动能和动能定理、重力势能·典型例题剖析

合集下载

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析
(1)玩具滑车到达 点时对 点的压力大小。
(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。
(3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。
【答案】(1)80N;(2)6m/s,6m;(3)见解析。
【解析】
【详解】
【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
2.如图所示,斜面ABC下端与光滑的圆弧轨道CDE相切于C,整个装置竖直固定,D是最低点,圆心角∠DOC=37°,E、B与圆心O等高,圆弧轨道半径R=0.30m,斜面长L=1.90m,AB部分光滑,BC部分粗糙.现有一个质量m=0.10kg的小物块P从斜面上端A点无初速下滑,物块P与斜面BC部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2,忽略空气阻力.求:
高考物理动能与动能定理试题经典及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,半径R=0.5 m的光滑圆弧轨道的左端A与圆心O等高,B为圆弧轨道的最低点,圆弧轨道的右端C与一倾角θ=37°的粗糙斜面相切。一质量m=1kg的小滑块从A点正上方h=1 m处的P点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10 m/s2。
【解析】
试题分析:小物块从开始运动到与挡板碰撞,重力、摩擦力做功,运用动能定理。求小物块经过B点多少次停下来,需要根据功能转化或动能定理求出小物块运动的路程,计算出经过B点多少次。小物块经过平抛运动到达D点,可以求出平抛时的初速度,进而求出在BC段上运动的距离以及和当班碰撞的次数。

动能定理题型及例题讲解

动能定理题型及例题讲解

动能定理题型及例题讲解动能定理是物理学中的一个重要定理,描述了物体的动能与物体受力产生的功之间的关系。

动能定理的数学表达式是:动能的变化量等于物体受力所产生的功。

动能定理可以用来研究运动物体的动能与受到的力与加速度的关系,进而预测物体的行为元素、制造机器等。

动能定理题型:1. 给出物体的初速度和末速度,求物体所受到的力所做的功;2. 给出物体的初速度和末速度,求物体从初速度到末速度所经过的路程;3. 以动能定理为基础,解决与碰撞有关的问题。

例题讲解:【例题1】一个质量为 2kg 的物体,以 10m/s 的速度移动,在 100N 的恒力作用下移动了 5s,这个物体的末速度是多少?解答:根据动能定理,物体动能的变化量等于所受到的力所做的功(KE= W)。

可以用以下公式计算物体末速度:v^2 = v0^2 + 2ad,其中v为物体末速度,v0为物体初速度,d为物体运动路程,a为物体加速度。

由于物体是在恒力的作用下移动了 5s,我们可以计算其加速度:F=ma,a=F/m=100N/2kg=50m/s^2物体的起点速度为 10m/s,这意味着 v0 = 10m/s。

为了计算物体的末速度,我们需要知道物体移动的路程。

d = 1/2at^2 = 1/2* 50m/s^2 * 5s^2 = 125m现在我们可以使用上面的公式计算出物体的末速度:v^2 = v0^2 + 2adv^2 = (10 m/s)^2 + 2*(50 m/s^2)*125 mv^2 = 100 m^2/s^2+ 12500 m^2/s^2v^2 = 12600 m^2/s^2v = √(12600 m^2/s^2) ≈ 112.25 m/s因此,这个物体的末速度约为 112.25 m/s。

【例题2】一颗质量为 500g 的小球位于 500m 高的悬崖上。

该小球自由落体直落地面,那么它击中地面时的速度是多少?解答:这道题可以用动能定理和重力势能来解决。

高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)含解析

高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)含解析

高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试动能与动能定理1.某游乐场拟推出一个新型滑草娱乐项目,简化模型如图所示。

游客乘坐的滑草车(两者的总质量为60kg ),从倾角为53θ=︒的光滑直轨道AC 上的B 点由静止开始下滑,到达C 点后进入半径为5m R =,圆心角为53θ=︒的圆弧形光滑轨道CD ,过D 点后滑入倾角为α(α可以在075α︒剟范围内调节)、动摩擦因数为3μ=的足够长的草地轨道DE 。

已知D 点处有一小段光滑圆弧与其相连,不计滑草车在D 处的能量损失,B 点到C 点的距离为0=10m L ,10m/s g =。

求:(1)滑草车经过轨道D 点时对轨道D 点的压力大小;(2)滑草车第一次沿草地轨道DE 向上滑行的时间与α的关系式;(3)α取不同值时,写出滑草车在斜面上克服摩擦所做的功与tan α的关系式。

【答案】(1)3000N ;(2)3sin cos 32t αα=⎛⎫+ ⎪⎝⎭;(3)见解析 【解析】【分析】【详解】(1)根据几何关系可知CD 间的高度差()CD 1cos532m H R =-︒=从B 到D 点,由动能定理得()20CD D 1sin 5302mg L H mv ︒+=- 解得D 102m/s v =对D 点,设滑草车受到的支持力D F ,由牛顿第二定律2D D v F mg m R-= 解得D 3000N F =由牛顿第三定律得,滑草车对轨道的压力为3000N 。

(2)滑草车在草地轨道DE 向上运动时,受到的合外力为sin cos F mg mg αμα=+合由牛顿第二定律得,向上运动的加速度大小为sin cos F a g g mαμα==+合 因此滑草车第一次在草地轨道DE 向上运动的时间为 D sin cos v t g g αμα=+ 代入数据解得t =⎝⎭(3)选取小车运动方向为正方向。

①当0α=时,滑草车沿轨道DE 水平向右运动,对全程使用动能定理可得[]01sin (1cos )+=00f mg L R W θθ+--代入数据解得16000J f W =-故当0α=时,滑草车在斜面上克服摩擦力做的功为6000J W =克1②当030α<≤︒时,则sin cos g g αμα≤滑草车在草地轨道DE 向上运动后最终会静止在DE 轨道上,向上运动的距离为2D 22(sin cos )v x g g αμα=+ 摩擦力做功为22cos f W mg x μα=-⋅联立解得2f W = 故当030α<≤︒时,滑草车在斜面上克服摩擦力做的功为2W =克 ③当3075α︒<≤︒时sin cos g g αμα>滑草车在草地轨道DE 向上运动后仍会下滑,若干次来回运动后最终停在D 处。

