电化学基础(Ⅴ)——电极过程动力学及电荷传递过程

合集下载

第五章电荷转移步骤动力学与电化学极化

第五章电荷转移步骤动力学与电化学极化

应速பைடு நூலகம்。
(2)动力学方式:当电荷迁移步骤为慢步骤时, 电极电位的变化直接改变界面电子得失步骤的活化 能,从而改变电极反应速度。
对于电极反应:O + ne-
R
某一电极电位下,其阳极反应(氧化方向进行) 的活化能为W1,阴极反应(还原方向进行)的活 化能为W2。 假设为还原电流,则该电位下每发生1 mol的物 质变化,总伴随有nF的正电荷由溶液转移到电极 上。 当电极电位增加时,则反应产物(终态)的 总势能必然也增大nF 。
Ea 根据阿累尼乌斯公式: k A exp( RT )
W 于是有: k za exp( ) RT
0 a
0 1
0 W kc0 zc exp( 2 ) RT
带入前面两式有:
0 W 0 0 a ka cR za cR exp( 1 ) RT
W20 k c zc co exp( ) RT
变化对阴极反应和阳极反应活化能的影响程
度。这种方法,只是一种经验的方法,其物
理意义并不清楚。
5.2.2 电极电位对反应速度的影响
对于电极反应: O + neR
设所选择的电位零点处(0=0),阳极反应活化 能为W10, 阳极反应活化能为W20, 根据化学动力学理论,假设反应为元反应,此时, 反应速率为 = kc
同理,
W10 nF ic nFzc co exp( ) RT nF nF nFkc0 co exp( ) ic0 exp( ) RT RT
改为对数表示形式为:
2.3RT 2.3RT 0 lg ia lg ia nF nF
2.3RT 2.3RT 0 lg ic lg ic nF nF

电化学chapter3_电荷转移步骤与电化学极化

电化学chapter3_电荷转移步骤与电化学极化
a= (-2.3RT/ nF )lgiº+ 2.3RT/ nFlgIa
Tafel公式 =a+blgI
a= (-2.3RT/ nF )lgiº或 (-2.3RT/ nF )lgiº b= 2.3RT/ nF或 2.3RT/ nF
iº小 易极化电极 iº=0 理想极化电极
18
ECER
19
第三章完!
20
15
ECER
或:
分两种情况讨论: 1) |I|<< iº; 2) |I|>> iº;
16
Ia= iº[exp(nFa/RT)-exp(- nFa/RT)]
Ic = iº[exp(nFC/RT)-exp(-nFC/RT)]
ECER
1) |I|<< iº; c<< RT/nF或 RT / nF 表达式可变为 Ic= iº[(1+ nFC/RT)-(1- nFC/RT)]
氧化: W1= W1º-F △ 还原:
W2º+F△= W2+ F △ W2= W2º+F△
7
电极电势对反应速度的影响
ECER
在φ°=0时(即选用电势坐标的零点) 在电极电势为φ时:
阳极、阴极反应速度分别为:
W1= W1º-nF,W2= W2º+nF
8
ECER
❖电化学步骤基本动力学方程 ia = nFkaºCRexp(nF/RT)=iaºexp(nF/RT) ic = nFkcºCoexp(-nF/RT)=icºexp(-nF/RT)
当n=1,T=300K,I=0.9Id时,η=59mV. 说明高的超电势是由于电化学极化所引起.
3
ECER

电极过程动力学 ppt课件

电极过程动力学  ppt课件

§1.1 电极过程动力学的发展
电化学科学的发展大致可以分为三个阶段:电化学热 力学、电化学动力和现代电化学。
电化学热力学研究的是处在平衡状态的电化学体系, 涉及的主要问题是电能和化学能之间的转换的规律。
从19世纪末到20世纪初,在热力学基本原理被牢固地 确立后,用热力学方法研究电化学现象成了电化学研 究的主流,取得了重大的进展,使“电化学热力学” 这部分内容趋于成熟,成为物理化学课程的经典组成 部分。
研究电极过程动力学的首要目的在于找出整个电极过程的控制步 骤,并通过控制步骤来影响整个电极过程的进行速度,而这又建立 在对电极过程基本历程的分析和弄清个分步骤动力学特征的基础 之上。
电极的极化
处在热力学平衡状态的电极体系,因正、负方向的反应速度相等, 净反应速度等于零.相应的平衡电极电势可由Nernst公式计算.当 有外电流通过时,净反应速度不等于零,即原有的热力学平衡受到 破坏,致使电极电势偏离平衡电势,这种现象在化学上称为电极的” 极化现象” 。
“电极/溶液”界面上的电场强度常用界面上的相间电势差---电极电势表 示,
随着电极电势的改变,不仅可以连续改变电极反应的速度,而且可
以改变电极反应的方向。以后还将看到,即使保持电极电势不变,改变
界面层中的电势分布也会对电极反应速度有一定的影响。因而研究“电
极/溶液”界面的电性质,即电极、溶液两相间的电势差以及界面层中的
电化学—研究载流子(电子、空穴、离子)在电化学 体系(特别是离子导体和电子导体的相界面及其邻近 区域)中的运输和反应规律的科学。
电化学所研究的内容有:
(1)电解质溶液理论(离子水化、离子互吸、离子缔合及电导 理论等);
(2)电化学平衡(可逆电池、电极电位、电动势与热力学函数 间关系等);

