最新人教版八年级数学上册期中考试试题
人教版八年级上册数学期中考试试题含答案
人教版八年级上册数学期中考试试卷一、单选题1.12月2日是全国交通安全日,你认为下列交通标识不是轴对称图形的是()A .B .C .D .2.若一个三角形的三边长分别为3,7,x ,则x 的值可能是()A .6B .3C .2D .113.点M (1,2)关于x 轴对称的点的坐标为()A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)4.如图,两个三角形全等,则∠α等于()A .50°B .58°C .60°D .72°5.在下列正多边形瓷砖中,若仅用一种正多边形瓷砖铺地面,则不能将地面密铺的是()A .正三角形B .正四边形C .正六边形D .正八边形6.如图,在ABC 中,AB AC =,D 是BC 的中点,下列结论不一定正确的是()A .BC ∠=∠B .2AB BD =C .12∠=∠D .AD BC ⊥7.如图,已知∠ABC =∠BAD ,再添加一个条件,仍不能判定△ABC ≌△BAD 的是()A .AC =BDB .∠C =∠D C .AD =BC D .∠ABD =∠BAC8.如图,小明从点A 出发,沿直线前进8米后向左转60︒,再沿直线前进8米,又向左转60︒,…,照这样走下去,他第一次回到出发点A时,走过的总路程为()A.48米B.80米C.96米D.无限长9.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS10.如图,AB∥CD,AD∥BC,AE⊥BD,CF⊥BD垂足分别为E、F两点,则图中全等的三角形有()A.1对B.2对C.3对D.4对二、填空题11.八边形的内角和为________度.12.如图,点A、D、B、E在同一直线上,若△ABC≌△EDF,AB=5,BD=3,则AE=____.13.若等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为____.14.如图所示,一艘船从A点出发,沿东北方向航行至点B,再从B点出发沿南偏东15°方向行至点C,则∠ABC=_________度.15.如图,DE是∆ABC的边AB的垂直平分线,点D为垂足,DE交AC于点E,且AC=8,BC=5,则∆BEC的周长是_________.16.如图,把一张长方形的纸沿对角线折叠,若118∠=︒,则BACABC∠=___.三、解答题17.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC和∠DAE的度数.18.如图,在△ABC中,D是三角形内一点,连接DA、DB、DC,且∠1=∠2,∠3=∠4,求证:AB=AC.19.如图,在平面直角坐标系中,△ABC位于第二象限,请你按要求在该坐标系中在图中作出:(1)把△ABC向右平移4个单位长度得到的△A1B1C1;(2)再作与△A1B1C1关于x轴对称的△A2B2C2.20.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O.(1)求证:BD=CE;(2)若∠A=80°,求∠BOC的度数.21.如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E,(1)求证:△ABD≌△ECB;(2)若∠DBC=50°,求∠DCE的度数.22.如图,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?证明你的结论;(2)求∠CAD的度数;(3)当以点C、A、E为顶点的三角形是等腰三角形,求OC的长.23.如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.24.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边且BE=CF,AD+EC =AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.25.(1)如图1,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA于D,PE⊥OB于E.F 是OC上的另一点,连接DF、EF.求证:OP垂直平分DE;(2)如图1,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA于D,PE⊥OB于E.F 是OC上的另一点,连接DF、EF.求证:DF=EF(3)如图2,若∠PDO+∠PEO=180°,PD=PE,求证:OP平分∠AOB.参考答案1.B【解析】【详解】由轴对称图形的定义:“把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合,这个图形叫做轴对称图形”分析可知,上述四个图形中,A、C、D都是轴对称图形,只有B不是轴对称图形.故选B.2.A【解析】【分析】根据三角形的三边关系列出不等式,即可求出x的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x,∴7-3<x<7+3,即4<x<10,四个选项中,A中,4<6<10,符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.3.C【解析】【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】解:点M(1,2)关于x轴对称的点的坐标为(1,﹣2).故选C.【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.D【解析】【分析】由全等三角形的对应角相等,即可得到答案.【详解】解:根据题意,如图:∵图中的两个三角形是全等三角形,∴第一个三角形中,边长为a的对角是72°,∴在第二个三角形中,边长为a的对角也是72°,∴∠α=72°;故选:D.【点睛】本题考查了全等三角形的性质,解题的关键是掌握全等三角形的对应角相等.5.D【解析】【分析】看哪个正多边形的一个内角的度数不是360°的约数,就不能密铺平面.【详解】解:A.正三角形的一个内角为60°,是360°的约数,能密铺平面,不符合题意;B.正四边形的一个内角度数为180﹣360÷4=90°,是360°的约数,能密铺平面,不符合题意;C.正六边形的一个内角度数为180﹣360÷6=60°,是360°的约数,能密铺平面,不符合题意;D.正八边形的一个内角度数为180﹣360÷8=135°,不是360°的约数,不能密铺平面,符合题意;故选:D.【点睛】本题主要考查平面密铺的问题,解答此题的关键是熟练掌握知识点:一种正多边形能镶嵌平面,这个正多边形的一个内角的度数是360°的约数;正多边形一个内角的度数=180°-360°÷边数.6.B【解析】【分析】根据等腰三角形“三线合一”的性质解答,即可得到A、C、D三项,但得不到B项.【详解】解:∵△ABC中,AB=AC,D是BC中点,∴∠B=∠C(故A正确)∠1=∠2(故C正确)AD⊥BC(故D正确)无法得到AB=2BD,(故B不正确).故选:B.【点睛】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.7.A【解析】【分析】根据已知可以得到∠ABC=∠BAD,AB=BA,然后再分别判断各个选项中的条件能否使得△ABC≌△BAD即可.【详解】解:∵∠ABC=∠BAD,AB=BA,∴若添加条件AC=BD,无法判定△ABC≌△BAD,故选项A符合题意;若添加∠C=∠D,则△ABC≌△BAD(AAS),故选项B不符合题意;若添加AD=BC,则△ABC≌△BAD(SAS),故选项C不符合题意;若添加∠ABD=∠BAC,则△ABC≌△BAD(ASA),故选项D不符合题意;故选:A .【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.8.A【解析】【分析】根据题意,小明走过的路程是正多边形,先用360︒除以60︒求出边数,然后再乘以8米即可.【详解】小明每次都是沿直线前景8米后向左转60度,∴他走过的图形是正多边形,∴边数360606n =︒÷︒=,∴他第一次回到出发点A 时,一共走了6848⨯=(米).故选:A【点睛】本题考查了正多边形的边数的求法,根据题意判断出小明走过的图形是正多边形是解题关键.9.D【解析】【分析】根据全等三角形的判定可作出选择.【详解】解:在△ADC 和△ABC 中,AD AB DC BC AC AC ⎧⎪⎨⎪⎩===,∴△ADC ≌△ABC (SSS ),∴∠DAC=∠BAC ,即∠QAE=∠PAE .∴AE 是∠PRQ 的平分线故选D .【点睛】本题考查全等三角形的判定与性质、角平分线的定义,熟练掌握全等三角形的判定与性质是10.C【解析】【分析】根据全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS ,SAS ,AAS ,ASA ,HL(直角三角形).【详解】解:∵AB ∥CD ,AD ∥BC ,∴ABD CDF ∠=∠,ADB CBD ∠=∠,∴在△ABD 和△CDB 中,BD DB ABD CDB ADB CBD =⎧⎪∠=∠⎨⎪∠=∠⎩∴()ABD CDB ASA △≌△;∴AB CD =,AD BC =,∴在△ABE 和△CDF 中,AB CD ABD CDF AEB CFD =⎧⎪∠=∠⎨⎪∠=∠⎩,∴()ABE CDF AAS △≌△;∴在△ADE 和△CBF 中,AD BC ADB CBD AED CFB =⎧⎪∠=∠⎨⎪∠=∠⎩,∴()AED CFB AAS △≌△,则图中全等的三角形有:△ABE ≌△CDF ,△ADE ≌△CBF ,△ABD ≌△CDB ,共3对.故选:C .【点睛】此题考查了三角形全等的判定,解题的关键是熟练掌握三角形全等的判定方法.判定三角形全等的方法有:SSS ,SAS ,AAS ,ASA ,HL(直角三角形).【解析】【详解】解:八边形的内角和=180(82)1080︒︒⨯-=,故答案为:1080.12.7【解析】【分析】根据△ABC ≌△EDF ,得到AB=ED ,然后求得AD=BE ,根据线段之间的关系即可求出AE 的长度.【详解】∵△ABC ≌△EDF∴AB=ED=5,∴AB-DB=ED-DB∴AD=EB=2∴AE=AB+BE=7.故答案为:7.【点睛】此题考查了三角形全等的性质,解题的关键是熟练掌握三角形全等的性质.全等三角形的性质:全等三角形对应边相等,对应角相等.13.3【解析】【分析】分边长为3的边为腰和边长为3的边为底边两种情况,再根据三角形的周长公式、三角形的三边关系定理即可得.【详解】由题意,分以下两种情况:(1)当边长为3的边为腰时,则这个等腰三角形的底边长为13337--=,337+<,即此时三边长不满足三角形的三边关系定理,∴这个等腰三角形的底边长不能为7;(2)当边长为3的边为底边时,则这个等腰三角形的腰长为1335 2-=,此时355+>,满足三角形的三边关系定理;综上,这个等腰三角形的底边长为3,故答案为:3.【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理,熟练掌握等腰三角形的定义是解题关键.14.60【解析】【详解】如图,由题意可知∠EAB=45°,∠DBC=15°,AE∥BD,∴∠ABD=∠EAB=45°,∴∠ABC=∠ABD+∠DBC=45°+15°=60°.故答案为:60【点睛】解本题需注意两点:(1)东北方向是指北偏东45°方向;(2)在同一平面内,从一个点引出的表示正北方向的射线和从另一个点引出的表示正南方向的射线是互相平行的.15.13【解析】【分析】直接利用线段垂直平分线的性质得出AE=BE,进而得出答案.【详解】解:∵DE 是△ABC 的边AB 的垂直平分线,∴AE=BE ,∵AC=8,BC=5,∴△BEC 的周长是:BE+EC+BC=AE+EC+BC=AC+BC=13.故答案为:13.【点睛】本题主要考查了线段垂直平分线的性质,正确掌握线段垂直平分线的性质是解题关键.16.31°【解析】【分析】根据折叠的性质可以判断出ABC 是等腰三角形,再根据三角形内角和为180°求解即可.【详解】解:将翻折后的图形如图所示:∵四边形ADCF 是长方形,∴CD AF ∥,∴FAC BCA ∠=∠,由折叠的性质得:FAC EAC ∠=∠,∴BAC BCA ∠=∠,∵118ABC ∠=︒∴31BAC BCA ∠=∠=︒故答案为:31︒【点睛】本题考查了等腰三角形的性质和三角形的内角和,正确理解知识点是解题的关键.17.∠DAE =14°,∠AEC =76°.【解析】【分析】由三角形内角和定理可求得∠BAC 的度数,在Rt △ADC 中,可求得∠DAC 的度数,AE 是角平分线,有∠EAC =12∠BAC ,故∠EAD =∠EAC ﹣∠DAC ,∠AEC =90°﹣∠EAD .【详解】解:∵∠B =42°,∠C =70°,∴∠BAC =180°﹣∠B ﹣∠C =68°,∵AE 是角平分线,∴∠EAC =12∠BAC =34°.∵AD 是高,∠C =70°,∴∠DAC =90°﹣∠C =20°,∴∠EAD =∠EAC ﹣∠DAC =34°﹣20°=14°,∠AEC =90°﹣14°=76°.【点睛】本题考查了三角形内角和定理、角平分线的定义,属于简单题,熟悉三角形的内角和是180°是解题关键.18.见解析.【解析】【分析】根据等角对等边,可得DB =CD ,从而可利用SAS 证得△ABD ≌△ACD ,即可求证.【详解】证明:∵∠1=∠2,∴DB =CD ,在△ABD 和△ACD 中,34AD AD BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD (SAS ),∴AB=AC.【点睛】本题主要考查了等腰三角形的判定,全等三角形的判定和性质,熟练掌握等腰三角形的判定定理,全等三角形的判定定理和性质定理是解题的关键.19.(1)作图见解析;(2)作图见解析.【解析】【分析】(1)利用平移的性质可画出图形;(2)利用关于x轴对称的点的性质画出图形即可.【详解】(1)如图所示:△A1B1C1即为所求:(2)如图所示:△A2B2C2即为所求:【点睛】本题考查了平移的性质及轴对称的性质,解题的关键是掌握变换的规律.20.(1)见解析;(2)100°.【解析】【分析】(1)只要证明△ABD≌△ACE(AAS),即可证明BD=CE;(2)利用四边形内角和定理即可解决问题.【详解】(1)证明:∵BD、CE是高,∴∠ADB=∠AEC=90°,在△ABD和△ACE中,A A ADB AEC AB AC ∠∠⎧⎪∠∠⎨⎪⎩===∴△ABD△ACE(AAS),∴BD=CE.(2)∵∠A=80°,∠ADB=∠AEC=90°,∴∠BOC=360°-80°-90°-90°=100°.【点睛】本题考查全等三角形的判定和性质、四边形内角和定理等知识,解题的关键是正确寻找全等三角形解决问题.21.(1)见解析(2)25°【解析】【分析】(1)因为这两个三角形是直角三角形,BC=BD ,因为AD ∥BC ,还能推出∠ADB=∠EBC ,从而能证明:△ABD ≌△ECB .(2)因为∠DBC=50°,BC=BD ,可求出∠BDC 的度数,进而求出∠DCE 的度数.【详解】(1)证明:∵AD ∥BC ,∴∠ADB=∠EBC .∵CE ⊥BD ,∠A=90°,∴∠A=∠CEB ,又∵BC=BD ,∴△ABD ≌△ECB ;(2)解:∵∠DBC=50°,BC=BD ,∴∠EDC=12(180°-50°)=65°,又∵CE ⊥BD ,∴∠CED=90°,∴∠DCE=90°-∠EDC=90°-65°=25°.22.(1)△OBC ≌△ABD ,证明见解析;(2)∠CAD=60°;(3)当OC 等于3时,以点C 、A 、E 为顶点的三角形AEC 是等腰三角形.【解析】(1)根据等边三角形的性质得到OB=AB ,BC=BD ,然后根据SAS 证明三角形全等的方法即可证明△OBC ≌△ABD ;(2)根据(1)中证明的△OBC ≌△ABD ,可得OCB ADB ∠=∠,然后根据三角形内角和即可求得60CAD CBD ∠=∠=︒;(3)根据(2)求得的60CAD ∠=︒可得60OAE ∠=︒,然后根据OA 的长度和30°角直角三角形的性质可求得AE=2,然后根据△AEC 是等腰三角形求出AC 的长度,即可求出OC 的长.【详解】(1)△OBC ≌△ABD理由如下:∵△OAB 与△CBD 是等边三角形∴OB =AB ,BC =BD ,∠OBA =∠CBD =60°∴∠OBA+∠ABC =∠CBD+∠ABC ,即∠OBC =∠ABD∴在△OBC 与△ABD 中,OB AB OBC ABD BC BD =⎧⎪∠=∠⎨⎪=⎩∴△OBC ≌△ABD(SAS),(2)如图所示,设AD 交BC 于点F,解:∵△OBC ≌△ABD ,∴OCB ADB ∠=∠,又∵AFC BFD ∠=∠,∴∠CAD=∠CBD=60°;(3)解:∵60OAE CAD ∠=∠=︒∴∠EAC=120°,30OEA ∠=︒,∴22AE OA ==,∴以A ,E ,C 为顶点的三角形是等腰三角形时,只能是以AE 和AC 为腰∴AC=AE=2,∴OC=OA+AC=1+2=3,所以当OC 等于3时,三角形AEC 是等腰三角形.【点睛】此题考查了三角形全等的性质和判定,30°角直角三角形的性质和等腰三角形的性质等知识,解题的关键是根据题意证明出△OBC ≌△ABD .23.见解析【解析】【分析】由CD ∥BE ,可证得∠ACD=∠B ,然后由C 是线段AB 的中点,CD=BE ,利用SAS 即可证得△ACD ≌△CBE ,证得结论.【详解】∵C 是线段AB 的中点,∴AC=CB ,∵CD ∥BE ,∴∠ACD=∠B ,在△ACD 和△CBE 中,∵AC=CB ,∠ACD=∠B ,CD=BE ,∴△ACD ≌△CBE (SAS ),∴∠D=∠E .24.(1)见解析;(2)∠DEF =70°.【解析】【分析】(1)求出EC=DB ,∠B=∠C ,根据SAS 推出△BED ≌△CFE ,根据全等三角形的性质得出DE=EF 即可;(2)根据三角形内角和定理求出∠B=∠C=70°,根据全等得出∠BDE=∠FEC ,求出∠DEB+∠FEC=110°,即可得出答案;【详解】(1)证明:∵AB =AC ,∴∠B =∠C ,∵AB =AD+BD ,AB =AD+EC ,∴BD =EC ,在△DBE 和△ECF 中,BE CF B C BD EC =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△ECF (SAS )∴DE =EF ,∴△DEF 是等腰三角形;(2)∵∠A =40°,∴∠B =∠C =1(18040)2- =70°,∴∠BDE+∠DEB =110°,又∵△DBE ≌△ECF ,∴∠BDE =∠FEC ,∴∠FEC+∠DEB =110°,∴∠DEF =70°.25.(1)见解析;(2)见解析;(3)见解析.【解析】(1)根据HL 证明Rt △OPD ≌Rt △OPE ,得OD=OE 可得结论;(2)根据SAS 证明△ODF ≌△OEF 即可;(3)先过点P 作PM ⊥OA ,PN ⊥OE ,证明△PMD ≌△PNE ,根据全等三角形的性质即可解决问题.【详解】(1)证明:∵OC 是∠AOB 的平分线,PD ⊥OA ,PE ⊥OB ,∴PD =PE ,在Rt △OPD 和Rt △OPE 中,OP OP PD PE =⎧⎨=⎩,21∴Rt △OPD ≌Rt △OPE (HL ),∴OD=OE ,∴OP 垂直平分DE ,(2)由(1)知Rt △OPD ≌Rt △OPE ∴OD =OE ,在△ODF 和△OEF 中,PD PEDPF EPF PF PF=⎧⎪∠=∠⎨⎪=⎩,∴△ODF ≌△OEF (SAS ),∴DF =EF .(3)过点P 作PM ⊥OA ,PN ⊥OB,∵∠PDO+∠PEO=180°,∠PDO+∠PDM=180°∴∠PDM=∠PEN;在△PMD 和△PNE 中,PMD PNEPDM PEN PD PE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PMD ≌△PNE (AAS )∴PM=PN ;∵PM ⊥OA ,PN ⊥OB,∴OP 平分∠AOB。
人教版八年级上册数学期中考试试卷带答案
人教版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列平面图形中,不是轴对称图形的是()A .B .C .D .2.下列图形具有稳定性的是()A .六边形B .五边形C .平行四边形D .等腰三角形3.下列图形中,对称轴最多的是()A .等边三角形B .矩形C .正方形D .圆4.点M(3,-2)关于x 轴对称的对称点的坐标是()A .(-3,2)B .(3,2)C .(-3,-2)D .(2,3)5.能把一个三角形分成两个面积相等的三角形是三角形的()A .中线B .高线C .角平分线D .以上都不对6.如果三角形的两边长分别为3和5,则第三边L 的取值范围是()A .2<L<15B .L<8C .2<L<8D .10<L<167.已知:△ABC ≌△DEF ,AB=DE,∠A=70°,∠E=30°,则∠F 的度数为()A .80°B .70°C .30°D .100°8.点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是()A .PQ≤5B .PQ<5C .PQ≥5D .PQ>59.如图,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,则∠BDC 的度数为()A .72°B .36°C .60°D .82°10.在ABC ∆中,已知::1:2:3A B C ∠∠∠=,则三角形的形状是()A .钝角三角形B .直角三角形C .锐角三角形D .无法确定11.一个正多边形的每个外角都等于60°,那么它是()A .正十二边形B .正十边形C .正八边形D .正六边形12.如图,已知AB⊥BC,BC⊥CD,AB=DC,可以判定△ABC≌△DCB,判定的根据是()A.HL B.ASA C.SAS D.AAS二、填空题13.等边三角形的每个内角都是____°.14.已知点P(2,3),点A与点P关于y轴对称,则点A的坐标是______.15.已知一个三角形的三边长a、b、c,满足(a-b)2+|b-c|=0,则这个三角形是____三角形. 16.若n边形的内角和是它的外角和的2倍,则n=_______.17.如图,已知正方形ABCD的边长为4cm,则图中阴影部分的面积为__________2cm.18.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是____________.三、解答题19.求出图形中x的值.20.在△ABC中,已知∠A=30°,∠B=2∠C,求∠B和∠C的度数.21.尺规作图:如图,在直线MN 上求作一点P ,使点P 到∠AOB 两边的距离相等(不要求写出作法,但要保留作图痕迹,写出结论)22.已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .23.已知,,a b c 为ABC ∆的三边长,且222222222a b c ab ac bc ++=++,试判断ABC ∆的形状,并说明理由.24.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长.25.数学中的对称美、统一美、和谐美随处可见,在数的运算中就有一些有趣的对称形式.(1)我们发现:12=1,112=121,1112=12321,11112=1234321,…请你根据发现的规律,接下去再写两个等式;(2)对称的等式:12×231=132×21.仿照这一形式,完成下面的等式,并进行验算:12×462=_______,18×891=_______.26.如图,在△ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,①求证:△ADC ≌△CEB .②求证:DE=AD+BE.(2)当直线MN 绕点C 旋转到图2的位置时,判断ADC ∆和CEB ∆的关系,并说明理由.参考答案1.A 【详解】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A 沿任意一条直线折叠直线两旁的部分都不能重合.故选A .考点:轴对称图形.2.D 【分析】根据三角形的稳定性判断即可.【详解】六边形、五边形、平行四边形都不具有稳定性;等腰三角形是三角形的一种,所以它具有稳定性.【点睛】本题考查了三角形的稳定性.在所有的图形里,只有三角形具有稳定性,也是三角形的特性,应牢牢掌握.3.D【解析】试题分析:因为等边三角形有三条对称轴;矩形有两条对称轴;正方形有四条对称轴;圆有无数条对称轴.一般地,正多边形的对称轴的条数等于边数.故选D.考点:轴对称图形的对称轴.4.B【分析】根据平面直角坐标系内关于x轴对称:纵坐标互为相反数,横坐标不变可以直接写出答案.【详解】点M(3,-2)关于x轴对称的对称点的坐标是(3,2).故答案为:B.【点睛】本题主要考查了关于x轴对称点的坐标特点,关键是掌握点的变化规律.5.A【分析】根据等底等高的两个三角形的面积相等解答.【详解】解:三角形的中线把三角形分成两个等底等高的三角形,面积相等.故选A.【点睛】本题考查了三角形的面积,熟知等底等高的两个三角形的面积相等是解答此题的关键. 6.C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,即可求得第三边的取值范围.由三角形三边关系定理及其推论得:5-3<L<5+3,即2<L<8.故答案为:C.【点睛】此题考查了三角形的三边关系,能正确运用三角形的三边关系是解此题的关键.7.A【分析】根据全等三角形对应角相等求出∠D=∠A,再利用三角形的内角和等于180°列式进行计算即可得解.【详解】∵△ABC≌△DEF,AB=DE,∠A=70°,∴∠D=∠A=70°,在△DEF中,∠F=180°-∠D-∠E=180°-70°-30°=80°,故选A.【点睛】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,根据全等三角形对应顶点的字母写在对应位置上准确找出对应角是解题的关键.8.C【解析】【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【详解】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB边的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选C.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解9.A【解析】试题分析:∵AB=AC,∠A=36°,∴∠ABC=∠C=1801803622A︒-∠︒-︒==72°,∵DE垂直平分AB,∴∠A=∠ABD=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°.故选A.考点:1.线段垂直平分线的性质;2.等腰三角形的性质.10.B【分析】设∠A=x,∠B=2x,∠C=3x,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.【详解】解:∵::1:2:3A B C∠∠∠=设∠A=x,∠B=2x,∠C=3x.则x+2x+3x=180°,解得x=30°,∴∠A=30°,∠B=60°,∠C=90°,所以这个三角形是直角三角形.故选:B.【点睛】本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.11.D【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出多边形的边数.【详解】该正多边形的边数为360°÷60°=6.【点睛】本题考查了多边形外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.12.C 【分析】根据垂直定义推出90ABC DCB ∠=∠=°,AB=DC ,CB BC =,根据SAS 推出ABC DCB ≌.【详解】∵AB ⊥BC ,BC ⊥CD ∴∠ABC=∠DCB=90°又∵AB=DC ,BC=CB ∴△ABC ≌△DCB (SAS )故答案为:C.【点睛】本题考查了对全等三角形的性质和判定的应用,注意:全等三角形的对应边相等,对应角相等,全等三角形的判定定理有SAS ASA AAS SSS ,,,.13.60°.【解析】试题分析:等边三角形三个角相等,而三角形内角和为180°,可得结果.试题解析:∵等边三角形三个角相等,又三角形内角和为180°,设等边三角形的每个内角的大小均是x ,则3x=180°,解得:x=60°.考点:1.三角形内角和定理;2.三角形.14.(-2,3)【解析】点P(2,3),点A 与点P 关于y 轴对称,则点A 的坐标是(−2,3),故答案为(−2,3).15.等边【分析】根据任意一个数的绝对值都是非负数和偶次方具有非负性可得:00a b b c -=-=,,再根据三角形的判断方法即可知道该三角形的形状.【详解】∵(a-b)2+|b-c|=0∴(a-b)2=0,|b-c|=0∴a=b ,b=c ∴a=b=c∴这个三角形是等边三角形.【点睛】本题考查了任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0、偶次方的非负性以及等边三角形的判定.16.6【详解】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2),外角和=360º所以,由题意可得180(n-2)=2×360º解得:n=617.8【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S 阴影=12×4×4=8cm 2.故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.18.2【分析】根据题意,画出图形,由轴对称的性质即可解答.【详解】根据轴对称的性质可知,台球走过的路径为:∴该球最后将落入的球袋是2号袋.故答案为2.【点睛】本题主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.注意结合图形解题的思想;严格按轴对称画图是正确解答本题的关键.19.x=60.【解析】试题分析:根据三角形的外角和定理列出等式,即可求得x 的值.试题解析:解:x+70=x+10+x ,∴x=60.考点:三角形的外角和定理.20.∠B=100°,∠C=50°.【分析】根据三角形的内角和等于180°列式求出∠C ,再求解即可得到∠B .【详解】∵2B C ∠=∠,180A B C ∠+∠+∠=°,∴2180A C C ∠+∠+∠=°,即303180C ︒+∠=°,解得:50C ∠=°,∴2250100B C ∠=∠=⨯︒=°.答:∠B 等于100°,∠C 等于50°【点睛】本题考查了三角形的内角和定理,是基础题,熟记定理列出并整理成关于∠C的方程是解题的关键.21.答案见解析.【分析】作的平分线交直线MN于P点.【详解】解:根据题意,如图,作∠AOB的平分线,∠AOB的平分线与直线MN交于一点,则点P 即为所求.22.证明见解析【详解】试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.试题解析:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS)23.△ABC是等边三角形,理由见解析【分析】先根据完全平方公式进行变形,求出a=b=c,即可得出答案.【详解】解:△ABC是等边三角形.证明如下:∵2a2+2b2+2c2=2ab+2ac+2bc,∴2a2+2b2+2c2-2ab-2ac-2bc=0,∴a2-2ab+b2+a2-2ac+c2+b2-2bc+c2=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴(a-b)2=0,(a-c)2=0,(b-c)2=0,∴a=b且a=c且b=c,即a=b=c,∴△ABC是等边三角形.【点睛】本题考查了等边三角形的判定和完全平方公式、因式分解,能根据完全平方公式得出(a-b)2+(a-c)2+(b-c)2=0是解此题的关键.24.DE=2cm【分析】利用角平分线的性质,得出DE=DF,再利用△ABC面积是28cm2可求DE.【详解】解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵△ABC面积是28cm2,AB=20cm,AC=8cm,∴S△ABC =12AB•DE+12AC•DF=28,即12×20×DE+12×8×DF=28,解得DE=2cm.【点睛】全等三角形的判定与性质;三角形的面积;角平分线的性质.25.(1)111112=1234543211111112=12345654321;(2)264×21;198×81.【分析】(1)分别观察112,1112,11112,…,得出结果的一般规律,再根据一般规律求值.(2)根据给出的题例,即把每一个因数各个数位上的数字反过来写,乘积仍相等.【详解】(1)由12=1,112=121,1112=12321,11112=1234321,可知,这类数平方的结果为“回文数”,即从1开始按连续整数依次增大到最大,再逐渐减小到1,其中,最大的数字为等式左边1的个数,所以接下来的等式是:111112=123454321,1111112=12345654321.(2)124625544264215544⨯=⨯=, ,1246226421∴⨯=⨯1889116038⨯=,1988116038⨯=1889119881∴⨯=⨯【点睛】本题考查了有理数的概念与运算.关键是由易到难,由特殊到一般,找出这类数的平方的规律.26.(1)①见解析;②见解析;(2)△ADC ≌△CEB ;理由见解析【分析】(1)①要证△ADC ≌△CEB ,已知一直角∠ADC=∠CEB=90°和一边AC=CB 对应相等,由题意根据同角的余角相等,可得另一内角∠ECB=∠DAC ,再由AAS 即可判定;②由①得出AD=CE ,BE=CD ,而DE=CD+CE ,故DE=AD+BE ;(2)同理,根据上一小题的解题思路,易得△ADC ≌△CEB.【详解】(1)①∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DAC ADC CEB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )②∵△ADC ≌△CEB∴AD=CE ,BE=CD又∵DE=CD+CE∴DE=AD+BE(2)△ADC ≌△CEB ;∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DACADC CEB AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )【点睛】此题主要考查三角形全等的判定,熟练掌握,即可解题.。
