用频率估计概率自主学习导学案
频率与概率导学案
频率与概率导学案学习目标问题化知识目标: 当事件的试验结果不是有限个或结果发生的可能性不相等时, 要用频率来估计概率。
能力目标:通过试验, 理解当试验次数较大时试验频率稳定于理论概率, 进一步发展概率观念;理解用样本来估计总体的统计思想。
情感目标: 在解决问题中学会用数学的思维方式思考生活中的实际问题的习惯。
学习重点:理解当试验次数较大时, 试验频率稳定于理论概率。
学习难点: 对概率的理解。
自主学习, 合作探究1思考: 当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时, 该如何求事件发生的概率呢?2自学书P172 试验:把全班同学分成10组, 每组同学掷一枚硬币50次, 整理获得的试验数据,并记录在投掷次数n 50 100 150 200 250 300 350 400 450 500正面朝上的次数m 24 52 73 99 124 146 180 201 229 256正面朝上的概率m/n根据上表中的数据, 标注出对应的点:思考: 随着抛掷次数的增加, “正面向上”的频率的变化趋势________归纳总结:在大量试验中, 频率P就是概率利用频率估计概率的数学依据是大数定律:一般地, 在大量重复试验中, 如果随机事件A出现的频率m/n_________某个常数P, 则事件A发生的概率P(A)=________。
因为在n 次试验中, 事件A发生的频数m满足0≤m≤n, 所以 0≤ m/n≤1, 进而可知:频率所稳定得到的常数P满足0≤P≤1, 因此, 0≤P(A)≤1例: 下表记录了一名球员在罚球线上投篮的结果.投篮次数(n) 50 100 150 200 250 300 500投中次数(m) 28 60 78 104 123 152 251投中频率(m/n)(1)计算投中频率(精确到0.01)(2)这名球员投蓝一次, 投中的概率约是多少?(精确到0.1)?学以致用一个口袋中放有20个球, 其中红球6个, 白球和黑球个若干个, 每个球出了颜色外没有任何区别: (1) 小王通过大量反复试验(每次取一个球, 放回搅匀后再取)发现, 取出黑球的频率稳定在1/4左右, 请你估计袋中黑球的个数。
湘教版数学九年级下册_《用频率估计概率》导学案
4.3 用频率估计概率学习目标:1.了解模拟实验在求一个实际问题中的作用,进一步提高用数学知识解决实际问题的能力.2.初步学会对一个简单的问题提出一种可行的模拟实验.3.提高动手能力,加强集体合作意识,丰富知识面,激发学习兴趣.渗透数形结合思想和分类思想.学习方法:自主探究与小组合作交流相结合.重点:理解用模拟实验解决实际问题的合理性.难点:会对简单问题提出模拟实验策略.一.预习案:(预习后将确定的答案用钢笔写上,不确定的答案用铅笔写上,有疑难的用红笔标注.)自学教材,完成下列各题.1、事件发生的概率随着_________的增加, _________逐渐在某个数值附近,我们可以用平稳时________来估计这一事情的概率.2、一般地,如果某事件A发生的_______稳定于某个常数p,则事件A发生的概率为_______.3、问题:某林业部门要考察某种幼树的移植成活率,应采用什么具体的做法?根据统计表1,请完成表中的空缺,并完成表后的问题.从表中发现,幼树移植成活的频率在______左右摆动,并且随着统计数值的增加,这规律越明显,所以幼树移植成活的概率为:_______________.我的疑惑:(请你把预习中没解决的问题写下来,带到课堂中与老师、同学共同探究解决)二、探究案:(小组讨论交流,师生总结)1、经历试验、统计等活动过程,估计复杂随机事件(生日相同)的概率.教师提出问题串:(1)400位同学中,一定有2人的生日相同(可以不同年)吗?有什么依据呢?(2)300位同学中,一定有2人的生日相同(可以不同年)吗?(3)教师提出一个论断:“我认为咱们班50个同学中很可能就有2个同学的生日相同”你相信吗?2、问题2:某公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时没千克大约定价为多少元比较合适?估算橘子损坏统计如下表:根据上表:柑橘损坏的频率在______ 常数左右摆动,并且随统计量的增加逐渐明显.因此可以估计柑橘损坏率为:________;则柑橘完好的概率为:________.根据估计的概率可知:在10000千克的柑橘中完好质量为:_______________ . 完好柑橘的实际成本为:_____________________________________________.设每千克柑橘的销售价为x元,则应有: _____________________________三、反馈练习1.同时抛掷两枚硬币,按照正面出现的次数,可以分为“2个正面”、“1个正面”和“没有正面”这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:由上表结果,计算得出现“2个正面”、“1个正面”和“没有正面”这3种结果的频率分别是___________________.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:______________.2.红星养猪场400头猪的质量(质量均为整数千克)频率分布如下,其中数据不在分点上,从中任选一头猪,质量在65kg以上的概率是___________.3.为配和新课程的实施,某市举行了“应用与创新”知识竞赛,共有1万名学生参加了这次竞赛(满分100分,得分全为整数).为了解本次竞赛成绩情况,从中随机抽取了部分学生的竞赛成绩,进行统计,整理见下表:表中a=________,b=________, c=_______;若成绩在90分以上(含90分)的学生获一等奖,估计全市获一等奖的人数为___________.四、反思小结(小组讨论交流,师生总结)说说如何借助实验计算事件发生的概率.五、检测案:1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为().A.90个 B.24个 C.70个 D.32个2.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为().A.11000B.1200C.12D.153.下列说法正确的是().A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;B.为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;C.彩票中奖的机会是1%,买100张一定会中奖;D.中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论.4.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有().A.10粒 B.160粒 C. 450粒 D.500粒。
最新人教版初中九年级上册数学《用频率估计概率》导学案
25.3用频率估计概率学习目标:1.理解用频率来估计概率的方法;2. 了解概率的实验背景及其现实意义.学习重点:通过对事件发生的频率的分析来估计事件发生的概率学习难点:合理设计模拟试验,分析频率稳定值从而得到该事件的概率学习过程:一、自主学习1、在生产的100件产品中,有95件正品,5件次品。
从中任抽一件是次品的概率为().A.0.05B.0.5C.0.95D.952、小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早上起床没看清随便穿了两只就去上学,问小明正好穿的是相同的一双袜子的概率是多少?(用两种不同方法求解)二' 合作学习1.实验:小组合作完成教材P140实验,并记录在下表中:.正而向上的频率竺n10.5试验次数n50 100 150 200 250 300 350 400 450 500……思考:(1)分析上而图像可以得出频率随着实验次数的增加,稳定于左右.(2)从试验数据看,硬币正而向上的概率估计是(3)根据推理计算可知,抛掷硬币一次正而向上的概率应该是结论:对于一般的随机事件,在大量重复试验时,随着实验次数的增加,一件事件出现的频率,总在一个数的附近摆动,我们就可以用这个数去估计此事件的概率。
归纳:一般地,在大量重复试验中,如果事件A发生的频率稳定于某个常数p,那么事件A发生概率的概率:P(A)= p通常我们用频率估计出来的概率是一个近似值,即概率约为p。
2、运用:P143问题1:某林业部门要考察某种幼树在一定条件的移植成活率,就采用什么具体做法?某林业部门要考查某种幼树在一定条件的移植成活率.(1)它能够用列举1■法求出吗?为什么?(2)它应用什么方法求出?(3)请完成下表,并求出移植成活率.由上表可以发现,幼树移植成活的频率在左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.所以估计幼树移植成活的概率为.四、拓展训练问题2、某水果公司以2元/千克的成本新进了 10000千克的柑橘,如果公司希望这种柑橘能够获 得利润5000元,那么在出售柑橘(已经去掉损坏的柑橘)时,每千克大约比价为多少元比较合适?销售人员首先从所有的柑橘中随机地抽取若干柑橘,•进行了“柑橘损坏表”统计,并把获得的 数据记录在下表中,请你帮忙完成下表.四、小结1、弄清一种关系——频率与概率的关系当试验次数很多或试验时样本容量足够大时,一件事件发生的频率与相应的概率会非常接近.此时, 我们可以用一件事件发生的频率来估计这一事件发生的概率.2、了解一种方法——用多次试验频率去估计概率3、体会一种思想——用样本去估计总体;用频率去估计概率五'作业L .当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,求概率是用)・2 .在抛一枚均匀硬币的实验中,如果没有硬币,则下列可作为替代物的是( A.一颗均匀的骰子3 .不透明的袋中装有3个大小相同的小球,其中2个为白色球,另一个为红色球,每次从袋中摸出一个球,然后放回搅匀再摸,研究恰好摸出红色小球的机会,以下替代实验方法不可行的是 ( )A.通过统计频率估计概率B.用列举法求概率 C 用列表法求概率D.用树形图法求概率B.瓶盖C.图钉D ,两张扑克牌(1张黑桃,1张红桃)A.用3张卡片,分别写上''白"、"红”,“红”然后反复抽取B.用3张卡片,分别写上“白”、“白“红”,然后反复抽取C.用一枚硬币,正面表示“白”,反面表示“红”,然后反复抽取D.用一个转盘,盘而分:白、红两种颜色,其中白色盘面的面积为红色的2倍,然后反复转动转盘4.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱。
