高中数学必修五第二章 2.1(一)
人教版高中数学必修五第二章2.2.1等差数列的概念与通项公式【教案】
2.2等差数列的概念与通项公式一、教学目标:1.知识目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式。
2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力3.情感目标:①通过个性化的学习增强学生的自信心和意志力。
②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。
③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。
二、教学重点:研究等差数列的概念以及通项公式的推导。
教学难点;(1)理解等差数列“等差”的特点及通项公式的含义。
(2)等差数列的通项公式的推导过程及应用。
三、学情及导入分析:高一学生对数列已经有了初步的接触和认识,对方程、数学公式的运用具有一定技能,一开始就注意培养学生自主合作探究的学习习惯,学生思维比较活跃,课堂参与意识较浓。
本节课先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式.弄清楚等差数列与通项公式的含义以及通项公式的推导过程。
四、教学过程:教学环节教学内容师生活动设计意图复习旧知识,引入新1、知识链接;数列的通项公式与递推关系.学生回答,引导温故知新。
由复习引入,通过数学知识的内部提出问题。
知归纳抽象形成概念比较分析,深化认识创设问题情景:1.下述数列有什么共同特点?根据下述数列的共同特点,可以给出等差数列的定义吗?能将以上的文字语言转换成数学符号语言吗?[来源:学#科#网Z#X#X#K]引例1:从0开始,将5的倍数从小到大排列,得到的数列?引例2:从1开始,将自然数从小到大排列,得到的数列?引例3:为了保证考试笔试的秩序,每次放入2个人考试,依次排列下去,已经考试的人员组成一个什么数列?得出等差数列的定义:从第二项起,每一项与它前一项的差(公差d)为同一常数,这样的一组数列,叫做等差数列”。
高中数学必修5课件:第2章2-1-2数列的性质和递推关系
n 3n+1
为递
增数列.
数学 必修5
第二章 数列
方法二:∵n∈N*,∴an>0,
n+1
∵
an+1 an
=
3n+4 n
=
n+13n+1 3n+4n
=
3n2+4n+1 3n2+4n
=1+
1 3n2+4n
3n+1
>1,∴an+1>an,∴数列3nn+1为递增数列.
数学 必修5
第二章 数列
方法三:令f(x)=3x+x 1(x≥1),则 f(x)=133x3+x+1-1 1=131-3x+1 1, ∴函数f(x)在[1,+∞)上是增函数, ∴数列3nn+1是递增数列.
数学 必修5
第二章 数列
(2)∵bn=aan+n 1,且a1=1,a2=2,a3=3,a4=5,a5=8, ∴b1=aa12=12,b2=aa23=23,b3=aa34=35,b4=aa45=58. 故b1=12,b2=23,b3=35,b4=58.
数学 必修5
第二章 数列
数列的单调性问题
已知数列{an}的通项公式为an=
(1)写出此数列的前5项;
(2)通过公式bn=
an an+1
构造一个新的数列{bn},写出数列{bn}
的前4项.
数学 必修5
第二章 数列
解析: (1)∵an=an-1+an-2(n≥3),且a1=1,a2=2, ∴a3=a2+a1=3,a4=a3+a2=3+2=5, a5=a4+a3=5+3=8. 故数列{an}的前5项依次为 a1=1,a2=2,a3=3,a4=5,a5=8.
4分 6分 8分
10分
12分
数学 必修5
第二章 数列
高中数学人教B版必修五课件2.1.2 数列的递推公式(选学)ppt版本
2.1.2 数列的递推公式(选学)
29
再见
2019/11/21
9
跟踪演练 1
a1=1n=1, 设数列{an}满足an=1+an1-1n≥2.
列的前 5 项.
解 由题意可知 a1=1,a2=1+a11=1+11=2,
a3=1+a12=1+12=32,a4=1+a13=1+23=53,
a5=1+a14=1+35=85.
2.1.2 数列的递推公式(选学)
2.1.2 数列的递推公式(选学)
17
解 ∵f(x)=log2x-lo2g2x,又∵f( 2an )=2nm, ∴log22an-log222an=2n,即 an-a2n=2n. 整理得 an 2-2nan-2=0,∴an=n± n2+2. 又0<x<1,故0< 2an <1,于是an<0, ∴an=n- n2+2(n∈N+).
2.数列的表示方法 数列的表示方法有列举法 、通项公式法 、图象法 、列表法 、 递推公式法 .
2.1.2 数列的递推公式(选学)
5
预习导学
挑战自我,点点落实
要点一 由递推公式写出数列的项 例1 已知数列{an}满足下列条件,写出它的前5项,并 归纳出数列的一个通项公式. (1)a1=0,an+1=an+(2n-1);
故它的一个通项公式为an=n+2 1. 规律方法 (1)根据递推公式写数列的前几项,要弄清公式中各 部分的关系,依次代入计算即可. (2)若知道的是首项,通常将所给公式整理成用前面的项表示后 面的项的形式;若知道的是末项,通常将所给公式整理成用后 面的项表示前面的项的形式.
2.1.2 数列的递推公式(选学)
2.1.2 数列的递推公式(选学)
人教A版高中数学必修5《二章 数列 2.1 数列的概念与简单表示法 阅读与思考 斐波那契数列》优质课教案_0
随风潜人夜,润物细无声《神奇的斐波那契数列》教学设计《普通高中数学课程标准(实验)》在前言中指出:数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。
数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。
数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。
数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用。
数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。
数学教育作为教育的组成部分,在发展和完善人的教育活动中、在形成人们认识世界的态度和思想方法方面、在推动社会进步和发展的进程中起着重要的作用。
在现代社会中,数学教育又是终身教育的重要方面,它是公民进一步深造的基础,是终身发展的需要。
数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基础知识、基本技能、基本思想,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生学会用数学的思考方式解决问题、认识世界。
《普通高中数学课程标准(实验)》将“体现数学的文化价值”作为课程的基本理念之一并在教学建议中明确指出:“数学是人类文化的重要组成部分,是人类社会进步的产物,也是推动社会发展的动力.教学中应引导学生初步了解数学科学与人类社会发展之间的相互作用,体会数学的科学价值、应用价值、人文价值、开阔视野。
长期以来,在高考这根指挥棒下,学习逐渐服从于知识,服从于做题,服从于高考。
在数学教学上,老师教的许多内容既枯燥又抽象.大多数教师以做题为主要教学方法,以解题为主要目的,不关注数学问题的文化性; 学生在单一的数字、定义、定理、公理、公式的围攻下,对单纯的数学问题感到枯燥,厌倦,对数学的兴趣逐渐淡薄,认为数学毫无用处,数学问题被当成了获取分数的工具.因此如何将数学文化的内容有机地结合到日常的教学中,使学生在潜移默化中体会到数学的文化价值?这需要我们每位教师认真思考这个问题一、教材分析:本节课选自人教版《数学5》(必修)第二章《数列》第2.1节后的《阅读与思考》部分。
高中数学第二章数列2.1.2数列的递推公式人教A版必修5
第2课时 数列的递推公式
课程目标
1.理解数列的函数特性,掌握判断数列增减性 的方法. 2.知道递推公式是给出数列的一种形式. 3.能够根据递推公式写出数列的前几项.
学习脉络
递推公式 如果已知数列{an}的首项(或前几项),且任一项 an 与它的前一项 an-1(或
前几项)间的关系可用一个公式来表示,那么这个公式叫做数列{an}的递推 公式.用递推公式给出数列的方法叫做递推法.
又 a1=1,∴an=2n-1(n≥2).当 n=1 时,a1=1 也满足上式,故数列{an}的一个
通项公式为 an=2n-1,an+1-an=2(n+1)-1-(2n-1)=2>0,∴an+1>an.
∴数列{an}是单调递增数列.