人教版八年级上册数学期中考试试卷含答案
人教版八年级上册数学期中考试试题一、单选题1.下面四幅图是我国传统文化与艺术中的几个经典图案,其中不是轴对称图形的是()A .B .C .D .2.下面各组线段中,能组成三角形的是()A .6,9,14B .8,8,16C .10,5,4D .5,11,63.一个多边形的每个内角均为135°,则这个多边形是()A .五边形B .六边形C .七边形D .八边形4.如图,ABC 中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120∠=︒BEC ;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有()A .①②B .①③C .②③D .①②③5.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪一块去()A .①B .②C .③D .①和②6.如图,在 ACE 中,点D 在AC 边上,点B 在CE 延长线上,连接BD ,若∠A =47°,∠B =55°,∠C =43°,则∠DFE 的度数是()A.125°B.45°C.135°D.145°7.下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形一定重合。
其中正确的是()A.①②B.②③C.③④D.①④8.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12B.15C.12或15D.189.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是()A.10B.15C.20D.3010.已知:如图,FD∥BE,则()A.∠1+∠2-∠A=180°B.∠2+∠A-∠1=180°C.∠A+∠1-∠2=180°D.∠1-∠2+∠A=180°二、填空题11.如图,在△ABC中,BE和AD分别是边AC和BC上的中线,则△AEF和四边形EFDC 的面积之比为_____.12.赵师傅在做完门框后,为防止变形,如图中所示的那样在门上钉上两条斜拉的木条(即图中的AB ,CD ),这其中的数学原理是__________.13.若一个多边形的内角和为1800°,则这个多边形______边形.14.小明从平面镜子中看到镜中电子钟示数的像如图所示,这时的时刻应是________.15.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=_____.16.如图,线段AC ,BD 相交于点E ,EB CE =,要使ABE DCE △≌△,只需增加的一个条件是________.(只要填出一个即可)17.如图,在ABC 中,AD BC ⊥于点D ,AE 平分BAC ∠,若30BAE ∠=︒,20CAD ∠=︒,则B ∠=______.18.如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连结DE ,动点P 从点B 出发,以每秒2个单位长度的速度沿BC CD DA --向终点A 运动.设点P 的运动时间为t 秒,当t 的值为______________时,ABP △和DCE 全等.三、解答题19.如图,电信部门要在公路m ,n 之间的S 区域修一座电视信号发射塔P.按照设计要求,发射塔P 到区域S 内的两个城镇A,B 的距离必须相等,到两条公路m ,n 的距离也必须相等.发射塔P 建在什么位置?在图中用尺规作图的方法作出它的位置并标出(不写作法但保留作图痕迹).20.一个等腰三角形的周长是36厘米.(1)已知腰长是底长的2倍,求各边长.(2)已知其中一边长为8厘米,求其它两边长.21.在一次数学课上,老师在黑板上画出如图所示的图形,并写下四个等式,(1)AB DC =,(2)BD AC =,(3)B C ∠=∠,(4)BDA CAD ∠=∠.要求同学从这四个等式中选出其中的两个或三个作为条件,推出第四个,请你试着完成王老师提出的要求(写出三种)并选择一种说明理由.22.已知BC ED =,AB AE =,B E ∠=∠,F 是CD 的中点,求证:AF CD ⊥.23.如图,三角形纸片中,AB=8cm ,BC=6cm ,AC=5cm .沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,求ADE 的周长24.如图,在△ABC 中,DM ,EN 分别垂直平分AC 和BC ,交AB 于M ,N 两点,DM 与EN 相交于点F .(1)若△CMN 的周长为15cm ,求AB 的长;(2)若70MFN ∠=︒,求MCN ∠的度数.25.探究与发现:如图①,在Rt △ABC 中,∠BAC=90°,AB=AC ,点D 在底边BC 上,AE=AD ,连接DE .(1)当∠BAD=60°时,求∠CDE 的度数;(2)当点D在BC(点B、C除外)上运动时,试猜想并探究∠BAD与∠CDE的数量关系;(3)深入探究:若∠BAC≠90°,试就图②探究∠BAD与∠CDE的数量关系.参考答案1.D【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得答案.【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不符合题意;D、不是轴对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.2.A【解析】【分析】运用三角形三边关系判定三条线段能否构成三角形时,并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:由6,9,14可得,6+9>14,故能组成三角形;由8,8,16可得,8+8=16,故不能组成三角形;由10,5,4可得,4+5<10,故不能组成三角形;由5,11,6可得,5+6=11,故不能组成三角形;故选:A.【点睛】本题主要考查了三角形的三边关系的运用,三角形的两边差小于第三边,三角形两边之和大于第三边.3.D【解析】【详解】︒-︒=︒,解:正多边形的每个外角都相等,每个外角为18013545多边形的外角和为360︒,︒÷︒=所以边数为:360458故选:D.4.D【解析】【详解】分析:根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠EBC+∠ECB,然后求出∠BEC=120°,判断①正确;过点D作DF⊥AB于F,DG⊥AC的延长线于G,根据角平分线上的点到角的两边的距离相等可得DF=DG,再求出∠BDF=∠CDG,然后利用“角边角”证明△BDF和△CDG全等,根据全等三角形对应边相等可得BD=CD,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB,根据等角对等边可得BD=DE,判断②正确,再求出B,C,E三点在以D为圆心,以BD为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠,∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒,∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒,故①正确.如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴AD 为BAC ∠的平分线,∴DF DG =,∴36090260120FDG ∠=︒-︒⨯-︒=︒,又∵120BDC ∠=︒,∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.∴BDF CDG ∠=∠,∵在BDF 和CDG 中,90BFD CGD DF DG BDF CDG∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴BDF ≌()CDG ASA ,∴DB CD =,∴1(180120)302DBC ∠=︒-︒=︒,∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,∵BE 平分ABC ∠,AE 平分BAC ∠,∴ABE CBE ∠=∠,1302BAE BAC ∠=∠=︒,根据三角形的外角性质,30DEB ABE BAE ABE ∠=∠+∠=∠+︒,∴DEB DBE ∠=∠,∴DB DE =,故②正确.∵DB DE DC ==,∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,∴2BDE BCE ∠=∠,故③正确,综上所述,正确结论有①②③,故选D .点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.5.C【解析】【分析】观察每块玻璃形状特征,利用ASA 判定三角形全等可得出答案.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带③去.故选:C .【点睛】本题属于利用ASA 判定三角形全等的实际应用,难度不大,但形式较颖,要善于将所学知识与实际问题相结合,解题的关键是熟练掌握全等三角形的判定定理.6.D【解析】【分析】利用三角形内角和定理求出∠AEC,再求出∠EFB可得结论.【详解】解:∵∠A+∠C+∠AEC=180°,∴∠AEC=180°﹣47°﹣43°=90°,∴∠FEB=90°,∴∠EFB=90°﹣∠B=35°,∴∠DFE=180°﹣35°=145°,故选:D.【点睛】本题考查三角形内角和定理,解题的关键是熟练掌握三角形的内角和定理,属于中考常考题型.7.D【解析】【分析】依据全等三角形的定义:能够完全重合的两个三角形.即可求解.【详解】解:①全等三角形的对应边相等,正确;②全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故该选项错误;③全等三角形的周长相等,但周长的两个三角形不一定能重合,不一定是全等三角形.故该选项错误;④全等三角形是指能够完全重合的两个三角形,故正确;故正确的是①④.故选D.8.B【解析】【分析】根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.【详解】解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B .【点睛】本题考查了等腰三角形的性质.9.B【解析】【分析】过D 作DE ⊥BC 于E ,根据角平分线性质求出DE =3,对12BDC S BC DE =⨯ 计算求解即可.【详解】解:如图,过D 作DE ⊥BC 于E ,∵BD 平分ABC∠∴由角平分线的性质可知3DE AD ==∴111031522BDC S BC DE =⨯=⨯⨯= 故选B .【点睛】本题考查了角平分线的性质.解题的关键在于根据角平分线的性质求出BDC 的高.10.A【解析】【详解】∵FD//BE ,∴∠2=∠4,∵∠4+∠5=180°,∴∠5=180°-∠4=180°-∠2,∵∠1+∠3=180°,∴∠3=180°-∠1,∵∠3+∠5+∠A=180°,∴180°-∠1+(180°-∠2)+∠A=180°,∴∠1+∠2-∠A=180°,故选:A.11.1:2【解析】【分析】设△DEF的面积为S,先判断F点为△ABC的重心,根据三角形重心的性质得到AF=2FD,=2S,再利用E点为AC的中点得到S△DAE=S△DCE=则根据三角形面积公式得到S△AEF3S,从而得到△AEF和四边形EFDC的面积之比.【详解】解:设△DEF的面积为S,∵BE和AD分别是边AC和BC上的中线,∴F点为△ABC的重心,∴AF=2FD,=2S,∴S△AEF∵E点为AC的中点,=S△DCE=S+2S=3S,∴S△DAE∴△AEF和四边形EFDC的面积之比为2S:(S+3S)=1:2.故答案为:1:2.【点睛】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S12=⨯底×高.三角形的中线将三角形分成面积相等的两部分.12.三角形的稳定性【解析】【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【详解】解:赵师傅这样做是运用了三角形的稳定性.故答案为:三角形的稳定性.【点睛】本题主要考查了三角形的稳定性,解题的关键在于能够熟知三角形具有稳定性.13.十二【解析】【分析】根据多边形的内角和公式列式求解即可.【详解】解:设这个多边形的边数是n,则()21801800n-⨯︒=︒,解得:12n=.故答案为:十二.【点睛】本题考查了多边形的内角和公式,熟记公式是解题的关键.14.16:25:08【解析】【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【详解】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵5的对称数字为2,2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是16:25:08.故答案为16:25:08.【点睛】本题考查镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反,注意2的对称数字为5,5的对称数字是2.15.240°.【解析】【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【详解】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.【点睛】本题考查多边形角度的计算,关键在于结合图形运用角度转换.16.AE=DE或∠A=∠D或∠B=∠C【解析】【分析】根据全等三角形的判定方法添加条件即可.【详解】解:∵BE=CE,∠AEB=∠DEC,添加AE=DE,可根据SAS证明△ABE≌△DCE,添加∠A=∠D,可根据AAS证明△ABE≌△DCE,添加∠B=∠C,可根据ASA证明△ABE≌△DCE,故答案为:AE=DE或∠A=∠D或∠B=∠C.【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目是一道开放型的题目,答案不唯一.17.50︒【解析】【分析】想办法求出AED∠,再利用三角形的外角的性质求解即可.【详解】解:AE∠,∵平分BAC∴∠=∠=︒,BAE CAE30∴∠=∠-∠=︒-︒=︒,EAD EAC DAC302010,⊥AD BC∴∠=︒,ADE90∴∠=︒-∠=︒,AED EAD9080,∠=∠+∠AED B BAE∴∠=︒-︒=︒,B803050故答案是:50︒.【点睛】本题考查三角形内角和定理,角平分线的性质等知识,解题的关键是熟练掌握三角形内角和定理.18.1或7【解析】【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=16-2t=2即可求得结果.【详解】解:当点P在BC上时,∵AB=CD,∴当△ABP≌△DCE,得到BP=CE,由题意得:BP=2t=2,当P在AD上时,∵AB=CD,∴当△BAP≌△DCE,得到AP=CE,由题意得:AP=6+6-4﹣2t=2,解得t=7.∴当t的值为1或7秒时.△ABP和△DCE全等.故答案为:1或7.【点睛】本题考查了全等三角形的判定,解题的关键在于能够利用分类讨论的思想进行求解.19.作图见解析【解析】【分析】作线段AB的垂直平分线,再作直线m与n的夹角的角平分线,两线的交点就是P点.【详解】解:如图所示.20.(1)365cm,725cm,725cm;(2)14cm,14cm.【解析】【分析】(1)设底边BC=acm,则AC=AB=2acm,代入求出即可;(2)分类讨论,然后根据三角形三边关系定理判断求出的结果是否符合题意.解:如图,(1)设底边BC=acm ,则AC=AB=2acm ,∵三角形的周长是36cm ,∴2a+2a+a=36,∴a=365,2a=725,∴等腰三角形的三边长是365cm ,725cm ,725cm .(2)①当等腰三角形的底边长为8cm 时,腰长=(36-8)÷2=14(cm );则等腰三角形的三边长为8cm 、14cm 、14cm ,能构成三角形;②当等腰三角形的腰长为8cm 时,底边长=36-2×8=20;则等腰三角形的三边长为8cm ,8cm 、20cm ,不能构成三角形.故等腰三角形另外两边的长为14cm ,14cm .【点睛】本题考查了等腰三角形的性质及三角形的三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.21.见解析【解析】【分析】根据SAS 、ASA 、AAS 进行推理即可得到答案.【详解】解:由①②③可推出④;由②③④可推出①;由①③④可推出②;第一种情况证明:∵AB DC =,BD AC =,B C ∠=∠,∴ABD DCA ∆≅∆(SAS )∴BDA CAD∠=∠第二种情况证明:∵BD AC =,B C ∠=∠,BDA CAD∠=∠∴ABD DCA ∆≅∆(ASA )∴AB DC=第三种情况证明:∵AB DC =,B C ∠=∠,BDA CAD∠=∠∴ABD DCA ∆≅∆(AAS )∴BD AC=22.见解析【分析】连接AC 、AD ,由已知证明ABC AED ∆≅∆,得到AC AD =,又因为点F 是CD 的中点,利用等腰三角形的三线合一或全等三角形可得AF CD ⊥.【详解】解:如图,连接AC 、AD,在ABC ∆和AED ∆中,AB AE B E BC ED =⎧⎪∠=∠⎨⎪=⎩,()ABC AED SAS ∴∆≅∆.AC AD ∴=.ACD ∴∆是等腰三角形.又 点F 是CD 的中点,AF AF CF DF AC AD =⎧⎪∴=⎨⎪=⎩,()ACF ADF SSS ∴∆≅∆,90AFC AFD ∴∠=∠=,AF CD ∴⊥.23.7cm【分析】根据翻折变换的性质可得DE=CD ,BE=BC ,然后求出AE ,再根据三角形的周长列式求解即可.【详解】解:∵BC 沿BD 折叠点C 落在AB 边上的点E 处,∴DE=CD ,BE=BC ,∵AB=8cm ,BC=6cm ,∴AE=AB-BE=AB-BC=8-6=2cm ,∴△ADE 的周长=AD+DE+AE ,=AD+CD+AE ,=AC+AE ,=5+2,=7cm .24.(1)AB 的长为15cm ;(2)MCN ∠的度数为40︒.【解析】(1)根据线段垂直平分线的性质,可得AM CM =,CN NB =,可得△CMN 的周长等于线段AB ;(2)根据三角形内角和定理,列式求出MNF NMF ∠+∠,再求出A B ∠+∠,根据等边对等角可得A ACM ∠=∠,B BCN ∠=∠,即可求解.【详解】解:(1)∵DM ,EN 分别垂直平分AC 和BC∴AM CM =,CN NB=∵△CMN 的周长为15cm∴15CM CN MN cm++=∴15AM BN MN cm++=∴15AB cm=AB 的长为15cm(2)由(1)得AM CM =,CN NB=∴A ACM ∠=∠,B BCN∠=∠在MNF 中,70MFN ∠=︒∴110FMN FNM ∠+∠=︒根据对顶角的性质可得:FMN AMD ∠=∠,FNM BNE∠=∠在Rt ADM △中,9090A AMD FMN∠=︒-∠=︒-∠在Rt BNE 中,9090B BNE FNM∠=︒-∠=︒-∠∴909070A B FMN FNM ∠+∠=︒-∠+︒-∠=︒∴70MCA NCB ∠+∠=︒在ABC 中,70A B ∠+∠=︒∴110ACB ∠=︒∴()40MCN ACB MCA NCB ∠=∠-∠+∠=︒25.(1)30°(2)∠CDE=12∠BAD(3)∠CDE=12∠BAD 【分析】(1)根据等腰三角形的性质得到∠CAD=∠BAD=60°,由于AD=AE ,于是得到∠ADE=60°,根据三角形的内角和即可得到∠CDE=75°﹣45°=30°;(2)设∠BAD=x ,于是得到∠CAD=90°﹣x ,根据等腰三角形的性质得到∠AED=45°+12x ,于是得到结论;(3)设∠BAD=x ,∠C=y ,根据等腰三角形的性质得到∠BAC=180°﹣2y ,由∠BAD=x ,于是得到∠DAE=y+12x ,即可得到结论.【详解】解:(1)∵AB=AC ,∠BAC=90°,∴∠B=∠C=45°,∵∠BAD=60°,∴∠DAE=30°,∵AD=AE ,∴∠AED=75°,∴∠CDE=∠AED=∠C=30°;(2)设∠BAD=x,∴∠CAD=90°﹣x,∵AE=AD,∴∠AED=45°+12x,∴∠CDE=12 x;∴∠CDE=12∠BAD(3)设∠BAD=x,∠C=y,∵AB=AC,∠C=y,∴∠BAC=180°﹣2y,∵∠BAD=x,∴∠DAE=y+12 x,∴12 CDE AED C x ∠=∠-∠=.∴∠CDE=12∠BAD21。
人教版八年级上册数学期中考试试卷及答案
人教版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.在下列四个标志中,是轴对称图形的是()A .B .C .D .2.以下列各组线段为边,能组成三角形的是()A .1cm ,2cm ,4cmB .2cm ,3cm ,5cmC .5cm ,6cm ,12cmD .4cm ,6cm ,8cm 3.如果两个三角形全等,则不正确的是()A .它们的最小角相等B .它们的对应外角相等C .它们是直角三角形D .它们的最长边相等4.等腰三角形的一个角是70︒,则它的底角是()A .70︒B .40︒C .55︒或70︒D .40︒或55︒5.如图所示,等腰Rt ABC △中,90C ∠=︒,AD 平分CAB ∠,交BC 于D ,过D 作DE AB ⊥于E ,若CD a =,BD b =,那么AB 的长度是()A .+a bB .2a b +C .2+a bD .22a b+6.如图,在等边△ABC 中,AD 是BC 边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD ≌△ACD ;②2DE=2DF=AD ;③△ADE ≌△ADF ;④4BE=4CF=AB .正确的个数是()A .1B .2C .3D .47.如图,在△PAB 中,PA =PB ,M ,N ,K 分别是PA ,PB ,AB 上的点,且AM =BK ,BN=AK,若∠MKN=42°,则∠P的度数为()A.44°B.66°C.96°D.92°8.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AEC.DC=BE D.∠ADC=∠AEB9.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8B.6C.4D.210.如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A.12B.10C.8D.611.下列轴对称图形中,对称轴条数最少的是()A.等边三角形B.正方形C.正六边形D.圆12.等腰三角形一腰上的高等于这个三角形一条边长度的一半,则其顶角为() A.30°B.30°或150°C.120°或150°D.30°或120°或150°二、填空题13.点M(2,-3)关于y 轴对称的对称点N 的坐标是_____.14.如果一个正多边形的每个外角是60°,则这个正多边形的对角线共有_____条.15.当三角形中一个内角a 是另一个内角b 的两倍时,我们称此三角形为“特征三角形”,其中a 称为“特征角”如果一个“特征三角形”的“特征角”为40︒时,那么这个“特征三角形”的最小内角度数是________.16.如图,在ABC 中,点D 是BC 上一点,80BAD ∠=︒,AB AD DC ==,则C ∠=_________度.三、解答题17.如图,△ABC 中,DE 是AC 的垂直平分线,AE=3cm ,△ABD 的周长为13cm ,求△ABC 的周长.18.已知:如图,//AB CD ,=BF DE ,点B 、E 、F 、D 在同一直线上,.A C ∠∠=求证:=AE CF .19.如图,在△ABC 中,∠ACB =90°,AC =BC ,过点C 在△ABC 外作直线MN ,AM ⊥NN 于点M ,BN ⊥MN 于N .(1)求证:△AMC ≌△CNB ;(2)求证:MN =AM +BN .20.如图,四边形ABCD 中,AB =BC =2CD ,AB ∥CD ,∠C =90°,E 是BC 的中点,AE 与BD 相交于点F ,连接DE.(1)求证:△ABE ≌△BCD ;(2)判断线段AE 与BD 的数量关系及位置关系,并说明理由;(3)若CD =1,试求△AED 的面积.21.如图,已知点P 是高为2的等边ABC ∆的中线AD 上的动点,E 是AC 边的中点,则PC PE +的最小值是________.22.如图,AD 是ABC ∆的BC 边上的高,AE 是ABC ∆的一条角平分线,若42B ∠=︒,70C ∠=︒.求AEC ∠和DAE ∠的度数.23.如图,已知四边形ABCD 是梯形,AD ∥BC ,∠A =90°,BC =BD ,CE ⊥BD ,垂足为E ,(1)求证:△ABD ≌△ECB ;(2)若∠DBC =50°,求∠DCE 的度数.24.已知:如图所示,AD 是△ABC 的角平分线,AD 的垂直平分线交AB 于点F ,交BC 的延长线于点E ,交AC 于点G .求证:∠CAE=∠B .25.如图①,ABC △中,AB AC =,B Ð、∠C 的平分线交于O 点,过O 点作EF BC ∥交AB 、AC 于E 、F .试回答:(1)图中等腰三角形有________个.猜想:EF 与BE 、CF 之间的关系是________.说明理由;(2)如图②,若AB AC ≠,图中等腰三角形有________个,在第(1)问中EF 与BE 、CF 间的关系还存在吗?(3)如图③,若ABC △中B Ð的平分线BO 与三角形外角平分线CO 交于O ,过O 点作OE BC ∥交AB 于E ,交AC 于F ,这时图中还有等腰三角形吗?EF 与BE 、CF 关系又如何?说明你的理由.参考答案1.A【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.A是轴对称图形,故此选项正确;B不是轴对称图形,故此选项错误;C不是轴对称图形,故此选项错误;D不是轴对称图形,故此选项错误.故选A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.D【分析】根据三角形任意两边之和大于第三边进行分析即可.【详解】解:A、1+2<4,不能组成三角形;B、2+3=5,不能组成三角形;C、5+6<12,不能组成三角形;D、4+6>8,能组成三角形.故选:D.【点睛】本题考查了能够组成三角形三边的条件.用两条较短的线段相加,如果大于最长那条就能够组成三角形.3.C【解析】【分析】根据全等三角形的对应边、对应角相等进行判断.做题时要根据已知条件结合判定方法逐个验证.【详解】A两个全等三角形的最小角是对应角,所以相等,故A选项正确;B全等三角形的对应角相等,所以它们的对应外角相等,故B选项正确;C两个三角形全等,这两个三角形不一定是直角三角形,故C选项正确;D两个全等三角形的最长边是对应边,所以相等,故D选项正确,故选C.【点睛】本题考查了全等三角形的性质,找准对应关系是解决本题的关键.4.C【分析】分情况考虑,①若底角=70°②若顶角=70°,结合三角形的内角和,可求底角.【详解】解:①若底角=70°,那底角=70°;②若顶角=70°,那底角=12×(180°-70°)=55°.故选:C.【点睛】本题考查等腰三角形两底角相等的性质及三角形内角和为180°的应用,注意当等腰三角形中未明确角为底角或顶角时,需要分两种情况考虑.5.B【分析】证明AC=AE=BC=a+b,CD=DE=BE=a即可解决问题.【详解】解:∵CA=CB,∠C=90°,∴∠B=45°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=∠B=45°,∴ED=EB ,∵DA 平分∠CAB ,DC ⊥AC ,DE ⊥AB ,∴CD=DE=EB=a ,∵DC=DE ,AD=AD ,∠C=∠AED=90°,∴Rt △ADC ≌Rt △ADE (HL ),∴AE=AC=BC=a+b ,∴AB=AE+BE=2a+b ,故选B .【点睛】本题考查角平分线的性质定理,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.D【分析】由等边三角形的性质可得BD=DC ,AB=AC ,∠B=∠C=60°,利用SAS 可证明△ABD ≌△ACD ,从而可判断①正确;利用ASA 可证明△ADE ≌△ADF ,从而可判断③正确;在Rt △ADE 与Rt △ADF 中,∠EAD=∠FAD=30°,根据30度角所对的直角边等于斜边的一半可得2DE=2DF=AD ,从而可判断②正确;同理可得2BE=2CF=BD ,继而可得4BE=4CF=AB ,从而可判断④正确,由此即可得答案.【详解】∵等边△ABC 中,AD 是BC 边上的高,∴BD=DC ,AB=AC ,∠B=∠C=60°,在△ABD 与△ACD 中90AD AD ADB ADC DB DC =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD ≌△ACD ,故①正确;在△ADE 与△ADF 中60EAD FAD AD AD EDA FDA ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ADE ≌△ADF ,故③正确;∵在Rt △ADE 与Rt △ADF 中,∠EAD=∠FAD=30°,∴2DE=2DF=AD ,故②正确;同理2BE=2CF=BD ,∵AB=2BD ,∴4BE=4CF=AB ,故④正确,故选D .【点睛】本题考查了等边三角形的性质、含30度的直角三角形的性质、全等三角形的判定等,熟练掌握相关性质与定理是解题的关键.7.C【分析】根据等腰三角形的性质得到∠A =∠B ,证明△AMK ≌△BKN ,得到∠AMK =∠BKN ,根据三角形的外角的性质求出∠A =∠MKN =42°,根据三角形内角和定理计算即可.【详解】解:∵PA =PB ,∴∠A =∠B ,在△AMK 和△BKN 中,AM BK A B AK BN =⎧⎪∠=∠⎨⎪=⎩,∴△AMK ≌△BKN ,∴∠AMK =∠BKN ,∵∠MKB =∠MKN +∠NKB =∠A +∠AMK ,∴∠A =∠MKN =42°,∴∠P =180°﹣∠A ﹣∠B =96°,故选C .【点睛】此题主要考查利用等腰三角形的性质判定三角形全等,以及三角形的外教性质和内角和定理的运用,熟练掌握,即可解题.8.C【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【详解】A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故C错误;D、当∠ADC=∠AEB时,符合AAS的判定条件,故D正确;故选C.9.C【详解】过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选C.10.B【分析】根据线段垂直平分线的性质,得到EA=EB,而△BCE的周长=BC+CE+BE=BC+AC=18,且已知BC=8,即可求得AC=10.