二次函数和幂函数知识点(精)

二次函数和幂函数知识点(精)
二次函数和幂函数知识点(精)

教 学 内 容

二次函数与幂函数

1. 二次函数的定义与解析式

(1)二次函数的定义

形如:f (x )=ax 2+bx +c _(a ≠0)的函数叫作二次函数. (2)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c _(a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)_(a ≠0).

2. 二次函数的图像和性质

解析式

f (x )=ax 2+bx +c

(a >0)

f (x )=ax 2+bx +c

(a <0)

图像

定义域 (-∞,+∞)

(-∞,+∞)

值域

????4ac -b 2

4a ,+∞ ?

???-∞,4ac -b 2

4a

单调性

在x ∈????-∞,-b 2a 上单调递减; 在x ∈???

?-b

2a ,+∞上单调递增 在x ∈????-∞,-b

2a 上单调递增; 在x ∈???

?-b

2a ,+∞上单调递减 奇偶性 当b =0时为偶函数,b ≠0时为非奇非偶函数

顶点

????-b 2a

,4ac -b 2

4a

对称性

图像关于直线x =-b

2a

成轴对称图形

3. 幂函数

形如y =x α (α∈R )的函数称为幂函数,其中x 是自变量,α是常数. 4. 幂函数的图像及性质

(1)幂函数的图像比较

(2)幂函数的性质比较

y =x

y =x 2

y =x 3

y =x 1

2 y =x -

1

定义域

R

R

R

[0,+∞)

{x |x ∈R 且x ≠0} 值域 R [0,+∞) R [0,+∞) {y |y ∈R 且y ≠0} 奇偶性 奇函数 偶函数 奇函数

非奇非偶函

奇函数 单调性 增 x ∈[0,+∞)

时,增;x ∈(-∞,0]时,减

x ∈(0,+∞)

时,减;x ∈(-∞,0)时,减

[难点正本 疑点清源] 1. 二次函数的三种形式

(1)已知三个点的坐标时,宜用一般式.

(2)已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. (3)已知二次函数与x 轴有两个交点,且横坐标已知时,选用零点式求f (x )更方便. 2. 幂函数的图像

(1)在(0,1)上,幂函数中指数越大,函数图像越靠近x 轴,在(1,+∞)上幂函数中指数越大,函数图像越远离x 轴.

(2)函数y =x ,y =x 2,y =x 3,y =x 1

2,y =x -1可作为研究和学习幂函数图像和性质的代表.

1. 已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上是减函数,则实数a 的取值范围为____________.

答案 (-∞,-2]

解析 f (x )的图像的对称轴为x =1-a 且开口向上, ∴1-a ≥3,即a ≤-2.

2. (课本改编题)已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为________.

答案 [1,2]

解析 y =x 2-2x +3的对称轴为x =1. 当m <1时,y =f (x )在[0,m ]上为减函数. ∴y max =f (0)=3,y min =f (m )=m 2-2m +3=2. ∴m =1,无解.

当1≤m ≤2时,y min =f (1)=12-2×1+3=2, y max =f (0)=3.

当m >2时,y max =f (m )=m 2-2m +3=3, ∴m =0,m =2,无解.∴1≤m ≤2.

3. 若幂函数y =(m 2-3m +3)xm 2-m -2的图像不经过原点,则实数m 的值为________.

答案 1或2

解析 由?

????

m 2

-3m +3=1

m 2

-m -2≤0,解得m =1或2.

经检验m =1或2都适合.

4. (人教A 版教材例题改编)如图中曲线是幂函数y =x n 在第一象限的图

像.已知n 取±2,±1

2四个值,则相应于曲线C 1,C 2,C 3,C 4的n 值依

次为

____________. 答案 2,12,-1

2

,-2

解析 可以根据函数图像是否过原点判断n 的符号,然后根据函数凸凹性确定n 的值. 5. 函数f (x )=x 2+mx +1的图像关于直线x =1对称的充要条件是

( )

A .m =-2

B .m =2

C .m =-1

D .m =1

答案 A

解析 函数f (x )=x 2+mx +1的图像的对称轴为x =-m 2,且只有一条对称轴,所以-m

2=

1,即m =-2.

题型一 求二次函数的解析式

例1 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数.

思维启迪:确定二次函数采用待定系数法,有三种形式,可根据条件灵活运用. 解 方法一 设f (x )=ax 2+bx +c (a ≠0),

依题意有??

?

4a +2b +c =-1,

a -

b +

c =-1,

4ac -b

2

4a =8,

解之,得?????

a =-4,

b =4,

c =7,

∴所求二次函数解析式为f (x )=-4x 2+4x +7. 方法二 设f (x )=a (x -m )2+n ,a ≠0.∵f (2)=f (-1), ∴抛物线对称轴为x =2+(-1)2=12.∴m =1

2.

又根据题意函数有最大值为n =8, ∴y =f (x )=a ???

?x -1

22+8. ∵f (2)=-1,∴a ????2-1

22+8=-1,解之,得a =-4. ∴f (x )=-4????x -1

22+8=-4x 2+4x +7. 方法三 依题意知,f (x )+1=0的两根为

x 1=2,x 2=-1,故可设f (x )+1=a (x -2)(x +1),a ≠0. 即f (x )=ax 2-ax -2a -1.