电化学基础(Ⅴ)——电极过程动力学及电荷传递过程

电化学基础(Ⅴ)——电极过程动力学及电荷传递过程

Fundamentals of electrochemistry(Ⅴ)—Electrochemical kinetic and charge-transfer process for electrochemical reaction
JIA Zhijun,MA Hongyun,WU Xu05-07;修改稿日期:2013-06-01。 基金项目:化学工程联合国家重点实验室 2011 年自主课题立项,国家 自然科学基金项目(21076112,21276134) 。 第一作者:贾志军(1983—) ,男,博士后,研究方向为化学电源设计 及新型电极材料制备,E-mail:jiazhijunwin@;通讯联系人:王 保国,E-mail:bgwang@。
22巴特勒沃尔默方程的建立对电极动力学中过电势随电流密度对数的线性变化一直都缺少深入的理解直到塔菲尔经验公式发表20年后通过巴特勒在19241930年各自独立的工作才对这一公式有了比较完整的认识10在巴特勒的对能斯特方程的动力学基础和可逆氢电极及析氢过电势11研究工作的启示下对于电化学反应efrtefrt为正向和反向电化学反应速率常数n为电荷数f为法拉第常数r为理想气体常数为还原产物和氧化产物的浓度e为过电势t为绝对温度为电荷传递系数表示电极电势对阳极和阴极反应活化能的影响程度1213当过电势为零时电极反应的阳极电流密度与阴极电流密度代数值相等方向相反电化学反应的净电流密度为零即为交换电流密度其大小除受温度影响外还与电极反应的性质密切相关并与电极材料和反应物质的浓度有关
simply those quantities of them which contain equal quantities of electricity, or have naturally equal electric powers; it being the electricity which determines the equivalent number, because it determines the combining force. Or, if we adopt the atomic theory or phraseology, then the atoms of bodies which are equivalents to each other in their ordinary chemical action have equal quantities of electricity naturally associated with them”[5]。通过这则评论可 以发现,法拉第已经触及到了电的原子特性,即电 子的概念,但是当时他仍然倾向于认为电是一种流 体。电的原子性始终没有被明确阐述,直到亥姆霍 兹于 1881 年在纪念法拉第的演讲中才首次提出, 并 且于 1891 年由英国物理学家斯通尼命名为 “电子” , 被认为是一个电的基本单位的名称,并不具有特殊 的物理意义[5]。1897 年,汤姆逊在对阴极射线的研 究中发现了一种新的带负电的物质粒子,并对这种 物质粒子的荷电量与质量比进行了测量,使得人类 首次实验证实了一种“基本粒子”的存在,后来被 称为电子。 1.2 对电离和离子的认识 电化学反应通常都是在电解质溶液中完成,要 深入了解电化学反应的传荷过程需要对电解质的电 离和离子有深刻的认识。 关于离子的概念, 最早于 1805 年由德国化学家 格罗特斯提出,他在解释水的电解机理时提出:在 电流作用下,水分子变为带负电的氧原子和带正电 的氢原子,带负电的氧原子与正极接触,电荷被中 和,变成氧气析出;带正电的氢原子与负极接触, 生成氢气[6]。1834 年,法拉第在论文“关于电的实 验研究”中的提法更为明确,他认为在电解时,溶 液中电流是由带电荷的分解物传输的,他把电解前 未分解的物质叫做电解质,传输电流的分解产物叫 做离子,带正电并向阴极移动的离子称为阳离子; 带负电并向阳极移动的离子称为阴离子[5]。 1857 年, 德国物理学家克劳胥指出格罗特斯和法拉第的观点 并不正确,因为假如“离子是在电流的作用下产生 的” , 则在电解时就会有一部分电流被用来分解电解 质,因此欧姆定律对溶液将不再适用,而事实并非 如此[7]。 1882 年,阿累尼乌斯开始溶液导电性的研究, 发现氨的水溶液是导体, 并且溶液越稀导电性越好, 认为溶液稀释时,水增大了溶液的导电性[7]。1883

电化学第五章 电极过程概述

电化学第五章 电极过程概述

本章主要内容
1. 电极的极化现象 2. 原电池和电解池的极化图 3. 电极过程的基本历程和速度控制步骤 4. 电极过程的特征
4.1 电级的极化现象
1、什么是电极的极化现象
• 首先回顾可逆电极、平衡电极电位特征
Cu
➢ 处于热力学平衡状态
➢ 氧化反应和还原反应速度相等
➢ 电荷交换和物质交换都处于动态平衡之中
• 实际中遇到的电极体系,在没有电流通过时,测得的电
极电位可能是可逆电极的平衡电位,也可能是不可逆电 极的稳定电位。
• 因而,又往往把电极在没有电流通过时的电位统称为静
止电位j静,把有电流通过时的电极电位(极化电位)与静 止电位的差值称为极化值,用△j 表示。即
△j = j - j静
• 在实际问题的研究中.往往来用极化值△j更方便,但
能,通常需要通过实验测定过电位或电极电位随 电流密度变化的关系曲线。这种曲线就叫做极化 曲线。
1. 在氰化镀锌镕液中测得
的极化曲线(曲线2)比 在简单的锌盐(Zncl)溶 液中测的极化曲线(曲 线1)要陡得多,即电极 电位的变化要剧烈得多。 这表明锌电极在镕液2 中比在溶液1中容易极 化。
2. 所以,尽管锌电极在两
是,应该注意极化值与过电位之间的区别。
2、电极极化的原因
• 电极体系的组成:两类导体串联体系、两种载流子。 • 断路时,两类导体中都没有载流子的流动,只在电极
/溶液界面上有氧化反应与还原反应的动态平衡及由 此所建立的相间电位(平衡电位)。
• 当电流通过电极时,就表明外线路和金属电极中有自由电
子的定向运动,溶液中有正、负离子的定向运动,以及界 面上有一定的净电极反应,使得两种导电方式得以相互转 化。
• 实际情况也确实

循环伏安技术的原理及应用---电化学基础

循环伏安技术的原理及应用---电化学基础

循环伏安技术摘要:简单介绍了电化学测试的一些基本知识,并重点介绍了一种最常见、最重要的电化学测试技术-循环伏安技术。

分别从循环伏安技术的发展、原理及应用方面对其进行了介绍。

关键词:电化学测试,循环伏安,原理,应用1 电化学测试的基本知识电极电势、通过电极的电流是表征复杂的微观电极过程特点的宏观物理量。

电化学测量的主要任务是通过测量包含电极过程各种动力学信息的电势、电流两个物理量,研究它们在各种极化信号激励下的变化关系,从而研究电极过程的各个基本过程。

基于电化学的测量规律、按照对应出现的时间顺序,电化学测量大致可以分为三类。

第一类是电化学热力学性质的测量方法,基于Nernst方程、电势-pH图、法拉第定律等热力学规律;第二类是依靠单纯电极电势、极化电流的控制和测量进行的动力学性质的测量方法,研究电极过程的反应机理,测定过程的动力学参数;第三类是在电极电势、极化电流的控制和测量的同时,结合光谱波谱技术、扫描探针显微技术,引入光学信号等其他参量的测量,研究体系电化学性质的测量方法。

在电化学反应过程中,电极中包括四个基本过程:1)电荷传递过程(charge transfer process):电化学步骤。

2)扩散传质过程(diffusion process):主要是指反应物和产物在电极界面静止液层中的扩散过程。

3)电极界面双电层的充电过程(charging process of electric double layer):非法拉第过程。

4)电荷迁移过程(migration process):主要是溶液中离子的电迁移过程,也称为离子导电过程。

另外,还可能有电极表面的吸脱附过程、电结晶过程、伴随电化学反应的均相化学反应过程。

因此,要进行电化学测量,研究某一个基本过程,就必须控制实验条件,突出主要矛盾,使该过程在电极总过程中占据主导地位,降低或消除其它基本过程的影响,通过研究总的电极过程研究这一基本过程,这就是电化学测量的基本原则。