【详解】∵DE是AB的垂直平分线,∴EA=EB,由题意得,BC+CE+BE=18,则BC+CE+AE=18,即BC+AC=18,又BC=8,∴AC=10,故选:B.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质并掌握△BCE 的周长=AC+BC是解题的关键.11.A【详解】A3条,B4条,C6条,D无数条,故选A12.D【详解】本题分三种情况进行讨论:①如图,因为∠ADB=90°,AD=12AB,所以∠B=30°,因为AB=AC,所以∠ACB=180°-2×30°=120°,②如图,因为∠ADB=90°,AD=12AC,所以∠ACD=30°,所以∠ACB=180°-30°=150°,③如图,因为∠ADB=90°,AD=12AB,所以∠B=30°.故选D.13.(-2,-3)【解析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,所以M(2,-3)关于y 轴对称的对称点N 的坐标是(-2,-3)14.9【解析】试题分析:根据正多边形的每一个外角都相等,多边形的边数=360°÷60°,进而求得多边形的对角线条数.解:这个正多边形的边数:360°÷60°=6,则对角线的条数是:×6×(6﹣3)=9.故答案是:9.考点:多边形内角与外角.15.120︒【分析】根据已知一个内角a 是另一个内角b 的两倍得出b 的度数,进而求出最小内角即可.【详解】解:由题意得:a=2b ,a=40°,则b=20°,180°-40°-20°=120°,故答案为:120°.【点睛】本题主要考查了新定义以及三角形的内角和定理,根据已知得出b 的度数是解题关键.16.25.【详解】试题分析:已知AB AD =,80BAD ∠=︒,根据等腰三角形的性质及三角形的内角和可得50ABD ADC ∠=∠=︒,根据三角形外角的性质可得50ADC DAC CDA ∠=∠+∠=︒,又因AD DC =,所以DAC CDA ∠=∠,即可得025DAC CDA ∠=∠=.考点:等腰三角形的性质;三角形外角的性质.17.19cm【分析】根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AD=CD ,然后求出△ABD 的周长等于AB+BC ,再求出AC 的长,最后根据三角形的周长公式进行计算即可得解.【详解】∵DE 是AC 的垂直平分线,AE=3cm ,∴AD=CD ,AC=2AE=2×3=6cm ,∴△ABD 的周长=AB+BD+AD=AB+BD+CD=AB+BC=13cm ,∴△ABC 的周长=AB+BC+AC=13+6=19cm .【点睛】本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质是解题的关键.18.详见解析【分析】根据平行线的性质得∠∠=B D ,再利用=BF DE 得到=BE DF ,则可根据”AAS“判断ABE ≌CDF ,从而得到结论.【详解】解://AB CD ,∠∠∴=B D ,BF DE =,∴+=+BE EF EF DF ,∴=BE DF ,在ABE 和CDF 中A CB D BE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABE ≌()CDF AAS ,AE CF ∴=.【点睛】考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.(1)见解析;(2)见解析【分析】(1)首先根据题干条件求出∠2=∠1,∠4=∠5,结合AC=BC ,即可证明△BNC ≌△CMA ;(2)由(1)得到AM =CN ,CM =BN ,即可证明出结论.【详解】证明:(1)如图:∵AM ⊥MN ,BN ⊥MN ,∴∠4=∠5=90°,∠2+∠3=90,∵∠ACB =90°,∴∠1+∠3=90,∴∠2=∠1,在△AMC 和△CNB 中1=24=5AC CB ∠∠⎧⎪∠∠⎨⎪=⎩,∴△AMC ≌△CNB (AAS );(2)由(1)得△AMC ≌△CNB ,∴AM =CN ,CM =BN ,∴MN =CN +CM =AM +BN【点睛】此题考查全等三角形的判定与性质,解题关键在于掌握判定定理.20.(1)见解析;(2)AE =BD ,AE ⊥BD ,理由见解析;(3)△AED 的面积为32.【分析】(1)由已知条件可推导得到AB BC ABE C BE CD =∠=∠=,,,由SAS 即可证明△ABE ≌△BCD ;(2)由(1)可得△ABE ≌△BCD 可得AE =BD ,再由角的转化可得∠AFB =90°,即可证明AE ⊥BD ;(3)因为△AED 的面积=梯形ABCD 的面积﹣△ABE 的面积﹣△CDE 的面积,即可求解△AED 的面积.【详解】(1)证明:∵AB ∥CD ,∴∠ABE +∠C =180°,∵∠C =90°,∴∠ABE =90°=∠C ,∵E 是BC 的中点,∴BC =2BE ,∵BC =2CD ,∴BE =CD ,在△ABE 和△BCD 中,AB BCABE C BE CD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△BCD (SAS );(2)解:AE =BD ,AE ⊥BD ,理由如下:由(1)得:△ABE ≌△BCD ,∴AE =BD ,∵∠BAE =∠CBD ,∠ABF +∠CBD =90°,∴∠ABF +∠BAE =90°,∴∠AFB =90°,∴AE ⊥BD ;(3)解:∵△ABE ≌△BCD ,∴BE =CD =1,∵AB =BC =2CD =2,∴CE=BC﹣BE=1,∴CE=CD,∴△AED的面积=梯形ABCD的面积﹣△ABE的面积﹣△CDE的面积=12(1+2)×2﹣1 2×2×1﹣12×1×1=32【点睛】此题考查全等三角形的判定与性质,解题关键在于掌握性质证明三角形全等.21.2.【解析】【分析】连接BP,依据AD垂直平分BC,即可得出BP=CP,当B,P,E三点共线时,BE的长即为PC+PE的最小值,依据BE是等边三角形的中线,即可得到PC+PE的最小值2.【详解】解:如图所示,连接BP,∵AD是等边△ABC的中线,∴AD垂直平分BC,高AD=2,∴BP=CP,∴PC+PE=BP+PE,当B,P,E三点共线时,BE的长即为PC+PE的最小值,∵E是AC边的中点,∴BE是等边三角形的中线,∴BE=AD=2,即PC+PE的最小值2,故答案为2.【点睛】本题主要考查了最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.22.76AEC ∠=︒;14DAE ∠=︒.【分析】由三角形内角和定理可求得∠BAC 的度数,在Rt △ADC 中,可求得∠DAC 的度数,AE 是角平分线,有∠EAC=12∠BAC ,故∠EAD=∠EAC-∠DAC .【详解】解:∵∠B=42°,∠C=70°,∴∠BAC=180°-∠B-∠C=68°,∵AE 是角平分线,∴∠EAC=12∠BAC=34°.∵AD 是高,∠C=70°,∴∠DAC=90°-∠C=20°,∴∠EAD=∠EAC-∠DAC=34°-20°=14°,∠AEC=90°-14°=76°.【点睛】本题考查三角形的内角和定理及角平分线的性质,高线的性质,解答的关键是熟练掌握三角形的内角和定理.23.(1)见解析(2)25°【分析】(1)主要考查三角形全等的判定方法;(2)主要考查等腰三角形中的等边对等角以及三角形的内角和.【详解】(1)证明:∵AD ∥BC ,∴∠ADB=∠EBC .∵CE ⊥BD ,∠A=90°,∴∠A=∠CEB ,在△ABD 和△ECB 中,∵∠A=∠CEB,AD∥BC,∴∠ADB=∠DBC,∴∠ABD=∠BCE,又∵BC=BD∴△ABD≌△ECB;(2)解:∵∠DBC=50°,BC=BD,∴∠EDC=12(180°-50°)=65°,又∵CE⊥BD,∴∠CED=90°,∴∠DCE=90°-∠EDC=90°-65°=25°.24.见解析【分析】根据角平分线的定义得到∠BAD=∠CAD,根据线段垂直平分线的性质得到AE=DE,由等腰三角形的性质得到∠EAD=∠EDA,根据三角形的外角的即可得到结论.【详解】∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵EF是AD的垂直平分线,∴AE=DE,∴∠EAD=∠EDA,∵∠EAC=∠EAD-∠CAD,∠B=∠ADE-∠BAD,∴∠CAE=∠B.【点睛】此题考查三角形的外角性质,角平分线定义,线段垂直平分线性质,解题关键是推出∠FAD=∠FDA.25.(1)5个,EF BE FC=+;(2)见解析;(3)见解析.【分析】(1)根据等腰三角形的判定、平分线的性质及角平分线可得有5个等腰三角形,由△EOB 和△FOC是等腰三角形,则EO=BE,OF=FC,则EF=BE+FC;(2)由(1)的证明过程可知:在证△OEB 、△OFC 是等腰三角形的过程中,与AB=AC 的条件没有关系,故这两个等腰三角形还成立.所以(1)中得出的EF=BE+FC 的结论仍成立.(3)思路与(2)相同,只不过结果变成了EF=BE-FC .【详解】解:(1)如图1,图中共有5个等腰三角形,分别是△AEF 、△OEB 、△OFC 、△OBC 、△ABC ;理由是:∵AB=AC ,∴∠ACB=∠ABC ,△ABC 是等腰三角形;∵BO 、CO 分别平分∠ABC 和∠ACB ,∴∠ABO=∠OBC=12∠ABC ,∠OCB=∠ACO=12∠ACB ,∵EF ∥BC ,∴∠EOB=∠OBC ,∠FOC=∠OCB ,∴∠ABO=∠OBC=∠EOB=∠OCB=∠FOC=∠FCO ,∴△EOB 、△OBC 、△FOC 都是等腰三角形,∵EF ∥BC ,∴∠AEF=∠ABC ,∠AFE=∠ACB ,∴∠AEF=∠AFE ,∴△AEF 是等腰三角形,∴图中是等腰三角形的有:AEF 、OEB 、OFC △、OBC 、ABC △.EF 、BE 、FC 的关系是EF BE FC =+.理由如下:∵OB 、OC 平分ABC ∠、ACB ∠,∴ABO OBC ∠=∠,ACO OCB ∠=∠,∵EF BC ∕∕,∴EOB OBC EBO ∠=∠-∠,FOC OCB FCO ∠=∠=∠,即EO EB =,FO FC =,∴EF EO OF BE CF =+=+.(2)2个存在(1)的结论仍然成立.(证明过程同(1)).(3)EOB △和FOC 仍是等腰三角形,EF BE FC =-.理由如下:同(1)可证得EOB △是等腰三角形.∵EO BC ∕∕,∴FOC OCG ∠=∠,∵OC 平分ACG ∠,∴ACO FOC OCG ∠=∠-∠,∴FO FC =,故FOC 是等腰三角形,∴EF EO FO BE FC =-=-.【点睛】本题主要考查了等腰三角形的判定和性质,平行线、角平分线的性质等知识.进行线段的等量代换是正确解答本题的关键.。
人教版数学八年级上册期中考试题附答案
人教版数学八年级上册期中考试试卷一、精心选择(每小题3分,共24分)1.在下列各电视台的台标图案中,是轴对称图形的是()A .B .C .D .2.下列说法正确的是()A .三角形三条高的交点都在三角形内B .三角形的角平分线是射线C .三角形三边的垂直平分线不一定交于一点D .三角形三条中线的交点在三角形内。
3.已知点A (x ,4)与点B (3,y )关于y 轴对称,那么y x +的值是()A .1-B .7-C .7D .1第5题图第6题图第7题图4.正多边形的每个内角都等于135°,则该多边形是()A .正八边形B .正九边形C .正十边形D .正十一边形5.在正方形网格中,∠AOB 的位置与图所示,到∠AOB 两边距离相等的点应是()A .M 点B .N 点C .P 点D .Q 点第8题图第9题图第11题图6.如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是()A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=90°7.如图,在△ABC 中,AD 为∠BAC 的平分线,D E⊥AB 于E ,D F⊥AC 于F ,△ABC 的面积是228cm ,AB=20cm ,AC=8cm ,则DE 的长是()A .4cm B .3cm C .2cm D .1cm8.如图,在四边形ABCD 中,AD ∥BC ,∠C=90°,BC=CD=8,过点B 作EB ⊥AB ,交CD 于点E 。
若DE=6,则AD 的长为()A .6B .8C .9D .10二、细心填空(每小题3分,共24分)9.如图,已知△ABC ≌△ADE ,若AB=7cm ,AC=3cm ,则BE 的长为。
10.若等腰三角形有两边长分别为4cm 和7cm ,则它的周长是cm 。
11.如图,在△ABC 中,AB=AC ,AB 的垂直平分线交AC 于D ,交AB 于E ,若△ABC 的周长为22,BC=6,则△BCD 的周长为。
人教版八年级上册数学期中考试试题附答案解析
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,其中不是轴对称图形的是()A .B .C .D .2.下列各组线段,不能组成三角形的是()A .1,2,3B .2,3,4C .3,4,5D .5,12,133.等腰三角形两边长分别是3和8,则它的周长是()A .14B .19C .11D .14或194.如图,已知BE CF =,A D ∠=∠,添加下列条件,不能..证明ABC DEF △≌△的是()A .//AB DE B .//DF AC C .E ABC ∠=∠D .AB DE=5.已知点P(-2,1),那么点P 关于x 轴对称的点P′的坐标是()A .(-2,1)B .(-2,-1)C .(-1,2)D .(2,1)6.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为()A .50°B .70°C .75°D .80°7.已知a ,b ,c 是△ABC 的三条边长,化简|a +b ﹣c |+|b ﹣a ﹣c |的结果为()A .2a +2b B .2a +2b ﹣2c C .2b ﹣2c D .2a8.如图,D 为BAC ∠的外角平分线上一点并且满足BD CD =,过D 作DE AC ⊥于E ,DF AB ⊥交BA 的延长线于F ,则下列结论:①△△CDE BDF ≅,②CE AB AE =+,③BDC BAC ∠=∠,④DAF CBD ∠=∠,其中正确的结论有()A .1个B .2个C .3个D .4个9.如图,△ABE ≌△ACD ,∠1=∠2,∠B =∠C ,下列等式不一定正确的是()A .AB =AC B .∠BAD =∠CAE C .BE =CD D .AD =DE10.如图,△ABC 中,∠A=90°,AB=AC ,BD 平分∠ABE ,DE ⊥BC ,如果BC=10cm ,则△DEC 的周长是()A .8cmB .10cmC .11cmD .12cm二、填空题11.在△ABC 中,AB =AC ,∠A =100°,则∠B =_______°.12.如图,△ABD ≌△ACE ,AD=8cm ,AB=3cm ,则BE=_____cm13.如图,ABC 中,46A ∠=︒,74C ∠=︒,BD 平分ABC ∠交AC 于点D ,那么BDC ∠的度数是______.14.如图,在ABC 中,8AB AC ==,D 是BC 上的任一点,//DE AB 交AC 于点E ,//DF AC交AB 于点F 那么四边形AFDE 的周长是________.15.一个三角形的三条边的长分别是3,5,7,另一个三角形的三条边的长分别是3,3x ﹣2y ,x+2y ,若这两个三角形全等,则x+y 的值是_.16.如图,用3根火柴棒可以拼出1个等边三角形,用9根火柴棒可以拼出4小等边三角形,用18根火柴棒可以拼出9个小等边三角形,……,照此规律,要拼出36个小等边三角形,共需要火柴________根.三、解答题17.如图,在平面直角坐标系中,△ABC 位于第二象限,请你按要求在该坐标系中在图中作出:(1)把△ABC 向右平移4个单位长度得到的△A 1B 1C 1;(2)再作与△A 1B 1C 1关于x 轴对称的△A 2B 2C 2.18.如图,AB=CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,AE=CF ,求证:AB ∥CD .19.如图,在BCD △中,D 为BC 上一点,12∠=∠,34∠=∠,60BAC ∠=︒,求DAC ∠,ADC ∠的度数.20.如图,在△ABC 中,AB=AC ,AB 的垂直平分线交AB 于M ,交AC 于N .(1)若∠ABC=70°,求∠MNA 的度数.(2)连接NB ,若AB=8cm ,△NBC 的周长是14cm .求BC 的长;21.如图,已知ABC 中BC 边的垂直平分线DE 与BAC ∠的平分线交于点E ,EF AB ⊥交AB 的延长线于点F ,BG AC ⊥交AC 于点G .求证.(1)BF CG =.(2)若6AB =,8AC =,求AF 的长度.22.如图,已知△ABC ≌△DBE ,点D 在AC 上,BC 与DE 交于点P ,若AD=DC=2.4,BC=4.1.(1)若∠ABE=162°,∠DBC=30°,求∠CBE 的度数;(2)求△DCP 与△BPE 的周长和.23.如图,在△ABC 中,∠ACB=90°,AC=BC=AD(1)作∠A 的平分线交CD 于E ;(2)过B 作CD 的垂线,垂足为F ;(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.24.如图,在直角ABC ,90C ∠=︒,BD 平分ABC ∠交AC 于点D ,AP 平分BAC ∠交BD 于点P .(1)APD ∠的度数为______.(2)若58BDC ∠=︒,求BAP ∠的度数.25.如图1在平面直角坐标系中,(),0A a 、()0,B b ,a b 、|0a -=,C 为AB 的中点,P 是线段AB 上一动点,D 是x 轴正半轴上一点,且PO PD =,DE AB ⊥于E .(1)求OAB ∠的度数;(2)如图2,设6AB =,当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值;(3)如图3,设6AB =,若45OPD ∠=︒,求点D 的坐标.参考答案1.A【解析】如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.【详解】解:A:不是轴对称图形;B、C、D是轴对称图形.故选A.【点睛】本题考查了轴对称图形的定义.2.A【解析】试题分析:A、∵1+2=3,∴1,2,3不能组成三角形,故本选项正确;B、∵2+3=5>4,∴2,3,4能组成三角形,故本选项错误;C、∵3+4=7>5,∴3,4,5能组成三角形,故本选项错误;D、∵5+12=17>13,∴5,12,13能组成三角形,故本选项错误.故选A.考点:三角形的三边关系.3.B【解析】①若3是腰,则另一腰也是3,底是8,但是3+3<8,故不构成三角形,舍去.②若3是底,则腰是8,8.3+8>8,符合条件.成立.故周长为:3+8+8=19.故选B.点睛:本题考查了三角形三遍的额关系和等腰三角形的计算,根据题意,要分情况讨论:①3是腰;②3是底.必须符合三角形三边的关系,即任意两边之和大于第三边.4.D【分析】由BE=CF,可得出EF=BC,又有∠A=∠D,具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF.【详解】解:∵BE=CF,∴BE+BF=CF+FB,即EF=BC,AB DE,可得∠ABC=∠DEF,根据AAS能证明△ABC≌△DEF,故A选项不符合A、添加//题意;DF AC可得∠ACB=∠DFE,根据AAS能证明△ABC≌△DEF,故B选项不符合题B、添加//意;∠=∠,根据AAS能证明△ABC≌△DEF,故C选项不符合题意;C、添加E ABCD、添加AB DE=,与原条件满足SSA,不能证明△ABC≌△DEF,故D选项符合题意;故选D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.B【详解】试题分析:点的坐标关于x轴对称,则对称点坐标也关于x轴对称,横坐标不变,纵坐标变为相反数.故P'坐标为(-2,-1),选B.6.B【详解】分析:根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.详解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故选B.点睛:本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.7.D【分析】先根据三角形三条边的关系判断a+b-c和b-a-c的正负,然后根据绝对值的定义化简即可.【详解】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,b﹣a﹣c<0,∴原式=a+b﹣c﹣(b﹣a﹣c)=a+b﹣c+c+a﹣b=2a.故选:D.【点睛】本题考查了三角形三条边的关系,以及绝对值的定义,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.8.D【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再利用“HL”可证明Rt△CDE和Rt△BDF全等,根据全等三角形对应边相等可得CE=AF,利用“HL”证明Rt△ADE和Rt△ADF全等,根据全等三角形对应边相等可得AE=AF,然后求出CE=AB+AE;根据全等三角形对应角相等可得∠DBF=∠DCE,根据三角形内角和是180°和∠AOB=∠COD (设AC交BD于点O),得到∠BDC=∠BAC;根据三角形内角和是180°易得∠DAE=∠CBD,再根据角平分线可得∠DAE=∠DAF,然后求出∠DAF=∠CBD.【详解】∵AD平分∠CAF,DE⊥AC,DF⊥AB∴DE=DF在Rt△CDE和Rt△BDF中BD CD DE DF⎧⎨⎩==∴Rt △CDE ≌Rt △BDF (HL ),故①正确;∴CE =AF在Rt △ADE 和Rt △ADF 中AD AD DE DF==⎧⎨⎩∴Rt △ADE ≌Rt △ADF (HL )∴AE =AF∴CE =AB +AF =AB +AE ,故②正确;∵Rt △CDE ≌Rt △BDF∴∠DBF =∠DCE∵∠AOB=∠COD (设AC 交BD 于点O )∴∠BDC =∠BAC ,故③正确;∵∠BAC+∠ABC+∠ACB=180°∠BDC+∠DBC+∠DCB=180°∠DBF =∠DCE∴∠DAE =∠CBD ,∵∠DAE =∠DAF ,∴∠DAF =∠CBD ,故④正确;综上所述,正确的结论有①②③④.故选D【点睛】本题考查了角平分线上的点到角的两边距离相等的性质、全等三角形的判定与性质,熟记性质并准确识图判断出全等的三角形是解题的关键,难点在于需要二次证明三角形全等.9.D【分析】由全等三角形的性质可求解.【详解】解:∵△ABE ≌△ACD ,∠1=∠2,∠B=∠C ,∴AB=AC,AD=AE,BE=CD,∠BAE=∠CAD,∴∠BAD=∠CAE故选D.【点睛】本题考查了全等三角形的性质,灵活运用全等三角形的性质是本题的关键.10.B【分析】根据角平分线的性质,得AD=DE,利用HL判定△BAD≌△BED,得出AB=BE,进而得出BC=DE+DC+EC=10cm.【详解】解: BD平分∠ABE,DE⊥BC,DA⊥AB∴AD=DE又 BD=BD,∴△BAD≌△BED(HL)∴AB=BE又 AB=AC∴BE=AC∴BC=BE+EC=AC+EC=AD+DC+EC=DE+DC+EC=10cm∴△DEC的周长是10cm,故选B.【点睛】本题主要考查了角平分线的性质、全等三角形的判定及其性质等知识.要通过全等把相等的线段转到转到一个三角形中.11.40【解析】试题分析:∵AB=AC,∴∠B=∠C,∵∠A=100°,∴∠B=1801002︒-︒=40°.考点:等腰三角形的性质.12.5【解析】∵△ABD ≌△ACE∴AD=AE=8cm∴BE=AE-AB=8-3=5cm13.76°【分析】根据三角形内角和是180°求出∠ABC 的度数,再根据=BDC A ABD ∠∠+∠,即可求得.【详解】解:根据三角形内角和是180°得180ABC A C∠=︒∠∠--=180︒︒︒-46-74=60°∴∠ABD=30°∴=BDC A ABD∠∠+∠=4630︒+︒=76°故答案为:76°【点睛】本题考查三角形角平分线、三角形内角和是360°和三角形的外角等于与它不相邻的两个内角和,掌握三角形的内角和外角关系是解题的关键.14.16【分析】由于DE ∥AB ,DF ∥AC ,则可以推出四边形AFDE 是平行四边形,然后利用平行四边形的性质可以证明▱AFDE 的周长等于AB +AC .【详解】解:∵DE ∥AB ,DF ∥AC ,则四边形AFDE 是平行四边形,∠B =∠EDC ,∠FDB =∠C∵AB =AC ,∴∠B=∠C,∴∠B=∠FDB,∠C=∠EDF∴BF=FD,DE=EC,所以:▱AFDE的周长等于AB+AC=16.故答案为:16.【点睛】本题考查了平行四边形的性质,等腰三角形的性质,掌握这些知识点是解题关键.15.5或4【分析】根据全等三角形的性质可得方程组32527x yx y-=⎧⎨+=⎩,或25327x yx y+=⎧⎨-=⎩,解方程组可得答案.【详解】解:由题意得32527x yx y-=⎧⎨+=⎩,或25327x yx y+=⎧⎨-=⎩,解得:32xy=⎧⎨=⎩或31xy=⎧⎨=⎩,x+y=5或x+y=4,故答案为5或4【点睛】此题考查全等三角形的性质,解题关键在于根据题意列出方程.16.63【分析】拼1个等边三角形所用的火柴数为3根,3×1=3根;拼4个等边三角形所用的火柴数为9根,3×(1+2)=9根;拼9个等边三角形所用的火柴数为9根,3×(1+2+3)=18根;照此规律,即可推得.【详解】1=123×1=3根4=223×(1+2)=9根9=323×(1+2+3)=18根16=423×(1+2+3+4)=30根25=523×(1+2+3+4+5)=45根36=623×(1+2+3+4+5+6)=63根故答案为:63【点睛】本题考查整式的规律,解题关键是随着序号的变化,比较后一个图与前一个图,在数量上增加情况的变化,找出变化规律,推出一般性结论.17.(1)作图见解析;(2)作图见解析.【分析】(1)利用平移的性质可画出图形;(2)利用关于x轴对称的点的性质画出图形即可.【详解】(1)如图所示:△A1B1C1即为所求:(2)如图所示:△A2B2C2即为所求:【点睛】本题考查了平移的性质及轴对称的性质,解题的关键是掌握变换的规律.18.证明见解析【分析】欲证明AB∥CD,只需证得∠C=∠A,所以通过Rt△ABF≌Rt△CDE(HL)证得∠C=∠A 即可.【详解】∵AE=CF,∴AE+EF=CF+EF,即AF=EC.又∵BF⊥AC,DE⊥AC,∴∠AFB=∠CED=90°.在Rt△ABF与Rt△CDE中,∵AF CEAB CD=⎧⎨=⎩,∴Rt△ABF≌Rt△CDE(HL),∴∠C=∠A,∴AB∥CD.【点睛】本题考查了全等三角形的判定与性质、平行线的判定.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.∠DAC=20°,∠ADC=80°【分析】设∠1=∠2=x,再用x表示出∠3的度数,由三角形内角和定理得出∠2+∠4的度数,进而可得出x的值,由此得出结论.【详解】设∠1=∠2=x,则∠3=∠4=2x,∵∠BAC=60°,∴∠2+∠4=180°-60°=120°,即x+2x=120°,∴x=40°,即∠ADC=80°,∴∠DAC=∠BAC-∠1=60°-40°=20°.【点睛】本题考查的是三角形内角和外角的相关知识,熟知三角形内角和是180°是解答此题的关键.20.(1)50°;(2)6cm.【解析】试题分析:(1)由AB=AC可得∠C=∠ABC=70°,从而可得∠A=40°;由MN垂直平分AB可得AN=BN,可得∠ABN=∠A=40°,从而可得∠ANB=100°,再由等腰三角形的三线合一可得∠MNA=12∠ANB=50°;(2)由(1)可知BN=AN,由此可得BN+NC=AN+NC=AC=AB=8cm,再由C△BNC=BN+CN+BC=14cm,可得BC=14-8=6(cm).试题解析:(1)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=40°,∵MN是AB的垂直平分线,∴AN=BN,∴∠ABN=∠A=40°,∴∠ANB=100°,∴∠MNA=50°.(2)由(1)可知:AN=BN,∴BN+CN=AN+CN=AC,∵AB=AC=8cm,∴BN+CN=8cm,=BN+CN+BC=14(cm),∵C△BNC∴BC=14﹣8=6(cm).21.(1)见解析(2)7【分析】(1)连接EB、EC,利用已知条件证明Rt△BEF≌Rt△CEG,即可得到BF=CG;(2)根据(1)中的条件证得Rt△AFE≌Rt△AGE,根据全等三角形的性质得到AG=AF,于是得到结论.【详解】(1)如图,连接BE和CE,∵DE是BC的垂直平分线,∴BE=CE.∵AE 平分∠BAC ,EF ⊥AB ,EG ⊥AC ,∴∠BFE =∠EGC =90°,EF =EG.在Rt △BFE 和Rt △CGE 中,BE=CE ,EF=EG ,∴Rt △BFE ≌Rt △CGE(HL),∴BF =CG.(2)∵AE 平分∠BAC ,EF ⊥AB ,EG ⊥AC ,∴∠AFE =∠AGE =90°,∠FAE =∠GAE.在△AFE 和△AGE 中,∠FAE =∠GAE ,∠AFE =∠AGE ,AE=AE ,∴△AFE ≌△AGE ,∴AF =AG.∵BF =CG ,∴AB +AC =AF -BF +AG +CG =2AF ,∵6AB =,8AC =,∴1(86)72AF =+=.【点睛】点睛:本题考查了全等三角形的判定与性质;角平分线的性质;线段垂直平分线的性质.关键在于结合题意熟练运用相关性质.22.(1)66°;(2)15.4【分析】(1)根据全等三角形的性质得到∠ABC=∠DBE ,计算即可;(2)根据全等三角形的性质求出BE 、DE ,根据三角形的周长公式计算即可.【详解】解:(1)∵∠ABE=162°,∠DBC=30°,∴∠ABD+∠CBE=132°,∵△ABC≌△DBE,∴∠ABC=∠DBE,∴∠ABD=∠CBE=132°÷2=66°,即∠CBE的度数为66°;(2)∵△ABC≌△DBE,∴DE=AD+DC=4.8,BE=BC=4.1,△DCP和△BPE的周长和=DC+DP+CP+BP+PE+BE=DC+DE+BC+BE=15.4.故答案是:(1)66°;(2)15.4【点睛】本题考查的是全等三角形的性质、角的和差倍分,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.23.(1)作图见试题解析;(2)作图见试题解析;(3)△ACE≌△ADE,△ACE≌△CFB.【详解】试题分析:(1)利用角平分线的作法得出∠A的平分线;(2)利用钝角三角形高线的作法得出BF;(3)利用等腰三角形的性质及全等三角形的判定得出答案.试题解析:(1)如图所示:AE即为所求;(2)如图所示:BF即为所求;(3)如图所示:△ACE≌△ADE,△ACE≌△CFB,∵AC=AD,AE平分∠CAD,∴AE⊥CD,EC=DE,在△ACE和△ADE中,∵AE=AE,∠AEC=∠AED,EC=ED,∴△ACE≌△ADE(SAS).考点:1.作图—复杂作图;2.全等三角形的判定.24.(1)45°;(2)∠BAP=13°.【分析】(1)根据三角形内角和为180°可得∠BAC+∠ABC=90°,再根据角平分线的定义可得∠PAB+∠PBA=45°,然后根据三角形的外角性质即可得解;(2)因为∠BDC 是△ADP 的外角,由(1)可求得∠DAP ,根据角平分线的定义即可得解.【详解】(1)∵90C ∠=︒,∴∠BAC+∠ABC=90°,∵BD 平分ABC ∠,AP 平分BAC ∠,∴∠PAB+∠PBA=12(∠BAC+∠ABC )=45°,∴APD ∠=∠PAB+∠PBA=45︒;(2)∵58BDC ∠=︒,∴5813DAP APD ∠=︒-∠=︒.∵AP 平分BAC ∠,∴13BAP DAP ∠=∠=︒.【点睛】本题主要考查角平分线的定义,三角形外角的性质等,解此题的关键在于熟练掌握知识点.25.(1)∠OAB=45°;(2)PE 的值不变.理由见解析;(3),0).【分析】(1)根据非负数的性质即可求得a ,b 的值,从而得到△AOB 是等腰直角三角形,据此即可求得;(2)根据等腰三角形的性质以及三角形的外角的性质可以得到∠POC=∠DPE ,即可证得△POC ≌△DPE ,则OC=PE ,OC 的长度根据等腰直角三角形的性质可以求得;(3)利用等腰三角形的性质,以及外角的性质证得∠POC=∠DPE ,即可证得△POC ≌△DPE ,根据全等三角形的对应边相等,即可求得OD 的长,从而求得D 的坐标.【详解】(1)根据题意得:0a b a ⎧⎪⎨-⎪⎩=,解得:,∴OA=OB ,又∵∠AOB=90°∴△AOB 为等腰直角三角形,∴∠OAB=45°.(2)PE 的值不变.理由如下:∵△AOB 为等腰直角三角形,且AC=BC ,∴∠AOC=∠BOC=45°又∵OC ⊥AB 于C ,∵PO=PD∴∠POD=∠PDO当P 在BC 上时,∵∠POD=45°+∠POC ,∠PDO=45°+∠DPE ,∴∠POC=∠DPE在△POC 和△DPE 中,POC DPE OCP PED PO PD ∠∠⎧⎪∠∠⎨⎪⎩===,∴△POC ≌△DPE ,∴OC=PE又OC =12AB =3∴PE=3;当P 在AC 上时,∠POD=45°-∠POC ,∠PDO=45°-∠DPE ,则∠POC=∠DPE .同理可得PE=3;(3)∵OP=PD ,∴∠POD=∠PDO=1801804522OPD -∠︒-︒==67.5°,则∠PDA=180°-∠PDO=180°-67.5°=112.5°,∵∠POD=∠A+∠APD ,∴∠APD=67.5°-45°=22.5°,∴∠BPO=180°-∠OPD-∠APD=112.5°,∴∠PDA=∠BPO则在△POB 和△DPA 中,PDA BPOPAD OBP OP PD∠∠⎧⎪∠∠⎨⎪⎩===,∴△POB ≌△DPA (AAS ).∴∴,∴(-6∴,0).【点睛】此题考查全等三角形的判定与性质,证明△POB ≌△DPA 是解题的关键.。