又函数有最大值y max =8,即4a (-2a -1)-a 2

4a =8,

解之,得a =-4或a =0(舍去). ∴函数解析式为f (x )=-4x 2+4x +7.

探究提高 二次函数有三种形式的解析式,要根据具体情况选用:如和对称性、最值有关,可选用顶点式;和二次函数的零点有关,可选用零点式;一般式可作为二次函数的最终结果.

已知二次函数f (x )同时满足条件: (1)f (1+x )=f (1-x ); (2)f (x )的最大值为15;

(3)f (x )=0的两根平方和等于17. 求f (x )的解析式.

解 依条件,设f (x )=a (x -1)2+15 (a <0), 即f (x )=ax 2-2ax +a +15.

令f (x )=0,即ax 2-2ax +a +15=0, ∴x 1+x 2=2,x 1x 2=1+15

a

.

x 21+x 22=(x 1+x 2)2

-2x 1x 2

=4-2????1+15a =2-30

a =17, ∴a =-2,∴f (x )=-2x 2+4x +13. 题型二 二次函数的图像与性质

例2 已知函数f (x )=x 2+2ax +3,x ∈[-4,6].

(1)当a =-2时,求f (x )的最值;

(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数; (3)当a =1时,求f (|x |)的单调区间.

思维启迪:对于(1)和(2)可根据对称轴与区间的关系直接求解,对于(3),应先将函数化为分段函数,再求单调区间,注意函数定义域的限制作用.

解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6], ∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,

∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35.

(2)由于函数f (x )的图像开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4. (3)当a =1时,f (x )=x 2+2x +3,

∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],

且f (x )=?

????

x 2+2x +3,x ∈(0,6]

x 2

-2x +3,x ∈[-6,0],

∴f (|x |)的单调递增区间是(0,6], 单调递减区间是[-6,0].

探究提高 (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类

讨论;(2)二次函数的单调性问题则主要依据二次函数图像的对称轴进行分析讨论求解.

若函数f (x )=2x 2+mx -1在区间[-1,+∞)上递增,则f (-1)的取值范围是____________. 答案 (-∞,-3]

解析 ∵抛物线开口向上,对称轴为x =-m

4,

∴-m

4

≤-1,∴m ≥4.

又f (-1)=1-m ≤-3,∴f (-1)∈(-∞,-3]. 题型三 二次函数的综合应用

例3 若二次函数f (x )=ax 2+bx +c (a ≠0)满足f (x +1)-f (x )=2x ,且f (0)=1.

(1)求f (x )的解析式;

(2)若在区间[-1,1]上,不等式f (x )>2x +m 恒成立,求实数m 的取值范围.

思维启迪:对于(1),由f (0)=1可得c ,利用f (x +1)-f (x )=2x 恒成立,可求出a ,b ,进而确定f (x )的解析式.对于(2),可利用函数思想求得. 解 (1)由f (0)=1,得c =1.∴f (x )=ax 2+bx +1. 又f (x +1)-f (x )=2x ,

∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x ,

即2ax +a +b =2x ,∴????? 2a =2,a +b =0,∴?????

a =1,

b =-1.

因此,f (x )=x 2-x +1.

(2)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,要使此不等式在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可. ∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减, ∴g (x )min =g (1)=-m -1,由-m -1>0得,m <-1. 因此满足条件的实数m 的取值范围是(-∞,-1).

探究提高 二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图像贯穿为一体.因此,有关二次函数的问题,数形结合,密切联系图像是探求解题思路的有效方法.用函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点.

已知函数f (x )=x 2+mx +n 的图像过点(1,3),且f (-1+x )=f (-1-x )对任意实数都成立,函数y =g (x )与y =f (x )的图像关于原点对称. (1)求f (x )与g (x )的解析式;

(2)若F (x )=g (x )-λf (x )在(-1,1]上是增函数,求实数λ的取值范围.

解 (1)∵f (x )=x 2+mx +n ,

∴f (-1+x )=(-1+x )2+m (-1+x )+n =x 2-2x +1+mx +n -m =x 2+(m -2)x +n -m +1, f (-1-x )=(-1-x )2+m (-1-x )+n =x 2+2x +1-mx -m +n =x 2+(2-m )x +n -m +1.

又f (-1+x )=f (-1-x ),∴m -2=2-m ,即m =2. 又f (x )的图像过点(1,3), ∴3=12+m +n ,即m +n =2, ∴n =0,∴f (x )=x 2+2x ,

又y =g (x )与y =f (x )的图像关于原点对称, ∴-g (x )=(-x )2+2×(-x ), ∴g (x )=-x 2+2x .

(2)∵F (x )=g (x )-λf (x )=-(1+λ)x 2+(2-2λ)x , 当λ+1≠0时,F (x )的对称轴为x =2-2λ

2(1+λ)=1-λ

λ+1,

又∵F (x )在(-1,1]上是增函数. ∴?

???? 1+λ<01-λ

1+λ≤-1或?

????

1+λ>0

1-λ

1+λ≥1.

∴λ<-1或-1<λ≤0.