首页
J 基础知识 ICHU ZHISHI
Z S 重点难点 HONGDIAN NANDIAN
探究四
探究一 判断数列的单调性
数列的单调性一般要通过比较 an+1 与 an 的大小来判断,具体为: an+1-an>0⇔an+1>an⇔数列{an}单调递增;
an+1-an<0⇔an+1<an⇔数列{an}单调递减.
探究一
探究二
探究三
探究四
高中数学必修5 第二章 数列 知识整理
第二章 数列2.1 数列1.数列(1)数列的概念按照一定次序排列的一列数称为数列。
数列中的每一个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…,所以,数列的一般形式可以写成:123,,,,,n a a a a ……,简记为{}n a 。
其中数列{}n a 的第n 项n a 也叫做数列的通项。
注意:①数列中每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,…,排在第n 位的数称为这个数列的第n 项。
所以,数列的一般形式可以写成123,,,,n a a a a …,简记为{}n a 。
如:数列1,2,3,4,…,可以简记为{n}。
②数列中的数是按一定次序排列的。
因此,如果组成两个数列的数相同而排列次序不同,那么它们就不是相同的数列。
如:数列1,2,3,4,5与5,4,3,2,1是不同的数列。
③数列的定义中,并没有规定数列中的数必须不同。
因此,同一个数在数列中可以重复出现。
如:1,1,1,1,1,1,---…;2,2,2,2,2,…等。
④{}n a 与n a 是不同的概念。
{}n a 表示数列123,,,,,n a a a a ……,而n a 仅表示数列{}n a的第n 项。
⑤从映射函数的观点看,数列可以看做是一个定义域为正整数N +(或它的有限子集{1,2,3,,}n …)的数与自变量从小到大依次取值时对应的一列函数值,这里的函数是一种特殊函数:它的自变量只能取正整数,由于数列的值是函数值,序号是自变量,数列的通项公式也就是相应函数的解析式。
可以将序号为横坐标,相应的像为纵坐标,通过描点画图来表示一个数列,从数列的图像表示可以直观的看出数列的变化情况。
(2)数列的分类①按照数列的项数的多少可分为:有穷数列与无穷数列。
项数有限的数列叫有穷数列,项数无限的数列叫无穷数列。
②按照数列的每一项随序号变化的情况可分为:递增数列、递减数列、常数列、摆动数列。
高中数学必修五2.1.1 数列的概念与简单表示法(一)
2.1 数列的概念与简单表示法2.1.1 数列的概念与简单表示法(一)从容说课本节课先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式.通过本节课的学习使学生能理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的通项公式. 教学重点 数列及其有关概念,通项公式及其应用.教学难点 根据一些数列的前几项抽象、归纳数列的通项公式.教具准备 课件三维目标 一、知识与技能1.理解数列及其有关概念,了解数列和函数之间的关系;2.了解数列的通项公式,并会用通项公式写出数列的任意一项;3.对于比较简单的数列,会根据其前几项写出它的通项公式. 二、过程与方法1.采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性学习;3.理论联系实际,激发学生的学习积极性. 三、情感态度与价值观1.通过日常生活中的大量实例,鼓励学生动手试验.理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点;2.通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.教学过程 导入新课师 课本图211中的正方形数分别是多少?生 1,3,6,10,….师 图212中正方形数呢?生 1,4,9,16,25,….师 像这样按一定次序排列的一列数你能否再举一些?生 -1的正整数次幂:-1,1,-1,1,…;无穷多个数排成一列数:1,1,1,1,….生 一些分数排成的一列数:32,154,356,638,9910,….推进新课[合作探究] 折纸问题师 请同学们想一想,一张纸可以重复对折多少次?请同学们随便取一张纸试试(学生们兴趣一定很浓).生 一般折5、6次就不能折下去了,厚度太高了.师 你知道这是为什么吗?我们设纸原来的厚度为1长度单位,面积为1面积单位,随依次折的次数,它的厚度和每层纸的面积依次怎样?生 随着对折数厚度依次为:2,4,8,16,…,256,…;① 随着对折数面积依次为21,41 ,81 ,161 ,…,2561 ,…. 生 对折8次以后,纸的厚度为原来的256倍,其面积为原来的分 1[]256式,再折下去太困难了.师 说得很好,随数学水平的提高,我们的思维会更加理性化.请同学们观察上面我们列出的这一列一列的数,看它们有何共同特点?生 均是一列数.生 还有一定次序.师 它们的共同特点:都是有一定次序的一列数. [教师精讲]1.数列的定义:按一定顺序排列着的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….同学们能举例说明吗? 生 例如,上述例子均是数列,其中①中,“2”是这个数列的第1项(或首项),“16”是这个数列中的第4项.3.数列的分类:1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列.无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列.2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列.递减数列:从第2项起,每一项都不大于它的前一项的数列.常数数列:各项相等的数列.摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 请同学们观察:课本P 33的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列? 生 这六组数列分别是(1)递增数列,(2)递增数列,(3)常数数列,(4)递减数列,(5)摆动数列,(6)1.递增数列,2.递减数列.[知识拓展] 师 你能说出上述数列①中的256是这数列的第多少项?能否写出它的第n 项?生 256是这数列的第8项,我能写出它的第n 项,应为a n =2n .[合作探究]同学们看数列2,4,8,16,…,256,…①中项与项之间的对应关系,项 2 4 8 16 32↓ ↓ ↓ ↓ ↓序号 1 2 3 4 5你能从中得到什么启示?生 数列可以看作是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的函数a n =f(n ),当自变量从小到大依次取值时对应的一列函数值.反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4…)有意义,那么我们可以得到一个数列f(1),f(2),f(3),…,f(n ),…. 师 说的很好.如果数列{a n }的第n 项a n 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式. [例题剖析]1.根据下面数列{a n }的通项公式,写出前5项:(1)a n =1+n n ;(2)a n =(-1)n ·n . 师 由通项公式定义可知,只要将通项公式中n 依次取1,2,3,4,5,即可得到数列的前5项.生 解:(1)n =1,2,3,4,5.a 1=21;a 2=32;a 3=43;a 4=54;a 5=65. (2)n =1,2,3,4,5.a 1=-1;a 2=2;a 3=-3;a 4=4;a 5=-5.师 好!就这样解.2.根据下面数列的前几项的值,写出数列的一个通项公式:(1)3,5,7,9,11,…;(2)32,154,356,638,9910,…; (3)0,1,0,1,0,1,…;(4)1,3,3,5,5,7,7,9,9,…;(5)2,-6,12,-20,30,-42,….师 这里只给出数列的前几项的值,哪位同学能写出这些数列的一个通项公式?(给学生一定的思考时间)生老师,我写好了!解:(1)a n =2n +1;(2)a n =)12)(12(2+-n n n ;(3)a n =2)1(1n -+; (4)将数列变形为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,…,∴a n =n +2)1(1n-+; (5)将数列变形为1×2,-2×3,3×4,-4×5,5×6,…,∴a n =(-1)n +1n (n +1).师 完全正确!这是由“数”给出数列的“式”的例子,解决的关键是要找出这列数呈现出的规律性的东西,然后再通过归纳写出这个数列的通项公式.