高中物理动能与动能定理及其解题技巧及练习题(含答案)及解析

高中物理动能与动能定理及其解题技巧及练习题(含答案)及解析

高中物理动能与动能定理及其解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1. 如图所示,光滑水平平台AB与竖直光滑半圆轨道AC平滑连接,C点切线水平,长为L=4m的粗糙水平传送带BD与平台无缝对接。

质量分别为m i=0.3kg和m2=1kg两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。

已知传送带以v°=i.5m/s的速度向左匀速运动,小物体与传送带间动摩擦因数为(1=0.15.某时剪断细绳,小物体m i向左运动,m2向右运动速度大小为V2=3m/s , g取10m/s2•求:(1) 剪断细绳前弹簧的弹性势能E)(2) 从小物体m2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E(3) 为了让小物体m1从C点水平飞出后落至AB平面的水平位移最大,竖直光滑半圆轨道AC的半径R和小物体m1平抛的最大水平位移x的大小。

【答案】(1)19.5J(2)6.75J(3)R=1.25m时水平位移最大为x=5m【解析】【详解】(1) 对m1和m2弹开过程,取向左为正方向,由动量守恒定律有:0=m1V1-m2V2解得V1=10m/s剪断细绳前弹簧的弹性势能为:1 2 1 2E p m1v1m2v22 2解得E P=19.5J⑵设m2向右减速运动的最大距离为x,由动能定理得:-(im2gx=0-'1 m2v22解得x=3m v L=4m则m2先向右减速至速度为零,向左加速至速度为V0=1.5m/s,然后向左匀速运动,直至离开传送带。

设小物体m2滑上传送带到第一次滑离传送带的所用时间为t。

取向左为正方向。

根据动量定理得:im gt=m2v o- (-m2V2)解得:t=3s该过程皮带运动的距离为:x 带=V o t=4.5m故为了维持传送带匀速运动,电动机需对传送带多提供的电能为:E= ^m gx 带解得:E=6.75J⑶设竖直光滑轨道AC的半径为R时小物体m i平抛的水平位移最大为X。

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析)

的小物块从轨道右侧 A 点以初速度
冲上轨道,通过圆形轨道,水平轨道
后压缩弹簧,并被弹簧以原速率弹回,取
,求:
(1)弹簧获得的最大弹性势能 ; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能 ; (3)当 R 满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离 轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m 或 0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从 A 到压缩弹簧至最短的过程中,由动
代入数据得:Q=126 J 故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【点睛】 对物体受力分析并结合图像的斜率求得加速度,在 v-t 图像中图像包围的面积代表物体运 动做过的位移。
5.如图所示,一质量为 M、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧 相连,弹簧的另一端固定在墙上.平板上有一质量为 m 的小物块以速度 v0 向右运动,且在 本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为 μ,弹簧弹性势能 Ep 与弹簧形变量 x 的平方成正比,重力加速度为 g.求:
6J
(3)滑块从 A 点运动到 C 点过程,由动能定理得
解得 BC 间距离
mg
3r
mgs
1 2
mvc2
s 0.5m
小球与弹簧作用后返回 C 处动能不变,小滑块的动能最终消耗在与 BC 水平面相互作用的
过程中,设物块在 BC 上的运动路程为 s ,由动能定理有
mgs
1 2
mvc2
解得
s 0.7m 故最终小滑动距离 B 为 0.7 0.5m 0.2m处停下.
(1)物体与传送带间的动摩擦因数; (2) 0~8 s 内物体机械能的增加量; (3)物体与传送带摩擦产生的热量 Q。 【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【解析】 【详解】 (1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,

高中物理必修2动能和动能定理 例题解析

高中物理必修2动能和动能定理 例题解析

动能和动能定理 例题解析1【例1】一架喷气式飞机,质量m =5.0×103 kg ,起飞过程中从静止开始滑跑.当位移达到l =5.3×102 m 时,速度达到起飞速度v =60 m/s.在此过程中飞机受到的平均阻力是飞机重量的0.02倍.求飞机受到的牵引力.图5-7-2 起飞前飞机所受的牵引力是多少?解析:滑跑过程中牵引力与阻力的合力对飞机做功.本题已知飞机滑跑过程的始末速度,因而能够知道它在滑跑过程中增加的动能,故可应用动能定理求出合力做的功,进而求出合力、牵引力.飞机滑行时除了地面阻力外,还受到空气阻力,后者随速度的增加而增加.本题说“平均阻力是飞机重量的0.02倍”,只是一种粗略的估算.飞机的初动能E k1=0,末动能E k2=21mv 2;合力F 做的功W =Fl .根据动能定理,有 Fl =21mv 2-0合力F 为牵引力F 牵与阻力F 阻之差,而阻力与重量的关系为F 阻=km g (其中k =0.02),所以 F =F 牵-km g代入上式后解得F 牵=lmv 22+km g 把数值代入后得F 牵=1.8×104 N飞机所受的牵引力是1.8×104 N.【例2】一辆质量为m 、速度为v 0的汽车在关闭发动机后于水平地面滑行了距离l 后停下(图5-7-3).试求汽车受到的阻力.图5-7-3 计算汽车受到的阻力解析:我们讨论的是汽车从关闭发动机到静止的运动过程.这个过程的初动能、末动能都可求出,因而应用动能定理可以知道阻力做的功,进而可以求出汽车受到的阻力.解答:汽车的初动能、末动能分别为21mv 02和0,阻力F 阻做的功为-F 阻l .应用动能定理,有-F 阻l =0-21mv 02由此解出F 阻=l mv 220汽车在这段运动中受到的阻力是l mv 220. 思考与讨论:1.能不能用牛顿运动定律解决这个问题?试一试.简答:在把阻力视为恒力时,可以用牛顿运动定律来解答.由牛顿第二定律可得:F 阻=ma ①由运动学公式可得:0-v 02=-2al ②由①②可得:F 阻=l mv 220 2.做功的过程是能量从一种形式转化为另一种形式的过程,或从一个物体转移到另一个物体的过程.在上面的例题中,阻力做功,汽车的动能到哪里去了?简答:能量不会凭空消失.上例中,在克服阻力做功时,汽车的动能转化为了汽车和地面组成的系统的内能.。