当λ+1=0,即λ=-1时,F (x )=4x 显然在(-1,1]上是增函数. 综上所述,λ的取值范围为(-∞,0]. 题型四 幂函数的图像和性质

例4 已知幂函数f (x )=xm 2-2m -3 (m ∈N *)的图像关于y 轴对称,且在(0,+∞)上是减函数,求满足(a +1)

-m 3<(3-2a )-m

3

的a 的取值范围. 思维启迪:由幂函数的性质可得到幂指数m 2-2m -3<0,再结合m 是整数,及幂函数是偶函数可得m 的值.

解 ∵函数在(0,+∞)上递减, ∴m 2-2m -3<0,解得-1

又函数的图像关于y 轴对称,∴m 2-2m -3是偶数, 而22-2×2-3=-3为奇数,12-2×1-3=-4为偶数, ∴m =1.而f (x )=x -1

3

在(-∞,0),(0,+∞)上均为减函数,

∴(a +1)-13<(3-2a )-1

3等价于a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a .

解得a <-1或23

2

.

故a 的取值范围为?

??

?

??a |a <-1或23

探究提高 (1)幂函数解析式一定要设为y =x α (α为常数的形式);(2)可以借助幂函数的图像理解函数的对称性、单调性.

方法与技巧

1. 二次函数、二次方程、二次不等式间相互转化的一般规律:

(1)在研究一元二次方程根的分布问题时,常借助于二次函数的图像数形结合来解,一般从①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.

(2)在研究一元二次不等式的有关问题时,一般需借助于二次函数的图像、性质求解. 2. 与二次函数有关的不等式恒成立问题

(1)ax 2

+bx +c >0,a ≠0恒成立的充要条件是?

?? a >0b 2-4ac <0.

(2)ax 2

+bx +c <0,a ≠0恒成立的充要条件是?

??

a <0

b 2-4a

c <0.

3. 幂函数y =x α(α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数. 失误与防范

1. 对于函数y =ax 2+bx +c ,要认为它是二次函数,就必须满足a ≠0,当题目条件中未说明a ≠0时,就要讨

论a =0和a ≠0两种情况.

2. 幂函数的图像一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要

看函数的奇偶性;幂函数的图像最多只能同时出现在两个象限内;如果幂函数图像与坐标轴相交,则交点一定是原点.

A 组 专项基础训练 (时间:35分钟,满分:57分)

一、选择题(每小题5分,共20分)

1. (2011·浙江)设函数f (x )=?

????

-x , x ≤0,

x 2, x >0,若f (α)=4,则实数α等于

( )

A .-4或-2

B .-4或2

C .-2或4

D .-2或2

答案 B

解析 当α≤0时,f (α)=-α=4,得α=-4; 当α>0时,f (α)=α2=4,得α=2.∴α=-4或α=2.

2. 已知函数f (x )=x 2-2x +2的定义域和值域均为[1,b ],则b 等于

( )

A .3

B .2或3

C .2

D .1或2

答案 C

解析 函数f (x )=x 2-2x +2在[1,b ]上递增, 由已知条件????

?

f (1)=1,

f (b )=b ,

b >1,

即???

b 2-3b +2=0,

b >1.

解得b =2. 3. 设abc >0,二次函数f (x )=ax 2+bx +c 的图像可能是

( )

答案 D

解析 由A ,C ,D 知,f (0)=c <0. ∵abc >0,∴ab <0,∴对称轴x =-b

2a >0,

知A ,C 错误,D 符合要求.

由B 知f (0)=c >0,∴ab >0,∴x =-b

2a

<0,B 错误.

4. 设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是

( )

A .(-∞,0]

B .[2,+∞)

C .(-∞,0]∪[2,+∞)

D .[0,2]

答案 D

解析 二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0,f ′(x )=2a (x -1)<0,x ∈[0,1], 所以a >0,即函数图像的开口向上,对称轴是直线x =1. 所以f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2. 二、填空题(每小题5分,共15分)

5. 二次函数的图像过点(0,1),对称轴为x =2,最小值为-1,则它的解析式为____________.

答案 y =1

2

(x -2)2-1

6. 已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上是减函数,则实数a 的取值范围为____________.

答案 (-∞,-2]

解析 f (x )的图像的对称轴为x =1-a 且开口向上, ∴1-a ≥3,即a ≤-2.

7. 当α∈?

???

??

-1,12,1,3时,幂函数y =x α的图像不可能经过第________象限.

答案 二、四

解析 当α=-1、1、3时,y =x α的图像经过第一、三象限;当α=1

2时,y =x α的图像经过第一象限.

三、解答题(共22分)

8. (10分)已知二次函数f (x )的二次项系数为a ,且f (x )>-2x 的解集为{x |1

根,求f (x )的解析式.

解 设f (x )+2x =a (x -1)(x -3) (a <0), 则f (x )=ax 2-4ax +3a -2x , f (x )+6a =ax 2-(4a +2)x +9a ,

Δ=[-(4a +2)]2-36a 2=0,即(5a +1)(a -1)=0, 解得a =-1

5

或a =1(舍去).

因此f (x )的解析式为f (x )=-1

5

(x -1)(x -3).

9. (12分)是否存在实数a ,使函数f (x )=x 2-2ax +a 的定义域为[-1,1]时,值域为[-2,2]?若存在,求a 的值;

若不存在,说明理由. 解 f (x )=(x -a )2+a -a 2.