九年级数学上册25.3用频率估计概率学案
《25.3用频率估计概率》导学案班级小组姓名一、学习目标:目标A:理解大量重复试验时的频率可以作为事件发生概率的估计值,在具体情境中了解概率的意义;目标B:理解实验次数较大时实验频率趋与稳定这一规律,掌握如何用频率估计概率;通过概率计算进一步比较概率与频率之间的关系.二、问题引领问题A:理解大量重复试验时的频率可以作为事件发生概率的估计值1.将一枚硬币抛起,使其自然下落,每抛两次作为一次实验,当硬币落定后,金额面朝上,我们叫做“正”,另一面朝上,我们叫做“反”.全班分成十组,每组同学掷一枚硬币50次,记录好“正面向上”的次数,计算出会,这时,就称“正面向上”的频率稳定于正面向上发生的概率为0.5.一般地,在大量重复试验中,如果事件A发生的频率m/n稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)= .即:当实验次数无限大时,频率与概率会更接近.但是,大量实验反映的规律并非在每一次实验中一定存在。
问题B:用频率估计概率1.某林业部门要考察某种幼树的移植成活率,应采用什么具体的做法?这个问题中的移植试验不属于各种结果可能性_______相等的类型.所以成活率要由去估计.根66213353203这规律越明显,所以幼树移植成活的概率为_______________.三、专题训练:1.一个不透明的布袋中,装有红、黄、白三种只有颜色不同的小球,其中红色小球有8个,黄、白色小球的数目相同.为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,再次搅匀……多次试验发现摸到红球的频率是16,则估计黄色小球的数目是() A.2个 B.20个C.40个 D.48个2.有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到红球的频率约为0.6,据此可以估计红球的个数约为________.3.小明同学看到路边上有人设摊玩“有奖掷币”游戏,规则是:交2元钱可以玩一次掷硬币游戏,每次同时掷两枚硬币,如果出现两枚硬币正面朝上,奖金5元;如果是其它情况,则没有奖金(每枚硬币落地只有正面朝上和反面朝上两种情况).小明拿不定主意究竟是玩还是不玩,请同学们帮帮忙!(1)求出中奖的概率;(2)如果有100人,每人玩一次这种游戏,大约有___________人中奖,奖金共约是__________元;设摊者约获利____________元;(3)通过以上“有奖”游戏,你从中可得到什么启示?4.某公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时每千克大约定价为多少元比较合适?因此可以估计柑橘损坏率为:________;则柑橘完好的概率为:________.根据估计的概率可知:在10000千克的柑橘中完好质量为:___________________. 完好柑橘的实际成本为:_______________________________.设每千克柑橘的销售价为x 元,则应有:四、课后作业:1.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是,这个的含义是( ). A .只发出5份调查卷,其中三份是喜欢足球的答卷;B .在答卷中,喜欢足球的答卷与总问卷的比为3∶8;C .在答卷中,喜欢足球的答卷占总答卷的; D .在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球.2.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是0.4.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是0.25,则原来盒中有白色棋子( )A .8颗 B .6颗 C .4颗 D .2颗3.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3、4、5、x .甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上10 2 现的频率 解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是______;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图法说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值. 能力提升:4.王叔叔承包了鱼塘养鱼,到了收获时期,他想知道池塘里大约有多少条鱼,于是他先捞出1000条鱼,将他们做上标记,然后放回鱼塘,经过一段时间后,待有标记的鱼完全混合于鱼群后,从中捕捞出150条鱼,发现有标记的鱼有3条,则:池塘内约有多少条鱼?(2)如果每条鱼重0.5千克,每千克鱼的利润为1元,那么估计它所获得的利润为多少元?535353。
25.3用频率估计概率导学案
25.3用频率估计概率学习目标:1. 理解当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2. 了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.重点:了解用频率估计概率的必要性和合理性.难点:大量重复试验得到频率稳定值的分析,对频率与概率之间关系的理解.自学指导.阅读教材P142~146.归纳:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.当重复试验的次数大量增加时,事件发生的频率就稳定在相应的概率附近,因此,可以通过大量重复试验,用一个事件发生的频率来估计这一事件发生的概率.自学预习与思考:阅读教材P136~139回答1.小强连续投篮75次,共投进45个球,则小强进球的频率是.2.抛掷两枚硬币,当抛掷次数很多以后,出现“一正一反”这个不确定事件的频率值将稳定在左右。
思考:红星养猪场400头猪的质量(质量均为整数:千克)频率分布如下,其中数据不在分点上.组别频数频率46 ~50400.151 ~55800.256 ~601600.461 ~65800.266 ~70300.07571~75100.025从中任选一头猪,质量在65 kg以上的概率是.例:某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:转动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345546701落在“铅笔”的频率m/n0.680.680.68250.701(2)请估计,当次数很大时,频率将会接近多少?(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)提示:尽管随机事件在每次试验中发生与否具有不确定性,但只要保持试验条件不变,那么这一事件出现的频率就会随着试验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值.当堂作业:1.对一般的随机事件,在同样条件下做大量重复试验时,随着试验次数的增加,一个事件出现的________总在一个________数的附近摆动,显示出一定的稳定性.在大量重复试验中,如果事件A 发生的频率mn 会稳定在某个常数p 附近,那么事件A 发生的概率P(A)=_______=mn.2.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球______个.3.关于频率和概率的关系,下列说法正确的是( ) A .频率等于概率B .当试验次数很大时,频率稳定在概率附近C .当试验次数很大时,概率稳定在频率附近D .试验得到的频率与概率不可能相同4.抛掷一枚普通的正方体骰子,四位同学各自发表了如下见解: ①出现“点数为奇数”的概率等于出现“点数为偶数”的概率; ②只要连掷6次,一定会“出现1点”; ③抛掷前默念几次“出现6点”,抛掷结果“出现6点”的可能性就会加大; ④连续抛掷3次,出现的点数之和不可能等于19. 其中正确的见解有( )A .1个B .2个C .3个D .4个5.做重复试验,抛掷同一枚啤酒瓶盖1 000次,经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为( ) A .0.22 B .0.44 C .0.50 D .0.566.为了估计水塘中的鱼的条数,养鱼者首先得从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼.如果在这200条鱼中有5条鱼是有记号的,则鱼塘中的鱼可估计为( )A .3 000条B .2 200条C .1 200条D .600条7.一只不透明袋中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这两个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表:解答下列问题:(1)如果实验继续进行下去,根据上表数据,“和为8”出现的频率稳定在它的概率附近.估计“和为8”出现的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图法说明理由;如果x 的值不可以取7,请写出一个符合要求的x 的值.。