动能定理应用典型例题及解析

动能定理应用典型例题及解析

动能定理应用典型例题及解析
例题:一物体质量为2kg,速度为5m/s,撞向另一物体,两物体碰撞后,第一个物体反弹回来,速度为3m/s。

第二个物体
的质量为3kg,碰撞后向前运动的速度为多少?
解析:
首先,我们要明确动能定理的公式:
动能定理公式:$E_k=\frac{1}{2}mv^2$
动能定理的原理:物体所具有的动能的增量等于所受动力的功。

根据动能定理的公式,我们可以计算出碰撞前后两个物体的动能,然后通过它们在碰撞过程中的总动能守恒,来求解所需的速度。

1. 碰撞前,第一个物体的动能为:
$E_{k1}=\frac{1}{2}mv^2=\frac{1}{2} \times 2 \times 5^2=25
J$
2. 碰撞后,第一个物体的动能为:
$E'_{k1}=\frac{1}{2}mv'^2=\frac{1}{2} \times 2 \times 3^2=9 J$ 其中,$v'$表示第一个物体反弹后的速度。

3. 碰撞后,第二个物体的动能为:
$E_{k2}=\frac{1}{2}mv^2=\frac{1}{2} \times 3 \times v_f^2$ 其中,$v_f$表示第二个物体碰撞后向前运动的速度。

4. 动能守恒式:
$E_{k1}+E_{k2}=E'_{k1}+E'_{k2}$
代入数值,得到:
$25+\frac{1}{2} \times 3 \times v_f^2=9+\frac{1}{2} \times 3 \times v_f^2$
化简后得到$v_f=\frac{4}{3}m/s$。

因此,第二个物体碰撞后向前运动的速度为4/3m/s。

三、重力势能 动能 动能定理

三、重力势能   动能 动能定理
体的重力势能变化了多少?是增加了还是减少了?
如果是减少了,减少的重力势能到哪里去了?
9.如图,在光滑的桌面上有一根均匀柔软的质量为m、 长为L的绳,其绳长的1/4悬于桌面下,从绳子开始下滑 至绳子刚好全部离开桌面的过程中,重力对绳子做

,绳子的重力势能增量为
(桌面离地
高度大于L)。
答案:15mgL/32
W
G
E
P1
E
P2
说明:变化量(增量)=末量-初量
减少量 = 初量 -末量
说明:
EP只与重力做功有关,与运动状态和其他受力 ( 1)
无关( W
E P ; G W G E P )(重力做正功,释放重


力势能;重力做负功,储存重力势能)
(2)也适用于曲线运动的情况(重力做功与路径无关) W G EP
从抛出到落地的过程中,重力所做的功相等,物体减少
的重力势能一定相等
C.重力势能等于零的物体,不可能对别的物体做功
D.用手托住一个物体匀速上举时,手的支持力做的功 等于克服重力做的功与物体重力势能增量之和
4、一物体从A点沿粗糙面AB与光滑面AC分别滑到同一 水平面上的B点与C点,则下列说法中正确的是( D ) A、沿AB面重力做功多
-15mgL/32
10、如图所示,在一次“蹦极”运动中,人由高空下 落到最低点的整个过程中,下列说法中正确的是 ( )
A.重力对人做正功
B.人的重力势能减小
C.橡皮绳对人做正功
D.橡皮绳的弹性势能增加
11、如图所示,重物A质量为m,置于水平地面上, 其上表面竖直立着一根轻质弹簧.弹簧长为L,劲度 系数为k,下端与物体A相拴接.现将弹簧上端点P缓

动能定理典型例题解析

动能定理典型例题解析

动能定理典型例题解析动能定理是描述物体在运动过程中动能的变化情况的重要定律。

本文将通过解析几个典型的例题,深入探讨动能定理在物理学中的应用。

例题1:自由落体物体的动能变化假设一个质量为m的物体从高度h自由落下,忽略空气阻力。

求物体下落到地面时的动能变化。

解析:根据动能定理,动能的变化等于力做功的变化。

在自由下落的过程中,物体只受重力作用,而重力做的功等于质量乘以高度的变化。

因此,动能的变化为:$$ \\Delta KE = -mgh $$若取下落物体的位置高度为0,则最后动能为0,从高度h下降为0的过程中其动能减少为-mgh。

例题2:弹簧振子的动能变化考虑一个质量为m的弹簧振子,振子静止时拉伸了一段距离x。

当振子释放后振动,达到最大位移A时,求振子的动能变化。

解析:弹簧振子具有弹簧势能和动能。

在静止时,只有势能;在振动的过程中,势能和动能不断转化。

根据动能定理,动能变化等于合外力做的功。

在弹簧振动中,合外力主要是弹簧力,且弹簧力与位移成正比。

因此,动能的变化为:$$ \\Delta KE = -\\frac{1}{2} kA^2 $$振子从最大位移A回到平衡位置时动能增加1/2kA^2。

在振子做简谐振动的周期内,动能一直在势能和动能之间不断变化。

总结通过以上两个例题的分析,可以看出动能定理在不同情况下的应用。

动能定理是描述物体运动过程中动能变化的基本定律,它揭示了能量在运动过程中的转化与守恒规律,为分析力学中的问题提供了重要的工具和思路。

在物理学教学和研究中,动能定理都起到了不可替代的作用。

希望通过本文的讨论,读者能更深入理解动能定理的重要性和应用,为进一步学习物理学奠定基础。

以上是本文对动能定理中的典型例题进行详细解析的内容。

愿读者在学习物理学的道路上能够有所收获。

请保持好奇心,发现世界的美好!。

势能 动能 动能定理

势能 动能 动能定理

例1在高处的某一点将三个质量相同的小球以相同的速率v0分别上抛、平抛、下抛,那么以下说法正确的是( )A、从抛出到落地过程中,重力对它们所做的功都相等B、从抛出到落地过程中,重力对它们做功的平均功率都相等C、三个球落地时,重力的瞬时功率相同D、如果考虑空气阻力,则从抛出到落地过程中,重力势能变化不相等例2一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离。

