学组
鸡西市第十九中学学案
2014 年( )月( )日 班级 姓名
1.2.1 函数的概念 学习 目标 重点 难点
正确理解函数的概念,明确函数是两个变量之间的一种依赖关系 能够正确使用 “区间” 的符号表示某些集合. 理解 函数的三要素 函数概念及符号 y=f(x) 的理解.
【引入】 1673 年,德国数学家莱布尼兹首次使用“function”(函数)一词,后又经康托尔在集合 论的基础上,揭示了函数的本质,中国清代数学家李善兰在翻译《代数学》一书时,将 function 翻译成函数,将函数一词引入中国,他翻译到凡式中含天,为天之函数。 我们回忆一下,初中我们怎么定义函数的: 在一个 中,有两个变量 x 和 y,对于 x 的每一个 的值, y 都有 的值与其对应,我们就说 x 是自变量, y 是 x 的函数. 如果当 x=a 时 y=b,那么 b 叫做当自变量的值为 a 时的 . 【函数及相关概念】 设 A、B 是两个非空的 任一个数 x,在集合中 B 都有 集合 A 到集合 B 的一个 x 的取值范围叫做函数的 函数值的集合{f(x)| x∈A }叫做函数的 值域是数集 B 的子集。 结合函数的定义,思考下面两个问题: (1)有一位学生的考试情况是这样的 ,记作 ,如果按照某种确定的对应关系 f,使对于集合中 A 的 数和它对应,那么就称 ,其中,x 叫做 , 为从 ,
3
名称
符号
数轴表示
鸡西市第十九中学高一数学组
{x|x>a} {x|x≤a} {x|x<a} {x|x∈ R} 思考:完成下列集合与区间的互写。 1. x | 5 x 3 2. x | x 2 3. a, a 5
4. 3,
5. R
6. x |1 x 2或3 x 4