当a <-1时,f (x )在[-1,1]上为增函数,

∴?????

f (-1)=1+3a =-2,f (1)=1-a =2

?a =-1(舍去); 当-1≤a ≤0时,?????

f (a )=a -a 2

=-2,

f (1)=1-a =2?a =-1;

当0

????

f (a )=a -a 2=-2,

f (-1)=1+3a =2?a 不存在;

当a >1时,f (x )在[-1,1]上为减函数,

∴?????

f (-1)=1+3a =2,

f (1)=1-a =-2

?a 不存在. 综上可得a =-1.

B 组 专项能力提升 (时间:25分钟,满分:43分)

一、选择题(每小题5分,共20分) 1. 已知幂函数f (x )=x α的图像经过点?

??

?

2,

22,则f (4)的值等于 ( )

A .16 B.116 C .2

D.12

答案 D

解析 将点?

??

?

2,

22代入得:2α=22,所以α=-12,

故f (4)=1

2

.

2. 已知函数f (x )=2mx 2-2(4-m )x +1,g (x )=mx ,若对于任一实数x ,f (x )与g (x )的值至少有一个为正数,则实

数m 的取值范围是 ( )

A .(0,2)

B .(0,8)

C .(2,8)

D .(-∞,0)

答案 B

解析 当m ≤0时,显然不合题意;当m >0时,f (0)=1>0,①若对称轴4-m

2m ≥0,即0

立;

②若对称轴4-m

2m <0,即m >4,只要Δ=4(4-m )2-8m =4(m -8)(m -2)<0即可,即4

综上,0

3. 已知二次函数y =x 2-2ax +1在区间(2,3)内是单调函数,则实数a 的取值范围是( )

A .a ≤2或a ≥3

B .2≤a ≤3

C .a ≤-3或a ≥-2

D .-3≤a ≤-2

答案 A

解析 由函数图像知,(2,3)在对称轴x =a 的左侧或右侧,∴a ≥3或a ≤2. 二、填空题(每小题5分,共15分)

4. 已知二次函数y =f (x )的顶点坐标为???

?-3

2,49,且方程f (x )=0的两个实根之差等于7,则此二次函数的解析式是______________. 答案 f (x )=-4x 2-12x +40

解析 设二次函数的解析式为f (x )=a ????x +322+49 (a <0),方程a (x +3

2)2+49=0的两个根分别为x 1,x 2, 则|x 1-x 2|=2

-49

a

=7, ∴a =-4,故f (x )=-4x 2-12x +40.

5. 若方程x 2-11x +30+a =0的两根均大于5,则实数a 的取值范围是________.

答案 0

4

解析 令f (x )=x 2-11x +30+a ,结合图像有 ???

??

Δ≥0(图像与x 轴有交点),f (5)>0(图像与x 轴交点在x =5的右侧),(无需考虑对称轴,因为对称轴方程x =112>5).

∴0

4

.

6. 已知函数f (x )=x 1

2

,给出下列命题:

①若x >1,则f (x )>1;②若0x 2-x 1;③若0

????x 1+x 22.

则所有正确命题的序号是________. 答案 ①④

解析 对于①,f (x )=x 1

2是增函数,f (1)=1,

当x >1时,f (x )>1,①正确;

对于②,f (x 2)-f (x 1)

x 2-x 1

>1,可举例(1,1),(4,2),故②错;

对于③,f (x 1)-0x 1-0

x 2-0,说明图像上两点x 1,x 2到原点连线的斜率越来越大,由图像可知,③错;

对于④,f (x 1)+f (x 2)2

x 1+x 22,根据图像可判断出④正确. 三、解答题

7. (13分)已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a 的值.

解 f (x )=-(x -a )2+a 2-a +1, 当a ≥1时,y max =f (1)=a ; 当0

根据已知条件:????? a ≥1,a =2或?????

0

或???

a ≤01-a =2,

解得a =2或a =-1.

.

课时跟踪检测(十二) 二次函数与幂函数

课时跟踪检测(十二) 二次函数与幂函数 一抓基础,多练小题做到眼疾手快 1.函数y =x 的图象是( ) 解析:选B 由幂函数y =x α,若0<α<1,在第一象限内过(1,1),排除A 、D , 又其图象上凸,则排除C ,故选B. 2.(2018·丽水调研)设函数f (x )=ax 2+bx +c (a ≠0,x ∈R),对任意实数t 都有f (2+t )=f (2-t )成立,在函数值f (-1),f (1),f (2),f (5)中,最小的一个不可能是( ) A .f (-1) B .f (1) C .f (2) D .f (5) 解析:选B 由f (2+t )=f (2-t )知函数y =f (x )的图象对称轴为x =2. 当a >0时,易知f (5)=f (-1)>f (1)>f (2); 当a <0时,f (5)=f (-1)

∴函数f (x )的单调递增区间是(-∞,0). 4.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈ [a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为____________. 解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈????-9 4,-2,故当m ∈????-94,-2时,函数y =m 与y =x 2 -5x +4(x ∈[0,3])的图象有两个交点. 答案:??? ?-9 4,-2 5.若二次函数f (x )=-x 2+4x +t 图象的顶点在x 轴上,则t =________. 解析:由于f (x )=-x 2+4x +t =-(x -2)2+t +4图象的顶点在x 轴上, 所以f (2)=t +4=0,所以t =-4. 答案:-4 二保高考,全练题型做到高考达标 1.已知f (x )=x ,若00,二次函数f (x )=ax 2+bx +c 的图象可能是( )