人教版八年级上册数学期中考试试题带答案
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.下列图案中不是轴对称图形的是()A.B.C.D.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.3cm,3cm,6cmC.5cm,8cm,2cm D.4cm,5cm,6cm3.点M(﹣2,1)关于y轴的对称点N的坐标是()A.(﹣2,﹣1)B.(2,1)C.(2,﹣1)D.(1,﹣2)4.如果一个三角形的两边长分别为2和4,则第三条边可能是()A.2B.5C.6D.85.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°6.若一个多边形的每个外角都等于36°,则这个多边形的边数是().A.10B.9C.8D.77.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 8.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°9.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为()A .110°B .80°C .70°D .60°10.如图所示,AC =BD ,AB =CD ,图中全等的三角形的对数是()A .2B .3C .4D .5二、填空题11.已知一个多边形的内角和是720°,则这个多边形是______边形.12.在Rt △ABC 中,∠C =90°,∠A =30°,AB =6,则AC =_____.13.一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为________.14.如图,某同学一不小心将三角形玻璃打碎,现要带③到玻璃店配一块完全相同的玻璃,这样做的依据是____.15.如图,在△ABC 中,∠A =70°,点O 是∠A BC 和∠BCA 角平分线的交点,则∠BOC =_____°.16.如图的三角形纸片中,8,6,5AB cm BC cm AC cm ===,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则ADE ∆的周长为__________.三、解答题17.如图,已知∠A=∠D,CO=BO,求证:△AOC≌△DOB.18.尺规作图,保留作图痕迹,不写作法.(1)作△ABC中∠B的平分线;(2)作△ABC边BC上的高.19.如图,AB=AD,BC=DC,∠B=35°,求∠D的度数.20.如图在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:∠B=∠C.21.如图,在△ABC中,∠B=50°,∠C=70°,AD是高,AE是角平分线,求∠EAD的度数.22.如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF23.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中的点上标出相应字母A、B、C,并求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.24.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.25.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:AB=AC.参考答案1.D【解析】根据轴对称图形的概念对各选项分析判断即可求解.【详解】解:A.是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.是轴对称图形,故本选项不合题意;D.不是轴对称图形,故本选项正确.故选:D.【点睛】本题考查轴对称图形的概念,判断轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.2.D【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、2+3=5,不能组成三角形;B、3+3=6,不能够组成三角形;C、2+5=7<8,不能组成三角形;D、4+5>6,能组成三角形.故选:D.【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.B【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M(-2,1)关于y轴的对称点N的坐标是(2,1).故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.B【分析】设第三边长为x,根据三角形的三边关系定理可得4-2<x<4+2,确定x的范围后可得答案.【详解】解:设第三边长为x,由题意得:4-2<x<4+2,即2<x<6,因此,第三条边应满足2<x<6,把各项代入不等式符合的即为答案.2,6,8都不符合不等式2<x<6.故选:B.【点睛】本题考查三角形的三边关系,关键是掌握三角形三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.5.B【解析】试题分析:利用△ABC≌△DEF,得到对应角相等∠D=∠A=80°,然后在△DEF中依据三角形内角和定理,求出∠F=180﹣∠D﹣∠E=50°故选B.考点:全等三角形的性质.6.A【分析】根据正多边形的边数等于360°除以每一个外角的度数列式计算即可得解.【详解】解:∵一个多边形的每个外角都等于36°,∴这个多边形是正多边形,∴360°÷36°=10.∴这个多边形的边数是10.【点睛】本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.7.B【详解】试题分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故选B.考点:全等三角形的判定.8.A【详解】∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选A.9.C【详解】试题分析:由三角形的外角性质得:∠CAD=∠B+∠C=40°+30°=70°.故选C.考点:三角形的外角性质.10.B【分析】利用SSS,SAS,AAS判定三角形全等,在做题时要注意从已知开始,由易到难,循序渐进.∵AC=BD,AB=CD,BC=BC,∴△ABC≌△DCB,∴∠BAC=∠CDB.同理得△ABD≌△DCA.又因为AB=CD,∠AOB=∠COD,∴△ABO≌△DCO.故选B.【点睛】本题考查了全等三角形的判定方法;在找全等三角形是有规律的:从已知条件开始寻找,从由易到难,逐个验证,做到不重不漏.11.六【分析】利用n边形的内角和可以表示成(n−2)•180°,结合方程即可求出答案.【详解】解:设这个多边形的边数为n,由题意,得(n−2)180°=720°,解得:n=6,则这个多边形是六边形.故答案为:六.【点睛】本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n−2)•180°是解题的关键.12.【分析】利用“在直角三角形中,30°角所对的直角边等于斜边的一半”可求出BC的长度,再利用勾股定理即可求出AC的长度.【详解】解:依照题意画出图形,如图所示.在Rt△ABC中,∠C=90°,∠A=30°,AB=6,∴BC =12AB =3,∴AC =22AB BC =33.故答案为33【点睛】考查了含30度角的直角三角形以及勾股定理,牢记“在直角三角形中,30°角所对的直角边等于斜边的一半”是解题的关键.13.8【详解】试题解析:设第三边长为x .根据三角形的三边关系,则有3−2<x <2+3,即1<x <5.∵第三边长是奇数,∴x =3.所以周长=3+3+2=8cm.故答案为8cm.点睛:三角形任意两边之和大于第三边.14.ASA .【分析】根据全等三角形的判定方法,在打碎的三块中可以采用排除法进行分析从而确定最后的答案.【详解】第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA 判定,所以应该拿这块去.故答案为ASA .【点睛】本题主要考查了全等三角形的应用,要求对常用的几种方法熟练掌握.在解答时要求对全等三角形的判定方法的运用灵活.15.125°.【分析】根据三角形内角和定理可求得∠ABC+∠ACB的度数,再根据角平分线的定义可求得∠OBC+∠OCB的度数,即可求解.【详解】解:∵∠A=70°,∴∠ABC+∠ACB=110°,∵BO平分∠ABC,CO平分∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB)==55°,∴∠BOC=180°-(∠OBC+∠OCB)=125°.故答案为:125°.【点睛】本题考查三角形内角和定理,角平分线定义的应用,解题的关键是熟练运用三角形内角和定理.16.7cm【分析】由折叠的性质,可知:BE=BC,DE=DC,通过等量代换,即可得到答案.【详解】∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,∴BE=BC,DE=DC,∴ADE的周长=AD+DE+AE=AD+DC+AE=AC+AE=AB+BC+AC-BC-BE=8+6+5-6-6=7cm,故答案是:7cm【点睛】本题主要考查折叠的性质,根据三角形的周长定义,进行等量代换是解题的关键. 17.证明见解析.【详解】试题分析:根据∠A=∠D,CO=BO以及∠AOC=∠DOB利用AAS判定定理得出三角形全等.试题解析:在△AOC 和△DOB 中,,{,.A D AOC DOB CO BO ∠=∠∠=∠=∴△AOC ≌△DOB (AAS ).考点:三角形全等的判定18.作图见解析.【解析】试题分析:(1)作∠B 的平分线,按照作一个角的平分线的作法来做即可;(2)延长BC ,按照过直线外一点作直线的垂线步骤作即可;试题解析:如图所示:射线BE 是所作的角平分线,线段AD 是所作的高.19.35°.【分析】利用SSS 证明△ABC ≌△ADC ,根据全等三角形的性质得∠D=∠B=35°,即可解决问题.【详解】解:在△ABC 和△ADC 中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩,∴△ABC ≌△ADC (SSS ),∴∠D=∠B=35°.【点睛】本题考查全等三角形的判定和性质;证明三角形全等是解题的关键.20.见解析.【分析】根据角平分线的性质可得DE=DF ,根据点D 是BC 的中点可得BD=CD ,可证Rt △BDE ≌Rt △CDF (HL ),即可得∠B=∠C .【详解】解:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE=DF ,∠BED=∠CFD=90°,∵D 是BC 的中点,∴BD=CD ,在Rt △BDE 和Rt △CDF 中DE DF BD CD =⎧⎨=⎩,∴Rt △BDE ≌Rt △CDF (HL ),∴∠B=∠C .【点睛】本题考查角平分线的性质和直角三角形全等的判定和性质,根据角平分线的性质得出DE=DF 是解题的关键.21.∠EAD=10°.【分析】由三角形的内角和定理求得∠BAC=60°,由角平分线的等于求得∠BAE=30°,由直角三角形的两锐角互余求得∠BAD=40°,根据∠EAD=∠BAE ﹣∠BAD 即可求得∠EAD 的度数.【详解】解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B ﹣∠C=180°﹣50°﹣70°=60°,∵AE 是角平分线,∴∠BAE=∠BAC=×60°=30°,∵AD 是高,∴∠BAD=90°﹣∠B=90°﹣50°=40°,∴∠EAD=∠BAE ﹣∠BAD=40°﹣30°=10°.【点睛】本题考查了三角形的内角和定理、三角形的角平分线及高线,熟知三角形的内角和为180°是解决问题的关键.22.(1)见解析;(2)见解析.【详解】试题分析:证明:(1)∵AC ∥DF∴∠ACB =∠F在△ABC 与△DEF 中ACB F A D AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF(2)∵△ABC ≌△DEF∴BC=EF∴BC–EC=EF–EC即BE=CF考点:全等三角形的性质和判定点评:解答本题的关键是熟练掌握判定两个三角形全等的一般方法:SSS 、SAS 、ASA 、AAS 、HL ,注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.(1)如图所示,7.5;(2)如图所示;(3)(1,5),(1,0),(4,3)【分析】(1)直接利用平面直角坐标系得出各点坐标,求面积时把AB 作为底,点C 到AB 的距离作为高即可;分别作出点A 、B 、C 关于y 轴的对称的点,然后顺次连接;利用关于y 轴对称点的性质得出对应点坐标即可;【详解】解:(1)如图所示,三角形ABC的面积为:12⨯5⨯3=7.5.如图所示,(3)∵A(﹣1,5),B(﹣1,0),C(﹣4,3),且点A1,B1,C1与A,B,C关于y轴对称,∴点A1,B1,C1的坐标分别为(1,5),(1,0),(4,3)【点睛】本题考查了轴对称变换以及三角形面积求法,解答本题的关键是根据网格结构找出A、B、C对应点的位置.24.(1)△ABE≌△CDF,△AFD≌△CEB(2)略【详解】试题分析:(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据已知条件易得∠ACD=∠CAB,AE=FC,再由∠ABE=∠CDF,根据AAS可判定△ABE≌△CDF.试题解析:解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠ACD=∠CAB,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).考点:全等三角形的判定.25.证明见解析.【分析】已知AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,由角平分线的性质定理可得DE=DF,再利用HL证明Rt△BDE≌Rt△CDF,即可得∠B=∠C,由等腰三角形的判定定理即可证得AB=AC.【详解】∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∵BD=CD,∴Rt△BDE≌Rt△CDF,∴∠B=∠C,∴AB=AC.【点睛】本题主要考查了角平分线上的点到角两边的距离相等、全等三角形的判定及性质、等腰三角形的判定,比较综合,难度适中.。
人教版八年级上册数学期中考试试题含答案
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5B.10C.11D.123.点P(4,5)关于x轴对称点的坐标是()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(5,4)4.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形6.如图,在△ABC中,∠C=70º,沿图中虚线截去∠C,则∠1+∠2=()A.360ºB.250ºC.180ºD.140º7.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD 于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①DF=DN②AE=CN;③△DMN是等腰三角形;④∠BMD=45°,其中正确的结论个数是()A.1个B.2个C.3个D.4个8.点()4,5A -关于x 轴的对称点的坐标为()A .()4,5-B .()4,5C .()4,5--D .()4,5-9.如图,在△ABC 中,∠B=40°,∠C=30°,延长BA 至点D ,则∠CAD 的大小为()A .110°B .80°C .70°D .60°10.如图,△ABC ≌△DEC ,∠A =70°,∠ACB =60°,则∠E 的度数为()A .70°B .50°C .60°D .30°二、填空题11.“三角形任意两边之和大于第三边”,得到这个结论的理由是_______________.12.若正n 边形的每个内角都等于150°,则n =______,其内角和为______.13.如图,AD=AB ,∠C=∠E,∠CDE=55︒,则∠ABE=______.14.如图,在Rt ABC ∆中,90ACB ∠= ,AD 平分BAC ∠交BC 于点D ,若5AB =,2DC =,则ABD ∆的面积为______.15.如图,等腰△ABC 中,AB=AC ,∠DBC=15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是_______.16.如图,等腰ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC 于点F,若D为BC边上的中点,M为线段EF上一动点,则BDM的周长最小值为_____cm.17.在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP 为等腰三角形,则符合条件的点P的个数为_________.三、解答题18.证明三角形内角和定理:三角形三个内角的和等于180°19.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.20.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高.求∠DBC的度数.21.C、B、E三点在一直线上,AC⊥CB,DE⊥BE,∠ABD=90°,AB=BD,试证明:AC+DE=CE.22.如图,三角形ABC中,AB=AC=2,∠B=15°,求AB边上的高23.如图,在三角形ABC中,AD为中线,AB=4,AC=2,AD为整数,求AD的长.24.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A1B1C1,平移后点A的对应点A1的坐标是______.(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是______.(3)将△ABC向左平移2个单位,则△ABC扫过的面积为______.25.如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD 和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.(1)求证:△BAD≌△CAE.(2)如图①,若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;(3)如图②,若∠BAC=∠DAE=60°,求∠BFC的度数;(4)如图③,若∠BAC=∠DAE= ,直接写出∠BFC的度数(不需说明理由)参考答案1.A【分析】观察四个选项图形,根据轴对称图形的概念即可得出结论.【详解】根据轴对称图形的概念,可知:选项A中的图形不是轴对称图形.故选A.【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.2.B 【详解】试题分析:根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选B .点评:本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.3.C 【详解】试题解析:点P (4,5)关于x 轴对称点的坐标是:(4,-5).故选C .4.C 【详解】试题分析:对于三角形全等的判定,已知两边和一角的情况,这个角必须是两边的夹角.考点:三角形全等的判定.5.B 【解析】试题分析:三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案:设三角形的三个角分别为:a°、b°、c°,则由题意得:{90180a b ca abc -=⇒=++=,∴这个三角形是直角三角形.故选B .考点:三角形内角和定理.6.B【分析】【分析】根据三角形内角和定理得出∠A+∠B=110°,进而利用四边形内角和定理得出答案.【详解】∵△ABC中,∠C=70°,∴∠A+∠B=180°-∠C=110°,∴∠1+∠2=360°-110°=250°,故选B.【点睛】本题主要考查了多边形内角和定理,根据题意得出∠A+∠B的度数是解题关键.【详解】请在此输入详解!7.D【详解】试题分析:求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,证△DFB≌△DAN,即可判断①,证△ABF≌△CAN,推出CN=AF=AE,即可判断②;根据A、B、D、M四点共圆求出∠ADM=22.5°,即可判断④,根据三角形外角性质求出∠DNM,求出∠MDN=∠DNM,即可判断③.解:∵∠BAC=90°,AC=AB,AD⊥BC,∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD,∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC=22.5°,∴∠BFD=∠AEB=90°﹣22.5°=67.5°,∴∠AFE=∠BFD=∠AEB=67.5°,∴AF=AE,∵M为EF的中点,∴AM⊥BE,∴∠AMF=∠AME=90°,∴∠DAN=90°﹣67.5°=22.5°=∠MBN,在△FBD和△NAD中∴△FBD≌△NAD,∴DF=DN,∴①正确;在△AFB和△△CNA中∴△AFB≌△CAN,∴AF=CN,∵AF=AE,∴AE=CN,∴②正确;∵∠ADB=∠AMB=90°,∴A、B、D、M四点共圆,∴∠ABM=∠ADM=22.5°,∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,∴④正确;∵∠DNA=∠C+∠CAN=45°+22.5°=67.5°,∴∠MDN=180°﹣45°﹣67.5°=67.5°=∠DNM,∴DM=MN,∴△DMN是等腰三角形,∴③正确;即正确的有4个,故选D.考点:全等三角形的判定与性质;角平分线的性质;等腰三角形的判定;等腰直角三角形;圆内接四边形的性质.8.C【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】点A(-4,5)关于x轴的对称点的坐标是(-4,-5).故选:C.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.9.C【详解】试题分析:由三角形的外角性质得:∠CAD=∠B+∠C=40°+30°=70°.故选C.考点:三角形的外角性质.10.B【分析】根据三角形内角和定理求出∠B的度数,根据全等三角形的性质得到答案.【详解】∵∠A=70°,∠ACB=60°,∴∠B=50°,∵△ABC≌△DEC,∴∠E=∠B=50°,故选B.【点睛】考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.11.两点之间线段最短【解析】试题解析:“三角形任意两边之和大于第三边”,得到这个结论的理由是:两点之间线段最短.12.n=12,1800°【解析】试题解析:∵正n边形的每个内角都等于150°,∴()2180nn-⨯︒=150°,解得,n=12,其内角和为(12-2)×180°=1800°.13.125°【详解】试题解析:∵在△ADC 和△ABE 中,{C E A A AD AB∠∠∠∠===,∴△ADC ≌△ABE (AAS ),∴∠ADC=∠ABE ,∵∠CDE=55°,∴∠ADC=125°,∴∠ABE=125°.14.5【分析】作DH ⊥AB 于H ,如图,根据角平分线的性质得到DH=DC=2,然后根据三角形面积公式计算.【详解】解:作DH ⊥AB 于H ,如图,∵AD 平分∠BAC ,DH ⊥AB ,DC ⊥AC ,∴DH=DC=2,∴△ABD 的面积=152=52⨯⨯故答案为5.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.15.50°.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD."∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.16.8【分析】连接AD,由题意易得AD⊥BC,则有三角形BDM的周长为BM+MD+BD,若使△BDM的周长为最小值,则需满足BM+MD为最小值,根据两点之间线段最短可得AD为BM+MD 的最小值,故问题可解.【详解】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC =12BC•AD=12×4×AD=12,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+12BC=6+12×4=6+2=8cm.故答案为:8.【点睛】本题主要考查垂直平分线的性质定理及等腰三角形的性质,关键是根据垂直平分线的性质定理及等腰三角形的性质得到最短路径长,进而可求解.17.4【解析】试题分析:本题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,P是以A 为圆心,以OA为半径的圆与x轴的交点,共有1个,当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;P是OA的中垂线与x轴的交点,有1个,共有4个.解:(1)若AO作为腰时,有两种情况,当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;(2)若OA是底边时,P是OA的中垂线与x轴的交点,有1个.以上4个交点没有重合的.故符合条件的点有4个.故填:4.【点评】本题考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.18.证明见解析试题分析:先写出已知、求证,再画图,然后证明.过点A 作EF ∥BC ,利用EF ∥BC ,可得∠1=∠B ,∠2=∠C ,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.试题解析:已知:△ABC ,求证:∠BAC+∠B+∠C=180°,证明:过点A 作EF ∥BC ,∵EF ∥BC ,∴∠1=∠B ,∠2=∠C ,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°.即知三角形内角和等于180°.19.答案见解析【分析】由BE =CF 可得BF =CE ,再结合AB =DC ,∠B =∠C 可证得△ABF ≌△DCE ,问题得证.【详解】解∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE .在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DCE ,∴∠A =∠D .【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.【分析】根据三角形的内角和定理与∠C=∠ABC=2∠A ,即可求得△ABC 三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC 的度数.【详解】解:∵∠C=∠ABC=2∠A ,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又∵BD 是AC 边上的高,∴∠BDC=90°,则∠DBC=90°-∠C=18°.【点睛】此题考查了三角形内角和定理的运用,三角形的高线,以及直角三角形两锐角互余等知识,三角形的内角和是180°.21.证明见解析.【解析】试题分析:可证明△ABC ≌△DBE ,得到AC=BE DE=BC ,即可证明AC+DE=CE .试题解析:证明:∵∠ABD=90°,AC ⊥CB ,DE ⊥BE ,∴∠ABC+∠DBE=∠ABC+∠A ,∴∠A=∠DBE ;在△ABC 与△DBE 中,90{C E A DBEAB BD ∠∠︒∠∠====,∴△ABC ≌△DBE (AAS ),∴AC=BE ,BC=DE ,∴AC+DE=CE .22.1【解析】试题分析:根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CAD 的度数,然后根据30°角所对的直角边等于斜边的一半求解即可.试题解析:过点C 作BA 的垂线,交BA 的延长线于点D ,∵∠B=∠ACB=15°,∴∠CAD=∠B+∠ACB=15°+15°=30°,∵AC=4cm ,CD 是AB 边上的高,∴CD=12AC=12×2=1.∴AB 边上的高是1.23.2【解析】试题分析:延长AD 到E ,使AD=DE ,连接BE ,证△ADC ≌△EDB ,推出AC=BE=2,在△ABE 中,根据三角形三边关系定理得出AB-BE <AE <AB+BE ,代入求出即可.试题解析:延长AD 到E ,使AD=DE ,连接BE ,∵AD 是BC 边上的中线,∴BD=CD ,在△ADC 和△EDB 中,{AD DEADC EDB DC BD∠∠===,∴△ADC ≌△EDB (SAS ),∴AC=BE=2,在△ABE 中,AB-BE <AE <AB+BE ,∴4-2<2AD<4+2,∴1<AD<3,∵AD是整数,∴AD=2.24.(1)画图见解析,A1的坐标:(3,﹣1);(2)画图见解析,A2坐标:(﹣2,﹣3);(3)△ABC扫过的面积为:13.5.【解析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称点的性质进而得出对应点位置;(3)利用平移的性质可得△ABC扫过的面积为△A′B′C′+平行四边形A′C′CA的面积.试题解析:(1)如图所示:△A1B1C1,即为所求,平移后点A的对应点A1的坐标是:(3,﹣1);故答案为(3,﹣1);(2)如图所示:△A2BC,即为所求,翻折后点A对应点A2坐标是:(﹣2,﹣3);故答案为(﹣2,﹣3);(3)将△ABC向左平移2个单位,则△ABC扫过的面积为:S△A′B′C′+S平行四边形A′C′CA=12×3×5+2×3=13.5.25.(1)证明见解析;(2)BD⊥CE,理由见解析;(3)60BFC∠= ;(4)BFCα∠=【解析】试题分析:(1)由等边三角形的性质得出AB=AC,AD=AE,∠BAC=∠EAD,从而得出∠BAD=∠CAE,即可得出△BAD≌△CAE.(2)判定BD与CE的关系,可以根据角的大小来判定.由∠BAC=∠DAE可得∠BAD=∠CAE,进而得△BAD≌△CAE,所以∠CBF+∠BCF=∠ABC+∠ACB.再由∠BAC=∠DAE=90°,所以BD⊥CE.(3)根据①的∠CBF+∠BCF=∠ABC+∠ACB,所以∠BFC=∠BAC,再由∠BAC=∠DAE=60°,所以∠BFC=60°(4)根据②∠BFC=∠BAC,所以∠BFC=α试题解析:(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE在△BAD与△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS),(2)BD与CE相互垂直,BD=CE.由(1)知,△BAD≌△CAE(SAS),∴∠ABD=∠ACE,BD=CE,∵∠BAC=90°,∴∠CBF+∠BCF=∠ABC+∠ACB=90°,∴∠BFC=90°∴BD⊥CE.(3)由题①得∠CBF+∠BCF=∠ABC+∠ACB,∵∠BAC=∠DAE=60°,∴∠CBF+∠BCF=∠ABC+∠ACB,∴∠BFC=∠BAC∴∠BFC=60°.(4)由题(1)得∠CBF+∠BCF=∠ABC+∠ACB,∵∠BAC=∠DAE=α,∴∠CBF+∠BCF=∠ABC+∠ACB,∴∠BFC=∠BAC∴∠BFC=α.。