【导学案】九上数学25.3用频率估计概率(导学案含答案).doc
用频率估计概率【学习目标】1.理解用频率估计概率的条件及方法.2.应用频率估计概率的方法解决问题.一.基础感知:仁学生自学课本第142-144页内容,并完成下列问题(1)【回忆】:有限等可能事件的两个前提条件是:■一次试验中,可能出现的结果__________ 个;各种结果发生的可能性 ______________ •(2)【回忆】概率的古典定义:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为。
(3)【思考】:当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时•又该如何求事件发生的概率呢?问题1:抛掷一枚硬币,正面向上的概率是多少?在抛掷一枚硬币,考察出现正反的试验中,随着试验次数的增加,“出现正面” 的频率将趋于稳定在___________ 左右.问题2:抛掷一枚图钉,钉尖朝上的概率是多少?【归纳】对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总是在一个固定数的附近摆动,显示出一定的稳定性。
概率的统计定义:一般地,在大量重复试验中,如果事件A发生的频率稳定于某个常数P,那么事件A发生概率的概率:P(A)= p2.学生自学课本第144-146页内容,并完成下列问题问题1:某林业部门要考察某种幼树在一定条件下的移植成活率,应采用什么具体做法?移植总数n成活数m成活的频率(结果保留小数点后三位)1080. 80050472702350. 8704003697506621 500 1 3350. 8903 500 3 2030. 9157 000 6 3359 0008 07314 00012 6280. 902估计幼树移植成活的概率为 ______________________注意:通常概率估计值小数点后保留的位数不超过频率小数点后保留的位数。
问题2例2某水果公司以1.5元/千克的成本新进了20 000千克柑橘,销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏率”统计,并把获得的数据记录在下表中:(1)请你完成表格;(2)如果公司希望这些柑橘能够获得利润10 000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元?柑橘总质量n!千克1002003004005006007008009001000损坏柑橘质量11. 021. 030. 338.84& 561.870. 67& 489. 1103.加/千克00040648408柑橘损坏的频率m n解:【归纳】用频率估计概率的基本步骤:①大量重复试验;②检验频率是否已表现出稳定性;③频率的稳定值即为概率.二、探究应用。
人教版九年级数学上册25.3 用频率估计概率(第2课时)导学案
25.3.2《用频率估计概率(第2课时)》导学案一、学习目标1、知识技能:①熟练掌握用频率来估计概率的计算方法;②能用频率来估计概率的知识来解决实际问题。
2、数学思考:①通过几道题的练习,让学生掌握用频率来估计概率的计算方法;②通过实践,培养学生的计算、归纳能力.3、解决问题:能用频率来估计概率的知识来解决生活中的实际问题。
4、情感态度:引导学生对例题情景的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心.二、预习内容自学课本144页至147,完成下列问题:1、理解课本144页中的问题1,完成相应的填空并根据频率数值估计幼树移植成活的概率。
2、理解课本145页中的问题2,弄懂解题的思路。
3、尝试完成147页中的练习。
三、探究学习1、自主探究解决问题某林业部门要考查某种幼树在一定条件的移植的成活率,应采用什么具体做法?下表是一张模拟的统计表,请补出表中的空缺,并完成表后的填空.移植总数(n)成活率(m)成活的频率(保留三位小数)1080.80050472702350.871400369750662150013350.890350032030.915700063359000807314000126280.902从表可以发现,幼树移植成活的频率在_________左右摆动,并且随着统计数据的增加,这种规律愈加越明显,所以估计幼树移植成活率的概率为________2、某水果公司以2元/千克的成本新进了10 000千克的柑橘,如果公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏率”统计,并把获得的数据记录在表中,请你帮忙完成下表.(1)、填表(2)、从表可以看出,柑橘损坏的频率在常数_____左右摆动,并且随统计量的增加这种规律逐渐______,那么可以把柑橘损坏的概率估计为这个常数.如果估计这个概率为0.1,则柑橘完好的概率为_______(3)、根据现有的条件求出每千克的定价?写出解题思路四、巩固测评1、某农科所在相同条件下做了某作物种子发芽率的实验,结果如下表所示:一般地,1 000千克种子中大约有多少是不能发芽的?种子个数发芽种子个数发芽种子频率100 94200 187300 282400 338500 435600 530700 624800 718900 8141000 981五、学习心得。
数学九年级上册《用频率估计概率》导学案
数学九年级上册《用频率估计概率》导学案设计人:审核人:【学习目标】1、学会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力。
2、通过对问题的分析,知道用频率来估计概率的方法,渗透转化和估算的思想方法。
3、通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值。
【学习重点】通过对事件发生的频率的分析来估计事件发生的概率。
【学习难点】大量重复试验得到频率的稳定值的分析和事件的模拟试验。
【学习方法】对学、讨论、展示。
自学1、(1)阅读教材P144.145的相关内容,完成表25-5(2)思考:在实验时为了使实验结果更接近现实情况,需要注意些什么问题?2、在进行移植试验时,移植的总数是越多越好还是越少越好?3、(1)完成课本表25-6.(2)根据表中数据填空:这批柑橘损坏的概率是______,则完好柑橘的概率是_______,如果某水果公司以1元/千克的成本进了20000千克柑橘,则这批柑橘中完好柑橘的质量是________,若公司希望这些柑橘能够获利9000元,那么售价应定为_______元/千克比较合适。
4、某公司以1.5元每千克的成本新进了20000千克雪梨,销售人员首先从所有的雪梨中随机抽取若干雪梨,进行了“雪梨损害率”统计,并把获得的数据(2)如果公司希望这些雪梨能够获得税前利润10000元,那么在出售雪梨时(已去掉损害的雪梨),每千克大约定价为多少元比较合适?2、一个密不透风的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球多少个?研学1、两人对学:针对自学成果及自我发现进行交流,把有疑惑的问题记下来带到小组内解决。
2、小组群学:组长负责交流各自的疑惑及重点问题,注意把握好时间,自学中的议一议可能是讨论的要点。
《用频率估计概率》导学案
《用频率估计概率》导学案一、学习目标加深理解概率的概念;学会用频率估计概率的方法;了解概率的试验背景和现实意义.二、情景引入1.列举法求概率的条件是什么?(1)实验的所有结果是有限个;(2)各种结果的可能性相等.2.求概率常用的列举法有哪些?直接列举法、列表法、树状图法.三、新知讲解扫一扫,有惊喜哦!1.频率的定义在实验中,每个对象出现的次数与总次数的比值叫频率.2.用频率估计概率在相同的条件下,大量地重复试验时,根据一个随机事件发生的频率所逐渐稳定的常数,可以估计这个事件发生的概率.注:可以用大量重复试验中事件发生的频率来估计事件发生的概率,但不能说频率等于概率,两者的区别在于:频率是通过多次试验得到的数据,而概率是理论上事件发生的可能性.四、典例探究扫一扫,有惊喜哦!1.由频率估计概率【例1】(20XX•锦州)如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).投篮次数(n)50100150200250300500投中次数(m)286078104123152251投中频率(m/n)0.600.520.520.490.510.50总结:用频率估计概率时,应注意三个方面:1.试验的随机性;2.保证足够的试验次数;3.得到的概率仅仅是估计值,而不是准确值.练1.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:被调查人数n10011000100410031000满意人数m99999810021000满意频率(1)计算表中各个频率;(2)读者对该杂志满意的概率约是多少?(3)从中你能说明频率与概率的关系吗?2.由频率的折线图推断实验【例2】(20XX•东海县模拟)一个不透明的袋子里有若干个小球,它们除了颜色外,其它都相同,甲同学从袋子里随机摸出一个球,记下颜色后放回袋子里,摇匀后再次随机摸出一个球,记下颜色......甲同学反复大量实验后,根据白球出现的频率绘制了如图所示的统计图,则下列说法正确的是()A.袋子一定有三个白球B.袋子中白球占小球总数的十分之三C.再摸三次球,一定有一次是白球D.再摸1000次,摸出白球的次数会接近330次总结:1.根据频率分布折线图可以推断出频率稳定在某一固定数值附近,这个固定数值就是这个事件的概率;2.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过大量的重复试验,用随机事件发生的频率来估计概率.练2.(20XX•泰州二模)甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.任意写一个整数,它能2被整除的概率D.