假定空气阻力可忽略,运动员可视为质点,下列说法正确的是( )A、运动员到达最低点前重力势能始终减小B、蹦极绳张紧后的下落过程中,弹性力做负功,弹性势能增加C、蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒D、蹦极过程中,重力势能的改变与重力势能零点的选取有关例3物体在合外力作用下作直线运动的v-t图像如图所示,下列表述正确的是( )A、在0~1s内,合力做正功B、在0~2s内,合力总是做负功C、在1~2s内,合力不做功D、在0~3s内,合力总是做正功例4如图所示,光滑的桌面上,有一条粗细均匀的链条,全长为L, 垂下桌边的部分长度为a,链条在上述位置静止释放,则链条的上端离开桌面时,链条的速度为。

例5如图所示,四分之一圆轨道OA与水平轨道AB相切,它们与另一水平轨道CD在同一竖直面内,圆轨道OA的半径R=0.45m,水平轨道AB长S1=3m,OA与AB均光滑.一滑块从O 点由静止释放,当滑块经过A点时,静止在CD上的小车在F=1.6N的水平恒力作用下启动,运动一段时间后撤去力F.当小车在CD上运动了S2=3.28m时速度v=2.4m/s,此时滑块恰好落入小车中,已知小车质量M=0.2kg,与CD间的动摩擦因数μ=0.4.(取g=10m/s2)求:(1)恒力F的作用时间t.(2)AB与CD的高度差h.例6一质量为 m 的小球,用长为 L 的轻绳悬挂于 O 点,小球在水平拉力 F 作用下,从平衡位置 P 点很缓慢地移动到 O 点,如图— 84 所示,则力 F 做的功为()A、mgLcosθB、FLsinθC、mgL(1-cosθ)D、FL例7以初速度v0竖直向上抛出一质量为m的小物体.假定物块所受的空气阻力f大小不变.已知重力加速度为g,则物体上升的最大高度和返回到原抛出点的速率分别为()A、。

高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析

高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析

高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB是在竖直平面内的14圆周,B点离地面的高度h=0.8m,该处切线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求:(1)圆弧轨道的半径(2)小球滑到B点时对轨道的压力.【答案】(1)圆弧轨道的半径是5m.(2)小球滑到B点时对轨道的压力为6N,方向竖直向下.【解析】(1)小球由B到D做平抛运动,有:h=12gt2x=v B t解得:10410/220.8Bgv x m sh==⨯=⨯A到B过程,由动能定理得:mgR=12mv B2-0解得轨道半径R=5m(2)在B点,由向心力公式得:2Bv N mg mR -=解得:N=6N根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在A点用一弹射装置可将静止的小滑块以v0水平速度弹射出去,沿水平直线轨道运动到B点后,进入半径R=0.3m 的光滑竖直圆形轨道,运行一周后自 B点向C点运动,C点右侧有一陷阱,C、D两点的竖直高度差h=0.2m,水平距离s=0.6m,水平轨道AB长为L1=1m,BC长为 L2 =2.6m,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2.(1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥【解析】 【分析】 【详解】(1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律由B 到最高点2211222B mv mgR mv =+ 由A 到B :解得A 点的速度为(2)若小滑块刚好停在C 处,则:解得A 点的速度为若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有212h gt =c s v t =解得所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥3.如图所示,半径为R 1=1.8 m 的14光滑圆弧与半径为R 2=0.3 m 的半圆光滑细管平滑连接并固定,光滑水平地面上紧靠管口有一长度为L =2.0 m 、质量为M =1.5 kg 的木板,木板上表面正好与管口底部相切,处在同一水平线上,木板的左方有一足够长的台阶,其高度正好与木板相同.现在让质量为m 2=2 kg 的物块静止于B 处,质量为m 1=1 kg 的物块从光滑圆弧顶部的A 处由静止释放,物块m 1下滑至B 处和m 2碰撞后不再分开,整体设为物块m (m =m 1+m 2).物块m 穿过半圆管底部C 处滑上木板使其从静止开始向左运动,当木板速度为2 m/s 时,木板与台阶碰撞立即被粘住(即速度变为零),若g =10 m/s 2,物块碰撞前后均可视为质点,圆管粗细不计.(1)求物块m 1和m 2碰撞过程中损失的机械能; (2)求物块m 滑到半圆管底部C 处时所受支持力大小;(3)若物块m 与木板及台阶表面间的动摩擦因数均为μ=0.25,求物块m 在台阶表面上滑行的最大距离.【答案】⑴12J ⑵190N ⑶0.8m 【解析】试题分析:(1)选由机械能守恒求出物块1m 下滑到B 点时的速度;1m 、2m 碰撞满足动量守恒,由221B 1122E m v mv =-共机求出碰撞过程中损失的机械能;(2)物块m 由B 到C 满足机械能守恒,在C 点由牛顿第二定律可求出物块m 滑到半圆管底部C 处时所受支持力大小;(3)根据动量守恒定律和动能定理列式即可求解. ⑴设物块1m 下滑到B 点时的速度为B v ,由机械能守恒可得:2111B 12m gR m v =解得:B 6/v m s =1m 、2m 碰撞满足动量守恒:1B 12()m v m m v =+共解得;2/v m s 共=则碰撞过程中损失的机械能为:221B 111222E m v mv J =-=共机 ⑵物块m 由B 到C 满足机械能守恒:222C 11222mv mg R mv 共+⨯= 解得:C 4/v m s =在C 处由牛顿第二运动定律可得:2CN 2v F mg m R -=解得:N 190F N =⑶设物块m 滑上木板后,当木板速度为22/v m s =时,物块速度为1v , 由动量守恒定律得:C 12mv mv Mv =+ 解得:13/v m s =设在此过程中物块运动的位移为1x ,木板运动的位移为2x ,由动能定理得: 对物块m :2211C 1122mgx mv mv μ-=- 解得:1 1.4x m = 对木板M :22212mgx Mv μ= 解得:20.4x m =此时木板静止,物块m 到木板左端的距离为:3211x L x x m =+-= 设物块m 在台阶上运动的最大距离为4x ,由动能定理得:23411()02mg x x mv μ-+=-解得:40.8x m =4.如图所示,在竖直平面内的光滑固定轨道由四分之一圆弧AB 和二分之一圆弧BC 组成,两者在最低点B 平滑连接.过BC 圆弧的圆心O 有厚度不计的水平挡板和竖直挡板各一块,挡板与圆弧轨道之间有宽度很小的缝隙.AB 弧的半径为2R ,BC 弧的半径为R .一直径略小于缝宽的小球在A 点正上方与A 相距23R处由静止开始自由下落,经A 点沿圆弧轨道运动.不考虑小球撞到挡板以后的反弹. (1)通过计算判断小球能否沿轨道运动到C 点.(2)若小球能到达C 点,求小球在B 、C 两点的动能之比;若小球不能到达C 点,请求出小球至少从距A 点多高处由静止开始自由下落才能够到达C 点.(3)使小球从A 点正上方不同高度处自由落下进入轨道,小球在水平挡板上的落点到O 点的距离x 会随小球开始下落时离A 点的高度h 而变化,请在图中画出x 2­h 图象.(写出计算过程)【答案】(1)13mg (2) 4∶1 (3)过程见解析【解析】 【详解】(1)若小球能沿轨道运动到C 点,小球在C 点所受轨道的正压力N 应满足N ≥0 设小球的质量为m ,在C 点的速度大小为v C ,由牛顿运动定律和向心加速度公式有N +mg =2C mv R小球由开始下落至运动到C 点过程中,机械能守恒,有22132C mgR mv = 由两式可知N =13mg 小球可以沿轨道运动到C 点.(2)小球在C 点的动能为E k C ,由机械能守恒得E k C =23mgR设小球在B 点的动能为E k B ,同理有E k B =83mgR得E k B ∶E k C =4∶1.(3)小球自由落下,经ABC 圆弧轨道到达C 点后做平抛运动。