幂函数与二次函数

幂函数与二次函数基础梳理 1.幂函数的定义 一般地,形如y =x α(α∈R )的函数称为幂函数,其中底数x 是自变量,α为常数. 2.幂函数的图象 在同一平面直角坐标系下,幂函数y =x ,y =x 2,y =x 3 ,y =x 12, y =x -1的图象分别如右图. 3.二次函数的图象和性质 解析式 f (x )=ax 2+bx +c (a >0) f (x )=ax 2+bx +c (a <0) 图象 定义域 (-∞,+∞) (-∞,+∞) 值域 ???? ??4ac -b 24a ,+∞ ? ????-∞,4ac -b 24a 单调性 在x ∈??????-b 2a ,+∞上单调递增 在x ∈? ????-∞,-b 2a 上单调递减 在x ∈? ????-∞,-b 2a 上单调递增 在x ∈??????-b 2a ,+∞上单调递减 奇偶性 当b =0时为偶函数,b ≠0时为非奇非偶函数 顶点 ? ????-b 2a ,4ac -b 24a 对称性 图象关于直线x =-b 2a 成轴对称图形 5.二次函数解析式的三种形式 (1)一般式:f (x )=ax 2+bx +c (a ≠0) (2)顶点式:f (x )=a (x -h )2+k (a ≠0)

(3)两根式:f(x)=a(x-x1)(x-x2)(a≠0)

函数y =f (x )对称轴的判断方法 (1)对于二次函数y =f (x )对定义域内所有x ,都有f (x 1)=f (x 2),那么函数y =f (x )的图象关于x =x 1+x 2 2对称. (2)一般地,函数y =f (x )对定义域内所有x ,都有f (a +x )=f (a -x )成立,则函数y =f (x )的图象关于直线x =a 对称(a 为常数). 练习检测 1.(2011·安徽)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( ). A .-3 B .-1 C .1 D .3 解析 ∵f (x )为奇函数,∴f (1)=-f (-1)=-3. 答案 A 2.如图中曲线是幂函数y =x n 在第一象限的图象.已知n 取±2,±12四个值,则相应于曲线C 1,C 2,C 3,C 4的n 值依次为( ). A .-2,-12,12,2 B .2,12,-12,-2 C .-12,-2,2,12 D .2,12,-2,-12 答案 B 3.(2011·浙江)设函数f (x )=? ???? -x ,x ≤0,x 2,x >0.若f (α)=4,则实数α等于( ). A .-4或-2 B .-4或2 C .-2或4 D .-2或2 解析 由????? α≤0,-α=4或? ???? α>0,α2=4,得α=-4或α=2,故选B. 答案 B 4.已知函数f (x )=x 2-2x +2的定义域和值域均为[1,b ],则b 等于( ). A .3 B .2或3 C .2 D .1或2 解析 函数f (x )=x 2-2x +2在[1,b ]上递增,

初三.二次函数知识点总结

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项 系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: 结论:a 的绝对值越大,抛物线的开口越小。 总结:

2. 2 =+的性质: y ax c 结论:上加下减。 总结:

3. ()2 =-的性质: y a x h 结论:左加右减。 总结: 4. ()2 =-+的性质: y a x h k

总结: 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法 如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 请将2245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成 ()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式 2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧, 左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

中考数学复习专题二次函数知识点归纳

二次函数知识点归纳 一、二次函数概念 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: o o 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2y ax c =+的性质: 结论:上加下减。 a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下 ()00, y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.

总结: 3. ()2 y a x h =-的性质: 结论:左加右减。 总结: 4. ()2 y a x h k =-+的性质: 总结: a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0c , y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下 ()0c , y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c . a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h , X=h x h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0. a 的符号 开口方向 顶点坐标 对称轴 性质

初三数学二次函数知识点总结

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数, 0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,.

二次函数与幂函数专题复习

学校:年级:教学课题:二次函数与幂函数学员姓名:辅导科目:数学学科教师: 教学目标专题复习二次函数和幂函数的图像与性质 教学内容 一. 【复习目标】 1.准确理解函数的有关概念. 2.体会数形结合及函数与方程的数学思想方法. 一、幂函数 (1)幂函数的定义 形如 (α∈R)的函数称为幂函数,其中x是自变量,α为常数 (2)幂函数的图象 函数y=x y=x2y=x3y=x 1 2 y=x-1 定义域R R R[0,+∞){x|x∈R且x≠0} 值域R [0,+∞)R[0,+∞){y|y∈R y≠0} 奇偶性奇偶奇非奇非偶奇 单调性增x∈[0,+∞)时,增,x ∈(-∞,0]时,减 增增 x∈(-∞,0)时, 减 定点(0,0),(1,1) (1,1)