电化学 第3章 电化学极化

电化学 第3章 电化学极化

第3章 电化学极化 (电荷转移步骤动力学)绪论中曾提到:一个电极反应是由若干个基本步骤形成的,一个反应至少有三个基本步骤:00R R ze O O s s →→+→-1) 反应粒子自溶液深处向电极表面的扩散——液相传质步骤。

2) 反应粒子在界面得失电子的过程——电化学步骤。

3) 产物生成新相,或向溶液深处扩散。

当有外电流通过电极时,ϕ将偏离平衡值,我们就说此时发生了极化。

如果传质过程是最慢步骤,则ϕ的偏离是由浓度极化引起的(此时0i si C C ≠,e ϕ的计算严格说是用s i C 。

无浓度极化时0i s i C C =,ϕ的改变是由si C 的变化引起)。

这时电化学步骤是快步骤,平衡状态基本没有破坏。

因此反映这一步骤平衡特征的Nernst 方程仍能使用,但须用ϕ代e ϕ,s i C 代0i C ,这属于下一章的研究内容。

如果传质等步骤是快步骤,而电化学步骤成为控制步骤,则这时ϕ偏离e ϕ是由电化学极化引起的,也就是本章研究的内容。

实际上该过程常常是比较慢的,反应中电荷在界面有积累(数量渐增),ϕ随之变化。

由此引起的ϕ偏离就是电化学极化,这时Nernst 方程显然不适用了,这时ϕ的改变将直接以所谓“动力学方式”来影响反应速度。

3.1 电极电位与电化学反应速度的关系电化学反应是一种特殊的氧化—还原反应(一个电极上既有氧化过程,又有还原过程)。

若一个电极上有净的氧化反应发生,而另一个电极上有净的还原反应发生,则在这两个电极所构成的电化学装置中将有电流通过,而这个电流刚好表征了反应速度的大小,)(nFv i v i =∝[故电化学中总是用i 表示v ,又i 为电信号,易测量,稳态下串联各步速度同,故浓差控制也用i 表示v 。

i 的单位为A/cm 2,zF 的单位为C/mol ,V 的单位为mol/(cm 2.s )]。

既然电极上有净的反应发生(反应不可逆了),说明电极发生了极化,ϕ偏离了平衡值,偏离的程度用η表示,极化的大小与反应速度的大小有关,这里就来研究i ~ϕ二者间的关系。

电化学中的电荷传递过程

电化学中的电荷传递过程

电化学中的电荷传递过程电化学是研究电荷传递过程的一门学科。

电荷传递过程是指电子或离子在电化学系统中的转移和交换。

在电化学中,电荷传递过程是实现电化学反应的基础,也是电化学技术的核心。

本文将从电荷传递的基本原理、电化学反应的动力学和电化学技术的应用等方面进行探讨。

一、电荷传递的基本原理电荷传递是指电子或离子在电化学系统中由一个电极传递到另一个电极的过程。

电荷传递的基本原理可以通过电化学电池的工作原理来解释。

电化学电池由两个电极和电解质组成,电解质中溶解了一定浓度的离子。

当电池外加电压时,电解质中的离子会在电场的作用下向电极移动。

正离子(如钠离子)会向阴极移动,而负离子(如氯离子)会向阳极移动。

在电极表面,离子会与电极上的物质发生反应,转化为电子或从电子得到电子。

这样,电子或离子就通过电极之间的电荷传递完成了电化学反应。

二、电化学反应的动力学电化学反应的动力学研究的是电荷传递过程的速率和机理。

电化学反应的速率受到多种因素的影响,如电极材料、电解质浓度、温度等。

其中,电极材料对电化学反应速率的影响较为显著。

不同的电极材料具有不同的电荷传递能力,即电子在电极表面的传递速率。

常用的电极材料有金属、碳材料等。

金属电极具有良好的电荷传递能力,可以快速地将电子传递给离子,促进电化学反应的进行。

而碳材料电极具有较大的比表面积,能够提供更多的反应位点,增加电化学反应的速率。

电解质浓度是另一个影响电化学反应速率的重要因素。

电解质浓度越高,离子在电场的作用下移动的速率越快,电化学反应的速率也就越快。

此外,温度对电化学反应速率的影响也很大。

提高温度可以增加离子的活动性,促进电化学反应的进行。

因此,在电化学反应研究中,需要考虑这些因素对电荷传递过程的影响,以实现更高效的电化学反应。

三、电化学技术的应用电化学技术是利用电化学反应来实现特定功能的技术。

电化学技术在能源、环境、材料等领域有着广泛的应用。

其中,最常见的应用之一是电池。

电化学基本原理电子转移步骤动力学

电化学基本原理电子转移步骤动力学
自由能变化就等于它的化学位的变化。这表明,所进行的反应实质 上是一个纯化学反应,反应所需要的活化能与纯化学的氧化还原反 应没有什么差别。
• 当电极/溶液界面存在界面电场时, 例如电极的绝对电位为△φ ,且△φ >o时, Ag+离子的位能曲线变化如图 所示。
• 曲线1为零电荷电位时的位能曲线。 曲线3为双电层紧密层中的电位分布。这 时,电极表面的Ag+离子受界面电场的影
• 多个电子参与的电极反应,则往往是通过几个电子转移步骤 连续进行而完成的。
• 单电子反应 扩展到 多电子的电极反应。
• 电极反应的特点是反应速度与电极电位有关。
• 第五章中讨论的浓度极化,可以说是通过改变电极电位来改变某些 反应粒子的浓度,从而间接地影响有这些粒子参加的电极反应速度。
• 而本章讨论的电化学极化,实质上是通过改变电极电位来改变电化 学反应的活化能,直接影响着电极反应的速度。所以电化学极化对 电极反应速度的影响比浓度极化要来得大。
• 式中,

已分别表示还原反应
和氧化反应的活化能;α和β为小于1、大于零
的常数,分别表示电极电位对还原反应活化能
和氧化反应活化能影响的程度,称为传递系数
或对称系数。
• 因为
+
α+β =l。

,所以。
F
• 用同样的分析方法可以得到:
1
如果电极电位为负值,即△φ <
0时,氧化反应的活化能增大而
还原反应活化能减小。
分别表示还
G 0
• 没有离子双电层时,根据上述假设,电极/溶液之间的内 电位差△φ为零.即电极的绝对电位等于零。
• 己知电化学体系中,荷电粒子的能量可用电化学位表示,根据 • 在零电荷电位时, Ag+离子的电化学位等于化学位。因而在没