动能势能动能定理

动能势能动能定理

动能、势能、动能定理知识点一:重力势能要点诠释: 1.重力做功及特点物体运动时,重力对它做的功只跟它起点和终点的位置有关,而跟物体运动的路径无关;物体被举高时,重力做负功,物体下降时,重力做正功。

物体被举高时,重力做负功,物体下降时,重力做正功。

2.重力势能(1)物体的重力势能等于它所受重力与所处高度的乘积)物体的重力势能等于它所受重力与所处高度的乘积 (2)重力势能的表达式:,国际单位是焦耳()(3)重力势能是状态量,它描述了物体所处的一定状态,与物体所处的位置或时刻对应(4)重力势能具有相对性、系统性。

重力势能为物体与地球这个系统所共有的。

中的是相对参考平面的高度,物体在参考平面的上方,重力势能为正,反之为负,重力势能的大小与参考平面的选择有关,同一物体选择不同的参考平面会有不同的重力势能值。

势能值。

3.重力做功跟重力势能变化的关系重力势能的变化过程,也是重力做功的过程,二者的关系为,表示在初位置的重力势能,表示在末位置的重力势能势能(1)当物体由高处运动到低处时,,表明重力做正功时,重力势能减少,减少的重力势能等于重力所做的功。

减少,减少的重力势能等于重力所做的功。

(2)当物体由低处运动到高处时,,表明重力做负功时(即物体克服重力做功),重力势能增加,增加的重力势能等于克服重力所做的功。

服重力做功),重力势能增加,增加的重力势能等于克服重力所做的功。

知识点二:探究弹性势能的表达要点诠释: 1.弹性势能发生弹性形变的物体的各部分之间,发生弹性形变的物体的各部分之间,由于有弹力的相互作用,由于有弹力的相互作用,由于有弹力的相互作用,也具有势能,也具有势能,这种势能叫做弹性势能。

做弹性势能。

2.弹性势能的大小跟形变的大小有关,形变量越大,弹性势能越大。

对于弹簧来说,弹性势能还与劲度系数有关,弹性势能还与劲度系数有关,当形变量一定时,当形变量一定时,劲度系数越大的弹簧弹性势能也越大。

性势能也越大。

动能与重力势能----高中物理模块典型题归纳(含详细答案)

动能与重力势能----高中物理模块典型题归纳(含详细答案)