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率五、课后小测一、选择题1.(20XX春•句容市校级期中)做重复试验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A.0.22 B.0.42 C.0.50 D.0.582.(20XX春•广陵区校级期末)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共若干只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601假如你去摸一次,你摸到白球的概率是()A.0.4 B.0.5 C.0.6 D.0.73.(20XX秋•文登市期末)某校篮球队进行篮球投篮训练,下表是某队员投篮的统计结果:投篮次数/次1050100150200命中次数/次94070108144命中率0.90.80.70.720.72根据上表,你估计该队员一次投篮命中的概率大约是()A.0.9 B.0.8 C.0.7 D.0.724.(20XX•石家庄模拟)甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率5.(20XX•河北)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是46.(20XX春•南城县期中)甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率给出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现5点的概率B.掷一枚硬币,出现正面朝上的概率C.任意写出一个整数,能被2整除的概率D.一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率二、填空题7.(20XX•扬州)色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:抽取的体检表数n501002004005008001000120015002000色盲患者的频数m37132937556985105138色盲患者的频率0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为(结果精确到0.01)8.(20XX春•沛县期末)为调查某批乒乓球的质量,根据所做实验,绘制了这批乒乓球“优等品”概率的折线统计图,则这批乒乓球“优等品”的概率的估计值为(精确到0.01)9.(2004•郫县)在对某次实验数据整理过程中,某个事件出现的频率随实验次数变化折线图如图所示,这个图形中折线的变化特点是,试举一个大致符合这个特点的实物实验的例子(指出关注的结果).三、解答题10.(20XX春•相城区期中)下面是小明和同学做“抛掷质地均匀的硬币试验”获得的数据.抛掷次数n100200300400500正面朝上的频数m5198153200255正面朝上的频率(1)填写表中的空格;(2)画出折线统计图;(3)当试验次数很大时,“正面朝上”的频率在附近摆动.11.(20XX春•南京校级期中)某种玉米种子在相同条件下的发芽实验结果如下表:每批粒数n1001502005008001000发芽的粒数m65111136345560700发芽的频率0.650.740.680.69(1)计算并完成表格;(2)请估计,当n很大时,频率将接近;(3)这种玉米种子的发芽概率的估计值是但是多少?请简要说明理由.12.篮球运动员在最近几场大赛中投篮的结果如下表所:投篮次数201816171618进球次数121210131214进球频率计算表中的频率:如果这位运动员投篮一次,请你估计他进球的概率是多少?13.检查某工厂产品,其结果如下:检查产品件数分别为:10,20,50,100,200,400,800,1600.其中次品数分别为:0,3,6,9,18,41,79,160.问:(1)次品的频率分别是多少?(2)估计该工厂产品出现次品的概率是多少?14.某种进口小麦种子在相同条件下的发芽试验,结果如下表所示:每批粒数n200250300500100020004000发芽的粒数m19424128348695219103810发芽的频率(1)计算并填写表中的频率;(2)这种进口小麦发芽的概率估计值约是多少?15.有两组相同的牌,每组两张,两张牌的牌面数字分别是4和5,从每组牌中各摸出一张称为一次试验,小明一共进行了50次试验.(1)在一次试验中两张牌的牌面数字的和可能有哪些值?(2)小明做了50次试验,作了如下统计,请完成统计表.牌面数字和8910频数141917频率(3)你认为哪种情况的频率最大?(4)如果经过次数足够多的试验,请你估计两张牌数字和等于9的频率是多少?牌面数字的和等于8或10的概率又是多少?典例探究答案:【例1】分析:计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.解答:解:由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:≈0.5.故答案为:0.5.点评:此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.练1.分析:(1)概率就是满意的人数与被调查的人数的比值;(2)根据题目中满意的频率估计出概率即可;(3)从概率与频率的定义分析得出即可.解答:解:(1)由表格数据可得:≈0.998,=0.998,≈0.998,≈0.999,=1.000;(2)由第(1)题的结果知出版社5次“读者问卷调查”中,收到的反馈信息是:读者对杂志满意的概率约是:P(A)=0.998;(3)频率在一定程度上反映了事件发生的可能性大小.尽管每进行一连串(n次)试验,所得到的频率可以各不相同,但只要 n相当大,频率与概率是会非常接近的.因此,概率是可以通过频率来“测量”的,频率是概率的一个近似.概率是频率稳定性的依据,是随机事件规律的一个体现.实际中,当概率不易求出时,人们常通过作大量试验,用事件出现的频率去近似概率.点评:此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.【例2】分析:观察折线统计图发现随着摸球次数的增多白球出现的频率逐渐稳定在某一常数附近,可以用此常数表示白球出现的概率,从而确定正确的选项.解答:解:∵观察折线统计图发现随着摸球次数的增多白球出现的频率逐渐稳定在某一33%附近,∴白球出现的概率为33%,∴再摸1000次,摸出白球的次数会接近330次,正确,其他错误,故选D.点评:本题考查了利用频率估计概率的知识,观察随着实验次数的增多而逐渐稳定在某个常数附近即可.练2.分析:根据利用频率估计概率得到实验的概率在30%~40%之间,再分别计算出四个选项中的概率,然后进行判断.解答:解:根据统计图得到实验的概率在30%~40%之间.而掷一枚正六面体的骰子,出现1点的概率为;抛一枚硬币,出现正面的概率为;任意写一个整数,它能2被整除的概率为;从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率=,所以符合这一结果的实验可能是从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率.故选D.点评:本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.课后小测答案:一、选择题1.解:∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次,∴这枚啤酒瓶盖出现“凹面向上”的次数为1000﹣420=580,∴抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为=0.58,故选D.2.解:观察表格得:通过多次摸球实验后发现其中摸到白球的频率稳定在0.6左右,则P白球=0.6.故选C.3.解:由表可知,实验次数为200次时,为该组数据中试验次数最多者,故当实验次数为200次时,其频率最具有代表性,据此估计该队员一次投篮命中的概率大约是0.72,故选D.4.解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B、从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:≈0.33;故此选项正确;C、掷一枚硬币,出现正面朝上的概率为,故此选项错误;D、任意写出一个整数,能被2整除的概率为,故此选项错误.故选:B.5.解:A、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀“的概率为,故A选项错误;B、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是:;故B选项错误;C、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球的概率为,故C选项错误;D、掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为≈0.17,故D选项正确.故选:D.6.解:A、掷一枚正六面体的骰子,出现5点的概率为,故本选项错误;B、掷一枚硬币,出现正面朝上的概率为,故本选项错误;C、任意写出一个整数,能被2整除的概率为,故本选项错误;D、一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率为≈0.33,故本选项正确.故选D.二、填空题7.解:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07,故答案为:0.07.8.解:这批乒乓球“优等品”概率的估计值是0.95,故答案为:0.95.9.解:这个图形中折线的变化特点是随着实验次数增加,频率趋于稳定;符合这个特点的实物实验的例子(指出关注的结果)如:抛掷硬币实验中关注正面出现的频率.