电极过程动力学 基础、技术与应用

电极过程动力学 基础、技术与应用

电极过程动力学基础、技术与应用电极过程动力学是电化学领域的重要基础理论,它研究了电化学反应中电荷转移和质量传递过程的速率规律。

了解电极过程动力学的基础原理和技术应用对于实现电化学分析、电化学合成和电池材料研究具有重要意义。

首先,电极过程动力学研究的基础是泊松-布尔兹曼方程。

该方程描述了电解液中离子浓度和电势之间的关系,进而揭示了电化学反应速率与电场强度、电荷转移的关系。

这为我们理解电极反应速率的控制机理奠定了基础。

其次,了解电极过程动力学的技术应用有助于优化电化学分析的方法。

通过研究反应速率与电极电位、离子浓度等参数的关系,我们可以确定最佳的测量条件,提高电化学分析的灵敏度和准确性。

例如,在电化学传感器中,我们可以通过修改电极材料和电位的控制,来实现对特定物质的高选择性检测。

此外,电极过程动力学的理论还可以指导电化学合成的优化。

通过调控反应条件和电极材料,我们可以增强所需产物的选择性和活性,提高电化学合成的效率和经济性。

这在有机合成和能源转换领域具有广阔的应用前景。

最后,电极过程动力学的研究对于电池材料的开发和性能改进也至关重要。

通过了解电极反应速率的控制机制,我们可以设计更高效的电池材料,提高其能量密度、循环寿命和安全性能。

在新能源领域,电极过程动力学的研究将有助于推动电池技术的突破和革新。

综上所述,电极过程动力学是电化学领域的基础理论,具有广泛的技术应用前景。

通过深入研究电极过程动力学的基础原理和应用技术,我们可以在电化学分析、电化学合成和电池材料研究等领域取得更加创新和突破性的进展。

电化学原理第四章电极过程概述 ppt课件

电化学原理第四章电极过程概述 ppt课件
zncuptptir液相传质步骤液相传质步骤前置的表面转化步骤前置的表面转化步骤简称前置转化简称前置转化电子转移步骤或称电化学反应步骤电子转移步骤或称电化学反应步骤随后的表面转化步骤简称随后转化随后的表面转化步骤简称随后转化新相生成步骤或反应后的液相传质步骤新相生成步骤或反应后的液相传质步骤电极表面溶液cnagcnagcncnagcnagcnagcnag吸附态传质前置转化电子转移新相生成结晶态吸附态agag溶液电极表面cncn传质银氰络离子在阴极还原的电极过程它只包括四个单元步骤除此之外还有因表面转化步骤前置转化或随后转化成为控制步骤时的电极极化称为表面转化极化
electrode
甘汞电极(SCE)
介绍两种特殊的极端情况
理想极化电极
理想不极化电极
二.极化曲线
极化曲线(polarization curve) :过电位(电 极电位)随电流密度 变化的关系曲线。
极化度 (polarizability):极 化曲线上某一点的斜 率
阳极极化 阴极极化
d d。
在一定的电流密度下,电极电位与平衡电位的差值称为该电流 密度下的过电位,用符号η表示,习惯取正值。
阴极极化时, 阳极极化时,
c 平c a a 平
⑵极化值
实际遇到的电极体系,在没有电流通过时,并不都 是可逆电极。在电流为零时,测得的电极电位可能是可 逆电极的平衡电应,也可能是不可逆电极的稳定电位。 因而,又往往把电极在没有电流通过时的电位统称为静 止电位。把有电流通过时的电极电位(极化电位)与静止 电位的差值称为极化值。
j净 j* j逆 *
式中 j逆* 为控制步骤的逆向反应绝对速度。由上式可知
j净 j*逆
其它非控制步骤,比如电子转移步骤的绝对反应

电化学 第3章 电化学极化讲解

电化学 第3章 电化学极化讲解

第3章 电化学极化 (电荷转移步骤动力学)绪论中曾提到:一个电极反应是由若干个基本步骤形成的,一个反应至少有三个基本步骤:00R R ze O O s s →→+→-1) 反应粒子自溶液深处向电极表面的扩散——液相传质步骤。

2) 反应粒子在界面得失电子的过程——电化学步骤。

3) 产物生成新相,或向溶液深处扩散。

当有外电流通过电极时,ϕ将偏离平衡值,我们就说此时发生了极化。

如果传质过程是最慢步骤,则ϕ的偏离是由浓度极化引起的(此时0i s i C C ≠,e ϕ的计算严格说是用s i C 。

无浓度极化时0i s i C C =,ϕ的改变是由s i C 的变化引起)。

这时电化学步骤是快步骤,平衡状态基本没有破坏。

因此反映这一步骤平衡特征的Nernst 方程仍能使用,但须用ϕ代e ϕ,s i C 代0i C ,这属于下一章的研究内容。

如果传质等步骤是快步骤,而电化学步骤成为控制步骤,则这时ϕ偏离e ϕ是由电化学极化引起的,也就是本章研究的内容。

实际上该过程常常是比较慢的,反应中电荷在界面有积累(数量渐增),ϕ随之变化。

由此引起的ϕ偏离就是电化学极化,这时Nernst 方程显然不适用了,这时ϕ的改变将直接以所谓“动力学方式”来影响反应速度。

3.1 电极电位与电化学反应速度的关系电化学反应是一种特殊的氧化—还原反应(一个电极上既有氧化过程,又有还原过程)。

若一个电极上有净的氧化反应发生,而另一个电极上有净的还原反应发生,则在这两个电极所构成的电化学装置中将有电流通过,而这个电流刚好表征了反应速度的大小,)(nFv i v i =∝[故电化学中总是用i 表示v ,又i 为电信号,易测量,稳态下串联各步速度同,故浓差控制也用i 表示v 。

i 的单位为A/cm 2,zF 的单位为C/mol ,V 的单位为mol/(cm 2.s )]。

既然电极上有净的反应发生(反应不可逆了),说明电极发生了极化,ϕ偏离了平衡值,偏离的程度用η表示,极化的大小与反应速度的大小有关,这里就来研究i ~ϕ二者间的关系。