动能与重力势能----高中物理模块典型题归纳(含详细答案)一、单选题1.如图所示,无人机在空中匀速上升过程中,不断增加的能量是()A.动能B.动能、重力势能C.重力势能、机械能D.动能、重力势能、机械能2.质量为50 kg、高为1.8 m的跳高运动员,背越式跳过2 m高的横杆而平落在高50 cm的垫子上,整个过程中重力对人做的功大约为()A.1 000 JB.750 JC.650 JD.200 J3.如图所示是蹦床运动员在空中表演的情景,在运动员从最低点开始反弹至即将与蹦床分离的过程中,蹦床的弹性势能、运动员的重力势能和动能变化情况分别是()A.弹性势能减小,动能增大B.重力势能增大,动能先增大后减小C.弹性势能增大,重力势能增大D.弹性势能增大,动能先增大后减小4.物体做自由落体运动,以下有关其相对于地面的重力势能与下落速度的关系图,正确的是()A. B. C. D.5.如图所示是一幅登山导图,括号中数据为该点高度,质量约为50 kg的小宋从A点出发经过0.5 小时到达C点,小宋在这过程中克服重力做功约为()A.3.9×104JB.7.5×104JC.1.2×105JD.1.5×105J6.质量为m的小物块,从离桌面高H处由静止下落,桌面离地面高为h,如图所示.如果以桌面为参考平面,那么小物块落地时的重力势能及整个过程中重力势能的变化分别是()A.mgh,减少mg(H-h)B.mgh,增加mg(H+h)C. -mgh,增加mg(H-h)D. -mgh,减少mg(H+h)7.如图所示,小球的质量为m ,自光滑的斜槽的顶端无初速度滑下,沿虚线轨迹落地,不计空气阻力,则小球着地瞬间的动能和重力势能分别是(选取斜槽末端切线所在平面为参考平面)()A.,B.,C.,0D.,8.用拉力T将一个重为5N的物体匀速升高3m,如图所示,在这个过程中,下列说法正确的是()A.物体的重力做了15 J的功B.拉力T对物体做了15 J的功C.物体的重力势能减少了15 JD.合力对物体做的功是15 J9.关于动能的概念,下列说法中正确的是()A.物体由于运动而具有的能,叫做动能B.运动物体具有的能,叫做动能C.运动物体的质量越大,其动能一定越大D.速度较大的物体,具有的动能一定较大10.某旅游景点有乘坐热气球观光项目,如图所示,在热气球加速上升的过程中,忽略热气球质量的变化,则热气球的()A.重力势能减少,动能减少B.重力势能减少,动能增加C.重力势能增加,动能减少D.重力势能增加,动能增加二、多选题11.如图所示,摆球质量为m,悬线的长为L,把悬线拉到水平位置后放手,在摆球从A点运动到B点的过程中(不计空气阻力),则下列说法正确的是()A.悬线的拉力对摆球不做功B.摆球的重力势能逐渐增大C.摆球的动能逐渐增大D.摆球的重力的功率一直增大12.质量一定的物体()A.速度发生变化时,其动能一定变化B.速度发生变化时,其动能不一定变化C.动能不变时,其速度一定不变D.动能不变时,其速度不一定不变13.某学习小组对重力势能的理解提出了以下几种说法,你认为正确的是()A.重力势能的变化只跟物体所处的始、末位置有关,与物体实际经过的路径无关B.重力势能的变化只跟重力做功有关,和其他力是否做功及做功多少无关C.重力势能是矢量,物体位于地球表面以上时重力势能才能为正值D.重力势能的增量等于重力对物体做的功14.关于重力势能,下列说法中正确的是()A.重力势能的大小与所选的参考平面有关B.在同一个参考平面,重力势能-5J小于-10JC.重力做正功,重力势能增加D.物体的重力势能是物体和地球所共有的15.改变汽车的质量和速度都可能使汽车的动能发生变化.下列情形中能使汽车的动能变为原来的2倍的是()A.质量不变,速度增大为原来的2倍B.速度不变,质量增大为原来的2倍C.质量减半,速度增大为原来的2倍D.速度减半,质量增大为原来的2倍16.下列说法中正确的是()A.只要物体受力的同时又发生了位移,则一定有力对物体做功B.一个力对物体做了负功,则说明这个力一定阻碍物体的运动C.运动物体所受的合外力不为零,则物体的动能一定改变D.重力势能是标量,但有正负,其代数值表示重力势能的大小17."蹦极"是一项深受年轻人喜爱的极限运动,跳跃者把一端固定的长弹性绳绑在腰间,从几十米高处跳下.如右图所示,某人做蹦极运动,他从高台由静止开始下落,下落过程不计空气阻力,设弹性绳原长为h0,弹性绳的弹性势能与其伸长量的平方成正比.则他在从高台下落至最低点的过程中,他的动能E k、弹性绳的弹性势能E P随下落高度h变化的关系图象正确的是()A B.C. D.18.下列关于物体重力势能的说法正确的是()A.物体的重力势能增大,该物体一定克服重力做功B.物体的重力势能减小,该物体一定克服重力做功C.重力势能为负值说明物体在零势能参考平面以下D.重力势能为负值说明物体在零势能参考平面以上三、计算题19.质量为3kg的物体放在高4m的平台上,g取10m/s2.求:(1)物体相对于平台表面的重力势能是多少?(2)物体相对于地面的重力势能是多少?(3)物体从平台落到地面上,重力势能变化了多少?重力做的功是多少?答案一、单选题1.【答案】C【解析】【解答】匀速上升,速度不变,动能不变,高度增大,重力势能不断增大,动能与重力势能之和增加,所以机械能增加,C符合题意.故答案为:C【分析】物体一定时,速度越大,动能越大,位置越高,重力势能越大。

动能和动能定理机械能守恒典型例题和练习

动能和动能定理机械能守恒典型例题和练习

学习目标1. 能够推导并理解动能定理知道动能定理的适用范围2. 理解和应用动能定理,掌握外力对物体所做的总功的计算,理解“代数和”的含义。

3. 确立运用动能定理分析解决具体问题的步骤与方法类型一 .常规题型例1. 用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力F 跟木箱前进的方向的夹角为,木箱与冰道间的动摩擦因数为,求木箱获得的速度αμ例2. 质量为m 的物体静止在粗糙的水平地面上,若物体受水平力F 的作用从静止起通过位移s 时的动能为E1,当物体受水平力2F 作用,从静止开始通过相同位移s ,它的动能为E2,则:A. E2=E1B. E2=2E1C. E2>2E1D. E1<E2<2E1针对训练 材料相同的两个物体的质量分别为m1和m2,且m m 124=,当它们以相同的初动能在水平面上滑行,它们的滑行距离之比s s 12:和滑行时间之比t t 12:分别是多少?(两物体与水平面的动摩擦因数相同)类型二、应用动能定理简解多过程问题例3:质量为m 的物体放在动摩擦因数为μ的水平面上,在物体上施加水平力F 使物体由静止开始运动,经过位移S 后撤去外力,物体还能运动多远?例4、一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图2-7-6,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.针对训练2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。

(g 取10m/s2)针对训练3 质量为m 的球由距地面高为h 处无初速下落,运动过程中空气阻力恒为重力的0.2倍,球与地面碰撞时无能量损失而向上弹起,球停止后通过的总路程是多少?类型三、应用动能定理求变力的功例5. 质量为m 的小球被系在轻绳的一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。