[合作探究]师 函数与数列的比较(由学生完成此表):函数 数列(特殊的函数) 定义域R 或R 的子集 N *或它的有限子集{1,2,…,n } 解析式y=f(x) a n =f(n ) 图象 点的集合 一些离散的点的集合师 对于函数,我们可以根据其函数解析式画出其对应图象,看来,数列也可根据其通项公式来画出其对应图象,下面同学们练习画数列:4,5,6,7,8,9,10…;② 1,21 ,31 ,41 ,…③的图象. 生 根据这数列的通项公式画出数列②、③的图象为师 数列4,5,6,7,8,9,10,…②的图象与我们学过的什么函数的图象有关? 生 与我们学过的一次函数y=x+3的图象有关.师 数列1,21 ,31 ,41 ,…③的图象与我们学过的什么函数的图象有关? 生 与我们学过的反比例函数x y 1=的图象有关. 师 这两数列的图象有什么特点?生 其特点为:它们都是一群孤立的点.生 它们都位于y 轴的右侧,即特点为:它们都是一群孤立的,都位于y 轴的右侧的点. 本课时的整个教学过程以学生自主探究为主,教师起引导作用,充分体现学生的主体作用,体现新课程的理念.课堂小结对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n 项求一些简单数列的通项公式.布置作业课本第38页习题2.1 A 组第1题.板书设计数列的概念与简单表示法(一)定义1.数列 例12.项3.一般形式 例2 函数定义4.通项公式5.有穷数列6.无穷数列备课资料一、备用例题1.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1,3,5,7;(2)515;414,313;2122222----; (3)211⨯-,321⨯- ,431⨯- ,541⨯-. 分析:(1)项:1=2×1-1 3=2×2-1 5=2×3-1 7=2×4-1↓ ↓ ↓ ↓序号: 1 2 3 4所以我们得到了a n =2n -1;(2)序号: 1 2 3 4↓ ↓ ↓ ↓项分母: 2=1+1 3=2+1 4=3+1 5=4+1 ↓ ↓ ↓ ↓项分子: 22-1=(1+1)2-1 32-1=(2+1)2-1 42-1=(3+1)2-1 52-1=(4+1)2-1所以我们得到了a n =1)1(2++n n 或1)2(+•+n n n ; (3)序号: 1 2 3 4↓ ↓ ↓ ↓211⨯- 321⨯- 431⨯- 541⨯- ↓ ↓ ↓ ↓)11(11+⨯- )12(21+⨯- )13(31+⨯- )14(41+⨯- 所以我们得到了a n =-)1(1+⨯n n . 2.写出下面数列的一个通项公式,使它的前n 项分别是下列各数:(1)1,0,1,0; 〔a n =2)1(11+-+n ,n ∈N *〕 (2)-32,83 ,154- ,245,356-; 〔a n =(-1)n ·1)1(12-++n n 〕 (3)7,77,777,7 777; 〔a n =97×(10n -1)〕 (4)-1,7,-13,19,-25,31; 〔a n =(-1)n (6n -5)〕(5)23,45 ,169 ,25617. 〔a n =12212-+n n 〕 点评:上述两题都是根据数列的前几项来写出这数列的通项公式,根据数列的前几项来写出这数列的通项公式时,常可联想奇数、偶数、平方数、指数等等.遇到分数的时候,常可根据需要把分子和分母同时扩大再来看看分子和分母中数的规律性,有时可直截了当地研究分子和分母之间的关系.3.已知数列{a n }的通项公式是a n =2n 2-n ,那么( )A .30是数列{a n }的一项B .44是数列{a n }的一项C.66是数列{a n }的一项 D .90是数列{a n }的一项分析:注意到30,44,66,90均比较小,可以写出这个数列的前几项,如果这前几项中出现了这四个数中的某一个,则问题就可以解决了.若出现的数比较大,还可以用解方程求正整数解的方法加以解决.答案:C点评:看一个数A 是不是数列{a n }中的某一项,实质上就是看能不能找出一个非零自然数n ,使得a n =A .4.(链接探究题)假定有一张极薄的纸,厚度为2001cm 就是每200张叠起来刚好为1 cm ,现在把这张纸裁一为二,叠起来,它的厚度记为a 1;再裁一为二,叠起来,它的厚度记为a 2,又裁一为二,叠起来,它的厚度记为a 3,这样一裁一叠,每次叠起来所得的厚度依次排列,就得到一个数列:a 1,a 2,a 3,…,a k ,….你能求出这个数列的通项公式吗?你知道a 50,即裁了50次、叠了50次后的厚度是多少厘米吗?是否有10层楼高呢?答案:这个数列的通项公式为a n =2002n, 裁了50次、叠了50次后的厚度是5 629 499 534 213.12 cm >56 294 995 km ,大于地球到月球距离的146倍. 二、阅读材料无法实现的奖赏相传古印度舍罕王朝有一位宰相叫达依尔,据说是他发明了国际象棋,古印度的舍罕王学会了下国际象棋以后,非常激动,他要重赏他的宰相达依尔. 达依尔对他的国王说:陛下,我不要您的重赏,只要您按我下面的办法赏我一些麦粒就可以了:在我的棋盘上(它有64个格)第一格赏1粒,第二格赏2粒,第三格赏4粒,第四格赏8粒……依此类推每后一格的麦粒数都是前面一格的两倍.国王答应了达依尔的要求,但是几天以后他就发现事实上这是一个无法兑现的奖赏.请问国王为什么不能兑现他的奖赏呢? 2.1.2 数列的概念与简单表示法(二)从容说课这节课通过对数列通项公式的正确理解,让学生进一步了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项;通过经历数列知识的感受及理解运用的过程,作好探究性教学.发挥学生的主体作用,提高学生的分析问题以及解决问题的能力.教学重点 根据数列的递推公式写出数列的前几项.教学难点 理解递推公式与通项公式的关系.教具准备 多媒体三维目标一、知识与技能1.了解数列的递推公式,明确递推公式与通项公式的异同;2.会根据数列的递推公式写出数列的前几项.二、过程与方法1.经历数列知识的感受及理解运用的过程;2.发挥学生的主体作用,作好探究性实验;3.理论联系实际,激发学生的学习积极性.三、情感态度与价值观通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.教学过程导入新课师 同学们,昨天我们学习了数列的定义,数列的通项公式的意义等内容,哪位同学能谈一谈什么叫数列的通项公式?生 如果数列{a n }的第n 项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.师 你能举例说明吗?生 如数列0,1,2,3,…的通项公式为a n =n -1(n ∈N *);1,1,1的通项公式为a n =1(n ∈N *,1≤n ≤3); 1,21 ,31 ,41 ,…的通项公式为a n =n1 (n ∈N *). [合作探究]数列的表示方法 师 通项公式是表示数列的很好的方法,同学们想一想还有哪些方法可以表示数列? 生 图象法,我们可仿照函数图象的画法画数列的图形.具体方法是以项数n 为横坐标,相应的项a n 为纵坐标,即以(n ,a n )为坐标在平面直角坐标系中作出点(以前面提到的数列1, 21,31,41,…为例,作出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在y 轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.师 说得很好,还有其他的方法吗?生 ……师 下面我们来介绍数列的另一种表示方法:递推公式法 知识都来源于实践,同时还要应用于生活,用其来解决一些实际问题.下面同学们来看右下图:钢管堆放示意图(投影片).观察钢管堆放示意图,寻其规律,看看能否建立它的一些数学模型.生 模型一:自上而下第1层钢管数为4,即14=1+3;第2层钢管数为5,即25=2+3;第3层钢管数为6,即36=3+3;第4层钢管数为7,即47=4+3;第5层钢管数为8,即58=5+3;第6层钢管数为9,即69=6+3;第7层钢管数为10,即710=7+3.若用a n 表示钢管数,n 表示层数,则可得出每一层的钢管数为一数列,且a n =n +3(1≤n ≤7). 师 同学们运用每一层的钢管数与其层数之间的对应规律建立了数列模型,这完全正确,运用这一关系,会很快捷地求出每一层的钢管数.这会给我们的统计与计算带来很多方便.让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律)生 模型二:上下层之间的关系自上而下每一层的钢管数都比上一层钢管数多1,即a 1=4;a 2=5=4+1=a 1+1;a 3=6=5+1=a 2+1.依此类推:a n =a n -1+1(2≤n ≤7).师对于上述所求关系,同学们有什么样的理解?生 若知其第1项,就可以求出第二项,以此类推,即可求出其他项.师 看来,这一关系也较为重要,我们把数列中具有这种递推关系的式子叫做递推公式. 