电化学电极过程动力学

电化学电极过程动力学

电化学电极过程动力学复习、难点、习题传质过程(扩散极限电流)j d 影响传(电)荷过程传质过程(扩散极限电流)j d 影响传(电)荷过程电极过程动力学电极过程动力学控制电化学过程加快或减缓电化学反应速度(电流)控制电化学过程加快或减缓电化学反应速度(电流)超电势(电化学、浓差)极化现象三(二)电极体系j 0 ,η,α,B-V 方程,Tafel 公式极化曲线超电势--电流曲线jja =j= 10-3Acm-2’b =j= 10-6Acm-2’c =j= 10-9Acm-2’交换电流密度对i-η曲线的影响电荷传递系数对i-η曲线的影响Tafel曲线阳极超电势阴极超电势E=ϕa-ϕcI/A电解电池I-V曲线液相中的三种传质过程注意其所传输的物种及发生在溶液体相或在固/液界面电极界面溶液层的几部分反应物浓度体相电极溶液δ氢电极的极化曲线示意图H+ 离子的还原和析出氢气过程H3O+H3O+ H3O+adH adH2H2H3O+ + M + e M-H + H2O 迟缓放电机理Volmer反应氢超电势Hydrogen OverpotentialH 3O ++ M + e M-H + H 2O迟缓放电机理Volmer 反应(a) H 3O ++M-H+e M+H 2O+H 2Heyrovsky 反应(b) M-H + M-H 2M + H2Tafel反应4.(a) H 3O ++M-H+e M+H2O+H 2电化学脱附机理Heyrovsky 反应(b) M-H + M-H 2M + H 2Tafel 反应3. H 3O + + M + e M-H + H 2O 迟缓放电机理Volmer 反应3, 4(a), 4(b) 皆可能为速度控制步骤2H ++ 2e 2H ad (2M-H) M-H + M-H 2M + H (2][2irad Fk j Η=(忽略逆过程)][][ln '+ΗΗ−=r ad o r F RT ϕϕ][][ln '+ΗΗ−=ir ad o ir F RT ϕϕ][][ln'+ΗΗ−=ir ad o ir F RT ϕϕ⎭⎬⎫⎩⎨⎧−Η=ΗRT F c r ad ir ad ηexp ][][2][2irad Fk j Η=⎭⎬⎫⎩⎨⎧−Η=RT F Fk j c r ad η2exp ][22⎭⎬⎫⎩⎨⎧−=RT F j c η2exp 0jzFRT j zF RT c lg 303.2lg 303.20−=η注意: 没有α!21=α电化学方法的主要优点1. 通过方便调节电极电势显著地改变反应速度2. 较易控制电极反应方向3. 电极反应一般在常温常压下进行4. 反应所用氧化剂或还原剂为电子,环境污染少电化学学习重点物理化学固态电化学光电化学生物电化学量子化学统计热力学溶液电化学(电解质溶液)平衡态电化学热力学。

第五章电荷转移步骤动力学与电化学极化

第五章电荷转移步骤动力学与电化学极化

第五章电荷转移步骤动力学与电化学极化电荷转移步骤动力学与电化学极化是物理学中重要的研究领域之一,在材料科学、化学和电子工程等领域都有广泛的应用。

本文将从电荷转移步骤动力学和电化学极化两个方面进行介绍和讨论。

第五章:电荷转移步骤动力学电荷转移步骤动力学研究的是在化学反应、光电子器件和电池等过程中,电子和离子的传输过程。

这个过程通常包括以下几个步骤:电子从一个分子或物质转移到另一个分子或物质上,并伴随着电荷的重分布,使得系统的总能量发生变化。

这个过程的速率决定了反应动力学和物质传输的效率。

在电子转移步骤中,电荷输运的主要方式有两种:自由扩散和有界扩散。

自由扩散是指电荷无需受到限制地运动,而有界扩散是指电荷移动受到限制,比如在电极表面或界面处。

这两种方式的动力学行为有很大的差异,需要针对不同的应用场景进行研究和优化。

在电化学反应中,电荷转移步骤动力学对于理解反应速率和机制至关重要。

电荷转移反应通常包括电子转移和离子转移两个方面,比如在电化学电池中,电子可以从阴极转移到阳极,离子则在电解质中进行扩散。

这个过程经常涉及电极表面的催化作用和界面扩散效应,需要深入研究以提高电化学反应效率和电池性能。

另外,在光电子器件中,电荷转移步骤动力学也是一个重要的研究方向。

比如在太阳能电池中,光子的能量可以激发电子从价带跃迁到导带,形成电荷分离和传输。

了解光电子转移的动力学过程有助于设计和制备更高效的太阳能电池材料和结构。

电化学极化是指电化学系统中,由于电荷转移和离子扩散引起的极化现象。

在电化学过程中,电子和离子的传输会导致电位和电流的分布不均,进而引发电化学极化。

电化学极化可以分为电势极化、浓度极化和阻抗极化等几种不同类型。

电势极化是指由于电流通过电解质中导致的电位差,在电解质中产生的电场会改变电荷传输的速率。

浓度极化是指由于电极表面处离子浓度不均匀引起的电位差,从而影响电荷转移速率。

阻抗极化是指由于电池内部电阻的存在而影响电流的分布和传输速率。

《电极过程动力学》课件

《电极过程动力学》课件
《电极过程动力学》 ppt课件
目录
• 引言 • 电极过程动力学基础 • 电极反应速率方程 • 电极过程动力学实验 • 电极过程动力学应用 • 总结与展望
01
引言
课程简介
课程名称:电极过程动力 学
课程性质:专业必修课
适用专业:电化学、化学 工程与工艺、应用化学等
先修课程:物理化学、电 化学基础、化学反应工程 等
开始实验
启动电化学工作站,记录电极反应过程中的 电流、电压等数据。
结果讨论
根据实验结果,分析电极过程动力学规律, 探讨反应机制。
05
电极过程动力学应用
电池电极过程动力学
电池性能优化
通过研究电池电极过程中的动力学特性,可以优化电池的 设计和制造,提高电池的能量密度、充电速度和使用寿命 。
电池管理系统
电极反应速率方程推导
总结词
详细描述了电极反应速率方程的推导过程,包括电化学反应的速率控制步骤、反应速率的表达式以及 各参数的具体含义和计算方法。
详细描述
电极反应速率方程是电化学反应动力学的核心内容之一,其推导过程基于电化学反应的速率控制步骤 。通过对反应速率的表达式进行推导,我们可以得到电极反应速率方程。该方程描述了电极反应速率 与反应物浓度、电极电位等参数之间的关系,为进一步研究电极过程提供了基础。
电极过程动力学研究对于开发高效的电池管理系统至关重 要,能够实时监控电池状态,预测电池性能衰减,保障电 池安全运行。
新型电池技术研发
电极过程动力学研究有助于推动新型电池技术的研发,如 锂硫电池、固态电池等,为未来能源存储和转换技术的发 展提供理论支持。
电镀电极过程动力学
镀层质量提升
通过研究电镀电极过程中的动力学特性,可以优化电镀工艺参数 ,提高镀层的质量和耐腐蚀性。