重力势能、弹性势能、动能定理难点解析

重力势能、弹性势能、动能定理难点解析

难点1:重力势能和重力势能的变化重力势能的大小取决于物体的重力和相对高度,即E P=mgh,与参考面(零势能面)的选取有关。

重力势能是一个标量,但有正负。

重力势能为正,表示物体在零势能面的上面;重力势能为负,表示物体在零势能面的下面。

重力势能是一个状态量,对应的是一个时刻(或一个位置)。

重力势能是物体和地球组成的系统具有的,一般简化为物体的重力势能。

重力势能的变化与参考面选取无关,与初末位置有关。

重力势能的变化取决于重力做功,与其他力做功无关。

重力做正功,重力势能减小;重力做负功,重力势能增加。

重力势能的变化和重力做功的关系为:W G= -ΔE P。

【例题1】如图,桌面离地高为h,质量为m的小球从离桌面高为H处自由下落,不计空气阻力,设桌面为零势能面,则小球开始下落处的重力势能()A.mgh B.mgH C.mg(H+h)D.mg(H-h)点评:求解物体的重力势能,首先要选择零势能面。

若以地面为零势能面,则小球开始下落处在零势能面上面高(H+h)处,故该处的重力势能为mg(H+h)。

【例题2】在离地面80m高处由静止开始释放一质量为0.2kg的小球,不计空气阻力,g取10m/s2,以最高点所在水平面为零势能面。

求:(1)第2s末小球的重力势能;(2)第2s内重力势能变化了多少?点评:重力做功等于重力势能变化的负值,所谓变化,通常指末状态的势能减去初状态的势能。

【例题3】如图所示,轻质绳子绕过光滑的定滑轮,它的一端拴住一个质量是10kg的物体,人竖直向下拉绳子,使物体处于静止状态。

AB长4m,然后人拉着绳子的另一端沿水平方向缓慢地由A移动到C,A、C相距3m,在这个过程中人做的功为多少?【例题4】一根长为2m,重为200N的均匀木板放在水平地面上,现将它的一端从地面提高0.5m,另一端仍搁在地面上,则外力所做的功为( )A.400J B.200J C.100J D.50J【例题5】在水平地面上平铺着n块相同的砖,每块砖的质量都为m,厚度为d。

重力势能、弹性势能、动能和动能定理

重力势能、弹性势能、动能和动能定理

做功为 50J。
【例题 5】在水平地面上平铺着 n 块相同的砖,每块砖的质量都为 m,厚度为 d。若将这 n 块砖一块一块地叠放
起来,至少需要做多少功?
【解析 1】n 块砖平铺在水平地面上时,系统重心离地的高度为 d 。当将它们叠放起来时,系统重心离地高度为 2
nd 。所以,至少需要做功 2
W
Ep2
度系数的大小有关。
【例题 8】如图所示,劲度系数为 k 的轻质弹簧一端固定,另一端与物块拴接,物块放在光滑水平面上。现用外
力缓慢拉动物块,若外力所做的功为 W,则物块移动了多大的距离?
【解析】外力做的功
W
Ep
1 kl2 。 2
所以,弹簧的伸长量亦即物块移动的距离 l 2W 。 k
【例题 9】如图所示,质量为 m 物体静止在地面上,物体上面连着一个直立的轻质弹簧,弹簧的劲度系数为 k。
现用手拉住弹簧上端,使弹簧上端缓慢提升高度 h,此时物体已经离开地面,求拉力所做的功。
【解析】拉力做功,增加了物体的重力势能和弹簧的弹性势能。
物体离开地面后,弹簧的伸长量为
x mg 。 k
可见,物体上升的高度为 h h x h mg 。 k
从而,物体重力势能的增加量为
E p
mgh
mg(h
WG=mgs×cosa=mg(h1-h2)=mghl-mgh2 可见重力做功与路径无关。 (2)重力势能 定义:物体的重力势能等于它所受重力与所处高度的乘积。 公式:Ep=mgh。 单位:焦(J) (3)重力势能的相对性与重力势能变化的绝对性
重力势能是一个相对量。它的数值与参考平面的选择相关。在参考平面内,物体的重力势能为零;在参考平面 上方的物体,重力势能为正值;在参考平面下方的物体,重力势能为负值。 重力势能变化的不变性(绝对性)

初中物理关于动能与势能的综合题解析

初中物理关于动能与势能的综合题解析

初中物理关于动能与势能的综合题解析在初中物理的学习中,动能与势能是非常重要的概念,而涉及到这两者的综合题往往能够全面考查同学们对相关知识的理解和运用能力。

接下来,我们就通过几道典型的题目来深入解析一下。

首先,让我们回顾一下动能和势能的基本概念。

动能,简单来说,就是物体由于运动而具有的能量。

它的大小与物体的质量和速度有关,其表达式为:动能= 1/2 ×质量 ×速度²。

也就是说,物体的质量越大、速度越快,其动能就越大。

势能则分为重力势能和弹性势能。

重力势能是物体由于被举高而具有的能量,它与物体的质量、高度以及重力加速度有关,表达式为:重力势能=质量 ×重力加速度 ×高度。

物体的质量越大、被举得越高,重力势能就越大。

弹性势能是物体由于发生弹性形变而具有的能量,其大小与物体的形变程度有关。

下面我们来看一道例题:一个质量为 5kg 的物体从 10m 高处自由下落,不计空气阻力,求物体落地时的速度以及动能。

这道题考查了重力势能和动能的转化。

物体在高处具有重力势能,下落过程中,重力势能逐渐转化为动能。

首先,根据重力势能的表达式,物体在 10m 高处的重力势能为:重力势能= 5kg × 98N/kg × 10m = 490J因为不计空气阻力,所以重力势能全部转化为动能。