推进新课1.递推公式定义:如果已知数列{a n }的第1项(或前几项),且任一项a n 与它的前一项a n -1(或前n 项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.注意:递推公式也是给出数列的一种方法.如下列数字排列的一个数列:3,5,8,13,21,34,55,89.递推公式为:a 1=3,a 2=5,a n =a n -1+a n -2(3≤n ≤8).2.数列可看作特殊的函数,其表示也应与函数的表示法有联系,函数的表示法有:列表法、图象法、解析式法.相对于数列来说也有相应的这几种表示方法:即列表法、图象法、解析式法. [例题剖析]【例1】 设数列{a n }满足1,11111>n a a a n n ⎪⎩⎪⎨⎧+==-.写出这个数列的前五项. 师 分析:题中已给出{a n }的第1项即a 1=1,题目要求写出这个数列的前五项,因而只要再求出二到五项即可.这个递推公式:a n =1+11-n a 我们将如何应用呢? 生 这要将n 的值2和a 1=1代入这个递推公式计算就可求出第二项,然后依次这样进行就可以了.师 请大家计算一下!生 解:据题意可知:a 1=1,a 2=1+11a =2,a 3=1+21a =32,a 4=1+31a =35,a 5=58师 掌握递推公式很关键的一点就是其中的递推关系,同学们要注意探究和发现递推公式中的前项与后项,或前后几项之间的关系.【例2】 已知a 1=2,a n +1=2a n ,写出前5项,并猜想a n .师 由例1的经验我们先求前5项.生 前5项分别为2,4,8,16,32.师 对,下面来猜想第n 项.生 由a 1=2,a 2=2×2=22,a 3=2×22=23观察可得,我猜想a n =2n .师 很好!生 老师,本题若改为求a n 是否还可这样去解呢?师 不能.必须有求解的过程.生 老师,我由a n +1=2a n 变形可得a n =2a n -1,即21=-n n a a ,依次向下写,一直到第一项,然后将它们乘起来,就有⨯⨯⨯-----32211n n n n n n a a a a a a …×1122-=n aa ,所以a n =a 1·2n -1=2n .师 太妙了,真是求解的好方法.你所用的这种方法通常叫迭乘法,这种方法在已知递推公式求数列通项的问题中是比较常用的方法,对应的还有迭加法. [知识拓展]已知a 1=2,a n +1=a n -4,求a n .师 此题与前例2比较,递推式中的运算改为了减法,同学们想一想如何去求解呢? 生1 写出:a 1=2,a 2=-2,a 3=-6,a 4=-10,…观察可得:a n =2+(n -1)(n -4)=2-4(n -1).生2 他这种解法不行,因为不是猜出a n ,而是要求出a n .我这样解:由a n +1-a n =-4依次向下写,一直到第一项,然后将它们加起来,a n -a n -1=-4a n -1-a n -2=-4a n -2-a n -3=-4 …… )1(44a )112--=--=-+n a a a n ∴a n =2-4(n -1).师 好极了,真是触类旁通啊,这种方法也请同学们课后多体会.[教师精讲](1)数列的递推公式是由初始值和相邻几项的递推关系确定的,如果只有递推关系而无初始值,那么这个数列是不能确定的.例如,由数列{a n }中的递推公式a n +1=2a n +1无法写出数列{a n }中的任何一项,若又知a 1=1,则可以依次地写出a 2=3,a 3=7,a 4=15,….(2)递推公式是给出数列的一种方法,由递推公式可能求出数列的通项公式,也可能求不出通项公式.[学生活动]根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式.(投影片)(1)a 1=0,a n +1=a n +(2n -1)(n ∈N );(2)a 1=1,a n +1=2+n n a a (n ∈N ); (3)a 1=3,a n +1=3a n -2(n ∈N ).(让学生思考一定时间后,请三位学生分别作答)解:(1)a 1=0,a 2=1,a 3=4,a 4=9,a 5=16,∴a n =(n -1)2.(2)a 1=1,a 2=32,a 3=21=42,a 4=52,a 5=31 =62,∴a n =12+n . (3)a 1=3=1+2×30,a 2=7=1+2×31,a 3=19=1+2×32,a 4=55=1+2×33,a 5=163=1+2×34,∴a n =1+2·3 n -1.注:不要求学生进行证明归纳出通项公式.[合作探究]一只猴子爬一个8级的梯子,每次可爬一级或上跃二级,最多能上跃起三级,从地面上到最上一级,你知道这只猴子一共可以有多少种不同的爬跃方式吗?析:这题是一道应用题,这里难在爬梯子有多种形式,到底是爬一级还是上跃二级等情况要分类考虑周到.爬一级梯子的方法只有一种.爬一个二级梯子有两种,即一级一级爬是一种,还有一次爬二级,所以共有两种.若设爬一个n级梯子的不同爬法有a n种,则a n=a n-1+a n-2+a n-3(n≥4),则得到a1=1,a2=2,a3=4及a n=a n-1+a n-2+a n-3(n≥4),就可以求得a8=81.课堂小结师这节课我们主要学习了数列的另一种给出方法,即递推公式及其用法,要注意理解它与通项公式的区别,谁能说说?生通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n项)之间的关系.生对于通项公式,只要将公式中的n依次取1,2,3…,即可得到相应的项.而递推公式则要已知首项(或前n项),才可求得其他的项.(让学生自己来总结,将所学的知识,结合获取知识的过程与方法,进行回顾与反思,从而达到三维目标的整合.培养学生的概括能力和语言表达能力)布置作业课本第38页习题2.1A组第4、6题.预习内容:课本P41~P 44.数列的概念与简单表示法(二)一、定义二、例题讲解小结:7.递推公式:例1通项公式与例2 递推公式区别。
高中数学必修5教材电子课本(人教版)
高中数学必修5_教材电子课本(人教版)・pdf篇一:人教版高一数学必修一电子课本1第一章集合与函数概念1.1集合1.1.1集合的含义与表示I.1.2集合间的基本关系II.3集合的基本运算1.2函数及其表示12.1函数的概念1.2.2函数的表示法13函数的基本性质13.1单调性与最大(小)值13.2奇偶性第二章基本初等函数2.1指数函数2.1.1指数与指数幕的运算2.1.2指数函数及其性质2.2对数函数2.2.1对数与对数运算(一)2 2.1对数与对数运算(二)2.2.2对数函数及其性质2.3基函数第三章函数的应用31函数与方程3.1.1方程的根与函数的零点3.1.2用二分法求方程的近似解3.2函数模型及其应用12345篇二:人教版高一数学必修一至必修五教材目录必修一、二、必修一必修四第一章集合与函数的概念第一章三角函数1・1集合11任意角和弧度制1・2函数及其表示1.2任意角的三角函数1・3函数的基本性质第二章基本初等函数2.1指数函数2.2对数函数2.3幕函数第三章函数的应用3.1函数与方程3.2函数模型及其应用必修五第一章解三角形1.1正弦定理和余弦定理1・2应用举例第二章数列2.1数列的概念与简单表示方法2・2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列前n项和第三章不等式3.1不等关系与不等式3.2 一元一次不等式及其解法3.3二元一次不等式(组)及其解法3.4基本不等式1.3三角函数的诱导公式14三角函数的图像与性质1・5函数y=Asin(?x+?)1.6三角函数模型的简单应用第二章平面向量2・1平面向量的实际背景及基本概念2・2平面向量的线性疋算2.3平面向量的基本定理及坐标表2.4平面向量的数量积2.5平面向量应用举例第三章三角恒等变换3.1两角和与差的正弦、余弦3・2简单的三角恒等变换必修二第一章空间几何体1.1空间几何体的结构1.2空间几何体的三视图和直观图13空间体的表面积与体积第二章点、直线、平面间的关系2.1空间点、直线.平面之间的位2・2直线、平面平行的判定及其性质2.3直线.平面垂直的判定及其性质第三章直线与方程3.1直线的倾斜角与斜率3.2直线的方程3.3直线的交点坐标与距离公式篇三:高中数学必修一电子课本一、问题的提出在应试教育模式影响下,教师中心论妨碍了学生创新精神和创新能力的培养,“逼迫教育、填鸭式的教学、负担教学、淘汰教学”等成为教师单向灌输知识的教学模式,以考试分数作为衡量教学质量的唯一标准及过于呆板的教育教学制度,最终导致教学陷入“学服从于教、教服从于考”的状态。
高中数学第二章解三角形2.1.2余弦定理课件北师大版必修5
1
2
3
4
5
1.在△ABC 中,已知 a=5,b=4,C=120°,则 c 的长为(
A. 41
C. 41或 61
)
B. 61
D. 21
1
解析: 因为 c2=a2+b2-2abcos C,所以 c2=52+42-2×5×4× - 2 =61,即
c= 61.