第五章电荷转移步骤动力学与电化学极化

第五章电荷转移步骤动力学与电化学极化

当电极电位变为ϕ ),则 当电极电位变为ϕ 时(即∆ϕ = ϕ - ϕ0 = ϕ ),则 根据电极电位对活化能的影响,活化能变为: 根据电极电位对活化能的影响,活化能变为: W1 = W10 - βnFϕ ϕ W2 = W20 + αnF∆ϕ ∆ϕ 因此,当点击电位变为ϕ时,阴、阳极反应电 因此,当点击电位变为ϕ 流密度变为i 流密度变为 c和ia
改为对数表示形式为: 改为对数表示形式为:
2.3RT 2.3RT 0 ϕ =− lg ia + lg ia βnF βnF 2.3RT 2.3RT 0 ϕ= lg ic − lg ic αnF αnF
上述四个方程就是电化学步骤的基本动力学方程! 上述四个方程就是电化学步骤的基本动力学方程! 请注意式中各参数的物理意义。 请注意式中各参数的物理意义。
将电极反应速度用电流密度表示: 将电极反应速度用电流密度表示:I = nFν ν 则有: 则有:
W10 0 0 ia = nFk a cR = nFza cR exp(− ) RT W20 ic0 = nFkc0 co = nFza co exp(− ) RT
式中i 分别为电极电位零点时( 式中 a0、ic0分别为电极电位零点时(即ϕ = ϕ0=0 ), 相应于单向绝对反应速率的电流密度, 相应于单向绝对反应速率的电流密度,总是具有正 值!
K称为“标准反应速率常数”。它表示,当电极电位为 称为“标准反应速率常数” 它表示, 称为 反应体系的标准平衡电位和反应粒子为单位浓度时, 反应体系的标准平衡电位和反应粒子为单位浓度时,电 极反应进行的速度。 的单位是 极反应进行的速度。K的单位是 cm/s。 。
注意: 注意: 时采用了ϕ (1)虽然在推导 时采用了ϕ = ϕ平及cR=co的标准 )虽然在推导K时采用了 反应体系,但由于K是一个有确切物理意义的常数 是一个有确切物理意义的常数, 反应体系,但由于 是一个有确切物理意义的常数, 因而对于非标准体系同样适用, 因而对于非标准体系同样适用,只是应将电化学 步骤的基本动力学方程写成一般的形式: 步骤的基本动力学方程写成一般的形式:

电化学基础_电极过程动力学_马洪运

电化学基础_电极过程动力学_马洪运
ij
2 z2 j F ADjC j RT x
式中, E s 为标准电极电势, Co 为氧化态物质 浓度, CR 为还原态物质浓度。 在电极动力学方面[5],本次讲座重点讨论电流电势关系。对于在电极界面上发生单电子单步骤的 O 和 R 相互转化反应,O ne R, 其净反应速率为
v v1 v1 k1C( k1CR (0, t ) O 0, t) i1 i1 i (8) nFA nFA
图1 Fig.1 电极过程中的五步基本历程 Five basic steps in a electrode process
1
电极体系中的传质过程
液相电解质中传质过程主要包括三种形式[5]: 对流、扩散和电迁移。不同的体系中通过以上一种 或几种形式完成从溶液主体到电极表面的电活性物 质传递过程。 [4] 1.1 对流 对流传质的形式包括自然对流和强制对流两种 形式。所谓自然对流是指溶液体系由于局部浓度、 温度的不同引起密度差异产生的对流。强制对流通 常是由外加搅拌的作用引起的。 通过对流引起物质的流量 J(单位时间通过单 位横截面积的物质的量)为
268 年


科 学



2013 年第 2 卷
应速率的关系, 建立了 Butler-Volmer 电极动力学模 型 , 结 合 Arrhenius 的 结 论 , 从 理 论 上 建 立 了 Butler-Volmer 公式,并在特定条件下推导出 Tafel 经验公式。 在此基础上, 从 1940 年开始, 电极动力学这门 学 科 快 速 建 立 起 来 。 苏 联 Alexander Naumovich Frumkin(Алексáндр Наýмович Фрýмкин)通过分 析电极和溶液的净化对电极动力学的影响实验, 研 究了双电层结构和吸附与电化学反应速率之间的 关系[1]。Heyrovsky 创造了滴汞电极分析电化学动 力学的极谱分析法,系统地进行大量的“电极 / 溶 液”界面分析实验,并于 1959 年获诺贝尔奖[2]。 至 20 世纪 60 年代, 电极反应动力学的基本理论以 及实验测试方法逐步建立起来, 尤其是电化学测试 技术, 随着微电子和计算机技术的迅速发展而突飞 猛进。 目前, 随着人们对电极过程中新概念以及新实验 手段认识的逐步深入,电极过程已在化学工业、能源 领域、材料科学和环境保护等众多领域中发挥了举足 轻重的作用。所谓电极过程是指发生在电极与溶液界 面上的电极反应、化学转化和电极附近的液层中传质 作用等一系列变化的总和[3]。 如图 1 所示, 一般来说, [4] 电极反应的基本历程由以下步骤组成 。 (1)反应物向电极表面传递过程,即电解质传 质步骤。 (2)反应物在电极表面或表面附近的液层中转 化过程,即“前置的表面转化步骤”,如反应物在 电极表面吸附或发生化学反应。 (3)反应物在电极表面发生电化学反应过程。 由于该过程电子转移引起的氧化或还原反应遵守法 拉第定律,所以该过程称为法拉第过程。 (4)反应产物在电极表面或表面附近的液层中 转化过程,即“随后的表面转化步骤”。例如,产 物的脱附或发生其它化学变化。该步骤与第(2)步 过程中的脱附与吸附过程等均属于非法拉第过程, 虽然无电荷通过界面, 然而电极/溶液界面的结构可 以随电势或溶液组成的变化而改变,外部电流可以 流动。 (5a)生产新相产物过程,如气体或固体。 (5b) 产物在电解质中传质步骤, 产物从电极表 面向溶液主体中传递过程。 因此,组成电极反应的主要单元步骤可以归纳 [4] 为 :传质过程、电化学过程以及表面转化过程。