根据动能的表达式,可求出落地时的速度:动能= 1/2 ×质量 ×速度²490J = 1/2 × 5kg ×速度²速度²= 490J × 2 ÷ 5kg速度=√196m²/s² = 14m/s落地时的动能为:动能= 1/2 × 5kg ×(14m/s)²= 490J再看另一道题:一个弹簧原长为 10cm,挂上 2N 的重物时,弹簧伸长到 12cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动能和动能定理、重力势能·典型例题剖析例1一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ.
[思路点拨]以物体为研究对象,它从静止开始运动,最后又静止在平面上,考查全过程中物体的动能没有变化,即ΔEK=0,因此可以根据全过程中各力的合功与物体动能的变化上找出联系.
[解题过程]设该面倾角为α,斜坡长为l,则物体沿斜面下滑时,
物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则
对物体在全过程中应用动能定理:ΣW=ΔEk.
mgl·sinα-μmgl·cosα-μmgS2=0
得h-μS1-μS2=0.
式中S1为斜面底端与物体初位置间的水平距离.故
[小结]本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.用动能定理解题,只需抓住始、末两状态动能变化,不必追究从始至末的过程中运动的细节,因此不仅适用于中间过程为匀变速的,同样适用于中间过程是变加速的.不仅适用于恒力作用下的问题,同样适用于变力作用的问题.
例2 质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=?
[思路点拨]因为机车的功率恒定,由公式P=Fv可知随着速度的增加,机车的牵引力必定逐渐减小,机车做变加速运动,虽然牵引力是变力,但由W=P·t可求出牵引力做功,由动能定理结合P=f·vm,可
求出36km/h时的牵引力,再根据牛顿第二定律求出机车的加速度a.
[解题过程](1)以机车为研究对象,机车从静止出发至达速度最大值过程,根据ΣW=ΔEk,有
当机车达到最大速度时,F=f.所以
当机车速度v=36km/h时机车的牵引力
根据ΣF=ma可得机车v=36km/h时的加速度
[小结]机车以恒定功率起动,直到最大速度,属于变力做功的问
由于速度增大导致加速度减小,汽车做加速度逐渐减小而速度逐渐变大的变加速运动.此类问题应用牛顿第二定律求解,在中学物理范围内是无法求解的.但应用动能定理求解变力做功,进而求解相关物理量是一种简捷优化的解题思路与方法.
例3 一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图8-28所示:绳的P端拴在车后的挂钩上,Q端拴在物体上,设绳的总长不变;绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B的距离也为H,车经过B点时的速度为vB.求车由A移到B的过程中,绳Q端的拉力对物体做的功?
[思路点拨]汽车从A到B把物体提升的过程中,物体只受到拉力和重力的作用,根据物体速度的变化和上升的高度,特别是汽车运动速度vB与物体上升过程中的瞬时速度关系,应用动能定理即可求解.
[解题过程]以物体为研究对象,开始动能Ek1=0,随着车的加速拖动,重物上升,同时速度在不断增加.当车运动至B点时,左边的绳与水平面所成角θ=45°,设物体已从井底上升高度h,此时物体速度为vQ,即为收绳的速度,它等于车速沿绳子方向的一个分量,如图8-29
[小结]此题需明确:速度分解跟力的分解相似,两个分速度方向应根据运动的实际效果确定.车子向左运动时,绳端(P)除了有沿绳子方向的分运动外(每一瞬间绳均处于张紧的状态),还参与了绕定滑轮O的转动分运动(绳与竖直方向的夹角不断变化),因此还应该有一个绕O点转动的分速度,这个分速度垂直于绳长的方向.所以车子运动到B点时的速度分解如图8-29所示,有vQ=vB1=vBcosθ=vBcos45°.
例4在光滑水平面上有一静止的物体,现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体.当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J,则在整个过程中,恒力甲做的功和恒力乙做的功各等于多少?
[思路点拨]由题意:物体先做匀加速运动,后做匀减速运动回到原处.整个过程中的位移为零,根据牛顿第二定律和运动学公式,即可确定两个力的大小关系,然后根据全过
程中两个力做功和动能的变化即可得解.
[解题过程]物体从静止受水平恒力F甲作用,做匀加速运动,经过一段时间t后的速度为
经时间t后回到原处,前后两段时间内的位移大小相等,方向相反,所以
因此F乙=3F甲.
设在F甲作用下物体的位移为S,对全过程应用动能定理F甲·S+F乙·S=ΔEk,代入F乙=3F 甲,F甲·S+3F甲·S=ΔEk,所以恒力甲和乙做的功分别为
[小结]本题属多阶段物理过程求功问题,运动往复性的不同阶段有不同的恒力作用,运用功能定理从整体上考证功能转换比从力和运动关系去研究要简便.当然此题也可根据两个力作用时间相同、两个物理过程中的位移大小相等,由平均速度的大小相等找出两者末速度的关系求解;也可以利用v-t图线更直观地得到启发,根据图线上下方与t轴间的面积相等求两段加速度之比,进而求解.
例5 如图8-30所示,长为L,质量为m1的木板A置于光滑水平面上,在A板上表面左端有一质量为m2的物块B,B与A的摩擦因数为μ,A和B一起以相同的速度v 向右运动,在A与竖直墙壁碰撞过程中无机械能损失,要使B一直不从A上掉下来,v 必须满足什么条件(用m1、m2、L、μ表示)?倘若V0已知,木板B的长度L应满足什么条件(用m1、m2、V0、μ表示)?
[思路点拨]A和墙壁碰撞后,A以大小为v的速度向左运动,B仍以原速向右运动.以后的运动过程有三种可能:(1)若m1>m2,则m1和m2最后以某一共同速度向左运动;
(2)若m1=m2,则A、B最后都停在水平面上,但不可能与墙壁发生第二次碰撞;(3)若m1<m2,则A将多次和墙壁碰撞、最后停在靠近墙壁处.
[解题过程]若m1>m2,碰撞后的总动量方向向左,以向左为正方向,系统Δp=0,
m1v-m2v=(m1+m2)v′,
若相对静止时B刚好在A板右端,则系统总机械能损失应为μm2gL,则功能关系为
若V0已知,则板长L应满足
若m1=m2,碰撞后系统总动量为零,最后都静止在水平面上,设静止时B在A的右端,则
若m1<m2,则A与墙壁将发生多次碰撞,每次碰撞后总动量方向都向右,而B相对于A 始终向右运动,设最后A静止在靠近墙壁处,B静止在A的右端,则有
[小结]在有些用字母表示已知物理量的题目中,物理过程往往随着已知量的不同取值范围而改变.对于这类题目,通常是将物理量的取值分成几个范围来讨论,分别在各个范围内求解.如本题中,由于m1和m2的大小关系没有确定,在解题时必须对可能发生的物理过程进行讨论,分别得出结果.。

相关文档
最新文档