答案:B
1
2
3
4
5
2.在△ABC中,若bcos A=acos B,则△ABC是(
角A,B,C的对边,且b2,c2是关于x的一元二次方程x2-(a2+bc)x+m=0的
两根.
(1)求角A的大小;
(2)若 a= 3 ,设B=θ,△ABC的周长为y,求y=f(θ)的最大值.
分析:(1)利用余弦定理求出角A;(2)先利用正弦定理将△ABC的周
长y表示成关于θ的函数,再结合三角函数的性质进行求解.
探究一
探究二
探究三
思维辨析
解:(1)在△ABC中,依题意有b2+c2=a2+bc,即b2+c2-a2=bc,
所以 cos
2
+2 -2
A=
2
1
2
= ,
π
3
又因为 A∈(0,π),所以 A= .
π
3
(2)由 a= 3,A= ,及正弦定理得
sin
=
所以 b=2sin B=2sin θ,c=2sin C=2sin
1 .2
余弦定理
学 习 目 标
1.掌握余弦定理及其证明.
2.会用余弦定理解决两类解三角形问题.
3.能综合应用正弦定理与余弦定理解决三角形
人教版高中数学必修目录
必修一(高一)必修三(高一)必修二(高二)必修四(高一)必修五(高一)高中数学选修教材目录1-1(高二文)第一章常用逻辑语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词小结第二章圆锥曲线与方程2.1椭圆探究与发现为什么截口曲线是椭圆信息技术应用用<几何画板>探究点的轨迹:椭圆2.2双曲线探究与发现为什么的渐近线2.3抛物线阅读与思考圆锥曲线的光学性质及其应用小结第三章导数及其应用3.1变化率与导数3.2导数的计算探究与发现牛顿法-用导数方法求方程的近似解3.3导数在研究函数中的应用信息技术应用图形技术与函数性质3.4生活中的优化问题举例实习作业走进微积分小结1-2(文)第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用实习作业小结第二章推理与证明2.1合情推理与演绎推理阅读与科学发现中的推理2.2直接证明与间接证明小结第三章数系的扩充与复数的引入3.1数系的扩充与复数的概念3.2复数代数形式的四则运算小结第四章框图4.1流程图4.2结构图信息技术应用用word2002绘制流程图小结2-1(高二理)第一章常用逻辑语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词小结第二章圆锥曲线与方程2.1椭圆探究与发现为什么截口曲线是椭圆信息技术应用 用<几何画板>探究点的轨迹:椭圆 2.2双曲线探究与发现 为什么 是双曲线 的渐近线2.3 抛物线探究与发现 为什么二次函数 的图像是抛物线2.4 直线与圆锥曲线的位置关系阅读与思考 圆锥曲线的光学性质及其应用2.5曲线与方程探究与发现 圆锥曲线的离心率与统一方程小结第三章空间向量与立体几何 3.1空间向量及其运算阅读与思考 向量概念的推广与应用3.2立体几何中的向量方法小结2-2(理)第一章导数及其应用1.1 变化率与导数 1.2导数的计算探究与发现 牛顿法-用导数方法求方程的近似解1.3导数在研究函数中的应用信息技术应用 图形技术与函数性质1.4 生活中的优化问题举例 1.5定积分的概念信息技术应用 曲边梯形的面积1.6 微积分基本定理 1.7定积分的简单应用 实习作业 走进微积分第二章推理与证明2.1合情推理与演绎推理阅读与思考 平面与空间中的余弦定理2.2 直接证明与间接证明 2.3数学归纳法小结第三章数系的扩充与复数的引入 3.1 数系的扩充与复数的概念 3.2复数代数形式的四则运算 阅读与思考 代数基本定理小结2-3(理)第一章计数原理1.1分类加法计数原理与分部乘法计数原理 探究与发现 子集的个数有多少 1.2排列与组合探究与发现 组合数的两个性质1.3 二项式定理小结第二章随机变量及其分布 2.1 离散型随机变量及其分布列 2.2二项分布及其应用阅读与思考 这样的买彩票方式可行吗?探究与发现 服从二项分布的随机变量取何值时概率最大 2.3 离散型随机变量的均值与方差 2.4正态分布信息技术应用 µ,б对正态分布的影响小结第三章统计案例3.1 回归分析的基本思想及其初步应用 3.2独立性检验的基本思想及其初步应用实习作业小结4-1 几何证明选讲第一讲 相似三角形的判定及有关性质 一 平行线等分线段定理 二 平行线分线段成比例定理 三相似三角形的判定及性质 1 相似三角形的判定2 相似三角形的性质 四直角三角形的射影定理第二讲 直线与圆的关系 一 圆周角定理 二 圆内接四边形的性质与判定定理 三 圆的切线的性质及判定定理 四 弦切角的性质 五与圆有关的比例线段 第三讲圆锥曲线性质的探讨 一 平行射影 二 平面与圆柱面的截线 三平面与圆锥面的截线 4-4 坐标系与参数方程 第一讲 坐标系一 平面直角坐标系 二 极坐标系 三 简单曲线的极坐标方程 四 柱坐标系与球坐标系 第二讲 参数方程一 曲线的参数方程 二 圆锥曲线的参数方程 三 直线的参数方程 四渐开线与摆线4-5 不等式选讲 第一讲 不等式和绝对值不等式 一不等式1不等式的基本性质2基本不等式3三个正数的算术-几何平均不等式二绝对值不等式1绝对值三角不等式2绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式的柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式。
人教版高中数学必修五目录
人教版高中数学必修五目录 1.1正弦定理与余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.2.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用领域3.5二元一次不等式(组)与简单的线性规划问题如何努力学习高中数学一·培养良好的学习兴趣自学数学最出色的方法就是把数学培育成自己的嗜好。
嗜好高中数学就可以有兴趣回去课堂教学高中数学的自学方法,有兴趣才可以构成自学的主动性和积极性。
养好较好的自学习惯,并把它培育成自学兴趣存有这几点建议:(1)课前预习,对所有学识产生疑问,产生好奇心。
(2)听讲中要协调老师授课,满足用户感官的兴奋性,听讲重点化解复习中疑点,把老师课堂的回答·停滞·教具和模型的模拟的都视作观赏音乐,及时提问老师课堂回答,培育思索与老师同步性,提升精神,把老师对你的回答的评价,变成鞭策自学的动力。
(3)思考问题注意归纳,挖掘你的学习的潜力。
(4)听讲中特别注意老师传授时的数学思想,多问什么必须这样的思索,这样的方法怎样就是产生的?把概念回归自然。