电极过程动力学 电化学

电极过程动力学   电化学

吸附对电极/溶液界面性质的影响:①在电极/溶液界面上不但有静电吸附,而且有特性吸附,只有当电极表面剩余电荷足够多时,静电吸附足够大时,特性吸附才消失;②当电极表面发生吸附时,电毛细管曲线和微分电容发生变化;③由于静电吸附和特性吸附共同存在,会出现超载吸附与三电层结构;④无特性吸附时,分散层电位与紧密层电位方向相同,当有阴离子特性吸附时,紧密层与分散层方向相反。

电极过程——电极表面附近薄液层中进行的过程与电极表面上发生的过程的总称。

电极过程单元步骤:①液相传质——反应粒子向电极表面传递;②表面转化(前置)——反应粒子在电极表面或附近液层发生某些转化;③电化学——反应粒子在电极/溶液界面得到电子或失去电子;④表面转化(后置)——反应产物在电极表面或附近液层发生某些转化;⑤a、新相生成——反应产物不溶时,反应产物生成新相;b、液相传质——反应产物可溶时,产物粒子从电极表面向溶液中或溶液电极内部迁移。

电极极化——电流通过电极时,电极电势偏离平衡电极电势的现象。

过电势——表示某一电流密度下极化电势与平衡电势之差。

①阳极过电势:②阴极过电势:控制步骤——电极过程中最慢的单元步骤。

极化曲线——电极上电势随电流密度变化的关系曲线。

传质过程(溶液):①对流——物质粒子随液体流动而移动。

A、自然对流——液体各部分之间由于存在浓度差或温度差产生的密度差或密度梯度而产生的对流;B、强制对流——通过搅拌而引起的对流。

②扩散——溶液中某一组分由于存在浓度梯度(或化学势梯度)而发生该组分向减少这种梯度的方向转移的过程。

③电迁移——带电粒子在电场梯度或电势梯度的作用下而引起的迁移过程。

扩散层——通过电流时,由于物质迁移缓慢而引起浓度发生扩散的液层。

稳态扩散——溶液中任意一点的浓度不再随时间变化的扩散过程。

(扩散速度与时间无关,反应粒子浓度分布只与空间有关,扩散层厚度一定)非稳态扩散——溶液中任意一点的浓度随时间变化的扩散过程。

电化学-第五章电荷转移步骤动力学与电化学极化(极力推荐)

电化学-第五章电荷转移步骤动力学与电化学极化(极力推荐)

nF
RT
c )]
上述两个电化学极化控制下的稳态极化曲线方程, 又称巴特勒—沃尔摩(Butler-Volmer)公式。
同理,
W10 nF ic nFz c co exp( ) RT nF nF 0 0 nFk c co exp( ) ic exp( ) RT RT
改为对数表示形式为:
2.3RT 2.3RT 0 lg ia lg ia nF nF
2.3RT 2.3RT 0 lg ic lg ic nF nF
(4)电极的表面状态,电化学极化非常强烈地依赖于电极 表面的状态。各种活性物质的特性吸附可极大地改变电极 反应的速度,如电镀添加剂、缓蚀剂等。
(5)温度,一般温度升高,过电位降低,反应速度加快。
5.2.1 电极电位对反应活化能的影响
电极电位对于电极反应速度的影响有两种方式:
热力学方式与动力学方式。
(2)i0的值反映了电极反应的可逆程度与极化 性能。
实例:
交换电流密度(i0)对急需区分阴、阳极净电流密度的活化过电位 的影响。(a)i0=10-3 A/cm2;(b)i0=10-6 A/cm2;(c)i0=10-9 A/cm2。阴极反应=0.5,T=298 K 。
5.3.2 电极反应的标准反应速度常数K
当电极电位改变时,
W1’ = W1 - nF,式中为阳极反应传递系数; W2’ = W2 + nF,式中为阴极反应传递系数; 因为,(W2’ – W2) – (W1’- W1) = ( + )nF 所以, + = 1
W1’ = W1 - nF, W2’ = W2 + nF >0时:阳极反应的活化能降低,阴极反应的 活化能升高;相应地阳极反应速度增加,阴极反 应速度减小。 相反,<0时:阳极反应的活化能升高,阴极 反应的活化能降低;相应地阳极反应速度减小, 阴极反应速度增加。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学工业过程控制和电化学反应设计。本文通过回顾电极过程动力学理论的发展历程及数学表达式的演化过程, 阐述电化学反应中电荷传递过程的科学背景,理解其中的科学思想,相信对于促进现代电化学研究的发展具有 启示意义。 关键词:电化学;电荷传递;塔菲尔公式;巴特勒-沃尔默公式;量子力学机理 doi:10.3969/j.issn.2095-4239.2013.04.008 中图分类号:N 092 文献标志码:A 文章编号:2095-4239(2013)04-402-08
2
电化学电荷传递过程认识的发展
塔菲尔公式的建立 1905 年 , 塔 菲 尔 发 表 了 题 为 “ Über die
液系统中的化学平衡》 中对渗透压公式进行了修正: 2.1
(1)
式中, 为渗透压,V 为摩尔体积,R 为气体 常数,T 为绝对温度,i 为范特霍夫常数,其中 i 随 溶质而变,并随稀释度的增加而增加,但范特霍夫 并没有对其原因进行深入研究,甚至都没有明确提 出 i 的真正含义。 当阿累尼乌斯读到范特霍夫的著作时,凭借其 敏锐的科学思维,对范特霍夫的渗透压公式中 i >1 做出了详尽的理论分析:公式之所以要乘以 i 才与 实际相符,是因为分子离解成离子,使溶液中的溶 质粒子数增多的缘故。他用电导率和冰点下降两种 方法计算离解度,得出相同的结果,不仅深刻解释 了范特霍夫的气体定律,也证明了自己电离理论的 正确性。同年 8 月,阿累尼乌斯以更加完善的形式 在世界权威刊物《物理化学杂志》创刊号上发表了 “关于溶质在水中的离解” ,引述丰富的事实论证了 “离解度”等代替了“活化” 、 “活化系数” ,还以 i=1+(k1) 将范特霍夫常数 i 和离解度 相联系, 使电离理论定量化,由此而计算出的 i 值与渗透压 实验和凝固点降低实验得到的 i 值完全一致,此文 的发表标志着电离学说的正式确立
第4期
贾志军等:电化学基础(Ⅴ)——电极过程动力学及电荷传递过程
年 403
6 世纪,希腊哲学家泰勒斯发现并记载了摩擦过的 琥珀能够吸引轻小物体的现象,并称琥珀具有“琥 珀之力”,这是人类关于电的最早记录[1]。1733 年 法国物理学家杜菲在对静电的研究过程中发现,静 电具有同种电荷相排斥、异种电荷相吸引的性质, 使人类认识到自然界中存在两种电荷;美国科学家 富兰克林进一步把这两种电荷定义为:“正电”和 “负电”,并对它们做出明确定义:摩擦琥珀时,电 从琥珀流出使它带负电; 摩擦玻璃时, 电流入玻璃, 使它带正电;两者接触时,电从正流向负,直到中 性平衡[2]。 我国早在西汉年间,《春秋纬》中就记载有玳 瑁可以吸引轻小物体的文章。东汉唯物主义思想家 王充在其著作《论衡——乱龙篇》中所提到的“顿 牟掇芥” 等问题, 也是说摩擦玳瑁能吸引轻小物体, 并试图利用“气性同异”的观点解释其物质原因[3]。 直到 1780 年, 意大利外科医生伽伐尼 ( Luigi Galvani ) 发现当手术刀触及悬挂在金属挂钩上的 青蛙腿时,蛙腿会剧烈抽动,并指出动物体内存在 着一种与“自然”形式或“人工”形式(静电)都 不同的“动物电”,人类由此开始了生物电动现象 的研究,这也是人类历史上首次明确提出动电—— “电流”的概念[4]。1799 年,伏特在重复验证伽伐 尼实验的基础上,利用锌片和铜片夹以盐水浸过的 纸片组成了第一个伏打电堆,使人类能够获得比较 稳定的电流源。利用伏打电堆,1807 年,英国化学 家戴维爵士对熔融苛性钾进行了电解,并最终发现 了金属钾,随后又相继发现了钠、钙、锶和钡等碱 性金属。通过戴维的研究,人们已经认识到在电和 化学反应之间存在着紧密的联系。但是直到法拉第 电解定律的确立,人们才真正认识到电流与化学反 应之间的定量关系: “ The chemical power of a current of electricity is in direct proportion to the absolute quantity of electricity which passes” 和 “Electro-chemical equivalents coincide, and are the [5] same, with ordinary chemical equivalents” 。 法拉第 的电解定律第一次阐明了电化学反应的本质。 法拉第对其电解定律有一个重要评论: “ The harmony which this theory of the definite evolution and the equivalent definite action of electricity introduces into the associated theories of definite proportions and electro-chemical affinity, is very great. According to it, the equivalent weights of bodies are
404 年