三、解答题10.解:(1)填表如下:抛掷次数n100200300400500正面朝上的频数m5198153200255正面朝上的频率0.510.490.510.50.51(2)如图所示:;(3)当试验次数很大时,“正面朝上”的频率在0.51附近摆动.故答案为:0.51.11.解:(1)填表如下:每批粒数n1001502005008001000发芽的粒数m65111136345560700发芽的频率0.650.740.680.690.700.70(2)当n很大时,频率将接近0.70.故答案为0.70;(3)这种玉米种子的发芽概率的估计值是0.70.理由:在相同条件下,多次实验,某一事件的发生频率近似等于概率.12.解:投篮次数201816171618进球次数121210131214进球频率0.60.670.6250.7650.750.78根据求得的频率,估计该运动员进球的概率约为0.75.13.解:(1)∵检查产品件数分别为:10,20,50,100,200,400,800,1600,其中次品数分别为:0,3,6,9,18,41,79,160,∴次品的频率分别是:0÷10=0,3÷20=0.15,6÷50=0.12,9÷100=0.09,18÷200=0.09,41÷400=0.1025,79÷800=0.09875,160÷1600=0.1;(2)从(1)中所求的数据可看到,当抽取件数(即重复试验次数)n越大,“出现次品”事件发生的频率就越接近常数0.1,所以“出现次品”的概率约为0.1.14.解:(1)由表可知:概率依次为:=0.97;=0.964;=0.943;=0.972;=0.952;=0.955;=0.9525;(2)这种进口小麦发芽的概率估计值约为0.95.15.解:(1)在一次试验中两张牌的牌面数字的和可能有:4+4=8,4+5=9,5+5=10;(2)∵=0.28,=0.38,=0.34,∴完成统计表如下:牌面数字和8910频数141917频率0.280.380.34(3)由(2)得出两张牌的牌面数字和等于9的频率最大;(4)如果经过次数足够多的试验,和等于9的概率为,和为8或10的概率为.25.3用频率估计概率(第一课时)【学习内容】教材P140—142【学习目标】1、理解用频率估计概率的合理性。
《25.3 用频率估计概率》教案、教学设计、导学案、同步练习
《25.3 用频率估计概率》教案【教学目标】1.理解试验次数较大时试验频率趋于稳定这一规律.2.结合具体情境掌握如何用频率估计概率.3.通过概率计算进一步比较概率与频率之间的关系.【教学过程】一、情境导入养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?二、合作探究探究点一:频率【类型一】频率的意义某批次的零件质量检查结果表:(1)计算并填写表中优等品的频率;(2)估计从该批次零件中任取一个零件是优等品的概率.解析:通过计算可知优等品的频率稳定在0.8附近,可用这个数值近似估计该批次中优等品的概率.解:(1)填表如下:(2)0.8【类型二】频率的稳定性在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是________________________.解析:随着试验的次数增多,出现数字“1”的频率愈来愈接近于一个常数,这个常数即为它的概率.故答案是:接近16 .探究点二:用频率估计概率【类型一】用频率估计概率掷一枚质地均匀的硬币10次,下列说法正确的是( ) A.可能有5次正面朝上B.必有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上解析:掷一枚质地均匀的硬币1次,出现正面或反面朝上的概率都是错误!,因此,平均每两次中可能有1次正面向上或有1次反面向上.选项B、C、D不一定正确,选项A正确,故选A .方法总结:随机事件的频率,指此事件发生的次数与试验总次数的比值,当试验次数很多时,它具有一定的稳定性,即稳定在某一常数附近,而偏离的它可能性很小.【类型二】推算影响频率变化的因素“六·一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是________个.解析:因为大量重复摸球实验后,摸到红球的频率逐渐稳定在0.2,说明红球大约占总数的0.2,所以球的总数为1000×0.2=200,故答案为:200.方法总结:解题的关键是知道在大量重复摸球实验后,某个事件发生的频率就接近于该事件发生的概率.概率与频率的关系是:(1)试验次数很大时,频率稳定在概率附近;(2)用频率估计概率.【类型三】频率估计概率的实际应用为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.解析:设鱼塘中估计有x条鱼,则5∶200=30∶x,解得:x=1200,故答案为:1200.方法总结:求出带标记的鱼占的百分比,运用了样本估计总体的思想.三、板书设计【教学反思】教学过程中,强调频率与概率的联系与区别.会用频率估计概率解决实际问题.《25.3 用频率估计概率》教学设计【教材分析】《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。
人教版九年级数学上用频率估计概率教案导学案
列举法求概率(2)【预习案】1.当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常采用_____________.2.当一次试验涉及三个或更多的因素时,为不重复不遗漏地列出所有可能的结果,通常采用_____________.【探究案】例1在一个盒子中有质地均匀的3个小球,其中两个小球都涂着红色,另一个小球涂着黑色,计算以下事件的概率.(1)从盒子中取出一个小球,小球是红球;(2)从盒子中每次取出一个小球,取出后再放回,取出两球的颜色相同;(3)从盒子中每次取出一个小球,取出后再放回,连取了三次,三个小球的颜色都相同.例2甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I.从3个口袋中各随机地取出1个小球.(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?(本题中元音字母:A、E、I;辅音字母:B、C、D、H)例3 紫石中学十分重视中学生的用眼卫生,并定期进行视力检测.某次检测设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力.(1)求甲、乙、丙三名学生在同一处检测视力的概率;(2)求甲、乙、丙三名学生中至少有两人在B处检测视力的概率.例4为了参加中考体育测试,甲,乙,丙三位同学进行足球传球训练。
球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传三次。
(1)求请用树状图列举出三次传球的所有可能情况;(2)传球三次后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?【训练案】1.甲、乙、丙三个布袋都不透明,甲布袋中装有1个红球和1个白球,;乙布袋中装有1个红球和2个白球;丙布袋中装有2个白球,这些球除颜色外都相同,从这三个布袋中各随机地取出1个小球.(1)取出的3个小球恰好是2个红球和1个白球概率是多少?(2)取出的3个小球恰好全是白球的概率是多少?2.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?3.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时:(1)求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;4.A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.【中午作业】1.一个密码箱的密码, 每个数位上的数都是从0到9的自然数, 若要使不知道密码的人一次就拨对密码的概率小于20101,则密码的位数至少需要 位. 2.在盒子里放有三张分别写有整式1a +、2a +、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是 .3.甲、乙、丙三个同学站成一排进行毕业合影留念,请用列表法或树状图列出所有可能的情形,并求出甲、乙两人相邻的概率是多少?4.某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容。
冀教版数学九年级下册_《用频率估计概率(2)》导学案
31.3 用频率估计概率(2)【学习目标】用频率估计概率并解决实际问题.【学习重点】用频率估计概率并解决实际问题.【学习过程】一、温故知新1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用的方法来估计概率.2.利用频率估计概率:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值p附近摆动.这个稳定值p,叫做随机事件A的概率,并记为P(A)=p.3.利用频率估计出的概率是准确值吗?二、自主学习1、完成书P74-76一起探究2、某水果公司以2元/千克的成本新进了10000千克柑橘,销售人员首先从所有柑橘中随机地抽取若柑橘,进行了“柑橘损坏率”的统计,并把获得数据记录在表中(1)请你帮忙完成此表(2)通过以上计算可得到柑橘的损坏率为(),则柑橘的完好率为()。