例1.下列函数中是幂函数的是( ) A .y =2x 2 B .y =1x 2 C .y =x 2+x D .y =-1 x 例2. (2011·陕西高考)函数y = 13 x 的图象是( ) 例3.幂函数y =x m 2-2m -3(m ∈Z )的图象关于y 轴对称,且当x >0时,函数是减函数,则m 的值为( ). A .-1<m <3 B .0 C .1 D .2 练习:已知点(2,2)在幂函数y =f (x )的图象上,点? ? ? ??-2,12在幂函数y =g (x )的图象上,若f (x ) =g (x ),则x =________. 已知点M ? ?? ?? 33,3在幂函数f (x )的图象上,则f (x )的表达式为( ) A .f (x )=x 2 B .f (x )=x -2 C .f (x )=x 1 2 x D .f (x )= 12 x - 设α ∈?????? ????-1,1,1 2,3,则使函数y =x α的定义域为R 且为奇函数的所有α值为 ( ) A .1,3 B .-1,1 C .-1,3 D .-1,1,3 对于函数y =x 2 ,y =x 1 2 有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增;③它们的图象关于直线y =x 对称;④两个函数都是偶函数;⑤两个函数都经过点(0,0)、(1,1);⑥两个函数的图象都是抛物线型. 其中正确的有________. 二、二次函数 1、二次函数的三种形式【1】

(完整版)九年级上册数学二次函数知识点汇总,推荐文档

新人教版九年级上二次函数知识点总结 知识点一:二次函数的定义 1.二次函数的定义: 一般地,形如(是常数,)的函数,叫做二次函数.2y ax bx c =++a b c ,,0a ≠其中是二次项系数,是一次项系数,是常数项. a b c 知识点二:二次函数的图象与性质抛物线的三要素:开口、对称轴、顶 ??点 2. 二次函数的图象与性质 ()2 y a x h k =-+(1)二次函数基本形式的图象与性质:a 的绝对值越大,抛物线的开口越小 2y ax = (2)的图象与性质:上加下减 2y ax c =+

(3)的图象与性质:左加右减 ()2 y a x h =-

(4)二次函数的图象与性质 ()2 y a x h k =-+ 3. 二次函数的图像与性质 c bx ax y ++=2 (1)当时,抛物线开口向上,对称轴为,顶点坐标为. 0a >2b x a =-2424b ac b a a ??-- ??? ,当时,随的增大而减小;当时,随的增大而增大;当时,2b x a <- y x 2b x a >-y x 2b x a =-有最小值 .y 2 44ac b a - (2)当时,抛物线开口向下,对称轴为,顶点坐标为. 0a <2b x a =-2424b ac b a a ??-- ??? ,当时,随的增大而增大;当时,随的增大而减小;当时,2b x a <- y x 2b x a >-y x 2b x a =-有最大值 .y 2 44ac b a -

4. 二次函数常见方法指导 (1)二次函数2y ax bx c =++图象的画法①画精确图 五点绘图法(列表-描点-连线) 利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. ②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点.(2)二次函数图象的平移平移步骤: ①将抛物线解析式转化成顶点式,确定其顶点坐标;()2 y a x h k =-+()h k ,② 可以由抛物线经过适当的平移得到具体平移方法如下: 2 ax 【【【(h <0)【【【 【【(h >0)【【【(h 【【|k|【【【 平移规律:概括成八个字“左加右减,上加下减”.(3)用待定系数法求二次函数的解析式①一般式:.已知图象上三点或三对、 的值,通常选择一般式. ②顶点式:.已知图象的顶点或对称轴,通常选择顶点式. ③交点式: .已知图象与轴的交点坐标 、 ,通常选择交点式. (4)求抛物线的顶点、对称轴的方法 ①公式法:,∴顶点是,对称轴a b ac a b x a c bx ax y 44222 2 -+ ??? ? ?+=++=),(a b ac a b 4422--是直线.a b x 2- =②配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(, ()k h x a y +-=2 h ),对称轴是直线. k h x =

(完整word版)初中二次函数知识点总结(全面)

二次函数知识点 二次函数概念: 1.二次函数的概念:一般地,形如y=ax 2+bx+c (a b c ,,是常数,a ≠0)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域是全体实数。<<>≤≥ 2. 二次函数y=ax 2+bx+c 的性质 1)当a >0时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值 2 44ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. (三)、二次函数解析式的表示方法 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可 以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 练习 1.下列关系式中,属于二次函数的是(x 为自变量)( ) A. B. C. D. 2. 函数y=x 2-2x+3的图象的顶点坐标是( ) A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线y=2(x-3)2的顶点在( ) A. 第一象限 B. 第二象限 C. x 轴上 D. y 轴上

二次函数知识点梳理

二次函数de 基础 一、考点、热点回顾 二次函数知识点 一、二次函数概念: 1.二次函数de 概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0a ≠)de 函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数de 定义域是全体实数. 2. 二次函数2 y ax bx c =++de 结构特征: ⑴ 等号左边是函数,右边是关于自变量x de 二次式,x de 最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数de 基本形式 1. 二次函数基本形式:2 y ax =de 性质: a de 绝对值越大,抛物线de 开口越小。 2. 2 y ax c =+de 性质:上加下减。 3. ()2 y a x h =-de 性质:左加右减。