科 学



2013 年第 2 卷
年 6 月,阿累尼乌斯在其博士论文“电解质的导电 性研究”中独创性地提出电解质在溶液中自动离解 成电离子的观点,但对其内在机理仍缺乏足够的 认识。 1887 年,范特霍夫在其经典著作《气体与稀溶
V iRT
(i 1 )
定程度上合理的解释了上述问题。虽然,目前的溶 液电离理论还不完善,但是为深入认识电化学反应 及其传荷过程提供了概念和认识基础。
simply those quantities of them which contain equal quantities of electricity, or have naturally equal electric powers; it being the electricity which determines the equivalent number, because it determines the combining force. Or, if we adopt the atomic theory or phraseology, then the atoms of bodies which are equivalents to each other in their ordinary chemical action have equal quantities of electricity naturally associated with them”[5]。通过这则评论可 以发现,法拉第已经触及到了电的原子特性,即电 子的概念,但是当时他仍然倾向于认为电是一种流 体。电的原子性始终没有被明确阐述,直到亥姆霍 兹于 1881 年在纪念法拉第的演讲中才首次提出, 并 且于 1891 年由英国物理学家斯通尼命名为 “电子” , 被认为是一个电的基本单位的名称,并不具有特殊 的物理意义[5]。1897 年,汤姆逊在对阴极射线的研 究中发现了一种新的带负电的物质粒子,并对这种 物质粒子的荷电量与质量比进行了测量,使得人类 首次实验证实了一种“基本粒子”的存在,后来被 称为电子。 1.2 对电离和离子的认识 电化学反应通常都是在电解质溶液中完成,要 深入了解电化学反应的传荷过程需要对电解质的电 离和离子有深刻的认识。 关于离子的概念, 最早于 1805 年由德国化学家 格罗特斯提出,他在解释水的电解机理时提出:在 电流作用下,水分子变为带负电的氧原子和带正电 的氢原子,带负电的氧原子与正极接触,电荷被中 和,变成氧气析出;带正电的氢原子与负极接触, 生成氢气[6]。1834 年,法拉第在论文“关于电的实 验研究”中的提法更为明确,他认为在电解时,溶 液中电流是由带电荷的分解物传输的,他把电解前 未分解的物质叫做电解质,传输电流的分解产物叫 做离子,带正电并向阴极移动的离子称为阳离子; 带负电并向阳极移动的离子称为阴离子[5]。 1857 年, 德国物理学家克劳胥指出格罗特斯和法拉第的观点 并不正确,因为假如“离子是在电流的作用下产生 的” , 则在电解时就会有一部分电流被用来分解电解 质,因此欧姆定律对溶液将不再适用,而事实并非 如此[7]。 1882 年,阿累尼乌斯开始溶液导电性的研究, 发现氨的水溶液是导体, 并且溶液越稀导电性越好, 认为溶液稀释时,水增大了溶液的导电性[7]。1883
第2卷 第4期 2013 年 7 月
储 能 科 学 与 技 术 Energy Storage Science and Technology
Vol.2 No.4 Jul. 2013
专家讲座
电化学基础(Ⅴ)——电极过程动力学及电荷传递过程
贾志军,马洪运,吴旭冉,廖斯达,王保国
(清华大学化学工程系,北京 100084) 摘 要:电荷传递过程是电化学反应的本质。了解电荷传递过程有助于揭示电化学反应的内在规律,实现电化
反应的动力学研究不仅是对电化学理论的丰富,也 对提高电化学工业效能具有重要意义。
1 认识电化学电荷传递过程的科学背景
认识电化学电荷传递过程,首先要对电荷本质 有清晰的认识。著名电化学专家,超级电容器之 父——B.E.康维教授对此曾作出如下评述: “It could be said, therefore, that until the basic nature of electricity was recognized, the electrochemistry of charge-transfer processes could not be understood and电的认识是从静电现象开始的。公元前
收稿日期:2013-05-07;修改稿日期:2013-06-01。 基金项目:化学工程联合国家重点实验室 2011 年自主课题立项,国家 自然科学基金项目(21076112,21276134) 。 第一作者:贾志军(1983—) ,男,博士后,研究方向为化学电源设计 及新型电极材料制备,E-mail:jiazhijunwin@;通讯联系人:王 保国,E-mail:bgwang@。
相关文档
最新文档