所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念·直角坐标系的产生·极坐标的产生都是从实际生活中抽象出来的。
只有回归现实才能对概念理解切实可靠,有应用概念判断·推理时会准确。
二、弄清楚概念、性质与基本方法弄清概念、性质和基本方法是每个学科学习的第一步也是最重要的一步,如果概念没有弄清就去解题是没有不碰壁的。
正确理解概念再做习题就比较容易了,通过习题的演算反过来还可以进一步理解概念与性质。
要弄清概念、性质和基本方法,就要先复习老师上课所讲的东西,要看一看课本上的相关内容。
人教版高中数学必修五2.1数列的概念与简单表示法说课稿
《数列的概念与简单表示法》(第一课时)说课稿尊敬的各位专家、评委:下午好!我的抽签序号是____,今天我说课的课题选自人教A版第二章第一节《数列的概念与简单表示法》第一课时.我将从教材分析、教法分析、教学过程分析和教学评价分析四个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正.一、教材分析(一)地位与作用数列是高中数学的重要内容之一,也是高考考查的重点及热点之一.数列有着广泛的实际应用,如储蓄、分期付款的有关计算要用到数列的一些知识;数列与前面学习的函数等知识有着密切的联系,数列是刻画离散现象的函数,是一种重要的数学模型;因此我们有必要学习数列.(二)教学目标根据对教材结构与内容的分析,以及新《课标》的要求,我制定了如下的教学目标:1.知识与技能目标:(1)了解数列及其有关概念,了解数列与函数之间的关系;(2)能够根据数列的通项公式写出数列的任意一项以及根据数列的前几项写出它的一个通项公式.2.过程与方法目标:通过猜想与折纸活动,引入数列的概念,通过对一列数的观察、分析、归纳,写出符合条件的一个通项公式,体会数学中的归纳思想、类比思想、由特殊到一般的思想方法.3.情感态度价值观目标:(1)培养学生的观察能力和抽象概括能力,逐步培养学生善于思考和解决问题的能力;(2)调动学生的积极情感,主动参与学习.(三)教学重难点重点:数列的有关概念,通项公式及其应用. 难点:根据数列的前几项写出它的一个通项公式. 二、教法分析(一)学情分析学生的知识经验较为丰富,具备了一定的观察、分析、猜想、类比、推理能力;但是通过观察数列的前几项写出它的通项公式还是比较难,因此在教学中要注重引导、启发学生分析数列中的每一项与它的序号之间的关系,才能求出数列的通项公式.(二)教法采用问题驱动教学法和观察分析,猜想验证,探究发现的教学方法(三)学法小组合作学习,突出探究、发现与交流(四)教学手段多媒体辅助教学三、教学过程分析(一)创设情景,引入概念活动一:观察下列两组图形,猜想每组图形中的第6个图的点数分别是多少?第一组第二组引导学生观察得出第一组图的点数分别为:1,4,9,16,25,36,…,这些数被称为正方形数。
高中数学必修5课件:第2章2-2-1等差数列
第二章 数列
解析: (1)证明:bn+1-bn=an+11-2-an-1 2 =4-a41n-2-an-1 2=2aan-n 2-an-1 2 =2aann--22=12. 又b1=a1-1 2=12, ∴数列{bn}是首项为12,公差为12的等差数列.
数学 必修5
第二章 数列
(2)由(1)知bn=12+(n-1)×12=12n. ∵bn=an-1 2,∴an=b1n+2=2n+2. ∴数列{an}的通项公式为an=2n+2.
数学 必修5
第二章 数列
[规范解答] 方法一:设等差数列{an}的前三项分别为
a1,a2,a3.依题意得aa11·+a2a·a23+=a63=6,18,
∴a31a·1+a1+3dd=·1a81,+2d=66,
2分
解得ad1==-115 或ad1==51.,
6分
数学 必修5
第二章 数列
∵数列{an}是递减等差数列,∴d<0. 故取a1=11,d=-5, ∴an=11+(n-1)·(-5)=-5n+16. 即等差数列{an}的通项公式为an=-5n+16. 令an=-34,即-5n+16=-34,得n=10. ∴-34是数列{an}的项,且为第10项.
由aa190<>11,, 得221155++98dd><11,,
解得785<d<235.
故选 C. 【错因】 在解决本题时,必须深刻理解“从第10项起开
始比1大”的含义.尤其是“开始”这个词,它不仅表明 “a10>1”,而且还隐含了“a9≤1”这一条件,所对上述两个错 解都未从题干中彻底地挖掘出隐含条件.
第二章 数列
4.已知三个数成等差数列,它们的和为18,它们的平方 和为116,求这三个数.
人教A版高中数学必修5第二章 数列2.1 数列的概念与简单表示法课件(5)
通项为:an=
1 1+ 5 [( 2
5
)n-(
1- 2
5 )n].有趣的是:这样一个完全是自然数的数
列,通项公式居然是用无理数来表达的.
• 斐波那契数还可以在植物的叶、 枝、茎等排列中发现.例如: 在树木的枝干上选一片叶子, 记其为数0,然后依序点数叶子 (假定没有折损),直到到达与 那片叶子正对的位置,则其间 的叶子数多半是斐波那契 数.叶子从一个位置到达下一 个正对的位置称为一个循回, 叶子在一个循回中旋转的圈数 也是斐波那契数.在一个循回 中叶子数与叶子旋转圈数的比
(3)这个数列可以改写为 10-1,100-1,1 000-1,10 000-1,…,所以这个数 列的一个通项公式是 an=10n-1.
(4)将每一项都统一写成分母为 2 的分数,即12,42,92,126,225,…,所以它 的一个通项公式是 an=n22.
• 『规律总结』 根据数列的前几项求其通项公式,一般通 项公式不唯一,我们常常取其形式上较简便的一个即
可.解答时,主要靠观察、分析、比较、归纳、联想、转
化等方法.观察时特别注意:①各项的符号特征;②分式 的分子、分母特征;③相邻项的变化规律(绝对值的增 减).处理方法常用的有:①化异为同(统一分子、或分母 的结构形式);②拆项;③用(-1)n等表示符号规律;④与 特殊数列(自然数、偶数、奇数、自然数的平方,2n等)的 联系.
[解析] (1)这个数列各项的整数部分分别为 1,2,3,4,…,恰好是序号 n;分 数部分分别为12,23,34,45,…,与序号 n 的关系是n+n 1,
所以这个数列的一个通项公式是 an=n+n+n 1=nn2++21n. (2)这个数列可以改写为 10+1,100+2,1 000+3,10 000+4,…,所以这个数 列的一个通项公式是 an=10n+n.