4. ()2 y a x h k =-+de 性质: 三、二次函数图象de 平移 在原有函数de 基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴ c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵ c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2 y ax bx c =++de 比较 从解析式上看,()2 y a x h k =-+与2 y ax bx c =++是两种不同de 表达形式,后者通过配方可以 得到前者,即2 2424b ac b y a x a a -??=++ ?? ?,其中2424b ac b h k a a -=-=,. 五、二次函数2 y ax bx c =++图象de 画法 五点绘图法:利用配方法将二次函数2 y ax bx c =++化为顶点式2 ()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取de 五点为:顶点、 与y 轴de 交点()0c , 、以及()0c ,关于对称轴对称de 点()2h c ,、与x 轴de 交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称de 点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴de 交点,与y 轴de 交点. 六、二次函数2 y ax bx c =++de 性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x de 增大而减小;当2b x a >-时,y 随x de 增大而增大;当2b x a =-时,y

二次函数与幂函数

二次函数与幂函数 1.二次函数 (1)二次函数解析式的三种形式 ①一般式:f(x)=ax2+bx+c(a≠0). ②顶点式:f(x)=a(x-m)2+n(a≠0). ③零点式:f(x)=a(x-x1)(x-x2)(a≠0). (2)二次函数的图象和性质 解析式f(x)=ax2+bx+c(a>0)f(x)=ax2+bx+c(a<0) 图象 定义域(-∞,+∞)(-∞,+∞) 值域 ? ? ? ? 4ac-b2 4a,+∞? ? ? ? -∞, 4ac-b2 4a 单调性 在x∈? ? ? ? -∞,- b 2a上单调递减; 在x∈? ? ? ? - b 2a,+∞上单调递增 在x∈? ? ? ? -∞,- b 2a上单调递增; 在x∈? ? ? ? - b 2a,+∞上单调递减对称性函数的图象关于x=- b 2a对称 2. (1)定义:形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数. (2)幂函数的图象比较

(3)幂函数的性质比较 函数 特征 性质 y=x y=x2y=x3y=12x y=x-1定义域R R R[0,+∞){x|x∈R且x≠0}值域R[0,+∞)R[0,+∞){y|y∈R且y≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数 单调性增 x∈[0,+∞)时,增; x∈(-∞,0]时,减 增增 x∈(0,+∞) 时,减; x∈(-∞,0)时,减判断下面结论是否正确(请在括号中打“√”或“×”) (1)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是 4ac-b2 4a.(×) (2)二次函数y=ax2+bx+c,x∈R,不可能是偶函数.(×) (3)幂函数的图象都经过点(1,1)和点(0,0).(×) (4)当n>0时,幂函数y=x n是定义域上的增函数.(×) (5)若函数f(x)=(k2-1)x2+2x-3在(-∞,2)上单调递增,则k=± 2 2.(×) (6)已知f(x)=x2-4x+5,x∈[0,3),则f(x)max=f(0)=5,f(x)min=f(3)=2.(×) 1.设b>0,二次函数y=ax2+bx+a2-1的图象为下列之一,则a的值为() C.1 D.-1 答案D 解析因为b>0,故对称轴不可能为y轴,由给出的图可知对称轴在y轴右侧,故a<0,所以二次函数的图象为第三个图,图象过原点,故a2-1=0,a=±1,又a<0,所以a=-1,故选D. 2.已知函数y=x2-2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围为 ________. 答案[1,2]

二次函数知识点总结及典型题目

二次函数知识点总结及典型题目 一.定义: 一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点. 二.二次函数2ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0

二次函数基本知识点梳理及训练(最新)

① 二次函数 考点一 一般地,如果y =ax 2+bx +c(a 、b 、c 是常数,a ≠0),那么y 叫做x 的二次函数. 1.结构特征:①等号左边是函数,右边是关于自变量x 的二次式;②x 的最高次数是2;③二次项系数a ≠0. 2.二次函数的三种基本形式 一般形式:y =ax 2+bx +c(a 、b 、c 是常数,且a ≠0); 顶点式:y =a(x -h)2+k(a ≠0),它直接显示二次函数的顶点坐标是(h ,k); 交点式:y =a(x -x 1)(x -x 2)(a ≠0),其中x 1 、x 2 是图象与x 轴交点的横坐标. 考 点二 二次函数的图象和性质

考点三 二次函数y=ax2+bx+c的图象特征与a、b、c及b2-4ac的符号之间的关系 考点四 任意抛物线y=a(x-h)2+k可以由抛物线y=ax2经过平移得到,具体平移方法如下: 考点五 1.设一般式:y=ax2+bx+c(a≠0). 若已知条件是图象上三个点的坐标.则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a、b、c的值.2.设交点式:y=a(x-x1)(x-x2)(a≠0). 若已知二次函数图象与x轴的两个交点的坐标,则设交点式:y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a,最后将解析式化为一般式. 3.设顶点式:y=a(x-h)2+k(a≠0). 若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y=a(x-h)2+k(a≠0),将已知条件代入,求出待定系数化为一般式 考点六 二次函数的应用包括两个方法 ①用二次函数表示实际问题变量之间关系. ②用二次函数解决最大化问题(即最值问题),用二次函数的性质求解,同时注意自变量的取值范围. (1)二次函数y=-3x2-6x+5的图象的顶点坐标是() A.(-1,8) B.(1,8) C.(-1,2)D.(1,-4) (2)将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为() A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+2 (3)函数y=x2-2x-2的图象如下图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是() ②