(3)公司在出售这批柑橘年(已去掉损坏的柑橘)时,每千克的成本为多少?(4)如果公司希望这些柑橘能获利5000元,则每千克大约定价为多少元比较合适?思考:上题能否直接把表中500千克柑橘对应的柑橘损坏率看作柑橘损坏的概率?【练习】书P76练习三、例题分析例1、王叔叔承包了鱼塘养鱼,到了收获时期,他想知道池塘里大约有多少条鱼,于是他先捞出1000条鱼,将他们做上标记,然后放回鱼塘,经过一段时间后,待有标记的鱼完全混合于鱼群后,从中捕捞出150条鱼,发现有标记的鱼有3条,求(1)池塘内约有多少条鱼?(2)如果每条鱼重0.5千克,每千克鱼的利润为1元,那么估计它所获得的利润为多少元?例2、动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3,(1)现年20岁的这种动物活到25岁的概率为多少?(2)现年25岁的这种动物活到30岁的概率为多少?四、练习巩固1.在生产的100件产品中,有95件正品,5件次品.从中任抽一件是次品的概率为( ).A.0.05 B.0.5 C.0.95 D.952、某市元宵节期间举行了“即开式社会福利彩票”销售活动,印制彩票3000万张(每张彩票2元).在这些彩票中,设置了如下的奖项:如果花2元钱购买1张彩票,那么能得到8万元以上(包括8万元)大奖的概率是______3.从不透明的口袋中摸出红球的概率为51,若袋中红球有3个,则袋中共有球( ).A .5个B .8个C .10个D .15个4.柜子里有5双鞋,取出一只鞋是右脚鞋的概率是( ).A .21B .31C .51D .101 5.下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的概率一定等于n m ;③频率是不能脱离具体的n 次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确的是______(填序号).6、在一个盒子中有红球、黑球和黄球共20个,每个球除颜色外都相同,从中任意摸一球,得到红球的概率为21,得到黑球的概率为51,试求这20个球中黄球共有多少个?。
用频率估计概率导学案
分别是___________________。当试验组数增加到很大时,请你对这三种结果的可能性的大
同类演练:
然下落,每抛两次作为一次实 组织本组
学
验,当硬币落定后,金额面朝 学生进行
观察:随着
1.盒子中有白色乒
抛掷次数增 乓球 8 个和黄色乒乓球
一 上,我们叫做“正”, 另一面朝 实验,做好 加,“正面 若干个,为求得盒中黄色
1/6
上,我们 叫做“反”。
记录。
向上”的频 乒乓球的个数,某同学进
就叫做事件 ( )。
A的概率, A. 1 B. 1
1000 200
记为 P(A) C. 1 D. 1
=。
2
5
3.下列说法正确的
形图、直方图都能较好地反映 频数、频率的分布情况,我们 可以利用它们所提供的信息估
方案预 是( )。
设二:(5min)
A.抛一枚硬币正面
总结用 朝上的机会与抛一枚图
计概率。 (4min)
频率估计概 率的方法。 多名同学叙
钉钉尖着地的机会一样 大;
B.为了解汉口火车
述。 方案预
设三:
站某一天中通过的列车 车辆数,可采用全面调查 的方式进行;
(10min) 完成同
类演练
C.彩票中奖的机会 是 1%,买 100 张一定会 中奖;
2/6
D.中学生小亮,对 他所在的那栋住宅楼的 家庭进行调查,发现拥有 空调的家庭占 100%,于 是他得出全市拥有空调 家庭的百分比为 100% 的结论。
5
5
A.只发出 5 份调查卷,其中三份是喜欢足球的答卷;
B.在答卷中,喜欢足球的答卷与总问卷的比为 3∶8; C.在答卷中,喜欢足球的答卷占总答卷的 3 ;
用频率估计概率(导学案、教案、教学反思)
25.3用频率估计概率一、新课导入1.导入课题:在学完用列举法求随机事件发生的概率这节内容后,小明同学提出一个问题.他抛掷一枚硬币10次,其正面朝上的次数为5次,是否可以说明“正面向上”这一事件发生的概率为0.5?下面我们带着小明提出的问题进入本节课的学习——用频率估计概率.2.学习目标:(1)知道大量重复试验时,频率趋于一个稳定值,知道这个稳定值与概率的关系.(2)会用频率估计概率.3.学习重、难点:重点:理解当试验次数较大时,试验频率趋于理论概率.难点:用频率估计概率的思想方法解决相关实际问题.二、分层学习1.自学指导:(1)自学内容:教材第142页到第143页“思考”之前的内容.(2)自学时间:5分钟.(3)自学方法:认真阅读课文,按课本要求,同学之间加强合作,进行试验,并做好数据的统计,再对数据进行分析,观察频率的变化趋势,从中摸索有何规律.(4)自学参考提纲:①通过试验,完成教材第142页的表25-3以及图25.3-1.②通过分析试验所得数据,你发现出现“正面向上”的频率有什么变化规律?“正面向上”的频率在0.5附近摆动.③阅读并分析表25-4中抛掷硬币实验的数据,你有什么发现?随着试验次数的增加,“正面向上”的频率稳定于0.5.2.自学:学生可参考自学指导进行自学,小组交流,合作学习.3.助学:(1)师助生:①明了学情:深入课堂了解学生的试验情况,并对存在的问题进行收集.②差异指导:对在学习中存在的突出问题进行点拨引导.(2)生助生:小组间相互协作交流,解决学习中的问题.4.强化:随着抛掷硬币次数的增加,硬币“正面朝上”的频率会在0.5左右摆动,并且摆动幅度越来越小.1.自学指导:(1)自学内容:教材第143页“思考”到第144页“练习”之前的内容.(2)自学时间:4分钟.(3)自学方法:阅读、思考,并相互交流探讨各自的结论.(4)自学参考提纲:①当实验次数足够大时,一个随机事件出现的频率与它的概率有什么关系?频率非常接近于概率.②举例说明你对“概率是针对大量重复试验而言的,大量试验反映的规律并非在每一次试验中都发生.”这句话的理解.③练习:a.下表记录了一名球员在罚球线上投篮的结果.ⅰ.计算投中频率(结果保留小数点后两位).ⅱ.这名球员投篮1次,投中的概率约是多少(结果保留小数点后一位)?解:投中的概率约是0.5.b.用前面抛掷硬币的试验方法,全班同学分组做掷骰子的试验,估计掷一次骰子时“点数是1”的概率.解:估计P(点数是1)=1 6 .2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:深入了解学生参与活动、完成任务的情况.②差异指导:引导学生合作试验.(2)生助生:分组合作完成试验.4.强化:(1)在大量重复试验中,事件A发生的频率会稳定在某个常数附近.只要试验的次数足够大,我们就可以用事件A发生的频率去估计概率.(2)概率是针对大量试验而言的,大量试验反映的规律并非在每一次试验中都发生.1.自学指导:(1)自学内容:教材第144页到第145页的问题1.(2)自学时间:4分钟.(3)自学要求:总结用频率估计概率的思想来解决实际问题的一般思路和频率的确定方法.(4)自学参考提纲:①幼树的移植成活率采用频率去估计.②完成表25-5及表后的填空.③怎样估计幼树移植的成活率?随着移植数的增加,幼树移植成活的频率越来越稳定,用移植总数最多时成活的频率估计幼树移植的成活率.④练习:某农科所在相同条件下做某种作物种子发芽率的试验,结果如下表所示:一般地,1000千克种子中大约有多少是不能发芽的?将表中数据补全,可以看出发芽种子的频率在0.9左右摆动,所以估计种子发芽的概率为0.9.1000-1000×0.9=100(千克)∴1000千克种子中大约有100千克是不能发芽的.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:关注学困生的学习过程.②差异指导:对完成提纲中的问题有困难的学生适时指导.(2)生助生:交流讨论、改正错误.4.强化:解决此类问题的基本步骤:计算频率;估计概率;作出结论.1.自学指导:(1)自学内容:教材第145页到第146页的问题2.(2)自学时间:5分钟.(3)自学方法:先弄清损坏率的算法,再填表.(4)自学参考提纲:①完成教材第146页表25-6.②可得柑橘损坏的概率为0.1 ,所以柑橘完好的概率为0.9 .③怎样计算柑橘的实际成本?用以2元/千克的价格购进10000千克的成本除以10000千克中完好柑橘的质量9000千克,即为实际成本.④整个问题的问答过程与问题1的解答过程有何异同?相同点:都是用频率估计概率.不同点:问题2是通过损坏率求完好率,而问题1是直接求发芽率.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:关注学困生的学习过程.②差异指导:教师对重、难点之处适时点拨引导.(2)生助生:小组间交流互助.4.强化:(1)解题思路:①求频率;②估计概率;③求出问题结果;④作出结论.(2)练习:为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中捕获n条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中捞a条鱼,如果在这a条鱼中有b条鱼是有记号的,那么鱼塘中鱼的条数可估计为anb.你认为这种估计方法有道理吗?为什么?解:有道理.不妨设鱼塘中鱼的总条数为x,则n bx a=,所以anxb=.三、评价1.学生的自我评价(围绕三维目标):相互交流各自的学习态度、学习方法和收获,反省学习中的不足.2.教师对学生的评价:(1)表现性评价:教师对学生在课堂学习中的态度和行为上的表现进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.当然,学生随机观念的养成是循序渐进的.这节课教师应把握教学难度,注意关注学生的接受情况.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是(D)A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率2.(10分)下列说法正确的是(D)A.连续抛掷骰子20次,掷出5点的次数是0,则第21次一定抛出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等3.(10分)某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是(D)A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一枚质地均匀的正六面体骰子,向上的面点数是44.