人教版八年级上册数学期中考试试题附答案
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.下列图形中,是轴对称图形的是()A .B .C .D .2.在平面直角坐标系中,点()2,1-关于x 轴对称的点的坐标是()A .()2,1B .()2,1-C .()2,1--D .()2,1-3.在下列长度的四根木棒中,能与4cm 、9cm 长的两根木棒钉成一个三角形的是()A .4cmB .5cmC .9cmD .13cm4.下列命题是假命题的是()A .三角形的中线、角平分线、高都是线段B .任意三角形的内角和都是180︒C .直角三角形的两个锐角互余D .三角形按角分类可分为锐角三角形和钝角三角形5.三角形的三条()的交点到三个顶点的距离相等.A .中线B .角平分线C .高线D .边的垂直平分线6.根据下列条件,能判定ABC A B C '''∆≅∆的是()A .AB A B ''=,BC B C ''=,A A '∠=∠B .A A '∠=∠,B B '∠=∠,AC B C ''=C .A A '∠=∠,B B '∠=∠,C C '∠=∠D .AB A B ''=,BC B C ''=,ABC ∆的周长等于A B C '''∆的周长7.下列叙述正确的语句是()A .等腰三角形两腰上的高相等B .等腰三角形的高、中线、角平分线互相重合C .顶角相等的两个等腰三角形全等D .两腰相等的两个等腰三角形全等8.如图,在△ABC 中,∠C=50°,按图中虚线将∠C 剪去后,∠1+∠2等于()A .230°B .210°C .130°D .310°9.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:3.A .1B .2C .3D .410.如图,在平面直角坐标系中,点A ,B 分别在y 轴和x 轴上,60ABO ∠=︒,在坐标轴上找一点P ,使得PAB ∆是等腰三角形,则符合条件的P 点的个数是()A .5B .6C .7D .8二、填空题11.若ABC DEF ∆≅∆,30B ∠=︒,80D ∠=︒,则F ∠=_______.12.若线段AM ,AN 分别是ABC ∆的高线和中线,则线段AM ,AN 的大小关系是AM _______AN (用“≤”,“≥”或“=”填空).13.如图,在ABC ∆中,点D 在BC 边上,点D 关于直线AB ,AC 的对称点分别为E ,F ,连接AE ,AF .根据图中标示的角度可得EAF ∠的度数为_______.14.如图,//AD BC ,ABC ∠的角平分线BP 与BAD ∠的角平分线AP 相交于点P ,作PE AB ⊥于点E .若9PE =,则两平行线AD 与BC 间的距离为_______.15.如图,等腰ABC 底边BC 的长为4cm ,面积是12cm 2,腰AB 的垂直平分线EF 交AC 于点F ,若D 为BC 边上的中点,M 为线段EF 上一动点,则BDM 的周长最小值为_____cm .16.如图,在ABC 中,AB AC =,AD BC ⊥于点D ,6BD cm =,则BC =______cm .17.如图,某轮船自西向东航行,在A 处测得北偏东60°方向上有一小岛C ,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的北偏东30°方向上,之后轮船继续向东航行______海里,距离小岛最近.三、解答题18.一个多边形的内角和比它的外角和的2倍还大180度,求这个多边形的边数.19.如图所示,网格单位长是1,ABC ∆的顶点都在格点上.(1)作出ABC ∆关于y 轴对称的A B C '''∆,并写出A B C '''∆三个顶点的坐标.(2)求出ABC ∆的面积.20.如图,点F 、C 在线段BE 上,BF CE =,DF AC =,DFB ACE ∠=∠.求证:A D ∠=∠.21.如图所示,已知ABC ∆中,AB AC =,E ,D ,F 分别在AB ,BC 和AC 边上,且BE CD =,BD CF =,过D 作DG EF ⊥于G .求证:12EG EF =.22.如图,B ,C ,E 三点在一条直线上,ABC ∆和DCE ∆均为等边三角形,BD 与AC 交于点M ,AE 与CD 交于点N .(1)求证:AE BD =;(2)若把DCE ∆绕点C 任意旋转一个角度,(1)中的结论还成立吗?请说明理由.23.如图,在对ABC 依次进行轴对称和平移变换后得到111A B C △.(1)在直角坐标系内画出轴对称变换的图形,并说明两次变换的步骤;(2)设点(),P a b 为ABC 的边AB 上任意一点,依次写出两次变换后点P 的对应点的坐标.24.如图,在ABC 中,ABC ∠,ACB ∠的平分线交于点D ,连接AD .(1)+AB AC __________BD CD +(填“>”、“<”或“=”);(2)若140BDC ∠=︒,求BAC ∠的度数;(3)若BAD ∠=α,则BDC ∠=__________(用含α的式子表示).25.(1)如图(1)在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE =BD +CE ;(2)如图(2)将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请给出证明;若不成立,请说明理由.参考答案1.C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.2.A【分析】直接利用关于x轴对称点的性质得出答案.【详解】解:点(2,-1)关于x轴对称的点的坐标为(2,1).故选:A.【点睛】本题考查了关于x轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.3.C【分析】判定三条线段能否构成三角形,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:设三角形的第三边为x,则9-4<x<4+9即5<x<13,∴当x=7时,能与4cm、9cm长的两根木棒钉成一个三角形,故选:C.【点睛】本题考查了三角形的三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.4.D【分析】A.由三角形的角平分线,中线和高的定义,结合线段的定义即可判断,B.根据三角形的内角和定理即可判断,C.根据直角三角形的性质即可判断,D.利用三角形按角分类即可判断.【详解】A.由三角形的角平分线,中线和高的定义,结合线段的定义,可知三角形的中线、角平分线、高都是线段是真命题,B.根据三角形的内角和定理知任意三角形内角和都是180º是真命题,C.根据直角三角形的性质知,直角三角形的两锐角互余是真命题,D.三角形按角分类可分为锐角三角形,直角三角形和钝角三角形故假命题.故选择:D.【点睛】本题考查三角形中的定义与定理的问题,掌握三角形有关的定义与定理,并注意各定义,定理之间的区别与联系是解题关键.5.D【分析】利用垂直平分线的性质即可判断.【详解】A.三角形的三条中线的交点,是重心,这点是三角形的面积6等分的交点,B.三角形的三条角平分线的交点到三边的距离相等,这点叫内心,C.三角形的三条高线的交点叫垂心,分直角三角形6对,D.三角形的三条边的垂直平分线的交点到三个顶点的距离相等叫外心.故选择:D.【点睛】本题考查相线段垂直平分线的性质问题,掌握三角形的相关的知识,注意各概念之间的区别,抓住关键点解决问题.6.D【分析】解此题的关键是三角形全等的判定定理的准确应用.三角形全等的判定定理有:SSS,SAS,ASA,AAS.做题时要找准对应关系,结合判定方法与提供的已知条件仔细验证.【详解】A:∠A=∠A′不是已知边的夹角,所以不全等;B:边不对应,不全等;C:AAA不能判定全等,不符合题意;D:根据题意可得:AC=A′C′,满足SSS,所以全等;故选D.【点睛】此题考查了三角形全等的判定定理,解题时要注意对应顶点的关系,找准对应关系式正确解题的关键.7.A【解析】试题分析:根据三角形的面积,等腰三角形三线合一的性质,全等三角形的判定对各选项分析判断后利用排除法求解.解:A、根据三角形的面积两腰相等,所以腰上的高相等,故本选项正确;B、必须是等腰三角形底边上的高,底边上的中线和顶角的平分线互相重合,故本选项错误;C、顶角相等,但腰长不一定相等,所以三角形不一定相等,故本选项错误;D、两腰相等,但顶角不一定相等,故本选项错误.故选A.考点:等腰三角形的性质;全等三角形的判定.8.A【分析】首先根据三角形内角和可以计算出∠A+∠B的度数,再根据四边形内角和为360°可算出∠1+∠2的结果.【详解】解:∵△ABC中,∠C=50°,∴∠A+∠B=180°﹣∠C=130°,∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣130°=230°,故选A.考点:多边形内角与外角;三角形内角和定理.9.D【详解】①根据作图的过程可知,AD是∠BAC的平分线.故①正确.②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正确.③∵∠1=∠B=30°,∴AD=BD.∴点D在AB的中垂线上.故③正确.④∵如图,在直角△ACD中,∠2=30°,∴CD=12 AD.∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC•CD=14AC•AD.∴S△ABC =12AC•BC=12AC•A32D=34AC•AD.∴S△DAC :S△ABC13AC AD AC AD1344::⎛⎫⎛⎫=⋅⋅=⎪ ⎪⎝⎭⎝⎭.故④正确.综上所述,正确的结论是:①②③④,,共有4个.故选D.10.B【分析】分类讨论:作AB的垂直平分线和坐标轴的交点,以A为圆心AB为半径作圆和坐标轴的交点,以B为圆心AB为半径作圆和坐标轴的交点,根据两边相等的三角形是等腰三角形,可得答案.【详解】作AB的垂直平分线和坐标轴的交点,得到P5,此时AP=BP;以A为圆心AB为半径作圆和坐标轴的交点,得到P2和P6,此时AB=AP;以B为圆心AB为半径作圆和坐标轴的交点,得到P1、P3和P4,此时BP=BA;综上所述:符合条件的点P 共有6个.故选B .【点睛】本题考查了等腰三角形的判定和性质,把所有可能的情况都找出来,不遗漏掉任何一种情况是本题的关键.11.70︒;【分析】根据全等三角形的对应角相等求解即可;【详解】∵ABC DEF ∆≅∆,∴A D ∠=∠,B E ∠=∠,C F ∠=∠,∵30B ∠=︒,80D ∠=︒,∴180308070F ∠=︒-︒-︒=︒.故答案是70︒.【点睛】本题主要考查了全等三角形的性质和三角形内角和,准确分析计算是解题的关键.12.≤;【分析】根据三角形的高的概念得到AM ⊥BC ,根据垂线段最短判断.【详解】解:如图,∵线段AM是△ABC边BC上的高,∴AM⊥BC,由垂线段最短可知,AN≥AM,故答案为:≤.【点睛】本题考查的是中线和高的概念,掌握垂线段最短是解题的关键.13.130︒;【分析】连接AD,利用轴对称的性质解答即可.【详解】解:连接AD,∵D点分别以AB、AC为对称轴,画出对称点E、F,∴∠EAB=∠BAD,∠FAC=∠CAD,∵∠B=61°,∠C=54°,∴∠BAC=∠BAD+∠DAC=180°-61°-54°=65°,∴∠EAF=2∠BAC=130°,故答案为:130°.【点睛】本题考查了轴对称的性质,关键是掌握轴对称的性质.14.18;【分析】过点P作MN⊥AD,根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】过点P作MN⊥AD∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E∴AP⊥BP,PN⊥B C∴PM=PE=9,PE=PN=9∴MN=9+9=18故答案为18.【点睛】此题主要考查了角平分线的性质以及平行线的性质,根据题意作出辅助线是解决问题的关键.15.8【分析】连接AD,由题意易得AD⊥BC,则有三角形BDM的周长为BM+MD+BD,若使△BDM的周长为最小值,则需满足BM+MD为最小值,根据两点之间线段最短可得AD为BM+MD 的最小值,故问题可解.【详解】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC =12BC•AD=12×4×AD=12,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+12BC=6+12×4=6+2=8cm.故答案为:8.【点睛】本题主要考查垂直平分线的性质定理及等腰三角形的性质,关键是根据垂直平分线的性质定理及等腰三角形的性质得到最短路径长,进而可求解.16.12【分析】通过证明ABD ACD △≌△,得到对应边相等,即可得出结.【详解】AD BC ⊥ ,∴在Rt ABD △与Rt ACD △中,AB AC AD AD=⎧⎨=⎩()Rt ABD Rt ACD HL ∴△△≌,则BD CD =,212BC BD cm ==,故答案为:12.【点睛】本题考查了直角三角形全等的判定与性质,熟记基本的判定方法是解题关键.17.30【分析】先根据题意画出距离小岛最近的图形,根据垂直的定义可得90EAG ABF FBG ADC ∠=∠=∠=∠=︒、////EA FB CD ,再根据方位角定义、余角的定义、角的和差、平行线的性质可得30CAB EAG EAC ∠=∠-∠=︒、120ABC ABF CBF ∠=∠+∠=︒、30BCD CBF ∠=∠=︒,再根据三角形的内角和定理、等角对等边、含30°角的三角形的性质进行推导即可得解.【详解】解:当轮船继续向东航行至点D 时,距离小岛最近,此时CD AG ⊥,如图:∵EA AG ⊥,FB AG ⊥,CD AG⊥∴90EAG ABF FBG ADC ∠=∠=∠=∠=︒,////EA FB CD∴30CAB EAG EAC ∠=∠-∠=︒,120ABC ABF CBF ∠=∠+∠=︒,30BCD CBF ∠=∠=︒∴18030ACB CAB ABC ∠=︒-∠-=︒∴60BC AB ==海里∴在Rt BCD 中,1302BD BC ==海里∴轮船继续向东航行30海里距离小岛最近.故答案是:30【点睛】本题考查了方位角、垂直的定义、余角的定义、角的和差、平行线的性质、三角形的内角和定理、等角对等边、含30°角的三角形的性质,能根据垂线段最短的原理画出距离最短的图形是解题的关键.18.这个多边形的边数是7.【详解】试题分析:设这个多边形的边数为n ,根据多边形的内角和公式(n ﹣2)•180°与外角和定理列出方程,求解即可.试题解析:设这个多边形的边数为n ,根据题意,得(n ﹣2)×180°=2×360°+180°,解得n=7.故这个多边形的边数是7.19.(1)见解析;(2)8【分析】(1)根据题意可先作出点A 、B 、C 三点关于y 轴对称的点,然后由图像可求;(2)根据割补法进行求解三角形的面积即可.【详解】解:(1)如图所示:由图像可得:()1,3A ',()4,2B '-,()3,1C '--;(2)11145441315222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯35208822=---=,答:ABC S ∆的面积是8.【点睛】本题主要考查图形与坐标,关键是图形的对称即为点的坐标的对称,进而求解即可.20.见解析【分析】易证BC=EF ,即可证明△ABC ≌△DEF ,可得∠A=∠D .即可解题.【详解】证明:∵BF=CE ,∴BC=EF ,在△ABC 和△DEF 中,BC EFDFB ACE DF AC=⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),∴∠A=∠D .【点睛】本题考查了全等三角形的判定,全等三角形对应角相等的性质,求证△ABC ≌△DEF 是解题的关键.21.见解析【分析】先连接DE 、DF ,然后根据题目中的条件可以证明△EBD ≌△DCF ,从而可以得到DE=DF ,然后根据等腰三角形三线合一即可证明结论成立.【详解】证明:连接DE 、DF,如右图所示,∵AB=AC ,∴∠B=∠C ,在△EBD 和△DCF 中,BE CD B C BD CF =⎧⎪∠=∠⎨⎪=⎩,∴△EBD ≌△DCF (SAS ),∴DE=DF ,∵DG ⊥EF ,∴DG 是等腰△DEF 的中线,∴EG=12EF .【点睛】本题考查了全等三角形的判定和性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(1)见解析(2)成立,理由见解析.【分析】(1)根据等边三角形边长相等的性质和各内角为60︒的性质可求得BCD ACE ∆≅∆,根据全等三角形对应边相等的性质即可求得AE BD =.(2)根据题意画出图形,证明方法与(1)相同.【详解】解:(1)证明:如图1中,ABC ∆ 与DCE ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,180ACB ACD DCE ∠+∠+∠= ,60ACD ∴∠=︒,ACB ACD ACD DCE ∠+∠=∠+∠,即BCD ACE ∠=∠.在BCD ∆和ACE ∆中,BC ACBCD ACE CD CE=⎧⎪∠=∠⎨⎪=⎩,BCD ACE ∴∆≅∆(SAS).BD AE ∴=.即AE=BD,(2)成立AE BD =;理由如下:如图2中,ABC ∆ 、DCE ∆均为等边三角形,BC AC ∴=,CD CE =,60BCA DCE ∠=∠=︒,BCA ACD DCE ACD ∴∠+∠=∠+∠,即BCD ACE ∠=∠,在ACE ∆和BCD ∆中,AC BCBCD ACE CD CE=⎧⎪∠=∠⎨⎪=⎩,()ACE BCD SAS ∴∆≅∆,AE BD ∴=.【点睛】本题考查了等边三角形的性质的运用及全等三角形的判定和性质的运用.解决本题的关键是证明三角形全等,属于中考常考题型.23.(1)见解析,变换的步骤为将ABC 关于y 轴对称,然后向右平移2个单位,再向下平移7个单位;(2)(),a b -,()2,7a b -+-.【分析】(1)根据图像可直接进行解答;(2)由(1)的变换方式直接进行求解点的坐标.【详解】解:(1)如图,变换的步骤为:将ABC 关于y 轴对称,然后向右平移2个单位,再向下平移7个单位,(2)点P 关于y 轴对称的点的坐标为(),a b -,再向右平移2个单位,向下平移7个单位,可得点P 的对应点的坐标为()2,7a b -+-..【点睛】本题主要考查图形与坐标,熟练掌握图形的轴对称变换及平移是解题的关键.24.(1)>;(2)100︒;(3)90α︒+【分析】(1)添加辅助线“延长BD 交AC 于点E ”,根据三角形三边关系定理、不等式的性质可得结论;(2)根据角平分线的定义、三角形内角和定理可得1902BDC BAC ∠=︒+∠,再结合已知条件140BDC ∠=︒即可求得答案;(3)根据三角形三条角平分线交于一点可得12BAD BAC ∠=∠,结合(2)可知1902BDC BAC ∠=︒+∠,等量代换即可得解.【详解】解:(1)延长BD 交AC 于点E ,如图:∵在ABE △中,AB AE BE +>,即AB AE BD DE +>+;在CDE △中,CE DE CD+>∴AB AE CE DE BD DE CD+++>++∴AB AC BD CD +>+.故答案是:>(2)∵BD 、CD 分别是ABC ∠,ACB ∠的平分线∴12DBC ABC ∠=∠,12DCB ACB ∠=∠∴()180BDC DBC DCB ∠=︒-∠+∠1118022ABC ACB ⎛⎫=︒-∠+∠ ⎪⎝⎭()11802ABC ACB =-∠+∠︒()11801802BAC =︒-︒-∠1902BAC =︒+∠∵140BDC ∠=︒∴1901402BAC ︒+∠=︒∴100BAC ∠=︒.(3)∵三角形的三条角平分线交于一点∴12BAD BAC ∠=∠∵由(2)可知1902BDC BAC ∠=︒+∠∴9090BDC BAD α∠=︒+∠=︒+.【点睛】本题考查了三角形的三边关系定理、三角形的内角和定理、角平分线定义、三角形的三条角平分线交于一点等,熟练掌握相关知识点是解题的关键.25.(1)见解析;(2)成立,理由见解析【分析】(1)根据AAS 证明△ADB ≌△CEA ,得到AE =BD ,AD =CE ,即可证明;(2)同理证明△ADB ≌△CEA ,得到AE =BD ,AD =CE ,即可证明;【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°,∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD ,∵在△ADB 和△CEA 中,ABD CAEBDA CEA AB AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE ;(2)∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠CAE =180°﹣α,∴∠CAE =∠ABD ,∵在△ADB 和△CEA 中,ABD CAEBDA CEA AB AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE .【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.。
2023-2024学年全国初中八年级上数学人教版期中考卷(含答案解析)
20232024学年全国初中八年级上数学人教版期中考卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题3分,共15分)1. 下列选项中,哪个是勾股定理的逆定理?A. 直角三角形两直角边的平方和等于斜边的平方B. 任意三角形两边的平方和等于第三边的平方C. 直角三角形斜边的平方等于两直角边的平方和D. 任意三角形两边的平方和等于第三边的平方2. 在平面直角坐标系中,点P(2,3)关于y轴的对称点是?A. P(2,3)B. P(2,3)C. P(2,3)D. P(2,3)3. 下列哪个是等差数列?A. 2,4,6,8,10B. 3,6,12,24,48C. 1,3,9,27,81D. 5,10,15,20,254. 下列哪个是等比数列?A. 2,4,6,8,10B. 3,6,12,24,48C. 1,3,9,27,81D. 5,10,15,20,255. 在一个等差数列中,首项为5,公差为3,第10项是多少?A. 32B. 35C. 38D. 406. 在一个等比数列中,首项为2,公比为3,第4项是多少?A. 18B. 27C. 36D. 457. 下列哪个是勾股数?A. 3,4,5B. 5,6,7C. 8,9,10D. 12,13,14二、填空题(每题4分,共20分)1. 下列数列中,第n项是__________。
2. 在平面直角坐标系中,点P(2,3)关于x轴的对称点是__________。
3. 在一个等差数列中,首项为5,公差为3,第10项是__________。
4. 在一个等比数列中,首项为2,公比为3,第4项是__________。
5. 下列数列中,第n项是__________。
三、判断题(每题3分,共15分)1. 直角三角形两直角边的平方和等于斜边的平方是勾股定理。
()2. 任意三角形两边的平方和等于第三边的平方是勾股定理的逆定理。
()3. 等差数列的任意两项之差是常数。
2024年全新八年级数学上册期中试卷及答案(人教版)
2024年全新八年级数学上册期中试卷及答案(人教版)一、选择题1. 若一个数的平方根是3,那么这个数是( )A. 9B. 9C. 3D. 3答案:A2. 下列哪个数是负数?( )A. 2B. 2C. 0D. 1/2答案:B3. 若一个数的三次方是27,那么这个数是( )A. 3B. 3C. 9D. 9答案:B4. 若一个数的绝对值是5,那么这个数可能是( )A. 5B. 5C. 0D. 1答案:A5. 下列哪个数是正数?( )A. 2B. 0C. 1/2D. 1/2答案:C二、填空题1. 若a的平方根是b,那么a的立方根是_________。
答案:b2. 若a的绝对值是5,那么a可能是_________。
答案:5或53. 若a的三次方是27,那么a的平方是_________。
答案:94. 若a的平方根是b,那么b的平方根是_________。
答案:a5. 若a的绝对值是5,那么a的平方是_________。
答案:25三、解答题1. 若一个数的平方根是4,求这个数。
解:设这个数为x,根据题意,有√x = 4。
解这个方程,得到x= 4^2 = 16。
所以这个数是16。
2. 若一个数的三次方是8,求这个数。
解:设这个数为y,根据题意,有y^3 = 8。
解这个方程,得到y = 2。
所以这个数是2。
3. 若一个数的绝对值是7,求这个数的平方。
解:设这个数为z,根据题意,有|z| = 7。
由于绝对值表示数的大小,不考虑正负,所以z可以是7或7。
无论z是正数还是负数,其平方都是49。
所以这个数的平方是49。
4. 若一个数的平方根是5,求这个数的立方。
解:设这个数为w,根据题意,有√w = 5。
解这个方程,得到w= 5^2 = 25。
求w的立方,得到w^3 = 25^3 = 15625。
所以这个数的立方是15625。
5. 若一个数的绝对值是3,求这个数的立方根。
解:设这个数为v,根据题意,有|v| = 3。
由于绝对值表示数的大小,不考虑正负,所以v可以是3或3。
人教版八年级数学上册期中测试题及参考答案(精编2套)
期中测试题(一)内容:三角形全等三角形轴对称一、选择题1.如图,AE⊥BC, BF⊥AC, CD⊥AB,则△ABC中AC边上的高是哪条垂线段( )A.AEB.CDC.BFD.AF第1题第2题第3题第4题2.如图,在△ABC中,AB的垂直平分线分别交AB,BC于点D,E,连接AE.若AD =4,△ABC的周长为 24,则△ACE 的周长为( )A.12B.16C.18D.203.如图,在△ABC中,∠C=90°,AC=4cm,AB=7cm,AD平分∠BAC交BC于点D,DE⊥AB于点E,EB的长是( )A.3cmB.4 cmC.5cmD.不能确定4.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠OEB=46°,则∠AOC的度数( )A.92°B.88°C.46°D.86°5.如图,在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积( )A.10B.7C.5D.4第5题第6题第7题第8题6.如图,在等边三角形ABC中,D,E分别为边AB,BC上的两个动点,且总使BD=CE,AE与CD相交于点F,AG⊥CD 于点G,以下结论:①△ACE≌△CBD②AF=2FG③AC=2CE.其中正确的有( )A.3个B.2个C.1个D.0个7.如图,如果∠1=100°,∠2=145°,那么∠3的度数是( )A.55°B.65°C.75°D.85°8.如图,AB//CD,∠BCD=90°,AB=2,CD=8,E为AD的中点,连接BE,∠CBE=45°,则BC的长为 ( )A.5B.6C.7D.89.在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是( )A.AC=DFB.∠B=∠EC.BC=EFD.∠C=∠F10.如图,△ABC≌△EBD,AB=4,BD=7,则CE的长度为( )A.1B.2C.3D.4第10题第11题第12题11.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN//BC交AB于点M,交AC于点N,若BM+CN=9,则线段MN的长为( )A.6B.7C.8D.912.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD②∠AMB= 40°③OM平分∠BOC ④MO平分∠BMC.其中正确的结论有( )A.①B.①②C.①②③D.①②④二、填空题13.一木工师傅现有两根木条,木条的长分别为40cm和50cm,他要选择第三根木条,将它们钉成一个三角形木架,设第三根木条长为xcm,则x的取值范围为______.14.如图,点A,C,B,D在同一条直线上,MB=ND,MB//ND,要使△ABM≌△CDN,还需要添加一个条件为______.第14题第15题第16题第17题15.如图,点D在边BC上,△ABC≌△ADE, ∠EAC=40°,则∠B的度数为_____.16.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为______.17.如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是____.18.如图,在锐角三角形ABC外作等边三角形ACD和等边三角形ABE,则∠α的度数为______.第18题第19题第20题19.如图,在等边三角形ABC中,BD⊥AC于点D.若AB=4,则AD=______.20.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP=_____时,以A,B,C为顶点的三角形和以P,Q,A为顶点的三角形全等.三、解答题21.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,AB=DE, BF=CE,AB//DE,求证:△ABC≌△DEF.22.如图,点E在△ABC外部,点D在边BC上,DE交AC于点F,若∠1=∠2 =∠3,AB = AD,求证:(1)∠E=∠C;(2)△ABC≌△ADE.24.如图,AD是△ABC的高,E为AC上一点,BE与AD相交于点F,且BF=AC,FD=CD.(1)求∠ABC的度数.(2)求证:BE⊥AC.25.如图1,以△ABC的两边AB,AC为边分别向外作等边△ABD与等边△ACE.(1)连接BE,CD,求证:△ABE≌△ADC;(2)设BE,DC交于点P,求∠DPE的度数;(3)如图2,若HD=HE,且∠DHE=120°,求证:点H在BC的垂直平分线上.26.在△ABC,AB=AC,点D是直线BC上一点(不与点B,C重合),把线段AD绕着点A逆时针旋转至AE(即AD=AE),使得∠DAE=∠BAC,连接DB,CE.(1)如图①,点D在线段BC上,若∠BAC=90°,则∠BCE=_____.(2)如图②,当点D在线段BC上时,若∠BAC=60°,则∠BCE =_.(3)如图③,设∠BAC=a,∠BCE=β,当点D在线段BC上移动时,a,β的数量关系是什么?请说明理由.(4)设∠BAC=a,∠BCE=β,当点D在直线BC上移动时,请直接写出a,β的数量关系,不用证明.期中测试题(二)内容:三角形全等三角形轴对称一、选择题1.如图,△ABC中,AB=AC,AD⊥BC,下列结论不正确的是( )A.∠B=∠CB.BD=CDC.AB=2BDD.AD平分∠BAC第1题第2题第3题第4题2.如图,△ABC中,点D在BC边上,过D作DE⊥BC交AB于点E,P为DC上的一个动点,连接PA,PE,若PA+PE 最小,则点P满足( )A.PA=PCB.PA=PEC.∠APE=90°D.∠APC=∠DPE3.如图,在△ABC中,AC=2,∠BAC=75°,∠ACB=60°,高BE与AD相交于点H,则DH的长为( )A.4B. 3C.2D.14.如图,AD是△ABC的角平分线,DF⊥AB,,DE=DG,△ADG和△AED的面积分别为60和35,△EDF的面积( )A.25B.5.5C.7.5D.12.55.如果等腰三角形的两边长分别为2和5,那么它的周长为( )A.9B.7C.12D.9或126.如图,△ABC≌△ADE,点D落在BC上,且∠B=60°,则∠EDC的度数等于( )A.45°B.30°C.60°D.75°第6题第7题第8题第9题7.如图,BC=10cm,∠B=∠BAC=15°,AD⊥BC于点D,则AD的长为( )A.3cmB.4cmC.5cmD.6cm8.如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.则AD的长是( )A.5B.6C.7D.89.如图,在Rt△ABC中,∠C=90°,BC<AC.点D,E分别在边AB,BC上,连接DE,将△BDE沿DE折叠,点B的对应点为点Bˊ.若点Bˊ刚好落在边AC上,∠CBˊE=30°,CE=3,则BC的长为( )A.6B.8C.9D.1010.如图,在△ABC中,AD是∠BAC的平分线,AB=8cm,AC=6cm,则S△ABD:S△ACD为( )A.9:16B.3:4C.16:9D.4:3第10题第11题第12题第13题11.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为( )A.1B.2C.3D.412.如图,点P是△ABC内部的一点,点P到三边AB,AC,BC的距离PD=PE=PF,∠BPC=130°,∠BAC的度数( )A.65°B.80°C.100°D.70°13.如图,画∠BAC=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,以下结论:①∠BPC =120°②AP平分∠BAC③AP= PC④BD+CE =BC⑤S△PBD+S△PCE=S△PBC,其中结论正确的是( )A.①②①⑤B. ②③⑤C. ①②⑤D.①②③④二、填空题14.已知点A(a,3)和点B(2,b)关于x轴对称,则(a+b)2025的值为______.第15题第16题第17题第18题15.如图,点P为∠AOB内一点,分别作出点P关于OA,OB的对称点P1,P2,连接P1P2交OA于点M,交OB于点N,△PMN的周长为15,则P1P2长为______.16.如图,DB⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF =______.17.如图,方格纸中是9个完全相同的正方形,则∠1+∠2的值为________.18.如图,△ABC为等边三角形,D,E分别是AC,BC上的点,且AD=CE,AE与BD相交于点 P,BF⊥AE于点F.若PF=4,PD=1,则AE的长为______.19.如图,∠1+∠2+∠3+∠4的度数是______.第19题第20题第21题第22题20.如图,在△ABC中,点D在AB上,∠ACB=70°,现将△ABC中的∠B折过去,使顶点B落在点E处,CD为折痕,且AC交ED于点F,若∠ECA=20°,则∠ACD的大小为______.21.如图,在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C,那么B,C两地相距______.22.如图,∠BOC=60°,A是BO的延长线上一点,OA=12cm,动点P从点A出发,沿AB以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,若点P,Q同时出发,当△OPQ是等腰三角形时,移动的时问是______.三、解答题23.如图,已知AD=AE,∠B=∠C.求证:△ACD≌△ABE.24.如图,在△ABC中,D是BC的中点,DE⊥AB于E, DF⊥AC于点F,且∠BDE=∠CDF.求证:AD平分∠BAC.25.如图,在△ABC中,AD⊥BC于点D,且AD平分∠BAC,CE⊥AB于点E,交AD于点F.(1)求证:BD=CD;(2)若AF=BC,求证:AC-CE=EF.26,如图,在平面直角坐标系中,(1)作出△ABC关于y轴对称的△A1B1C1, 并写出△A1B1C1三个顶点的坐标: A1____,B1____,C1____.(2)△ABC的面积为______.(3)在x轴上找一点P,使PA+PC的值最小.27.如图,BM,CN是△ABC的高,点P在直线BM上,点Q在直线CN上,且BP=AC,CQ=AB.(1)猜想AQ与AP的大小关系,并证明你的结论;(2)判断AQ与AP有何特殊的位置关系?并证明你的结论.28.如图(1),在△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且点B,C在AE的异侧,BD⊥AE于点D,CE⊥AE于点E.(1)求证:①△ABD≌△CAE ②BD=DE+CE;(2)若直线AE绕点A旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE,CE的关系如何?请予以证明.(3)若直线AE绕点A旋转到图(3)位置时(BD>CE),其余条件不变,问BD与DE,CE的关系如何?请直接写出结果,不需证明.期中测试题(一)参考答案一、选择题1-5 CBABC 6-10 BBBCC 11-12 DD二、填空题13.10<x<9014.AB=CD,答案不唯一.15.70º16.360º17. 318.120º19. 220. 5或10三、解答题21.略22.略23(1)45º(2)略24(1)略(2)120º(3)略25(1)90º(2)120º(3)α+β=180º(4)α+β=180º或α=β期中测试题(二)参考答案一、选择题1-5 CDDDC 6-10 CCCCD 11-13 BBA二、填空题14. 115. 1516.150º17.90º18. 919. 300º20. 250º21.200m22.4s或12s三、解答题23.略24.略25.略26(1) (0,-2),(-2,-4) ,(-4,-1)(2)5(3)略27(1)AP=AQ(2)AP⊥AQ28(1)略(2)DE=BD+CE(3)DE=BD+CE11。