人教A版高中数学必修5《二章 数列 2.1 数列的概念与简单表示法 阅读与思考 斐波那契数列》优质课教案_3
人教A版必修5第二章数列2.1数列的概念与简单表示法阅读与思考:斐波那契数列一、教材分析《普通高中数学课程标准》在有关数学文化的教学要求中指出:“通过在高中阶段数学文化的学习,学生将初步了解数学科学与人类社会发展之间的相互作用,体会数学的科学价值、应用价值、人文价值和美学价值,从而提高自身的文化素质和创新意识。
”为了贯彻这一精神,向学生传播数学文化,人民教育出版社在出版的《普通高中课程标准实验教科书数学A版》必修1-5册中,共设置了24篇“阅读与思考材料”。
《斐波那契数列》是人教A版必修5第二章《数列》中位于2.1数列的概念与简单表示法后的阅读与思考材料。
《斐波那契数列》是数列知识的延伸、拓展和应用,是教材知识结构的组成部分,与教材内容相互补充,融为一体。
在教学中如果能够深刻挖掘其内涵与外延,整体认识其所蕴含的教育因素,它必将在巩固学生知识、构建知识体系、发展学生能力、培养创新意识等方面发挥独特的作用。
二、学情分析:从知识基础的角度来看,本节课位于2.1数列的概念与简单表示法之后,位于2.2等差数列之前,学生对数列的相关概念及数列的表示法(通项公式和递推公式)有了一定的理解,此时学习《斐波那契数列》一方面可以起到巩固基础知识的作用,同时也能逐渐开阔学生的学习视野。
从能力培养的角度来看,阅读材料《斐波那契数列》中蕴含着丰富的数学思想和方法(如观察与归纳、抽象与概括、猜想与证明等),可以在教学中进行重在发展学生能力的素质教育,从而不断提升学生的数学素养。
再者,高一的学生刚从初中升上高中,对数学与自然的契合充满好奇,喜欢尝试寻找(斐波那契数列中的)规律,对于这种寓教于乐的活动课有着浓厚的参与兴趣。
三、教学目标:1.了解斐波那契数列;2.了解斐波那契数列在生活中的应用;3.通过动手操作、观察与归纳,发现斐波那契数列的一些有趣的性质;4.通过本节课的学习,在培养学生的理性思维和理性精神的同时,拓宽数学的学习视野,同时感受到数学学科的魅力,及在生活的实际应用价值,进一步激发对数学学科学习的兴趣。
【北师大版】高中数学必修五:第2章《解三角形》2-1-17【ppt课件】
第二章 · §1 · 1.2 · 第17课时
第15页
北师大版· 数学· 必修5
45分钟作业与单元评估
二合一
解析:由sinA∶sinB∶sinC=5∶11∶13及正弦定理得a∶b∶c= 5∶11∶13.设a=5k,b=11k,c=13k,k>0,则由余弦定理得cosC= 52+112-132 <0,所以角C为钝角.故应选C. 2×5×11
第13页
北师大版· 数学· 必修5
解析:由余弦定理得
45分钟作业与单元评估
二合一
b2+c2-a2 a2+b2-c2 (2b-c) 2bc =a· 2ab , 即2b3+2bc2-2ba2-b2c-c3+a2c=a2c+b2c-c3, 上式整理后为b2+c2-a2-bc=0, b2+c2-a2 1 1 即 = ,因此cosA= .故A=60° . 2bc 2 2
45分钟作业与单元评估
45分钟作业与单元评估
二合一
1.理解余弦定理的结构特征,并会用余弦定理解三角形. 2.掌握余弦定理及其变形,并能在化简、证明中灵活运用.
第二章 · §1 · 1.2 · 第17课时
第6页
北师大版· 数学· 必修5
45分钟作业与单元评估
二合一
基础训练 作 业设计
第二章 · §1 · 1.2 · 第17课时
二合一
1 解析:由余弦定理得a2+b2-c2=2abcosC,又c2= 2 (a2+b2),得
2 2 a + b 1 2 2ab 1 2 2abcosC= (a +b ),即cosC= ≥ = ,所以选C. 2 4ab 4ab 2
答案:C
第二章 · §1 · 1.2 · 第17课时
第20页
高中数学北师大版必修五2.1《余弦定理》ppt参考课件
(1)余弦定理的内容. (2)余弦定理的证明 ( 3 )余弦定理的应用
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
① 根据课堂提问抓住老师的思路。老师在讲课过程中往往会提出一些问题,有的要求回答,有的则是自问自答。一般来说,老师在课堂上提出的问 题都是学习中的关键,若能抓住老师提出的问题深入思考,就可以抓住老师的思路。
C Q
80O
BO
P
A
D
分析 经过3时,甲到达点P,OP=4×3=12(km),乙到达点
Q,OQ=4.5×3=13.5(km),问题转化为在△OPQ中,已知
OP=12km, OQ=13.5km,∠POQ= 80O,求PQ的长.
解 经过3时后,甲到达点P,OP=4×3=12(km),乙到达点 Q,OQ=4.5×3=13.5(km).依余弦定理,知
C≈36°
B=180°-(A+C)≈100°.
2. ΔABC中,a=2,b=2 2,C=15°,解此三角形.
解:∵ c2 a 2 b2 2ab cosC=8-4 3
∴c= 6 2
∴cos B a 2 c 2 b2 =- 2
2ac
2
∴B=135°
∴ A= 180°-(B+C) = 30°
④ 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、语 文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。
⑤ 搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的 内容,以免顾此失彼。来自:学习方法网
新课标高中数学人教A版必修五全册课件2.1数列的概念与简单表示法
简单表示法(二)
第一页,编辑于星期日:十三点 十七分。
复习引入
练习. 1. 以下四个数中,是数列{n(n+1)}中的 一项的是 ( A )
A. 380
B. 39 C. 32 D. 18
第二页,编辑于星期日:十三点 十七分。
复习引入
练习. 1. 以下四个数中,是数列{n(n+1)}中的 一项的是 ( A )
第十三页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式: a1 1,
第十四页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
a1 1, a2 3 1 2 a1 2,
第十五页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
给出,
写出这个数列的前五项.
第二十四页,编辑于星期日:十三点 十七分。
讲解范例:
例1.已知数列{an}的第一项是1,以后
的各项由公式
1 an 1 an1 给出,
写出这个数列的前五项.
1, 2, 3 , 5 , 8 . 235
第二十五页,编辑于星期日:十三点 十七分。
小结:
若记数列 {an }的前n项之和为 Sn ,则
a1 1, a2 3 1 2 a1 2, a3 5 a 2 2,,
第十六页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
a1 1, a2 3 1 2 a1 2, a3 5 a 2 2,, an an1 2
第十七页,编辑于星期日:十三点 十七分。
他项.
3. 用递推公式求通项公式的方法: 观察法、累加法、迭乘法.
2020新人教A版高中数学必修5同步课件:第二章 习题课(一) 求数列的通项公式
∴an=
2.
2������ -1
(2)∵an+1=3an+2,∴an+1+1=3(an+1).
又a1+1=2≠0,
∴数列{an+1}是首项为2,公比为3的等比数列.
∴an+1=2·3n-1.
∴an=2·3n-1-1.
=
������ (������ -1)
22 .
反思已知数列的递推公式求通项,通常有以下几种情
形:(1)an+1-an=f(n),常用累加法求通项;(2)
������������ +1 ������������
=
������(n),常用累乘法求
通项;(3)an+1=pan+q,通常构造等比数列求通项.
习题课(一) 求数列的通项公式
1.巩固等差数列与等比数列的通项公式. 2.掌握求数列通项公式的常见方法,并能用这些方法解决一些简 单的求数列通项公式的问题.
1.等差数列的通项公式
若数列{an}为等差数列,其首项为a1,公差为d,则an=a1+(n1)d=am+(n-m)d (n,m∈N*).
【做一做1】 已知数列{an}是等差数列,且a2=6,a11=24,则
给项是分数,那么先把它们统一为相同的形式,再分子、分母分别
寻找规律.
题型一 题型二 题型三
【变式训练1】 根据下面数列的前几项,写出数列的一个通项公
式.
பைடு நூலகம்
(1)1,1,
5 7
,
7 15
,
9 31
,
…
;
(2)2,22,222,2 222,…;
(3)3,0,-3,0,3,….
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.an=1+(-1)
n+1
nπ B.an=2sin 2
2,n为奇数, D.an= 0,n为偶数
C.an=1-cos nπ
解析
nπ 将 n=1,2,3,4 代入各选择项,验证得 an=2sin 2 不能作为通项公式.
解析答案
课堂小结
1.与集合中元素的性质相比较,数列中的项也有三个性质:
解析答案
返回
当堂检测
1
2
3
4
5
6
1.下列数列的关系是( B ) (1)1,4,9,16,25 (2)25,16,9,4,1 A.都是同一个数列 B.都不相同 C.(1)、(2)是同一数列 D.(2)、(3)是同一数列 解析 三个数列中的数字相同,但排列的顺序不同,故三个数列均不 (3)9,4,1,16,25
解析答案
1
2
3
4
5
6
5.已知数列 1, 3, 5, 7,„, 2n-1,„,则 3 5是它的( C )
A.第28项
C.第23项
解析 数列的通项公式为 an= 2n-1.
B.第24项
D.第22项
令 2n-1=3 5,∴n=23.