(10分)在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只,某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放入袋中,不断重复,下表是活动中的一组数据,则摸到白球的概率约是(C)A.0.4B.0.5C.0.6D.0.75.(10分)盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为(B)A.90个B.24个C.70个D.32个6.(10分)一个口袋中放有20个球,其中红球6个,白球和黑球若干个,每个球除了颜色外没有任何区别,小王通过大量重复试验(每次取一个球,放回搅匀后再取)发现,取出黑球的概率稳定在0.25左右,请你估计袋中黑球的个数为 5 .7.(10分)某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:根据表中数据,估计这种幼树移植成活率的概率为0.9 (精确到0.1).二、综合应用(20分)8.(10分)某射击运动员在同一条件下的射击成绩记录如下:(1)计算表中相应的“射中9环以上”的频率(精确到0.01);(2)这些频率具有什么样的稳定性?解:这些频率稳定在0.8附近.(3)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1).这名运动员射击一次时“射中9环以上”的概率约为0.8.9.(10分)动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3.(1)现年20岁的这种动物活到25岁的概率为多少?(2)现年25岁的这种动物活到30岁的概率是多少?解:(1)设这种动物共有10n 只,则根据题意可知能活到20岁的有8n 只,能活到25岁的有5n 只,能活到30岁的有3n 只,所以现年20岁的这种动物活到25岁的概率为n P n ==15588; (2)由(1)知,现年25岁的这种动物能活到30岁的概率是n P n ==23355. 三、拓展延伸(10分)10.(10分)鸟类学家要估计某森林公园内鸟的数量,你能用学过的知识,为鸟类学家提出一种估计鸟的数量的方法吗?(在一定的时期内,森林公园可以近似地看做与外部环境是相对封闭的)解:在一年中该森林公园内的鸟相对较多的时期,选择一天(晴天)捕捉1000只鸟,并在这些鸟的身体上做上记号,然后全部放飞,两三天后的一天(晴天)再捕捉1000只鸟,检查其中带有记号的鸟的数量,记为a ,则这段时期该森林公园内的数量是a610只.25.3 用频率估计概率【知识与技能】理解每次试验可能的结果不是有限个,或各种可能结果发生的可能性不相等时,利用统计频率的方法估计概率.【过程与方法】经历利用频率估计概率的学习,使学生明白在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.【情感态度】通过研究如何用统计频率求一些现实生活中的概率问题,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.【教学重点】对利用频率估计概率的理解和应用.【教学难点】利用频率估计概率的理解.一、情境导入,初步认识问题1400个同学中,一定有2个同学的生日相同(可以不同年)吗?那么300个同学中一定有2个同学的生日相同吗?有人说:“50个同学中,就很可能有2个同学的生日相同.”这话正确吗?调查全班同学,看看有无2个同学的生日相同.问题2要想知道一个鱼缸里有12条鱼,只要数一数就可以了.但要估计一个鱼塘里有多少条鱼,该怎么办呢?【教学说明】在前面我们学习了能列举所有可能的结果,并且每种结果的可能性相等的随机事件的概率的求法.那么这里的两个问题情境中,很容易让学生想到这些事件的结果不容易完全列举出来,而且每种结果出现的可能性也不一定是相同的.从而引发学生的求知欲,对于这类事件的概率该怎样求解呢,引入课题.二、思考探究,获取新知1.利用频率估计概率试验:把全班同学分成10组,每组同学掷一枚硬币50次,整理同学们获得的试验数据,并记录在下表中:填表方法:第1组的数据填在第1行;第1,2组的数据之和填在第2行,…,10个组的数据之和填在第10行.如果在抛掷n次硬币时,出现m次“正面向上”,则随机事件“正面向上”出现的频率为m/n.【教学说明】分组是为了减少劳动强度加快试验速度,当然如果条件允许,组数分得越多,获得的数据就会越多,就更容易观察出规律.让学生再次经历数据的收集,整理描述与分析的过程,进一步发展学生的统计意识,发现数据中隐藏的规律.请同学们根据试验所得数据想一想:“正面向上”的频率有什么规律?历史上,有些人曾做过成千上万次抛掷硬币的试验,试验结果如下:思考随着抛掷次数的增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳,使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性,在试验次数较少时,“正面向上”的频率起伏较大,而随着试验次数逐渐增加,一般地,频率会趋于稳定,“正面向上”的频率越来越接近0.5,也就是说,在0.5左右摆动的幅度越来越小.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.【归纳结论】一般地,在大量重复试验中,如果事件A发生的频率m/n稳定于某个常数P,那么事件A发生的概率P(A)=P.思考对一个随机事件A,用频率估计的概率P(A)可能小于0吗?可能大于1吗?答:都不可能,它们的值仍满足0≤P(A)≤1.2.利用频率估计概率的应用问题1某林业部门要考查某种幼树在一定条件下的移植成活率,应采用什么具体做法?幼树移植成活率是实际问题中的一种概率,这种实际问题中的移植试验不属于各种结果可能性相等的类型.因而要考查成活率只能用频率去估计.在同样的条件下,大量地对这种幼树进行移植,并统计成活情况,计算成活的频率,若随着移植棵树n的越来越大,频率m/n越来越稳定于某个常数.则这个常数就可以作为成活率的近似值.上述问题可设计如下模拟统计表,补出表中空缺并完成表后填空.从表中可以发现,幼树移植成活的频率在左右摆动,且随着统计数据的增加,这种规律愈加明显,所以估计幼树移植成活的频率为:.答案:(1)表中空出依次填:0.940,0.923,0.883,0.897(2)0.9,0.9问题2某水果公司以2元/千克价格购进10000千克的水果,且希望这些水果能获得税前利润5000元,那么在出售这些水果(已去掉损坏的水果)时,每千克大约定价为多少元较合适?解:要定出合适的价格,必须考虑该水果的“完好率”或“损坏率”,如考查“损坏率”就需要从水果中随即抽取若干,进行损坏数量的统计,并把结果记录下来,为此可仿照上述问题制定如下表格:从表格可看出,水果损坏率在某个常数(例如0.1)左右摆动,并且随统计量的增加,这种规律逐渐明显,那么可以把水果损坏的概率估计为这个常数,如果估计这个概率为0.1,则水果完好的概率为0.9.∴在10000千克水果中完好水果的质量为10000×0.9=9000(千克)设每千克水果的销售价为x元,则有:9000x-2×10000=5000x≈2.8∴出售这批水果的定价大约为2.8元/千克,可获利5000元.思考为简单起见,能否直接把上表中500千克对应的损坏率作为损坏的概率?答:可以.【教学说明】用频率估计概率时,一般是通过观察所计算的各频率数值的变化趋势,即观察各数值主要集中在哪个常数的附近,这个常数就是所求概率的估计值.三、运用新知,深化理解1.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果她第四次抛硬币,那么硬币正面朝上的概率为()2.一只不透明的袋子中装有4个小球,分别标有数字2、3、4、x,这些球除数字外都相同,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上的数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据如下表:解答下列问题:(1)如果试验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;(2)根据(1),若x是不等于2、3、4的自然数x,试求x的值.【教学说明】第1题较简单,可由学生自主完成,第2题稍难,由师生共同完成.【答案】1.A2.(1)随着试验次数的增加,出现“和为7”的频率稳定在0.33附近摆动,因此可以知道当试验继续进行下去它的频率会稳定在0.33附近,故可估计“和为7”的概率为0.33.(2)甲、乙两人同时从袋中各摸出一个球所有可能的结果是(2,3)、(2,4)、(2,x)、(3,4)、(3,x)、(4,x)共6个,由于(3,4)这一结果的和为7,再根据“和为7”的概率为0.33≈1/3,所以其中(2,x)、(3,x)、(4,x)这三个结果中一定还有一个和为7,当2+x=7,则x=5,当3+x=7,则x=4,当4+x=7,x=3,显然后两种均不符合题意,故x=5.四、师生互动,课堂小结1.你知道什么时候用频率来估计概率吗?2.你会用频率估计概率来解决实际问题吗?【教学说明】教师先提出上述问题,让学生相互交流,再选派几名同学进行回顾总结,师生再共同完善.1.布置作业:从教材“习题25.3”中选取.2.完成练习册中本课时练习的“课后作业”部分.1.猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.当然,学生随机观念的养成是循序渐进的、长期的.这节课教师应把握教学难度,注意关注学生接受情况.2.一般地,当试验的可能结果是有限个而且各种结果发生的可能性相等时,可以用P(A)=m/n的方式得出概率.当试验的所有可能的结果是无限个,或各种可能结果发生的可能性不相等时,常常是通过统计频率来估计概率的.。
《用频率估计概率》导学案设计
《用频率估计概率》导学案设计25.3用频率估计概率(第三课时)【学习目标】1、进一步巩固用频率估计概率的方法。
2、能运用概率知识解决生活中的实际问题。
3、经历通过试验统计频率估计概率,从而解决问题的过程。