二次函数与幂函数

二次函数与幂函数 1.五种常见幂函数的图象与性质 R R R{x|x≥0}{x|x≠0} (1)一般式:f(x)=ax2+bx+c(a≠0); (2)顶点式:f(x)=a(x-m)2+n(a≠0); (3)零点式:f(x)=a(x-x1)(x-x2)(a≠0). 3.二次函数的图象和性质 x∈R

1.已知幂函数y =f (x )的图象过点(2,2),则函数的解析式为________________. 答案:f (x )=x 12 (x ≥0) 2.函数y =2x 2-6x +3,x ∈[-1,1],则y 的最小值是________. 解析:函数y =2x 2-6x +3的图象的对称轴为x =3 2>1, ∴函数y =2x 2-6x +3在x ∈[-1,1]上为单调递减函数, ∴y min =2-6+3=-1. 答案:-1 1.对于函数y =ax 2+bx +c ,要认为它是二次函数,就必须满足a ≠0,当题目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况. 2.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点. [小题纠偏] 1.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( ) A.????0,1 20 B.????-∞,-1 20 C.??? ?1 20,+∞ D.??? ?-1 20,0 解析:选C 由题意知????? a >0,Δ<0,即????? a >0,1-20a <0, 解得a >1 20. 2.给出下列命题: ①函数y =2x 是幂函数; ②如果幂函数的图象与坐标轴相交,则交点一定是原点; ③当n <0时,幂函数y =x n 是定义域上的减函数; ④二次函数 y =ax 2+bx +c ,x ∈[m ,n ]的最值一定是 4ac -b 2 4a . 其中正确的是________. 答案:②

人教版初三数学二次函数知识点及难点总结

初三数学二次函数知识点总结 二次项系数a决定二次函数图像的开口方向和大小. 当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口. |a|越大,则二次函数图像的开口越小. 1、决定对称轴位置的因素 一次项系数b和二次项系数a共同决定对称轴的位置. 当a与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右. 事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值.可通过对二次函数求导得到. 2、决定二次函数图像与y轴交点的因素 常数项c决定二次函数图像与y轴交点. 二次函数图像与y轴交于(0,c) 一、二次函数概念: 1.二次函数的概念:一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0 a≠,而b c,可以为零.二次函数的定义域是全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项.

二、二次函数的基本形式 1. 二次函数基本形式:2 =的性质: y ax a 的绝对值越大,抛物线的开口越小。Array 2. 2 =+的性质:上加下减。 y ax c

二次函数知识点梳理

初三年级数学—二次函数的基础 一、考点、热点回顾 二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2 y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2 y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2 y ax c =+的性质:上加下减。 3. ()2 y a x h =-的性质:左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴ c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵ c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2 y ax bx c =++是两种不同的表达形式,后者通过配方可以得 到前者,即2 2424b ac b y a x a a -??=++ ?? ?,其中2424b ac b h k a a -=-=,. 五、二次函数2 y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2 y ax bx c =++化为顶点式2 ()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、 与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2 y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -.

全初三数学二次函数知识点归纳总结

二次函数知识点归纳及相关典型题 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

幂函数与二次函数专题练习

幂函数与二次函数专题练习 一、选择题 1.(2020·郑州外国语学校期中)已知α∈{-1,1,2,3},则使函数y=xα的值域为R,且为奇函数的所有α的值为() A.1,3 B.-1,1 C.-1,3 D.-1,1,3 解析因为函数y=xα为奇函数,故α的可能值为-1,1,3.又y=x-1的值域为{y|y≠0},函数y=x,y=x3的值域都为R.所以符合要求的α的值为1,3.答案 A 2.已知a,b,c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则() A.a>0,4a+b=0 B.a<0,4a+b=0 C.a>0,2a+b=0 D.a<0,2a+b=0 解析因为f(0)=f(4)>f(1),所以函数图象应开口向上,即a>0,且其对称轴为 x=2,即-b 2a =2,所以4a+b=0. 答案 A 3.在同一坐标系内,函数y=x a(a≠0)和y=ax+1 a的图象可能是() 解析若a<0,由y=x a的图象知排除C,D选项,由y=ax+1 a 的图象知应选 B;若a>0,y=x a的图象知排除A,B选项,但y=ax+1 a 的图象均不适合,综 上选B.

答案 B 4.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( ) A.-1 B.1 C.2 D.-2 解析 ∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线, ∴函数的最大值在区间的端点取得, ∵f (0)=-a ,f (2)=4-3a , ∴?????-a ≥4-3a ,-a =1或?????-a ≤4-3a ,4-3a =1,解得a =1. 答案 B 5.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( ) A.(-∞,-2) B.(-2,+∞) C.(-6,+∞) D.(-∞,-6) 解析 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max , 令f (x )=x 2-4x -2,x ∈(1,4), 所以f (x )12>25,得? ?? ? ? 223 >? ?? ?? 123 >? ?? ?? 253 ,即P >R >Q . 答案 P >R >Q 7.若f (x )=-x 2+2ax 与g (x )=a x +1 在区间[1,2]上都是减函数,则a 的取值范围是________.

相关文档
最新文档