解析答案
1
2
3
4
5
6
6. 已知数列 {an} 的前 4 项分别为 2,0,2,0 , „ ,则下列各式不可以作为数
n
解析答案
4 1 4 2 4 (4)2,-5,2,-11,7,-17,„;
解
4 4 数列的符号规律是正、 负相间, 使各项分子为 4, 数列变为2, - 5,
4 4 4 4 4 4 , - , „ , 再把各分母分别加上 1 , 数列又变为 , - , , - , „ , 8 11 3 6 9 12 4×-1n+1 所以 an= . 3n-1
素顺序不同,而集合{1,2,3,4,5}与这两个数列也不相同,一方面形式上 不一致,另一方面,集合中的元素具有无序性.
答案
知识点二
数列的分类
(1)根据数列的项数可以将数列分为两类:
①有穷数列——项数 有限 的数列.
②无穷数列——项数 无限 的数列.
(2)按照数列的每一项随序号变化的情况分类:
①递增数列——从第2项起,每一项都 大于 它的前一项的数列;
1.数列与数列的项 按照一定顺序排列的一列数称为 数列,数列中的每一个数叫做这个数列的 项 .数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的 第1项(通常也叫做 首 项),排在第二位的数称为这个数列的第2项,„„,
排在第n位的数称为这个数列的第 n 项.
2.数列的表示方式
数列的一般形式可以写成a1,a2,„,an,„,简记为 {an} .
相同.
解析答案
1
2
3
4
5
6
2.下列数列中,是有穷数列的是( D ) 1 1 1 1 1 (1)1,1,1,1,„;(2)6,5,4,3,„;(3)10,8,6,4,2;(4)2,-2,2,-2. A.(2),(3) C.(1),(2),(3),(4) B.(2),(3),(4) D.(3),(4)
(5)1,2,1,2,1,2,„.
解
* 1 , n 为奇数, n ∈ N , 可写成分段函数形式:an= * 2 , n 为偶数, n ∈ N .
解析答案
解
1 ∵an= , nn+2
1 1 1 1 ∴a3= = ,a4= = , 3×5 15 4×6 24 1 1 13 ∴a3+a4=15+24=120.
解析
A是递减数列,B是摆动数列,D是有穷数列,故选C.
解析答案
3-ax-3,x≤7, (2)设函数 f(x)= x-6 数列{an}满足 an=f(n),n∈N*, a ,x>7,
且数列{an}是递增数列,则实数 a 的取值范围是( D ) 9 A.(4,3) 9 B.[4,3) C.(1,3) D.(2,3)
(1) 确定性:一个数在不在数列中,即一个数是不是数列中的项是确
定的.
(2)可重复性:数列中的数可以重复.
(3) 有序性:一个数列不仅与构成数列的 “ 数 ” 有关,而且与这些
“数”的排列次序也有关.
返回
解析
(1)、(2)是无穷数列,(3)、(4)是有穷数列.
解析答案
1Leabharlann 2345
6
3.数列{an}满足an+1=an+1,则数列{an}是( A )
A.递增数列
C.常数列
B.递减数列
D.摆动数列
解析 ∵an+1-an=1>0,∴{an}为递增数列.
解析答案
1
2
3
4
5
6
8 15 24 4.数列-1,5,- 7 , 9 ,„的一个通项公式是( D )
顺序,未必全是递增的,如2,1,3,4,5„„并不是递增数列.
解析答案
知识点三
数列的通项公式
如果数列{an}的 第n项 与 序号n 之间的关系可以用一个式子来表示,那 么这个式子叫做这个数列的 通项 公式. 思考1 答案 数列的通项公式有什么作用? (1)可以求得这个数列的任一项,即可以根据通项公式写出数列;
(1)2 000,2 004,2 008,2 012; n-1 1 2 (2)0,2,3,„, n ,„;
1 1 1 (3)1,2,4,„, n-1,„; 2 -1 · n 2 3 (4)1,-3,5,„, ,„; 2n-1
n-1
(4)(5) ________.( 将正确答案的序号
填在横线上)
nπ (5)1,0,-1,„,sin 2 ,„;
3.数列中的项的性质:
(1)确定性;(2)可重复性;(3)有序性.
答案
思考1 答案
数列的项和它的项数是否相同? 数列的项与它的项数是不同的概念.数列的项是指这个数列中的
某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个 数在数列中的位置序号,它是自变量的值,相当于f(n)中的n. 思考2 答案 数列1,2,3,4,5,数列5,3,2,4,1与{1,2,3,4,5}有什么区别? 数列 1,2,3,4,5 和数列 5,3,2,4,1 为两个不同的数列,因为二者的元
第二章 数 列
§2.1 数列的概念与简单表示法(一)
学习 目标
1.理解数列及其有关概念.
2.理解数列的通项公式,并会用通项公式写出数列的任意一项.
3.对于比较简单的数列,会根据其前n项写出它的通项公式.
栏目 索引
知识梳理 题型探究
当堂检测
自主学习 重点突破
自查自纠
知识梳理
自主学习
知识点一
数列的概念
(6)3,3,3,3,3,3.
解析答案
题型二
观察法写数列的一个通项公式
例2 根据数列的前几项,写出数列的一个通项公式.
2 4 6 8 (1)3,15,35,63,„;
解
分子均为偶数,分母分别为1×3,3×5,5×7,7×9,„是两个相邻奇数
的乘积.
2n 故 an= . 2n-12n+1
解析答案
解析答案
解
1 1 1 若120为数列{an}中的项,则 =120, nn+2
∴n(n+2)=120,
∴n2+2n-120=0,
∴n=10或n=-12(舍),
1 即120是数列{an}的第 10 项.
反思与感悟
解析答案
跟踪训练3
已知数列{an}的通项公式为an=-n2+n+110.
(1)20是不是{an}中的一项?
(2)可以确定这个数列是有穷数列还是无穷数列,还可以知道这个数列是 递增(减)数列、摆动数列,还是常数列; (3)可以判断一个数是不是数列中的项.
答案
思考2
数列{an}的通项公式an=-58+16n-n2,则( C )
A.{an}是递增数列
B.{an}是递减数列
C.{an}先增后减,有最大值
D.{an}先减后增,有最小值 解析 易于看出an是关于n的二次函数,对称轴为n=8,故{an}先增后减,
解 令an=-n2+n+110=20,
即n2-n-90=0,∴(n+9)(n-10)=0,
∴n=10或-9(舍).
∴20是数列{an}中的一项,且为数列{an}中的第10项.
解析答案
(2)当n取何值时,an=0. 解 令an=-n2+n+110=0, 即n2-n-110=0, ∴(n-11)(n+10)=0, ∴n=11或n=-10(舍), ∴当n=11时,an=0.
解析答案
1 2 3 4 5 (3)-14,39,-516,725,-936,„;
解
所给数列有这样几个特点:
①符号正、负相间 ②整数部分构成奇数列; ③分母为从2开始的自然数的平方; ④分子依次大1. 综合这些特点写出表达式,再化简即可. 由所给的几项可得数列的通项公式为:
3 2 n 2 n + 3 n +n-1 an=(-1) 2n-1+n+12, 所以 an=(-1)n . 2 n+1
解析 结合函数的单调性,要证{an}递增,则应有
3-a>0, a>1, 8-6 a = 3 - a × 7 - 3< a = a , 8 7
解得2<a<3,选D.
反思与感悟 解析答案
跟踪训练1
已知下列数列: (1)(6) ,无穷 其中有穷数列是______
数列是 (2)(3)(4)(5) _________ ,递增数列 (1)(2) ,递减数列是 ______ (3) , 是 _____ (6) ,摆动数列是 常数列是______
2 n +n n A.an=(-1) · 2n+1 2 n + 1 -1 n C.an=(-1) · 2n-1 2 n +3 n B.an=(-1) · 2n-1