2024年最新人教版八年级数学(上册)期中考卷及答案(各版本)
2024年最新人教版八年级数学(上册)期中考卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 3B. 2C. 0D. 12. 已知函数f(x) = 2x + 3,那么f(1)的值为()A. 1B. 1C. 5D. 53. 下列哪个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 三角形4. 已知等差数列{an}的前三项分别为1,3,5,那么第10项的值为()A. 19B. 20C. 21D. 225. 下列哪个数是无理数()A. √2B. √4C. √9D. √16二、判断题5道(每题1分,共5分)1. 0是正数和负数的分界点。
()2. 两个负数相乘,结果是正数。
()3. 任何数乘以1都等于它本身。
()4. 两个数的和与它们的顺序无关。
()5. 任何数除以0都有意义。
()三、填空题5道(每题1分,共5分)1. 一个正数与它的相反数相加,结果是______。
2. 函数f(x) = 2x 3中,当x = 2时,f(x)的值为______。
3. 平行四边形的对边______且______。
4. 等差数列{an}的前n项和为______。
5. 两个无理数相乘,结果可能为______。
四、简答题5道(每题2分,共10分)1. 简述实数的分类。
2. 解释等差数列的通项公式。
3. 什么是函数,给出一个函数的例子。
4. 举例说明平行四边形与矩形的区别。
5. 简述勾股定理的内容。
五、应用题:5道(每题2分,共10分)1. 计算下列表达式的值:3x 5,其中x = 4。
2. 已知函数f(x) = x^2 2x + 1,求f(3)的值。
3. 一个等差数列的前3项分别为2,5,8,求第10项的值。
4. 在一个长方形中,长为8cm,宽为6cm,求其对角线的长度。
5. 已知一个正方形的面积为36cm^2,求其边长。
六、分析题:2道(每题5分,共10分)1. 已知一个等差数列的前5项分别为2,5,8,11,14,求该数列的通项公式。
人教版八年级上册数学期中考试试卷附答案
人教版八年级上册数学期中考试试题一、单选题1.下列各选项中的两个图形属于全等图形的是()A .B .C .D .2.如图,ABC 中,65,50A B ∠=︒∠=︒,点D 在BC 延长线上,则ACD ∠的度数是()A .65B .105C .115D .1253.要使如图所示的五边形木架不变形,至少要再钉上几根木条()A .1根B .2根C .3根D .4根4.如图,是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,则判定图中两三角形全等的条件是()A .SASB .ASAC .AASD .SSS5.如图,∠A =∠D ,BC =EF ,要得到△ABC ≌△DEF ,可以添加()A .DE//AB B .EF//BC C .AB =DED .AC =DF6.将一副直角三角板按如图所示的方式叠放在一起,则图中α∠的度数是()A.15°B.30°C.65°D.75°7.如图,在△ABC中,∠C=90°,AB=10,AD平分∠BAC,交BC边于点D.若CD=3,则△ABD的面积为()A.15B.30C.10D.208.如图,把△ABC纸片沿DE折叠,当点C落在四边形ABDE的外部时,此时测得∠1=110°,∠C=36°,则∠2的度数为()°A.35B.36C.37D.389.如图,AE是△ABC的角平分线,AD是△AEC的角平分线,若∠BAC=80°,则∠EAD =()A.30°B.45°C.20°D.60°10.如图所示,AC和BD相交于O,AO=DO,AB⊥AC,CD⊥BD,那么AB与CD的关系是()A.一定相等B.可能相等也可能不相等C.一定不相等D.增加条件后,它们相等二、填空题11.一个正多边形的每个外角都等于72°,则它的边数是________.12.若等腰三角形的两边长为3和7,则该等腰三角形的周长为__________.13.一个七边形的内角和等于________°.14.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD 于点G,交BE于点H,下面说法正确的有___.①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④AF=FB.15.如图,在△ABC中,∠A=40°,点D为AB的延长线上一点,且∠CBD=120°,则∠C =_____.16.如图,△ABC是直角三角形,∠BAC=90°,AD,AE分别是△ABC的高和中线,AB =6cm,AC=8cm,则△AEC的面积为_____.三、解答题17.(1)利用直尺和圆规作∠BAC的平分线AD交BC于点D(保留作图痕迹,不用写作法);(2)若AB=AC,求证:BD=CD.18.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=40°,∠C=72°,求∠AEC和∠DAE的度数.19.如图,在平面直角坐标系中,已知∠DAO=∠CBO=90°,DO⊥CO于点O,CO平分∠BCD.(1)求证:DO平分∠ADC;(2)若点A的坐标是(﹣3,0),求点B的坐标.20.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,交BC于点D,过D作DE⊥BA 于点E,点F在AC上,且BD=DF.(1)求证:AC=AE;(2)若AB=7.4,AF=1.4,求线段BE的长.21.如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE交于点H,连CH.(1)求证:△ACD≌△BCE;(2)求证:HC平分∠AHE;(3)求∠CHE的度数(用含α的式子表示).22.如图,已知四边形ABCD和直线l,求作四边形ABCD以直线l为对称轴的对称图形A1B1C1D1.23.如图,∠ABD=125°,∠A=50°,求∠ACE的度数.24.已知:如图,点E,A,C在同一条直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.25.(1)如图(1)在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE;(2)如图(2)将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请给出证明;若不成立,请说明理由.参考答案1.B【解析】【分析】利用全等图形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:A、两个图形不能完全重合,不是全等图形,不符合题意;B、两个图形能够完全重合,是全等图形,符合题意;C、两个图形不能完全重合,不是全等图形,不符合题意;D、两个图形不能完全重合,不是全等图形,不符合题意;故选:B.【点睛】本题考查的是全等形的识别、全等图形的基本性质,属于较容易的基础题.2.C【解析】【分析】先利用三角形内角和定理求出∠ACB的度数,然后根据补角的定义求出∠ACD即可.【详解】解:∵∠A=65°,∠B=50°∴∠ACB=180°-∠A-∠B=65°∵∠ACB+∠ACD=180°∴∠ACD=115°故选C.【点睛】本题主要考查了三角形内角和定理和补角的定义,解题的关键在于能够熟练掌握相关知识进行求解.3.B【解析】【分析】三角形具有稳定性,钉上木条后,使五边形变为三角形的组合即可解题.【详解】AC CE,使五边形变为三个三角形,解:如图,钉上木条,根据三角形具有稳定性,可知这样的五边形不变形,故选:B.【点睛】本题考查三角形的稳定性,是基础考点,难度较易,掌握相关知识是解题关键.4.D【解析】【分析】根据作图过程,可知,OA OB CE EF BA CF ====,进而即可得判定图中两三角形全等的条件.【详解】如图,由作图可知,OA OB CE EF BA CF====在AOB 与CEF △中AO CE OB EF AB CF =⎧⎪=⎨⎪=⎩∴AOB ≌CEF △(SSS )故选D【点睛】本题考查了作一个角等于已知角,三角形全等的判定,掌握三角形全等的判定定理是解题的关键.5.B【解析】【分析】根据三角形全等的判定方法求解即可.判定三角形全等的方法有:SSS ,SAS ,AAS ,ASA ,HL(直角三角形).【详解】解:A 、∵DE//AB ,∴∠A =∠D ,又∵BC =EF ,只有两组相等的条件,∴不能判定△ABC ≌△DEF ,不符合题意;B 、∵EF//BC ,∴∠EFC=∠BCF ,又∵∠A =∠D ,BC =EF ,∴△ABC ≌△DEF(AAS),∴可以证明△ABC ≌△DEF ,符合题意;C 、∵AB =DE ,又∵∠A =∠D ,BC =EF ,两边及其一边的对角对应相等不能证明两个三角形全等,∴不能证明△ABC ≌△DEF ,不符合题意;D 、∵AC =DF ,又∵∠A =∠D ,BC =EF ,两边及其一边的对角对应相等不能证明两个三角形全等,∴不能证明△ABC ≌△DEF ,不符合题意.故选:B .6.D【解析】根据三角形内角和定理求出即可.【详解】解:如图,∵ABC ∆和DEF ∆都是直角三角形,且30,45B E ∠=︒∠=︒∴45,60EFD ACB ∠=︒∠=︒∵++180EFD ACB FAC ∠∠∠=︒∴180456075FAC ∠=︒-︒-︒=︒,即75α=︒故选:D.【点睛】此题主要考查了三角形的内角和,熟练掌握三角形内角和定理是解答此题的关键.7.A【解析】【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再利用三角形的面积公式列式计算即可得解.【详解】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=3,∴△ABD的面积=12AB•DE=12×10×3=15.故选:A.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并求出AB边上的高是解题的关键.8.D【解析】【分析】根据折叠性质得出∠C′=∠C=35°,根据三角形外角性质得出∠DOC=∠1-∠C=74°,∠2=∠DOC-∠C′=38°.【详解】解:如图,设C′D与AC交于点O,∵∠C=36°,∴∠C′=∠C=36°,∵∠1=∠DOC+∠C,∠1=110°,∴∠DOC=∠1-∠C=110°-36°=74°,∵∠DOC=∠2+∠C′,∴∠2=∠DOC-∠C′=74°-36°=38°.故选:D.【点睛】本题考查了多边形的内角与外角,熟记多边形的内角和定理及三角形的外角定理是解题的关键.9.C【解析】【分析】根据角平分线的性质即可求解.【详解】∵∠BAC=80°,AE是△ABC的角平分线,∴∠EAC=12∠BAC=40°,∵AD是△AEC的角平分线,∴∠EAD=12∠EAC=20°.故选C.【点睛】考查了三角形的角平分线.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.10.A【解析】根据已知条件证明△OAB ≌△ODC ,即可求解.【详解】∵AB ⊥AC ,CD ⊥BD ,∴∠A =∠D =90°,在△OAB 和△ODC 中,A D OA D AOB DOC O ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△OAB ≌△ODC (ASA ),∴AB =CD ,故选A .【点睛】此题主要考查全等三角形的判定,解题的关键是熟知ASA 判定三角形全等.11.5【解析】【分析】多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角的个数,外角的个数就是多边形的边数.【详解】解:360÷72=5.故它的边数是5.故答案为:5.【点睛】考查了多边形内角与外角,根据正多边形的外角和求多边形的边数是常用的一种方法,需要熟记.12.17【解析】【分析】有两种情况:①腰长为3,底边长为7;②腰长为7,底边长为3,分别讨论计算即可.①腰长为3,底边长为7时,3+3<7,不能构成三角形,故舍去;②腰长为7,底边长为3时,周长=7+7+3=17.故答案为17.【点睛】本题考查等腰三角形的性质,当腰和底不明确的时候,需要分类讨论,并利用三边关系舍去不符合题意的情况.13.900【解析】【分析】根据多边形的内角和公式(2)180n -⋅︒进行计算即可.【详解】解:一个七边形的内角和等于(72)18=9000-︒⋅︒,故答案为:900.【点睛】本题考查了多边形的内角和公式,记住内角和公式是解题的关键.14.①②③【解析】【分析】根据三角形中线的性质可证明①;根据三角形的高线可得∠ABC=∠CAD ,利用三角形外角的性质结合角平分线的定义可求解∠AFC=∠AGF ,可判定②;根据角平分线的定义可求解③;根据已知条件无法判定④.【详解】解:∵BE 是△ABC 的中线,∴AE=CE ,∴△ABE 的面积等于△BCE 的面积,故①正确;∵AD 是△ABC 的高线,∴∠ADC=90°,∴∠ABC+∠BAD=90°,∵∠BAC=90°,∴∠BAD+∠CAD=90°,∴∠ABC=∠CAD,∵CF为△ABC的角平分线,∴∠ACF=∠BCF=12∠ACB,∵∠AFC=∠ABC+∠BCF,∠AGF=∠ACF+∠CAD,∴∠AFC=∠AGF=∠AFG,故②正确;∵∠BAD+∠CAD=∠ACB+∠CAD=90°,∴∠BAD=∠ACD,∴∠BAD=2∠ACF,即∠FAG=2∠ACF,故③正确;因为CF是∠ACB的角平分线,只有AC=BC时,才能得到AF=FB,由已知∠BAC=90°,则有AC<BC,所以AF≠FB根据已知条件无法证明AF=FB,故④错误,故答案为:①②③.【点睛】本题主要考查三角形的中线,高线,角平分线,灵活运用三角形的中线,高线,角平分线的性质是解题的关键.15.80°【解析】【分析】根据三角形的外角定理即可求解.【详解】由三角形的外角性质得,∠C=∠CBD﹣∠A=120°﹣40°=80°.故答案为80°【点睛】此题主要考查三角形的外角定理,解题的关键熟知三角形的外角性质.【解析】【分析】先求出△ABC 的面积,再利用中线的性质求出△AEC 的面积.【详解】△ABC 的面积=12×6×8=24,∵AE 是△ABC 和中线,∴△AEC 的面积=12×△ABC 的面积=12(cm 2),故答案为12cm 2.17.(1)见解析;(2)见解析【解析】(1)利用角平分线的作法得出AD 即可;(2)证明△ABD ≌△ACD 即可得到结论.【详解】解:(1)如图,AD即为所求;(2)∵AD 是∠BAC 的平分线,∴∠BAD=∠CAD ,在△ABD 和△ACD 中,AB ACBAD CAD AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD (SAS ),【点睛】此题主要考查了基本作图以及全等三角形的判定与性质,得出△ABD≌△ACD是解题关键.18.74°,16°【解析】【分析】根据三角形内角和定理求出∠BAC,根据角平分线的定义得到∠BAE=∠CAE=12∠BAC=34°,根据三角形的外角性质求出∠AEC,根据直角三角形的性质求出∠DAE.【详解】解:∵∠BAC+∠B+∠C=180°,∠B=40°,∠C=72°,∴∠BAC=68°,∵AE平分∠BAC,∴∠BAE=∠CAE=12∠BAC=34°,∴∠AEC=∠B+∠BAE=74°,∵AD⊥BC,∴∠ADE=90°,∴∠DAE=90°-∠AEC=16°.【点睛】本题考查的是三角形内角和定理、三角形的高和角平分线,掌握三角形内角和等于180°是解题的关键.19.(1)见解析;(2)(3,0)【解析】【分析】(1)根据角平分线的定义以及等角的余角相等得出∠5=∠6,即可得出结论;(2)过点O作OF⊥CD于F,根据全等三角形的判定和性质即可求解.【详解】解:(1)证明:∵CO平分∠BCD,∠1=∠2∵∠CBO=90°,∴∠2+∠3=90°,∵DO⊥CO,∴∠DOC=90°,∴∠3+∠4=90°,∠1+∠6=90°,∴∠2=∠4,∴∠1=∠2=∠4,∵∠DAO=90°,∴∠4+∠5=90°,∵∠1+∠6=90°,∠1=∠2=∠4,∴∠5=∠6,∴DO平分∠ADC;(2)解:过点O作OF⊥CD于F,∴∠DFO=90°,∵∠DAO=90°,∴∠DFO=∠DAO,在△DFO和△DAO中,56DAO DFO DO DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DFO ≌△DAO (AAS ),∴OA=OF ,同理可得:OF=OB ,∴OA=OB ,∵点A 的坐标是(-3,0),∴点B 的坐标是(3,0).【点睛】本题考查平分线的定义,全等三角形的判定和性质,坐标与图形性质,证明△DFO ≌△DAO 是解题的关键.20.(1)见解析;(2)3【解析】【分析】(1)证明△ACD ≌△AED (AAS ),即可得出结论;(2)在AB 上截取AM=AF ,连接MD ,证△FAD ≌△MAD (SAS ),得FD=MD ,∠ADF=∠ADM ,再证Rt △MDE ≌Rt △BDE (HL ),得ME=BE ,求出MB=AB-AM=6,即可求解.【详解】解:(1)证明:∵AD 平分∠BAC ,∴∠DAC=∠DAE ,∵DE ⊥BA ,∴∠DEA=∠DEB=90°,∵∠C=90°,∴∠C=∠DEA=90°,在△ACD 和△AED 中,C DEA DAC DAE AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△AED (AAS ),(2)在AB 上截取AM=AF ,连接MD ,在△FAD 和△MAD 中,AF AM DAF DAM AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△FAD ≌△MAD (SAS ),∴FD=MD ,∠ADF=∠ADM ,∵BD=DF ,∴BD=MD ,在Rt △MDE 和Rt △BDE 中,MD BD DE DE =⎧⎨=⎩,∴Rt △MDE ≌Rt △BDE (HL ),∴ME=BE ,∵AF=AM ,且AF=1.4,∴AM=1.4,∵AB=7.4,∴MB=AB-AM=7.4-1.4=6,∴BE =12BM =3,即BE 的长为3.【点睛】本题考查了全等三角形的判定与性质、角平分线定义、直角三角形的性质、三角形的外角性质等知识;证明△FAD ≌△MAD 和Rt △MDE ≌Rt △BDE 是解题的关键.21.(1)见解析;(2)见解析;(3)90°-12α【分析】(1)由CA=CB ,CD=CE ,∠ACB=∠DCE=α,利用SAS ,即可判定:△ACD ≌△BCE ;(2)首先作CM ⊥AD 于M ,CN ⊥BE 于N ,由△ACD ≌△BCE ,可得CM=CN ,即可证得HC 平分∠AHE ;(3)由△ACD ≌△BCE ,可得∠CAD=∠CBE ,继而求得∠AHB=∠ACB=α,则可求得∠CHE 的度数.【详解】解:(1)证明:∵∠ACB=∠DCE=α,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,CA CBACD BCE CD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS );(2)证明:过点C 作CM ⊥AD 于M ,CN ⊥BE 于N,∵△ACD ≌△BCE ,,AD BE ∴=∴CM=CN ,∴HC 平分∠AHE ;(3)∵△ACD ≌△BCE ,∴∠CAD=∠CBE ,∴∠AHB=∠ACB=α,∴∠AHE=180°-α,∴∠CHE=12∠AHE=90°-12α.【点睛】此题考查了全等三角形的判定与性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.22.见解析【解析】【分析】从四点向L引垂线并延长,分别找到四点的对称点,然后顺次连接即可.【详解】如图所示,四边形A1B1C1D1即为所求.【点睛】考查的是作简单平面图形轴对称后的图形,其依据是轴对称的性质.基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.23.105°【解析】【分析】根据平角的性质先求出∠ABC,再利用外角定理求出∠ACE的度数.【详解】∵∠ABD=125°,∴∠ABC=180°﹣125°=55°,∴∠ACE=∠ABC+∠A=55°+50°=105°【点睛】此题主要考查三角形的外角,解题的关键是熟知三角形的外角定理.24.见解析【解析】【分析】首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再由条件AB=CE,AC=CD可证出△BAC和△ECD全等,再根据全等三角形对应边相等证出CB=ED.【详解】证明:∵AB∥CD,∴∠BAC=∠ECD,∵在△BAC和△ECD中,AB=EC,∠BAC=∠ECD,AC=CD,∴△BAC≌△ECD(SAS).∴CB=ED.【点睛】本题考查了平行线的性质,全等三角形的判定和性质.25.(1)见解析;(2)成立,理由见解析【解析】【分析】(1)根据AAS证明△ADB≌△CEA,得到AE=BD,AD=CE,即可证明;(2)同理证明△ADB≌△CEA,得到AE=BD,AD=CE,即可证明;【详解】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,ABD CAEBDA CEA AB AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE+AD =BD+CE ;(2)∵∠BDA =∠BAC =α,∴∠DBA+∠BAD =∠BAD+∠CAE =180°﹣α,∴∠CAE =∠ABD ,∵在△ADB 和△CEA 中,ABD CAEBDA CEA AB AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE+AD =BD+CE .【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.。
人教版八年级上册数学期中考试试题含答案
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.在下列与食品标志有关的图案中,不是轴对称图形的是()A .B .C .D .2.一个三角形三边长分别是2,7,x ,则x 的值可以是()A .3B .5C .6D .93.等腰三角形的一个角是80°,则它的顶角的度数是()A .80°B .80°或20°C .80°或50°D .20°4.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于()A .40°B .45°C .50°D .55°5.如图,ABD △≌ACE △,若6AB =,4AE =,则CD 的长度为()A .4B .6C .10D .26.如图,在Rt ABC ∆中,90ACB ︒∠=,BD 是ABC ∠的角平分线交AC 于点D ,DE AB ⊥于E 点,下列四个结论中正确的有()①DE DC=②BE BC =③AD DC =④BDE BDC ≅∆∆A .1个B .2个C .3个D .4个7.如图,∠A=80°,点O 是AB ,AC 垂直平分线的交点,则∠BCO 的度数是()A.40°B.30°C.20°D.10°8.如图所示,在等边△ABC中,E是AC边的中点,AD是BC边上的中线,P是AD上的动点,若AD=3,则EP+CP的最小值为()A.2B.3C.4D.59.如图,在平面直角坐标系中点A、B、C的坐标分别为(0,1),(3,1),(4,3),在下列选项的E点坐标中,不能使△ABE和△ABC全等是()A.(4,﹣1)B.(﹣1,3)C.(﹣1,﹣1)D.(1,3)10.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM 上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为A.16B.32C.64D.128二、填空题11.在平面直角坐标系中,点A(2,﹣3)与点B(2,3)关于_____轴对称.12.如图,五边形ABCDE的外角中,∠1=∠2=∠3=∠4=75°,则∠A的度数是_____.13.如图,△ABC 中,∠A=60°,将△ABC 沿DE 翻折后,点A 落在BC 边上的点A′处.如果∠A′EC=70°,那么∠A′DE 的度数为___.14.如图,△ABC 的面积为2cm 2,AP 与∠B 的平分线垂直,垂足是点P ,则△PBC 的面积为_____cm 2.15.如图,△ABC 是边长为6cm 的等边三角形,BP =4cm ,点Q 为射线BC 边上一点,当CQ 的长为_____时,△PBQ 是直角三角形.16.如图,在ABC 中,80B ∠=︒,BAC ∠和BCD ∠的平分线交于点E ,则E ∠的度数是______.三、解答题17.如图,已知∠ABC 和线段DE ,求作一点P ,使点P 到∠ABC 两边的距离相等,且使PD=PE.(不写作法,保留作图痕迹)18.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.19.如图所示,∠BAC=30°,D为角平分线上一点,DE⊥AC于E,DF∥AC,且交AB于点F.(1)求证:△AFD为等腰三角形;(2)若DF=10cm,求DE的长.20.如图,△ABC和△CDE均为等腰三角形,AC=BC,CD=CE,∠ACB=∠DCE,点D 在线段AB上(与A,B不重合),连接BE.(1)证明:△ACD≌△BCE.(2)若BD=2,BE=5,求AB的长.21.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠DEC=25°,求∠B的度数;(2)求证:直线AD是线段CE的垂直平分线.22.许多数学题目都有多种解法,如题目:如图,已知,∠MAN=120°,AC平分∠MAN.∠ABC+∠ADC=180°.求证:AB+AD=AC.某班第二学习小组经过讨论,提出了三种添加辅助线的方法,请你选择其中一种方法,完成证明.方法一:在AN上截取AE=AC,连接CE:方法二:过点C作CE∥AM交AN于点E方法三:过点C分别作CE⊥AN于点E,CF⊥AM于点F.23.如图,△ABC是等边三角形,AE=CD,AD、BE相交于点P,BQ⊥DA于Q.(1)求∠BPQ的度数;(2)若PQ=3,EP=1,求AD的长.24.如图1,在△ABC中,AC=BC,∠ACB=90°,CE与AB相交于点D,且BE⊥CE,AF⊥CE,垂足分别为点E、F.(1)若AF=5,BE=2,求EF的长.(2)如图2,取AB中点G,连接FC、EC,请判断△GEF的形状,并说明理由.25.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1/cm s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条cm s,是否存在实数x,使得△ACP与△BPQ全等?若件不变.设点Q的运动速度为x/存在,求出相应的x、t的值;若不存在,请说明理由.参考答案1.B【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,进行分析.【详解】A.是轴对称图形,不合题意;B.不是轴对称图形,符合题意;C.是轴对称图形,不合题意;D.是轴对称图形,不合题意.故选:B.【点睛】本题考查了轴对称图形的概念,另外,旋转对称图形和中心对称图形的概念也是常考点,熟记概念是解题关键.2.C【解析】【分析】根据三角形的三边关系,可以得到x的取值范围,进而可得答案.【详解】解:根据三角形的三边关系定理可得:7-2<x<7+2,解得:5<x<9,故选C.【点睛】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.3.B【详解】试题分析:分80°角是顶角与底角两种情况讨论求解.①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.考点:等腰三角形的性质.4.C【详解】【分析】根据三角形外角性质求出∠ACD,根据角平分线定义求出即可.