4、让学生感受概率实际生活中的作用,培养学生学数学用数学的精神。
【学习重点】对利用频率估计概率的理解和应用。
【学习难点】对利用频率估计概率的应用。
【学习过程】【知识回顾】1、对出现的结果不是有限个,或每种结果出现的可能性不相同的事件的概率,我们用方法求概率。
2、用频率估计概率的前提条件是:,试验次数越多,频率越接近概率。
(设计意图:让学生更加明确求非等可能事件的概率的方法,强调用频率估计概率的前提条件。
)【问题情境】1、张大爷的鱼塘中有20000尾鱼苗,分别是鲫鱼、鲤鱼和鲢鱼,现在张大爷想知道鲫鱼、鲤鱼和鲢鱼各多少尾,你能帮张大爷想个办法吗?【自主探究】活动一:小组交流设计方案。
活动二:如果通过多次捕捞发现,鲫鱼、鲤鱼出现的频率分别为0.31、0.42,请你帮张大爷计算一下,鱼塘中有鲫鱼、鲤鱼各多少尾?(设计意图:让学生用频率估计概率的方法,解决生活中的实际问题。
培养解决问题的能力。
)【问题情境】2、如图,长方形内有一不规则区域,现在玩投掷游戏,如果随机掷中长方形的300次中,有100次是落在不规则图形内.(1)你能估计出掷中不规则图形的概率吗?(2)若该长方形的面积为150,试估计不规则图形的面积。
.小组研究解决问题。
(设计意图:让学生理解几何图形中的概率问题。
)【归纳总结】用频率估计概率是日常生活中常用的一种求概率的方法,但要注意试验次数要多,否则不能很贴切地反映概率。
用频率估计概率的方法可以解决生活中的许多问题,【学以致用】1.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,于是该文具厂就笔袋的颜色随机调查了5 000名中学生,并在调查到1 000名、2 000名、3 000名、4 000名、5 000名时分别计算了各种颜色的频率,绘制折线图如下:(1)随着调查次数的增加,红色的频率如何变化?(2)你能估计调查到10 000名同学时,红色的频率是多少吗?(3)若你是该厂的负责人,你将如何安排生产各种颜色的产量?2、小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆(如图),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,掷中里面小圈小明胜,未掷入大圈内不算,你认为游戏公平吗?为什么?(设计意图:通过习题训练,加深对本节所学知识的理解,提高用所学知识解决问题的能力。
数学活动 用频率估计概率 导学案
数学活动用频率估计概率导学案一、导学(一)活动导入在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在哪个区域的可能性最大?.今天我们就来做实验估计豆子落在哪个区域的可能性最大.(板书课题)(二)活动目标1.通过实验估计几何概率.2.进一步感受偶然事件中蕰涵确定的规律性.(三)活动重难点重点:两个实验活动.难点:保证实验条件相同.二、活动过程活动一用频率估计几何概率1.活动指导(1)活动內容:用频率估计几何概率.(2)活动时间:10分钟.(3)活动方法:完成活动参考提纲.(4)活动参考提纲:2.自学:学生参考活动指导进行活动性学习.3.助学:(1)师助生:①明了学情:了解学生是否能设计替代试验.②差异指导:指导学生设计替代试验.(2)生助生:学生同桌之间互相交流.4.强化:(1)一般地,如果在一次试验中,结果落在区域D 中每一点都是等可能的,用A 表示“试验结果落在区域D 中的一个小区域M 中”这个事件,那么事件A 发生的概率是P(A)=的面积的面积D M . (2)设计替代试验应注意的事项.活动二 抽到黑桃的概率跟抽取的顺序的关系1.活动指导(1)活动內容:抽到黑桃的概率跟抽取的顺序的关系.(2)活动时间:5分钟.(3)活动方法:完成活动参考提纲.(4)活动参考提纲:③分别求出3位同学抽到黑桃的概率,跟试验的结果一致吗?2.自学:学生参考活动指导进行活动性学习.3.助学:(1)师助生:①明了学情:看学生是否能顺利完成试验,关注学生处理试验道具不足和试验次数不足的问题. ②差异指导:指导学生分组试验以及试验数据的处理.(2)生助生:学生同桌之间互相交流.4.强化:他们抽到黑桃的概率跟抽取的顺序无关.三、评价1.学生学习的自我评价:这节课你有什么收获?有哪些不足?2.教师对学生的评价:(1)表现性评价:从学生回答问题,课堂的注意力等方面进行评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).。
用频率估计概率导学案
25.3(1)用频率估计概率导学案一、学习目标1. 理解通过大量重复试验时的频率可以作为事件发生概率的估计值;2、经历“猜测结果、进行试验、收集数据、分析试验结果”等活动过程,理解频 率与概率的关系;3、会用频率来估计事件发生的概率。
二、自主学习1、投掷一枚质地均匀的硬币时,结果是“正面向上”的概率是______,若投掷100次,是否一定有50次正面向上呢?2、阅读教材中的“试验”,在理解题意的基础上完成试验: (1)整理同学们得到的试验数据,记录在表25-3中; (2)计算出“正面向上”的频率;(3)根据表中的数据在图25.3-1中标注出对应点; (4)根据试验的数据想一想:“正面向上”的频率有什么规律?(5)阅读教材中的表25-4,验证上述结论;(6)通过以上试验,请你概括频率与概率有什么关系:一般地,在大量重复试验中,如果事件A 发生的频率nm会稳定在某一个______附近,那么事件A 发生的概率P(A)= ______。
(读三遍) 3、阅读教材,理解并填空:这是概率的第二定义——统计定义。
与概率的古典定义相比,区别在于:(1)条件不一样,概率的古典定义要求____________并____________________,而概率的统计定义“__________________”、“__________________________”;(2)计算方法不一样,古典定义的概率用P(A)= ______直接计算,而统计概率是一种估计,先计算____________,然后用P(A)= ____________来得出概率。
4、思考:对于一个随机事件A ,用频率估计的概率P(A)可能小于0吗?可能大于1吗?1、 阅读教材,回答下列问题:(1) 你是如何理解投掷一枚质地均匀的硬币时,结果是“正面向上”的概率为0.5的含义的?(2) 如果天气预报说某天降水的概率是0.98,而该天并没降雨,这是怎么回事?5、自学检测:教材142页练习1,2题。
初中数学 导学案:用频率估计概率
用频率估计概率学习目标:1、学会根据问题的特点,用统计概率来估计事件发生的概率,培养分析问题、解决问题的能力2、通过研究如何用统计概率求一些现实生活中的概率问题,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值重点通过对事件发生的频率的分析来估计事件发生的概率难点大量重复试验得到频率稳定值的分析和事件的模拟试验学习过程:一、课程导学(一)复习巩固1、求概率有哪几种?(二)自主学习:预习书上134—138完成以下问题和练习;思考:当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时.又该如何求事件发生的概率呢?如:(1)某射击运动员射击一次,命中靶心的概率是__(2)掷一次骰子,向上的一面数字是6的概率是____.1、历史上曾有人作过抛掷硬币的大量重复实验,结果如下表所示实验结论: 当抛硬币的次数很多时,出现下面的频率值是稳定的,接近于常数 ,在它附近摆动.二、自主探究(1) 抛掷一枚均匀硬币400次,每隔50次, 分别记录“正面朝上”和“反面朝上”的次数, 汇总数据后, 完成下表:累计抛 掷次数50100152025303540"正面朝上"的频数"正面朝上"的频率(3)在图中, 用红笔画出表示频率为 的直线,你发现了什么?12三、课堂练习1.当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,求(估计)概率是用( ).A.通过统计频率估计概率 B.用列举法求概率C.用列表法求概率 D.用树形图法求概率2、见书上138页练习3.事件发生的概率随着_________的增加,逐渐_________在某个数值附近,我们可以用平稳时________来估计这一事情的概率.4、某林业部门要考察某种幼树在一定条件的移植成活率,就采用什么具体做法?某林业部门要考查某种幼树在一定条件的移植成活率.(1)它能够用列举法求出吗?为什么?(2)它应用什么方法求出?(3)请完成下表,并求出移植成活率.幼树移植成活的频率在左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.所以估计幼树移植成活的概率为5、一般地,在大量重复试验中,如果事件A发生的频率稳定于某个常数p,那么事件A发生概率的概率: P(A)=()通常我们用频率估计出来的概率要比频率保留的数位要少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频率估计概率
【学习目标】1.经历实验、统计等活动过程,在活动
中进一步发展合作交流的意识和能力。
2.通过实验,理解当实验次数较大时实
验频率稳于理论概率,并可根据此估计
某一事件发生的概率。
【教学
重难
点】
理解当实验次数较大
时实验频率稳于理论
概率,并可根据此估
计某一事件发生的概
率。
【学生自主学习学案】【课堂同步导案】
一、自主学习
知识回顾
(1)在考察中,每个对象出现的次数称为 _,而每个对象出现的次数与总次数的比值称为
(2)某种事件在同一条件下可能发生,也可能不发生,表示发生的可能性大小的量叫做
二.合作探究
活动1.摸牌活动:每组两张,两张牌的牌面数字分别是1和2.从每组牌中各摸出一张,称为一次试验.
(1)估计一次试验中。
两张牌的牌面数字
和可能有哪些值?
(2)以同桌为单位,每人做30次实验,根据实验结果填写下面的表格:
牌面数字和 2 3
频数
频率
(3)根据上表,估计哪种情况的频率最大?
(4)计算两张牌的牌面数字和等于3的频率是多少?。