【详解】∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°,∵CE平分∠ACD,∴∠ECD=12∠ACD=50°,故选C.【点睛】本题考查了角平分线定义和三角形外角性质,熟记三角形外角性质的内容是解此题的关键.5.D【解析】ABD≌ACE,∴AD=AE=4,AC=AB=6,∴CD=AC-AD=2,选D.6.C【分析】根据角平分线性质,即可得到DE=DC;根据全等三角形的判定与性质,即可得到BE=BC,△BDE≌△BDC.【详解】解:∵∠ACB=90°,BD是∠ABC的角平分线,DE⊥AB,∴DE=DC,故①正确;又∵∠C=∠BEC=90°,BD=BD,∴Rt△BCD≌Rt△BED(HL),故④正确;∴BE=BC,故②正确;∵Rt△ADE中,AD>DE=CD,∴AD=DC不成立,故③错误;故选C.【点睛】本题主要考查了全等三角形的判定与性质,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.7.D【详解】试题解析:连接OA、OB,80∠=A,∴∠+∠= ,100ABC ACB∵O是AB,AC垂直平分线的交点,∴OA=OB,OA=OC,∴∠OAB=∠OBA,∠OCA=∠OAC,OB=OC,∴∠+∠= ,OBA OCA80∴∠+∠=-=OBC OCB1008020,∵OB=OC,∴∠=∠= ,BCO CBO10故选D.点睛:线段的垂直平分线上的点到线段两个端点的距离相等.8.B【详解】由等边三角形的性质得,点B,C关于AD对称,连接BE交AD于点P,则EP+CP=BE最小,又BE=AD,所以EP+CP的最小值是3.故选B.点睛:本题主要考查了等边三角形的性质和轴对称的性质,求一条定直线上的一个动点到定直线的同旁的两个定点的距离的最小值,常用的方法是,①确定两个定点中的一个关于定直线的对称点;②连接另一个定点与对称点,与定直线的交点就是两线段和的值最小时,动点的位置.9.D【分析】因为△ABE与△ABC有一条公共边AB,故本题应从点E在AB的上边、点E在AB的下边两种情况入手进行讨论,计算即可得出答案.【详解】△ABE与△ABC有一条公共边AB,当点E在AB的下边时,点E有两种情况①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点E在AB的上边时,坐标为(﹣1,3);点E的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).故选:D.【点睛】本题主要考查了全等三角形的判定,熟练掌握相关判定定理是解题关键.10.B【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°−120°−30°=30°,又∵∠3=60°,∴∠5=180°−60°−30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为2n-1,∴△A6B6A7的边长为:26-1=32.故选B.【点睛】此题考查等边三角形的性质,解题关键在于利用其性质得出规律.11.x【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.【详解】∵关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,∴点A(2,﹣3)与点B(2,3)关于x轴对称.故答案为x.【点睛】本题主要考查了点关于x轴对称的性质,熟练掌握相关概念是解题关键. 12.120°.【分析】根据多边形的外角和求出与∠A相邻的外角的度数,然后根据邻补角的和等于180°列式求解即可.【详解】∵∠1=∠2=∠3=∠4=75°,∴与∠A相邻的外角=360°﹣75°×4=360°﹣300°=60°,∴∠A=180°﹣60°=120°.故答案为120°.【点睛】本题主要考查了多边形外角和定理,熟练掌握相关概念是解题关键. 13.65°.【解析】试题分析::∵∠AEA′=180°﹣∠A′EC=180°﹣70°=110°,又∵∠A′ED=∠AED=12∠AEA′=55°,∠DA′E=∠A=60°,∴∠A′DE=180°﹣∠A′ED﹣∠DA′E=180°﹣55°﹣60°=65°.故答案是65°.考点:翻折变换(折叠问题).14.1【分析】延长AP交BC于点Q,则由条件可知S△ABP=S△BQP,S△APC=S△PQC,则阴影部分面积为△ABC 的一半,可得出答案.【详解】如图,延长AP交BC于点Q,∵AP垂直∠ABC的平分线BP于P,∴AP=QP,∴△ABP与△BQP等底同高,∴S△ABP=S△BQP,同理可得:S△APC=S△PQC,∴S 阴影=12S △ABC =1cm 2,故答案为:1.【点睛】本题主要考查了三角形面积的求取,掌握“等底同高”是解题关键.15.4cm 或2cm ,【分析】根据含30°的直角三角形的性质可求BQ ,再根据线段的和差关系即可求解.【详解】∵△ABC 是等边三角形,∴∠B =60°,如图1,当∠PQB =90°时,BQ =12BP =2cm ,CQ =6﹣2=4cm ;如图2,当∠BPQ =90°时,BQ =2BP =8cm ,CQ =8﹣6=2cm .故当CQ 的长为4cm 或2cm 时,△PBQ 是直角三角形.故答案为:4cm 或2cm .【点睛】本题主要考查了三角形的动点问题与直角三角形的判定及性质,熟练掌握相关概念是解题关键.16.40°【分析】根据角平分线的性质可得∠EAC=12∠BAC,∠ECD=12∠BCD,最后根据三角形外角的性质解答即可.【详解】解:∵∠BAC的平分线与∠BCD的平分线交于点E,∴∠EAC=12∠BAC,∠ECD=12∠BCD,∵∠BCD-∠BAC=∠B=80°,∴∠ECD-∠EAC=12(∠BCD-∠BAC)=40°,∵E是△ACE的外角∴∠E=∠ECD-∠EAC=40°.故答案为40°.【点睛】本题主要考查了三角形内角和定理、角平分线的定义以及三角形的外角的性质等知识点,灵活利用三角形外角的性质是解答本题的关键.17.见解析.【分析】作线段DE的垂直平分线MN,作∠ABC的角平分线BO交MN于点P,点P即为所求.【详解】如图,点P即为所求.【点睛】本题主要考查了线段垂直平分线与角平分线的画图,熟练掌握相关方法是解题关键. 18.答案见解析【分析】由BE =CF 可得BF =CE ,再结合AB =DC ,∠B =∠C 可证得△ABF ≌△DCE ,问题得证.【详解】解∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE .在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DCE ,∴∠A =∠D .【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.19.(1)见解析;(2)DE =5cm .【分析】(1)利用平行线和角平分线的性质,证得等角,利用等角对等边这一判定定理证明△AFD 为等腰三角形.(2)AD 是角平分线,易证∠GFD =30°,又△GFD 是直角三角形,所以30°锐角所对的直角边等于斜边的一半这一性质,求出DE =5.【详解】(1)证明:如图所示,∵DF ∥AC ,∴∠3=∠2,∵AD 是角平分线,∴∠1=∠2,∴∠1=∠3,∴FD=FA,∴△AFD为等腰三角形.(2)如图,过D作DG⊥AB,垂足为G,∵∠1=∠2=12∠BAC,∠BAC=30°,∴∠1=15°,又∵∠1=∠3,∴∠1=∠3=15°,∴∠GFD=∠1+∠3=15°+15°=30°,在Rt△FDG中,DF=10cm,∠GFD=30°,∴DG=5cm,∵AD为∠BAC的平分线,DE⊥AC,DG⊥AB,∴DE=DG=5cm.【点睛】本题主要考查了角平分线与平行线性质及等腰三角形的判定,正确作出辅助线是解题关键. 20.(1)见解析(2)7【分析】(1)利用SAS即可证得△ACD≌△BCE;(2)根据全等三角形的性质可知AD=BE=5,进而即可求得AB.【详解】(1)证明:∵∠ACB=∠DCE,∴∠ACD=∠BCE,在△ACD和△BCE中,AC BC ACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS);(2)解:由(1)知:△ACD≌△BCE,∴AD=BE=5,∴AB=AD+BD=5+2=7.【点睛】本题考查全等三角形的判定及性质,熟练掌握各个全等三角形的判定定理是解题关键. 21.(1)∠B=40°;(2)见解析.【分析】(1)依据角平分线的的性质,即可得出DE=DC,进而得出∠BDE的度数,再根据DE⊥AB,即可得出∠B的度数;(2)依据全等三角形的对应边相等,即可得到AE=AC,ED=DC,进而得到点D在CE的垂直平分线上,点A在CE的垂直平分线上.【详解】(1)∵∠ACB=90°,AD平分∠BAC,DE⊥AB,∴DE=DC,∴∠DEC=∠DCE=25°,∴∠BDE=50°,又∵DE⊥AB,∴Rt△BDE中,∠B=90°﹣∠BDE=90°﹣50°=40°;(2)∵DE⊥AB,∴∠AED=90°=∠ACB,又∵DE=DC,AD=AD,∴△AED≌△ACD(HL),∴ED=DC,AE=AC,∴点D在CE的垂直平分线上,点A在CE的垂直平分线上,∴直线AD是线段CE的垂直平分线.【点睛】本题主要考查了角平分线的性质与判定与判断三角形全等的综合运用,熟练掌握相关概念是解题关键.22.见解析.【分析】在AN上截取AE=AC,连接CE,先证明△ACE是等边三角形,得出∠AEC=60°,AC=EC=AE,再证明△ADC≌△EBC,得出AD=BE,即可得出结论.【详解】证明:在AN上截取AE=AC,连接CE,如图所示:∵AC平分∠MAN,∠MAN=120°,∴∠CAB=∠CAD=60°,∴△ACE是等边三角形,∴∠AEC=60°,AC=EC=AE,又∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,∴∠ADC=∠EBC,在△ADC和△EBC中,∵∠DAC=∠BEC,∠ADC=∠EBC,AC=EC,∴△ADC≌△EBC(AAS),∴AD=BE,∴AB+AD=AB+BE=AE,∴AB+AD=AC.【点睛】本题主要考查了三角形全等的判定,熟练掌握相关概念是解题关键.23.(1)60°;(2)7.【分析】(1)根据SAS证明△ABE≌△CAD,然后根据全等三角形的性质得出∠ABE=∠CAD,进而解答即可;(2)根据含30°的直角三角形的性质解答即可.【详解】解:(1)∵△ABC 为等边三角形,∴AB=AC ,∠BAC=∠C=60°,在△ABE 与△CAD 中,AB AC BAC C AE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CAD (SAS )∴∠ABE=∠CAD ,AD=BE ,∴∠BPQ=∠BAD+∠ABE=∠BAD+∠CAD=60°;(2)∵BQ ⊥AD ,∠BPQ=60°,∴∠PBQ=30°,∴BP=2PQ=6,又∵AD=BE ,∴BE=BP+PE=6+1=7.【点睛】本题考查了全等三角形的判定与性质、含30度角的直角三角形.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具,在判定三角形全等时,关键是选择恰当的判定条件.24.(1)EF =3;(2)△GEF 为等腰直角三角形;理由见解析.【分析】(1)证得∠ACF =∠CBE ,由AAS 证得△ACF ≌△CBE 得出CF =BE =2,AF =CE =5,即可得出结果;(2)连接CG ,证得CG ⊥AB ,∠BCG =12∠ACB =45°,则∠CBG =45°,推出∠GCB =∠CBG =45°,得出CG =BG ,易证∠FAD =∠EBG ,由△ACF ≌△CBE 得出CF =BE ,∠CAF =∠BCE ,证出∠FAD =∠GCD ,∠EBG =∠FCG ,由SAS 证得△CFG ≌△BEG 得出FG =EG ,∠CGF =∠EGB ,由∠CGF+∠FGD =90°,得出∠FGD+∠EGB =90°,即∠FGE =90°,即可得出结论.【详解】(1)∵BE⊥CE,∴∠BEC=90°,∵∠ACB=90°,∴∠BEC=∠ACB,∴∠ACF+∠BCE=∠BCE+∠CBE=90°,∴∠ACF=∠CBE,∵AF⊥CE,∴∠AFC=90°,在△ACF和△CBE中,∵∠ACF=∠CBE,∠AFC=∠BEC,AC=BC,∴△ACF≌△CBE(AAS),∴CF=BE=2,AF=CE=5,∵EF=CE﹣CF,∴EF=5﹣2=3;(2)△GEF为等腰直角三角形;理由如下:连接CG,如图2所示:∵AC=BC,AG=BG,∴CG⊥AB,∠BCG=12∠ACB=12×90°=45°,∴∠CBG=90°﹣45°=45°,∴∠GCB=∠CBG=45°,∴CG=BG,在△ADF和△BDE中,∵∠AFD=∠BED,∴∠FAD=∠EBG,由(1)证可知:△ACF≌△CBE,∴CF=BE,∠CAF=∠BCE,∵∠CAF+∠FAD=∠GCD+∠BCE=45°,∴∠FAD=∠GCD,∴∠EBG=∠FCG,在△CFG与△BEG中,∵CG=BG,∠FCG=∠EBG,CF=BE,∴△CFG≌△BEG(SAS),∴FG=EG,∠CGF=∠EGB,∵∠CGF+∠FGD=90°,∴∠FGD+∠EGB=90°,即∠FGE=90°,∴△FGE是等腰直角三角形.【点睛】本题主要考查了全等三角形性质及判定的综合运用,熟练掌握相关概念是解题关键.25.(1)全等,垂直,理由详见解析;(2)存在,11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩【分析】(1)在t=1的条件下,找出条件判定△ACP和△BPQ全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ=90°,即可判断线段PC和线段PQ的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,{AP BQ A B AC BP=∠=∠=∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90*.∴∠CPQ=90°,即线段PC 与线段PQ 垂直;(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt=-⎧⎨=⎩解得11t x =⎧⎨=⎩;②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t=⎧⎨=-⎩解得:232t x =⎧⎪⎨=⎪⎩综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等.【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.。
2024年人教版初二数学上册期中考试卷(附答案)
2024年人教版初二数学上册期中考试卷(附答案)一、选择题(每题1分,共5分)1.下列哪个数是质数?A. 4B. 6C. 7D. 92.下列哪个图形是轴对称图形?A. 正方形B. 矩形C. 梯形D. 圆3.下列哪个不等式成立?A. 3x < 5B. 2x > 8C. 4x = 12D. 5x ≤ 154.下列哪个数是平方数?A. 3B. 4C. 5D. 65.下列哪个函数是一次函数?A. y = 2x + 3B. y = x^2C. y = 3x^3D. y = 4x + 5x二、判断题(每题1分,共5分)1.两个偶数的和一定是偶数。
()2.一个等腰三角形的底边长度是腰长的一半。
()3.一个正方形的对角线长度等于边长的根号2倍。
()4.一个数的立方根等于它的平方根的平方。
()5.两个相邻的整数一定互质。
()三、填空题(每题1分,共5分)1.一个正方形的周长是20厘米,它的边长是______厘米。
2.一个长方体的长、宽、高分别是2厘米、3厘米、4厘米,它的体积是______立方厘米。
3.一个等腰三角形的底边长是10厘米,腰长是8厘米,它的面积是______平方厘米。
4.一个数是另一个数的两倍,它们的差是______。
5.一个一次函数的斜率是2,它经过点(1,3),这个函数的解析式是______。
四、简答题(每题2分,共10分)1.简述平行四边形的性质。
2.简述一次函数的定义。
3.简述等差数列的定义。
4.简述平方根的定义。
5.简述圆的性质。
五、应用题(每题2分,共10分)1.一个长方形的长是10厘米,宽是6厘米,求它的周长和面积。
2.一个等腰三角形的底边长是8厘米,腰长是5厘米,求它的面积。
3.一个一次函数的斜率是3,它经过点(2,5),求这个函数的解析式。
4.一个数的立方是64,求这个数。
5.一个圆的半径是4厘米,求它的周长和面积。
六、分析题(每题5分,共10分)1.分析正方形的性质,并举例说明。
人教版八年级上册数学期中考试试卷附答案
人教版八年级上册数学期中考试试题一、单选题1.下列图案中不是轴对称图形的是()A .B .C .D .2.以下长度的三条线段,能组成三角形的是()A .2,2,5B .2,3,5C .2,3,6D .2,3,43.与点(5,3)P -关于y 轴对称的点的坐标是()A .(5,3)B .(5,3)--C .(3,5)-D .(3,5)-4.在一个直角三角形中,一个锐角等于52°,则另一个锐角的度数是()A .28°B .38°C .45°D .58°5.一个多边形每一个外角都等于20°,则这个多边形的边数为()A .12B .14C .16D .186.如图,△OCA ≌△OBD ,AO =3,CO =2,则AB 的长为()A .1B .3C .4D .57.如图,在ABC 中,8AB =,5AC =,AD 为中线,则ABD △与ACD △的周长之差为()A .2B .3C .4D .58.如图,AB =AC ,若要使△ABE ≌△ACD ,则添加的一个条件不能是()A .∠B =∠C B .BE =CD C .BD =CE D .∠ADC =∠AEB9.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠BCD ,AD 过点P ,且与AB 垂直,若AD =8,则点P 到BC 的距离是()A .3B .4C .5D .610.如图,ABC 是等边三角形,AD 是BC 边上的中线,点E 在AD 上,且12DE BC =,则AFE ∠=()A .100°B .105°C .110°D .115°二、填空题11.如图,一般轮船按箭头所示方向行驶,C 处有一灯塔,当轮船从A 点行驶到B 点时,∠ACB =_____°.12.如图,要测量河岸相对的两点A 、B 之间的距离,已知AB 垂直于河岸BF ,现在BF 上取两点C、D,使CD=CB,过点D作BF的垂线ED,使点A、C、E在一条直线上,若ED =65米,则AB的长是___.13.已知等腰三角形的两边长是5和12,则它的周长是______________;14.在 ABC中,AB=AC=7,∠C=60°,则BC的长为______.15.如图,在 ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交AB点E,交BC 于点F,若BF=2,则BC的长为_____.16.如图,将△ABC沿着DE对折,点A落到A′处,若∠BDA′+∠CEA′=70°,则∠A=_____.三、解答题17.若一个多边形的内角和比外角和多540°,求这个多边形的边数.18.如图,AB=DC,AC=BD.求证:∠BAC=∠CDB.19.已知在 ABC中,∠BAC=120°,AB=AC,AD⊥AC交BC于D,AD=2.(1)求∠C的度数;(2)求DC的长度.20.已知:如图,△ABC中,∠A=90°,BC的垂直平分线DE交BC于点E,交AC于点D.(1)若∠C=35°,求∠DBA的度数;(2)若△ABD的周长为30,AC=18,求AB的长.21.如图所示,在△ABC中,BE平分∠ABC,DE∥BC.(1)求证:△BDE是等腰三角形;(2)若∠A=35°,∠C=70°,求∠BDE的度数.22.如图,AC与BD交于点E,且AC=DB,AB=DC.求证:△ABE≌△DCE.23.如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)作出 ABC 关于y 轴的对称图形A B C '''V ;(2)写出点,,A B C '''的坐标;(3)若坐标轴上存在一点E ,使 EBC 是以BC 边为底边的等腰三角形,直接写出点E 的坐标.(4)在y 轴上找一点P ,使PA +PC 的长最短.24.如图,已知AB=DC ,∠ABD=∠DCA .求证:AC=BD25.已知:如图,BD 为 ABC 的角平分线,且BD =BC ,E 为BD 延长线上的一点,BE =BA .(1)AD 与CE 相等吗?为什么;(2)若∠BCD =75°,求∠ACE 的度数;(3)若,BCE ACE ∠α∠β==,则,αβ之间满足一定的数量关系,试说明这个结论.参考答案1.B【解析】【分析】轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合,根据轴对称图形的定义逐一判断即可.【详解】解:选项A是轴对称图形;故A不符合题意;选项B不是轴对称图形;故B符合题意;选项C是轴对称图形;故C不符合题意;选项D是轴对称图形;故D不符合题意;故选B【点睛】本题考查的是轴对称图形的识别,掌握“轴对称图形的定义”是解本题的关键.2.D【解析】【分析】三角形的三条边必须满足:任意两边之和>第三边,任意两边之差<第三边.【详解】解:A、2+2<5,故不能组成三角形,不符合题意;B、2+3=5,不能组成三角形,不符合题意;C、3+2<6,不能组成三角形,不符合题意;D、2+3>4,能组成三角形,符合题意.故选:D.【点睛】本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和>最大的数就可以.3.B【解析】根据关于y 轴对称的点的坐标纵坐标不变,横坐标变为原来的相反数求解即可.【详解】解:点(5,3)P -关于y 轴对称的点的坐标是(5,3)--,故选:B .【点睛】本题考查了关于y 轴对称的点的坐标变化规律,解题关键是明确关于y 轴对称的点的坐标特点.4.B【解析】【分析】利用直角三角形的两锐角互余直接计算即可.【详解】解:一个锐角等于52°,则另一个锐角的度数是905238,°-°=°故选B【点睛】本题考查的是直角三角形的两锐角互余,掌握“直角三角形的角的性质”是解本题的关键.5.D【解析】【分析】由题意可知此多边形为正多边形,根据多边形外角和的性质求解即可.【详解】解:由题意可知此多边形为正多边形,则正多边形的边数为3602018︒÷︒=故选D【点睛】此题考查了多边形的外角和,关键是掌握多边形的外角和为360°.6.D【解析】【分析】因为△OCA ≌△OBD ,所以CO =BO =2,进而可求出AB 的长.∵△OCA ≌△OBD ,∴CO =BO =2,∴AB =AO+BO =2+3=5,故选:D .【点睛】本题考查全等三角形的性质.熟知若两个三角形全等,则其对应边相等、对应角相等是解答本题的关键.7.B【解析】【分析】根据题意易得BD=CD ,然后根据三角形周长公式及题意可直接进行求解.【详解】解:∵AD 为中线,∴BD=CD ,∵8AB =,5AC =,∴8ABD C AB AD BD AD BD =++=++ ,5ACD C AC AD CD AD BD =++=++ ,∴853ABD ACD C C -=-= ;故选B .【点睛】本题主要考查三角形的中线,熟练掌握三角形的中线是解题的关键.8.B【解析】【分析】已知条件AB=AC ,还有公共角∠A ,然后再结合选项所给条件和全等三角形的判定定理进行分析即可.【详解】A 、添加∠B=∠C 可利用ASA 定理判定△ABE ≌△ACD ,故此选项不合题意;B 、添加BE=CD 不能判定△ABE ≌△ACD ,故此选项符合题意;C、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;D、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;故选B.9.B【解析】【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【详解】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠BCD,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选:B.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.10.B【解析】【分析】由ABC 是等边三角形,可得∠B=60°,由AD 是BC 边上的中线,可得BD=CD=12BC ,AD ⊥BC ,由12DE BC =,ED=CD ,可求∠ECD=45°,由三角形外角性质可求∠AFC=105°.【详解】解:∵ABC 是等边三角形,∴∠B=60°,AB=AC ,∵AD 是BC 边上的中线,∴BD=CD=12BC ,AD ⊥BC ,∵12DE BC =,∴ED=CD ,∠EDC=90°,∴∠ECD=∠DEC=45°,∵∠AFC 是△FBC 的外角,∴∠AFC=∠B+∠FCD=60°+45°=105°.故选择:B .【点睛】本题考查等边三角形性质,等式性质,等腰三角形判定与性质,三角形外角性质,掌握等边三角形性质,等式性质,等腰三角形判定与性质,三角形外角性质是解题关键.11.40【解析】【分析】根据三角形的外角性质求解即可.【详解】解:如图,∵∠CBD =∠A+∠C ,∴∠C =∠CBD ﹣∠A=70°﹣30°=40°,故答案为:40.【点睛】本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.12.65【解析】【分析】由AB 、ED 均垂直于BD ,即可得出90ABC EDC ∠=∠=︒,结合CD CB =、∠=∠ACB ECD 即可证出()ABC EDC ASA ∆≅∆,由此即可得出65AB ED ==,此题得解.【详解】解:AB BD ⊥ ,ED AB ⊥,90ABC EDC ∴∠=∠=︒,在ABC ∆和EDC ∆中,90ABC EDC BC DC ACB ECD ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,()ABC EDC ASA ∴∆≅∆,65AB ED ∴==.故答案为:65.【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练掌握全等三角形的判定定理()ASA .本题属于基础题,难度不大,解决该题型题目时,熟练掌握全等三角形的判定定理是关键.13.29【解析】【分析】没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:当5为腰长时,∵5+5<12,故不能组成三角形,当12为腰长时,边长分别为:5,12,12,∵5+12>12,故能组成三角形,故周长为:5+12+12=29;故答案为:29.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,同时需要验证各种情况是否能构成三角形进行解答.14.7【解析】【分析】先由“有一个角为60︒的三角形是等边三角形”可得,BC AC AB ==从而可得答案.【详解】解: ABC 中,AB =AC =7,∠C =60°,ABC ∴ 为等边三角形,7,BC AC AB \===故答案为:715.6【解析】如图,连接,AF 求解30,B C Ð=Ð=°证明90,2,FAC AF Ð=°=再利用含30°的直角三角形的性质可得答案.【详解】解:如图,连接,AF AB =AC ,∠BAC =120°,30,B C ∴∠=∠=︒EF 是AB 的垂直平分线,BF =2,2,30,FB FA FAB B \==Ð=Ð=°90,\Ð=Ð-Ð=°FAC BAC BAF\==24,CF AFBC BF CF\=+=+=24 6.故答案为:6【点睛】本题考查的是等腰三角形的判定与性质,线段垂直平分线的性质,含30°的直角三角形的性质,熟悉等腰三角形与含30°的直角三角形的性质是解本题的关键.16.35°【解析】【分析】先根据折叠性质可求得∠A′DE=∠ADE,∠A′ED=∠AED,再和平角性质可求得根据平角定义和已知可求得∠ADE+∠AED=145°,然后利用三角形的内角和定理即可求得∠A的度数.【详解】解:∵将△ABC沿着DE对折,A落到A′,∴∠A′DE=∠ADE,∠A′ED=∠AED,∴∠BDA′+2∠ADE=180°,∠A′EC+2∠AED=180°,∴∠BDA′+2∠ADE+∠A′EC+2∠AED=360°,∵∠BDA′+∠CEA′=70°,∴∠ADE+∠AED=145°,∴∠A=180°-(∠ADE+∠AED)=180°-145°=35°,故答案为:35°.【点睛】本题考查了折叠的性质、平角定义和三角形的内角和定理,熟练掌握折叠的性质是解答的关键.17.7【解析】【分析】要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.【详解】设这个多边形是n 边形,则180°×(n-2)=540°+360°,解得n=7.【点睛】本题考查多边形的内角和与外角和、方程的思想,解题的关键是掌握内角和的公式与外角和的特征.18.证明见解析【解析】【分析】由已知条件结合公共边,BC CB =证明(),ABC DCB SSS V V ≌从而可得结论.【详解】解: AB =DC ,AC =BD ,,BC CB =(),ABC DCB SSS \V V ≌.BAC CDB \Ð=Ð【点睛】本题考查的是全等三角形的判定与性质,掌握“利用边边边公理判定两个三角形全等”是解本题的关键.19.(1)30°(2)4【解析】【分析】(1)利用等腰三角形的性质可得()1180,2B C BAC Ð=Ð=°-Ð从而可得答案;(2)利用含30°的直角三角形的性质可得2,CD AD =从而可得答案.(1)解: ∠BAC =120°,AB =AC ,()118030.2B C BAC \Ð=Ð=°-Ð=°(2)解: AD ⊥AC ,AD =2,30,C ∠=︒2 4.CD AD \==【点睛】本题考查的是等腰三角形的性质,含30°的直角三角形的性质,掌握“等边对等角,直角三角形中,30°所对的直角边等于斜边的一半”是解本题的关键.20.(1)20°;(2)12.【解析】【分析】(1)根据线段的垂直平分线的性质得到CD BD =,根据三角形内角和定理计算即可;(2)根据三角形的周长公式计算.【详解】解:(1)DE 是BC 的垂直平分线,CD BD ∴=,35CBD C ∴∠=∠=︒,70ADB C CBD ∴∠=∠+∠=︒,ABC ∆ 中,90A ∠=︒,9020DBA BDA ∴∠=︒-∠=︒;(2)ABD ∆ 的周长为30,CD BD =,30AB AD BD AB AD CD AB AC ∴++=++=+=,18AC = ,301812AB ∴=-=.21.(1)见解析;(2)105°.【解析】(1)由角平分线和平行线的性质可得到∠DBE=∠DEB ,可证得结论;(2)由∠A =35°,∠C =70°可求出∠ABC=75°,然后利用角平分线和平行线的性质可得到∠BDE=∠DEB 即可求解.【详解】(1)证明:∵BE 平分∠ABC ,∴∠DBE =∠CBE ,∵DE ∥BC ,∴∠DEB =∠CBE ,∴∠DBE =∠DEB ,∴DB =DE ,∴△BDE 是等腰三角形;(2)∵∠A =35°,∠C =70°,180180357075ABC A C ∴∠=︒-∠-∠=︒-︒-︒=︒,∵DE ∥BC ,180BDE DBC ∴∠+∠=︒,18075105BDE ∴∠=︒-︒=︒.22.证明见解析.【解析】首先连接AD ,由AC=DB ,AB=DC ,利用SSS ,即可证得△ABD ≌△DCA ,从而证出∠B =∠C ,再利用AAS 即可得证.【详解】证明:连结AD在△ABD 和△DCA 中BD AC AB DC AD DA =⎧⎪=⎨⎪=⎩∴△ABD ≌△DCA (SSS)∴∠B =∠C在△ABE 和△DCE 中B C AEB DEC AB DC ∠∠⎧⎪∠∠⎨⎪=⎩==∴△ABE ≌△DCE (AAS)23.(1)作图见解析(2)()()()1,5,1,0,4,3.A B C '''(3)()4,-0或()0,4(4)作图见解析【解析】(1)分别确定,,A B C 关于y 轴的对称点,,,A B C '''再顺次连接,,A B C '''即可;(2)根据图1,,A B C '''的位置可得其坐标;(3)根据网格图的特点画BC 的垂直平分线,则垂直平分线与坐标轴的交点符合要求;(4)由(1)得:,A A '关于y 轴对称,所以连接A C '交y 轴于,P 可得P 是符合要求的点.(1)解:如图1,A B C '''V 是所求作的三角形,(2)解:由图1可得:()()()1,5,1,0,4,3.A B C '''(3)解:如图1,BEC △为等腰三角形,且BC 为底边,根据网格图的特点画BC 的垂直平分线交坐标轴于12,,E E 则()()124,0,0,4.E E -(4)解:如图2,由(1)得:,A A '关于y 轴对称,所以连接A C '交y 轴于,P 则,PC PA PC PA A C ⅱ+=+=此时PA PC +最短,所以P 即为所求作的点.【点睛】本题考查的是轴对称的作图,线段垂直平分线的性质,等腰三角形的定义,利用轴对称的性质确定线段和的最小值,熟练的应用轴对称的性质是解本题的关键.24.证明见解析.【解析】【分析】设AC 与BD 的交点为M,根据AAS 可判定△ABM ≌△DCM ,进而得出对应边相等,从而证出AC=BD .【详解】证明:设AC 与BD 的交点为M,在△ABM 和△DCM 中AMB DMC ABD DCA AB DC ∠∠⎧⎪∠∠⎨⎪=⎩==∴△ABM ≌△DCM (AAS)∴CM=BM ,AM=DM∴CM+AM=BM+DM∴AC=BD【点睛】本题考查了全等三角形的判定与性质,熟练掌握相关的定理是解题的关键,全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .25.(1),AD CE 证明见解析(2)30°(3)2180,a b -=°理由见解析【解析】【分析】(1)由SAS 证明△ABD ≌△EBC ,根据全等三角形的性质即可得出AD =CE ;(2)根据等腰三角形的性质可得∠BCD =∠BDC =75°,由三角形的内角和以及角平分线的定义得出∠DBC =∠ABD =30°,再根据全等三角形的性质和三角形的内角和即可求解;(3)根据等腰三角形的性质可得∠BCD =∠BDC ,由角平分线的定义得∠DBC =∠ABD ,再根据全等三角形的性质和三角形的内角和得∠ACE =∠ABD =∠DBC =β,由∠BCE =∠BCD+∠ACE =α和三角形的内角和即可得出结论.(1)证明:AD =CE ,理由如下:理由:∵BD 为△ABC 的角平分线,∴∠ABD =∠CBE ,在△ABD 和△EBC 中,∴△ABD ≌△EBC (SAS ),∴AD =CE ;(2)解:∵BD =BC ,∠BCD =75°∴∠BCD =∠BDC =75°,∴∠DBC =∠ABD =30°,∴∠ABC =60°,由(1)知△ABD ≌△EBC ,∴∠BAD=∠BEC,∵∠ADB=∠EDC,∴∠ACE=∠ABD=30°;(3)解:∵BD=BC,∴∠BCD=∠BDC,∵BD为△ABC的角平分线,∴∠DBC=∠ABD,由(1)知△ABD≌△EBC,∴∠BAD=∠BEC,∵∠ADB=∠EDC,∴∠ACE=∠ABD=∠DBC=β,∵∠BCE=∠BCD+∠ACE=α,∴∠BCD=∠BDC=α﹣β,∵∠DBC+∠BDC+∠BCD=180°,∴β+(α﹣β)+(α﹣β)=180°,∴2α﹣β=180°.。
人教版八年级上册数学期中考试试卷及答案
人教版八年级上册数学期中考试试题一、单选题1.长度分别为a ,2,4的三条线段能组成一个三角形,则a 的值可能是()A .1B .2C .3D .62.如图,AM 是△ABC 的中线,△ABC 的面积为4cm 2,则△ABM 的面积为()A .8cm 2B .4cm 2C .2cm 2D .以上答案都不对3.将一副直角三角板按如图所示方式放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A .45°B .65°C .70°D .75°4.如图所示,有一个简易平分角的仪器(四边形ABCD ),其中AB =AD ,BC =DC ,将点A 放在角的顶点处,AB 和AD 沿着角的两边张开,并分别与AQ ,AP 重合,沿对角线AC 画射线AE ,AE 就是∠PAQ 的平分线这个平分角的仪器的制作原理是()A .角平分线性质B .AASC .SSSD .SAS5.如图,在ABC ∆中,AB BC =,AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD=AB .下列结论中,正确的个数是() ①∠1=∠EFD ;②BE=EC ;③BF=DF=CD ;④FD //BCA .1B .2C .3D .46.点(3,2)M 关于y 轴对称的点的坐标为()A .(3,2)-B .(3,2)--C .(3,2)-D .(2,3)-7.有一等腰直角三角形纸片,以它的对称轴为折痕,将三角形对折,得到的三角形还是等腰直角三角形(如图)依照上述方法将原等腰直角三角形折叠四次,所得小等腰直角三角形的周长是原等腰直角三角形周长的()A .12B .14C .18D .1168.如图, ABC 中,点D 在AC 上,连接BD ,∠ABD=2∠DBC ,∠ADB=2∠C ,∠DBC=∠A ,则图中共有等腰三角形()A .0个B .1个C .2个D .3个9.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是()A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE 10.如图,△ABC 中,BD 平分∠ABC ,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF .若∠A=60°,∠ABD=24°,则∠ACF 的度数为()A .48°B .36°C .30°D .24°二、填空题11.已知等腰三角形的一边长等于6,另一边长等于7,则它的周长为__________.12.如图,BP 是ABC 中ABC ∠的平分线,CP 是ACB ∠的外角的平分线,如果20,ABP ∠=︒50ACP ∠=︒,则A ∠=____________.13.在 ABC 中,已知3AB =,5AC =,AD 是BC 边上的中线,则AD 取值范围是____.14.如图,G 、H 分别是四边形ABCD 的边AD 、AB 上的点,∠GCH=45°,CD=CB=2,∠D=∠DCB=∠B=90°,则△AGH 的周长为_______.15.如图,ABC ∠,ACB ∠的平分线相交于点F ,过点F 作//DE BC ,交AB 于D ,交AC 于E ,那么下列结论:①BDF ∆,CEF ∆都是等腰三角形;②DE BD CE =+;③ADE ∆的周长为+AB AC ;④BD CE =.其中正确的是________.16.如图,AD 为等边△ABC 的高,E 、F 分别为线段AD 、AC 上的动点,且AE =CF ,当BF +CE 取得最小值时,∠AFB =_______°.三、解答题17.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是多少?18.如图,在ABC 中,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于点F ,且∠BDE=∠CDF .求证:AD 平分∠BAC .19.如图,在ABC 中,D 为AB 上一点,E 为AC 中点,连接DE 并延长至点F ,使得EF ED =,连CF .()1求证:CF //AB()2若ABC 50∠= ,连接BE ,BE 平分ABC ∠,AC 平分BCF ∠,求A ∠的度数.20.如图,已知等腰△ABC 顶角∠A =36°.(1)在AC 上作一点D ,使AD =BD (要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:△BCD 是等腰三角形.21.如图,BD 平分 ABC 的外角∠ABP ,DA=DC ,DE ⊥BP 于点E ,若AB=5,BC=3,求BE 的长.22.已知:如图,点B ,C ,D 在同一直线上,△ABC 和△CDE 都是等边三角形,BE 交AC 于点F ,AD 交CE 于点H ,(1)求证:△BCE ≌△ACD ;(2)求证:CF =CH ;(3)判断△CFH 的形状并说明理由.23.如图,在COP 中,OC=OP ,过点P 作PE ⊥OC 于点E ,点M 在OPE 内部,连接OM ,PM ,CM ,其中OM 、PM 分别平分EOP ∠、EPO ∠.(1)求OMP ∠的度数;(2)试判断CMP 的形状,并说明理由.24.如图,△ABC 中,∠C =90°,∠A =30°.(1)用尺规作图作AB 边上的垂直平分线DE ,交AC 于点D ,交AB 于点E .(保留作图痕迹,不要求写作法和证明)(2)连接BD ,求证:DE =CD .25.如图, ABC 是边长为6的等边三角形,P 是AC 边上一动点,由A 向C 运动(与A ,C 不重合),Q 是CB 延长线上一点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B重合),过P作PE AB于点E,连接PQ交AB于点D.(1)若设AP=x,则PC=,QC=;(用含x的式子表示)(2)当∠BQD=30°时,求AP的长;(3)在运动过程中线段DE的长是否发生变化?如果不变,求出线段DE的长;如果变化,请说明理由.参考答案1.C【解析】【分析】根据三角形三边关系定理得出4-2<a<4+2,求出即可.【详解】由三角形三边关系定理得:4﹣2<a<4+2,即2<a<6,即符合的只有3.故选:C.【点睛】此题考查三角形三边关系定理,能根据定理得出5-3<a<5+3是解题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.2.C【详解】已知AM 是△ABC 的中线,△ABC 的面积为4cm 2,根据三角形的中线把三角形分成面积相等的两部分,可得△ABM 的面积为:21422cm ⨯=,故选C .3.D【解析】【分析】根据三角形内角和定理求出∠DMC ,进而求出∠AMF ,根据三角形外角性质得出∠1=∠A+∠AMF ,代入求出即可.【详解】按如图方式标注各点,∵∠ACB=90°,∴∠MCD=90°,∵∠D=60°,∴∠DMC=30°,∴∠AMF=∠DMC=30°,∵∠A=45°,∴∠1=∠A+∠AMF=45°+30°=75°,故选:D .【点睛】本题主要考查的是三角形的外角的性质,熟练掌握三角形的外角的性质是解题的关键.4.C【分析】根据题意,利用SSS 证明三角形全等,然后有对应角相等,即可得到答案.【详解】解:在△ABC 与△ADC 中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC (SSS ),∴∠BAC =∠DAC .即AE 平分∠BAD .∴不论∠DAB 是大还是小,始终有AE 平分∠BAD .故选C .【点睛】本题考查了角平分线的判定,解题的关键是熟练掌握全等三角形对应角相等.5.C【解析】【分析】根据等腰直角三角形ABC 的“三合一”性质、角平分线的性质、全等三角形ADF ABF ∆≅∆的性质对以下选项进行一一验证即可.【详解】解: 在ABC ∆中,AB BC =,AB BC ⊥,BE AC ⊥,AE CE BE ∴==;故②正确;在ADF ∆和ABF ∆中,()12AD AB AF AF ⎧=⎪∠=∠⎨⎪=⎩公共边,()ADF ABF SAS ∴∆≅∆,ADF ABF ∴∠=∠,,AB BC AB BC ⊥= ,ABC ∴ 为等腰直角三角形,BE AC ⊥ ,90CEB AEB ∴∠=∠=︒,45ABF CBE ∴∠=∠=︒,45ADF ABF ∴∠=∠=︒45C ∠=︒ ,45ADF ABE ∴∠=∠=︒,45ADF C ∴∠=∠=︒,//DF BC ∴(同位角相等,两直线平行),故④正确;ADF ABF ∆≅∆ ,DF BF ∴=(全等三角形的对应边相等).又//DF BC ,BE EC =,EF DF ∴=,CD BF DF ∴==,故③正确;45EAB ∠=︒ ,12∠=∠,1122.52EAB ∴∠=∠=︒.又//DF BC ,45EFD EBC ∴∠=∠=︒,1EFD ∴∠≠∠;故①错误;综上所述,正确的说法有②③④三种;故选:C .【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定,解题的关键是充分利用了等腰三角形的“三合一”的性质.6.A【解析】根据关于y 轴对称的点的纵坐标相等,横坐标互为相反数进一步求解即可.【详解】∵y 轴对称的点的纵坐标相等,横坐标互为相反数,∴点(3,2)M 关于y 轴对称的点的坐标为(3,2)-,故选:A.【点睛】本题主要考查了关于y 轴对称的点的坐标的性质,熟练掌握相关概念是解题关键.7.B【解析】【分析】设等腰直角三角形纸片的直角边为2,求出斜边,再根据折叠的特点发现规律,即可求解.【详解】解:设等腰直角三角形纸片的直角边为2,周长为:2=,周长为:;同理折叠二次后,直角边长为1=折叠三次后,直角边长为21=;折叠四次后,直角边长为122=,周长为:2;∵(2)∴小等腰直角三角形的周长是原等腰直角三角形周长的14故选:B .【点睛】本题利用了:(1)折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;(2)等腰直角三角形的性质,相似三角形的性质求解.8.D【分析】根据等腰三角形的判定分别证出DB =DC ,AB =AD ,AB =CB 即可.【详解】解:图中共有等腰三角形3个,理由如下:∵∠ADB =∠C +∠DBC ,∠ADB =2∠C ,∴∠DBC =∠C ,∴△BCD 是等腰三角形,DB =DC ,∵∠ABD =2∠DBC ,∴∠ABD =∠ADB ,∴△ABD 是等腰三角形,AB =AD ,∵∠DBC =∠A ,∴∠A =∠C ,∴△ABC 是等腰三角形,AB =CB ,故选:D .【点睛】本题考查了等腰三角形的判定以及三角形的外角性质;熟练掌握等腰三角形的判定是解题的关键.9.C【解析】【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【详解】解:AB AC = ,ABC ACB ∴∠=∠,以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,BE BC ∴=,ACB BEC ∴∠=∠,BEC ABC ACB ∴∠=∠=∠,A EBC ∴∠=∠,【点睛】本题考查了等腰三角形的性质,解题的关键是掌握当等腰三角形的底角对应相等时其顶角也相等,难度不大.10.A【解析】【详解】∵BD平分∠ABC,∴∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°﹣60°﹣24°×2=72°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=24°,∴∠ACF=72°﹣24°=48°,故选A.11.19或20【解析】【分析】分腰长为6底为7和腰长为7底为6两种情况分类讨论即可求解.【详解】解:当等腰三角形腰长为6时,底为7,可以构成三角形,则周长为6+6+7=19;当等腰三角形腰长为7时,底为6,可以构成三角形,则周长为7+7+6=20.故答案为:19或20【点睛】本题考查了等腰三角形的定义和三角形三边关系,熟知等腰三角形边分为腰和底是解题关键,注意要判断三条线段是否构成三角形,这是求三角形周长的前提条件.12.60°【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数.【详解】∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM-∠ABC=60°,故答案为:60°.【点睛】本题考查了角平分线的定义,三角形的外角性质,掌握“一个三角形的外角等于与它不相邻的两个内角之和”是解题的关键.13.1<AD<4.【解析】【分析】如图,首先倍长中线AD至E,连接CE,因此可以得到△ABD≌△ECD,这样就有CE=AB,然后在△ACE中利用三角形的三边的关系即可求解.【详解】解:如图,延长AD至E,使DE=AD,连接CE,∵AD是BC边上的中线,∴BD=CD,∵∠ADB=∠CDE,∴△ABD≌△ECD,∴CE=AB,在△ACE中,AC−CE<AE<AC+CE,而AB=3,AC=5,∴5−3<AE<5+3,∴2<2AD<8,即1<AD<4.故答案为:1<AD<4.【点睛】此题既考查了全等三角形的性质与判定,也考查了三角形的三边的关系,解题的关键是利用已知条件构造全等三角形,然后利用三角形的三边的关系解决问题.14.4【解析】【分析】把CDG 绕点C 逆时针旋转90°得到CBE △,可证CHG CHE ≌,进而即可求解.【详解】解:∵CD=CB=2,∠D=∠DCB=∠B=90°,∴四边形ABCD 是正方形,∴∠A=90°,把CDG 绕点C 逆时针旋转90°得到CBE △,则CG=CE ,∠DCG=∠BCE ,∵∠GCH=45°,∴∠BCE+∠BCH=∠DCG+∠BCH=90°-45°=45°,即:∠HCE=∠GCH ,又∵CH=CH ,∴CHG CHE ≌,∴GH=EH=BH+BE=BH+DG ,∴△AGH 的周长=GH+AH+AG=BH+DG+AH+AG=AD+AB=2+2=4.【点睛】本题主要考查正方形的判定和性质,全等三角形的性质,添加辅助线构造全等三角形,是解题的关键.15.①②③【解析】【分析】①根据平分线的性质、平行线的性质以及等量代换可得∠DBF=∠DFB,即△BDF是等腰三∆也是等腰三角形;②根据等腰三角形的性质可得:DF=BD,EF=EC,然后等角形,同理CEF量代换即可判定;③根据等腰三角形的性质可得:DF=BD,EF=EC,然后再判定即可;④无法判断.【详解】解:①∵BF是∠ABC的角平分线∴∠ABF=∠CBF又∵DE//BC∴∠CBF=∠DFB∴∠ABF=∠DFB∴DB=DF,即△BDF是等腰三角形,∆是等腰三角形,故①正确;同理可得CEF②∵△BDF是等腰三角形,∴DB=DF同理:EF=EC∴DE=DF+EF=BD+CE,故②正确;③∵DF=BD,EF=EC∴ADE∆的周长为AD+DE+AE=AD+DF+AE+EF=AD+BD+AE+CE=AB+AC,故③正确;④无法判断BD=CE,故④错误.故答案为①②③.【点睛】本题考查了等腰三角形的性质、角平分线的性质以及三角形内角和定理的应用,涉及面较广,因此灵活应用所学知识成为解答本题的关键.16.105°【解析】【分析】如图,作辅助线,构建全等三角形,证明△AEC≌△CFH,得CE=FH,将CE转化为FH,与BF在同一个三角形中,根据两点之间线段最短,确定点F的位置,即F为AC与BH的交点时,BF+CE的值最小,求出此时∠AFB=105°.【详解】解:如图,作CH⊥BC,且CH=BC,连接BH交AD于M,连接FH,∵△ABC是等边三角形,AD⊥BC,∴AC=BC,∠DAC=30°,∴AC=CH,∵∠BCH=90°,∠ACB=60°,∴∠ACH=90°−60°=30°,∴∠DAC=∠ACH=30°,∵AE=CF,∴△AEC≌△CFH,∴CE=FH,BF+CE=BF+FH,∴当F为AC与BH的交点时,BF+CE的值最小,此时∠FBC=45°,∠FCB=60°,∴∠AFB=105°,故答案为105°.【点睛】此题考查全等三角形的性质和判定、等边三角形的性质、最短路径问题,关键是作出辅助线,当BF+CE取得最小值时确定点F的位置,有难度.17.这个多边形的边数为7.【解析】【分析】设这个多边形的边数为n ,根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,求解即可.【详解】解:设这个多边形的边数为n ,根据题意,得(n-2)×180°=3×360°-180°,解得n=7.答:这个多边形的边数为7.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.18.证明见解析.【解析】【分析】求出∠DEB =∠DFC =90°,BD =CD ,根据全等三角形的判定得出△BED ≌△CFD ,根据全等三角形的性质得出DE =DF ,再推出答案即可.【详解】证明:∵DE ⊥AB ,DF ⊥AC ,∴∠DEB =∠DFC =90°,∵D 是BC 的中点,∴BD =CD ,在△BED 和△CFD 中,BDE CDF BED CFD BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BED ≌△CFD (AAS ),∴DE =DF ,∵DE ⊥AB 于E ,DF ⊥AC 于点F ,∴点D 在∠BAC 的角平分线上,∴AD 平分∠BAC .【点睛】本题考查了全等三角形的性质和判定,角平分线的判定等知识点,能求出DE =DF 是解此题的关键.19.(1)证明见解析;(2)A 65∠= .【解析】【分析】(1)求出AED ≌CEF ,根据全等得出A ACF ∠∠=,根据平行线的判定得出即可;()2求出A ACB ∠∠=,根据三角形内角和定理求出即可.【详解】()1证明: 在AED 和CEF 中AE CE AED CEF DE FE =⎧⎪∠=∠⎨⎪=⎩AED ∴ ≌()CEF SAS ,A ACF ∠∠∴=,CF //AB ∴;()2解:AC 平分BCF ∠,ACB ACF ∠∠∴=,A ACF ∠∠= ,A ACB ∠∠∴=,A ABC ACB 180 ∠∠∠++=,ABC 50∠= ,2A 130 ∠∴=,A 65∠∴= .【点睛】本题考查了全等三角形的性质和判定、平行线的性质和判定、三角形内角和定理等知识点,能综合运用定理进行推理是解此题的关键.20.(1)见解析;(2)见解析【解析】【分析】(1)根据题意作AB 的垂直平分线;(2)根据题意求出∠BDC=∠C=72°,即可证明.【详解】(1)解:如图,点D为所作,;(2)证明:∵AB=AC,∴∠ABC=∠C=12(180°﹣36°)=72°,∵DA=DB,∴∠ABD=∠A=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°,∴∠BDC=∠C,∴△BCD是等腰三角形.【点睛】此题主要考查等腰三角形的性质,垂直平分线的尺规作图方法,以及垂直平分线的性质,解题的关键是熟知等腰三角形的判定与性质.21.1【解析】【分析】过点D作BA的垂线交AB于点H,分别证Rt△DEB≌Rt△DHB和Rt△DEC≌Rt△DHA,再利用全等三角形的性质即可求出BE的长.【详解】解:过点D作BA的垂线交AB于点H,∵BD平分△ABC的外角∠ABP,DH⊥AB,∴DE=DH,在Rt △DEB 和Rt △DHB 中,DE DH DB DB=⎧⎨=⎩,∴Rt △DEB ≌Rt △DHB (HL ),∴BE =BH ,在Rt △DEC 和Rt △DHA 中,DE DH DC DA=⎧⎨=⎩,∴Rt △DEC ≌Rt △DHA (HL ),∴AH =CE ,由图易知:AH =AB−BH ,CE =BE +BC ,∴AB−BH =BE +BC ,∴BE +BH =AB−BC =5−3=2,而BE =BH ,∴2BE =2,故BE =1.【点睛】本题考查全等三角形的性质与判定,通过观察题目,正确作出辅助线并通过三角形全等去推理是解题关键.22.(1)证明见解析;(2)证明见解析;(3)△CFH 是等边三角形,理由见解析.【解析】【分析】(1)利用等边三角形的性质得出条件,可证明:△BCE ≌△ACD ;(2)利用△BCE ≌△ACD 得出∠CBF=∠CAH ,再运用平角定义得出∠BCF=∠ACH 进而得出△BCF ≌△ACH 因此CF=CH .(3)由CF=CH 和∠ACH=60°根据“有一个角是60°的三角形是等边三角形可得△CFH 是等边三角形.【详解】解:(1)∵∠BCA=∠DCE=60°,∴∠BCE=∠ACD .又BC=AC 、CE=CD ,∴△BCE ≌△ACD .(2)∵△BCE ≌△ACD ,∴∠CBF=∠CAH .∵∠ACB=∠DCE=60°,∴∠ACH=60°.∴∠BCF=∠ACH .又BC=AC ,∴△BCF ≌△ACH .∴CF=CH .(3)∵CF=CH ,∠ACH=60°,∴△CFH 是等边三角形.【点睛】本题考查了三角形全等的判定和性质及等边三角形的性质;普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS .同时还要结合等边三角形的性质,创造条件证明三角形全等是正确解答本题的关键.23.(1)135︒;(2)CMP 是等腰直角三角形,理由见解析.【解析】【分析】(1)先求解90PEO ∠=︒,得到90EPO EOP ∠+∠=︒,由角平分线的性质证明()1452MPO MOP EPO EOP ∠+∠=∠+∠=︒,再利用三角形的内角和定理可得答案;(2)延长OM 交PC 于H ,利用等腰三角形的性质证明OH PC CH PH ⊥=,,再利用垂直平分线的性质证明:MC MP =,再求解=45CMH PMH ∠=∠︒,从而可得答案.【详解】解:(1) PE ⊥OC ,90PEO ∴∠=︒,90EPO EOP ∴∠+∠=︒,OM 、PM 分别平分EOP ∠、EPO ∠,1122MPO EPO MOP EOP ∴∠=∠=∠,,()11904522MPO MOP EPO EOP ∴∠+∠=∠+∠=⨯︒=︒,18045135.OMP ∴∠=︒-︒=︒(2)CMP 是等腰直角三角形,理由如下:延长OM 交PC 于H ,OM Q 平分COP ∠,OC OP =,OH PC CH PH ∴⊥=,,MC MP ∴=,CMH PMH ∴∠=∠,135OMP ∠=︒ ,=45CMH PMH ∴∠=∠︒,90CMP ∴∠=︒,CPM ∴ 是等腰直角三角形.【点睛】本题考查的是三角形的角平分线的定义,三角形的内角和定理,等腰三角形的性质,垂直平分线的性质,等腰直角三角形的判定,掌握以上知识是解题的关键.24.(1)作图见解析;(2)证明见解析.【解析】【详解】【分析】(1)分别以A 、B 为圆心,以大于12AB 的长度为半径画弧,过两弧的交点作直线,交AC 于点D ,AB 于点E ,直线DE 就是所要作的AB 边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD ,再根据等边对等角的性质求出∠DBA=∠A=30°,然后求出∠DBC=30°,从而得到BD平分∠ABC,再根据角平分线的性质即可得.【详解】(1)如图,DE为所作;(2)如图,∵DE垂直平分AB,∴DA=DB,∴∠DBA=∠A=30°,∵∠ABC=90°﹣∠A=60°,∴∠CBD=30°,即BD平分∠ABC,而DE⊥AB,DC⊥BC,∴DE=DC.【点睛】本题考查了线段垂直平分线的作法、线段垂直平分线上的点到线段两端点的距离相等的性质、角平分线的性质,熟练掌握作图方法以及相关性质是解题的关键. 25.(1)6−x,6+x;(2)2;(3)当点P、Q运动时,线段DE的长度不会改变.理由见解析【解析】【分析】(1)由△ABC是边长为6的等边三角形,设AP=x,则PC=6−x,QB=x,由此即可解决问题.(2)在Rt△QCP中,∠BQD=30°,PC=12QC,即6−x=12(6+x),求出x的值即可;(3)作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,由点P、Q作匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE//QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=12AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.【详解】解:(1)∵△ABC是边长为6的等边三角形,∴AB=BC=AC=6,设AP=x,则PC=6−x,QB=x,∴QC=QB+BC=6+x,故答案为:6−x,6+x;(2)∵在Rt△QCP中,∠BQD=30°,∴PC=12QC,即6−x=12(6+x),解得x=2,∴AP=2;(3)当点P、Q运动时,线段DE的长度不会改变.理由如下:如图,作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,∴在△APE和△BQF中,AEP BFQ A FBQAP BQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=12 EF,∵EB+AE=BE+BF=AB,∴DE=12 AB,又∵等边△ABC的边长为6,∴DE=3,∴当点P、Q运动时,线段DE的长度不会改变.【点睛】本题考查的是等边三角形的性质及全等三角形的判定定理、平行四边形的判定与性质,根据题意作出辅助线构造出全等三角形是解答此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学上册
期中试题
一、选择题(每小题3分,共36分)
1.剪纸是我国传统的民间艺术下列剪纸作品不是轴对称图形的是()
A.B.C.D.
2.人字梯中间一般会设计一“拉杆”,这样做的道理是()
A.两点之间,线段最短B.垂线段最短
C.三角形具有稳定性 D.两直线平行,内错角相等
3.现有2cm,5cm长的两根木棒,再从下列长度的四根木棒中选取一根,可以围成一个三角形的是()
A.2cm B.3cm C.5cm D.7cm
4.如图,OB、OC是∠ABC、∠ACB的角平分线,∠BOC=120°,则∠A=()
A.60°B.120°C.110°D.40°
5.已知图中的两个三角形全等,则∠1等于()
A.72°B.60°C.50°D.58°
6.如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()
A.28°B.38°C.48°D.88°
7.一个多边形的内角和是它的外角和的2倍,则这个多边形是()
A.五边形B.六边形C.七边形D.八边形
8.一个多边形的每一个外角都是45°,则这个多边形的边数为()
A.6 B.7 C.8 D.9
9.在△ABC中,∠ACB为直角,∠A=30°,CD⊥AB于D,若BD=1,则AB的长度是()
A.4 B.3 C.2 D.1
10.已知,如图,B、C、E三点在同一条直线上,AC=CD,∠B=∠E=90°,AB=CE,则不正确的结论是()
A.∠A与∠D互为余角B.∠A=∠2
C.△ABC≌△CED D.∠1=∠2
11.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,DE⊥AB于点E,若CD=4,则DE的长为()
A.2 B.3 C.4 D.5
12.已知:如图,△ABC中,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;
③AD=AE=EC;④BA+BC=2BF.其中正确的是()
A.①②③B.①③④C.①②④D.①②③④
二.填空题(每小题3分,共18分)
13.如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=cm.14.一个三角形的两边长分别是2和6,第三边长为偶数,则第三边长为.
15.如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交直角两边于A,B两点,若再以A为圆心,以OA为半径画弧,与弧AB交于点C,则△AOC的形状为.
16.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为cm.
17.在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是(,).18.如图,在△ABC中,已知∠ACB=90°,AB=10cm,AC=8cm,动点P从点A出发,以2cm/s 的速度沿线段AB向点B运动,在运动过程中,当△APC为等腰三角形时,点P出发的时间t可能的值为.
三.解答题(6个小题,共66分)
19.如图所示,DE⊥AB于E,DF⊥BC于D,∠AFD=155°,∠A=∠C,求∠EDF的度数.20.如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.21.如图,△ABC中,AB=AC,AD⊥BC
,CE⊥AB,AE=CE.
求证:(1)△AEF≌△CEB;
(2)AF=2CD.
22.操作探究:△ABC在平面直角坐标系中的位置如图所示,其中A(﹣3,5),B(﹣5,2),C(﹣1,3),直线l经过点(0,1),并且与x轴平行,△A′B′C′与△ABC关于线l对称
(1)画出△A'B
′C',并写出△A′B′C′三个顶点的坐标;
(2)观察图中对应点坐标之间的关系,写出点P(a,b)关于直线l的对称点P′的坐标.
23.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)证明:△BCE≌△CAD;
(2)若AD=25cm,BE=8cm,求DE的长.24.已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)【特殊情况,探索结论】
如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”、“<”或“=”).
(2)【特例启发,解答题目】
如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE DB(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程).
(3)【拓展结论,设计新题】
在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC 的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).。