最新高一数学不等式解法经典例题

合集下载

一元二次不等式解法练习题及答案

一元二次不等式解法练习题及答案

高一数学一元二次不等式例题例1 解下列不等式(1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2)(4)3x 2-+--+-31325113122x x x x x x >>()()答 (1){x|x <2或x >4} (2){x|1x }≤≤32 (3)∅ (4)R (5)R【介绍定义域】例有意义,则的取值范围是.2 x x 2--x 6解 x ≥3或x ≤-2.练习:例3 若01a <<,则不等式()10a x x a ⎛⎫--> ⎪⎝⎭的解是( )[ ]A a xB x a .<<.<<11a a C x aD x x a.>或<.<或>x aa 11分析比较与的大小后写出答案.a 1a 解∵<<,∴<,解应当在“两根之间”,得<<.选. 0a 1a a x A 11a a【求a 、b 的值】例4 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________.解 根据题意,-1,2应为方程ax 2+bx -1=0的两根,则由韦达定理知-=-+=-=-=-⎧⎨⎪⎪⎩⎪⎪b a a ()()1211122×得 a b ==-1212,.练习:1、()21680k x x --+<的解集是425x x x ⎧⎫<->⎨⎬⎩⎭或,则k =_________. 2、已知不等式20x px q ++<的解集是{}32x x -<<,则p q +=________.3、不等式20ax bx c ++>的解集为{}23x x <<,则不等式20ax bx c -+>的解集是________________________.例不等式+>的解集为5 1x 11-x[] A .{x|x >0} B .{x|x ≥1}C .{x|x >1}D .{x|x >1或x =0}分析 直接去分母需要考虑分母的符号,所以通常是采用移项后通分.解不等式化为+->,通分得>,即>,1x 000111122----x x x x x ∵x 2>0,∴x -1>0,即x >1.选C .例与不等式≥同解的不等式是6 0x x --32[] A .(x -3)(2-x)≥0 B .0<x -2≤1 C .≥230--xx D .(x -3)(2-x)≤0选B .【有关判别式】例7、若不等式210x mx ++>的解集为R ,则m 的取值范围是( )A .RB .()2,2-C .()(),22,-∞-+∞D .[]2,2- 例8、不等式()20ax bx c a ++<≠的解集为∅,那么( )A .0a <,0∆>B .0a <,0∆≤C .0a >,0∆≤D .0a >,0∆≥。

高一数学一元二次不等式解法练习题

高一数学一元二次不等式解法练习题

1.三个“二次”间的关系鉴别式=b2- 4ac二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a> 0)的根ax2+bx+c>0(a>0)的解集ax2+bx+c<0(a>0)的解集解以下不等式x2-5x+4≤0一元二次不等式知识梳理>0=0<0 有两相异实根有两相等实根没有实1 2 1 2b 数根x ,x (x <x ) x1= x2=-2a{ x|x>x2x|x≠-bR 或 x<x1} 2a{ x|x1<x< x2} ? ?x(x+11)≥3(x+1)2(2x+1)(x-3)>3(x2+2)|x2- 3x|>4(x-3)(x+2)(x-1)≥03x 72≥ 0 x2 2x 3含参不等式例 1 若 0< a< 1,则不等式 (x -a)(x -1) < 0的解是 a[]A. a< x<1C. x>1或 x< a a aB.1< x< a D . x<1或 x> a a a例 2解对于x的不等式(x-2)(ax-2)>0例 3 若 ax2+ bx- 1<0 的解集为 {x| - 1<x <2} ,则 a=________,b=________.例 4 对于 x 的不等式 x2-2ax-8a2<0(a>0)的解集为 (x1,x2),且 x2-x1=5 7 15 1515,则 a=() A. 2 B.2 C. 4 D. 2练习解对于 x 的不等式 kx2-2x+k<0(k∈R).解对于 x 的不等式: ax2-2≥2x-ax(a∈R)..考点三不等式恒建立问题【例 3】设函数 f(x)= mx2-mx- 1.(1)若对于一确实数x, f(x)< 0 恒建立,求 m 的取值范围;(2)若对于 x∈[1, 3] ,f(x)<- m+5 恒建立,求 m 的取值范围.二元一次不等式 (组)与简单的线性规划问题知识梳理1.二元一次不等式表示的平面地区(1)一般地,二元一次不等式Ax+By+ C>0 在平面直角坐标系中表示直线Ax+By+C=0 某一侧所有点构成的平面地区.我们把直线画成虚线以表示地区不包含界限直线.当我们在座标系中画不等式 Ax+By+C≥0 所表示的平面地区时,此地区应包含界限直线,则把界限直线画成实线.(2)因为对直线 Ax+ By+ C= 0 同一侧的全部点 (x,y),把它的坐标 (x,y)代入 Ax+By+C,所得的符号都同样,因此只要在此直线的同一侧取一个特别点(x0,0作为测试点,由0+0+C 的符y ) Ax By 号即可判断 Ax+By+C>0 表示的直线是 Ax+By+C=0 哪一侧的平面地区.2.线性规划有关观点名称意义拘束条件目标函数中的变量所要知足的不等式组线性拘束条件由 x,y 的一次不等式 (或方程 )构成的不等式组目标函数欲求最大值或最小值的函数线性目标函数对于 x, y 的一次分析式可行解知足线性拘束条件的解可行域全部可行解构成的会合最优解使目标函数获得最大值或最小值的点的坐标线性规划问题在线性拘束条件下,求线性目标函数的最大值或最小值问题自测1.判断正误(在括号内打“√”或“×”)(1)不等式Ax+By+C>0 表示的平面地区必定在直线Ax+ By+C= 0 的上方. ( )(2)线性目标函数的最优解可能是不独一的.( )(3)线性目标函数获得最值的点必定在可行域的极点或界限上.()(4)目标函数 z= ax+by(b≠0)中, z 的几何意义是直线ax+ by-z=0 在 y 轴上的截距. ()2.以下各点中,不在x+y-1≤0 表示的平面地区内的是 ()A.(0,0) B.(-1,1) C.(-1,3) D.(2,-3)x≥0,+-=与不等式组y≥0,表示的平面地区的公共点有 ()3.直线 2x y 10 0x-y≥- 2,4x+3y≤ 20A.0 个B.1 个C.2 个D.无数个x+ y-2≥0,4.(2014 ·天津卷 )设变量 x,y 知足拘束条件x- y-2≤0,则目标函数 z=x+2y 的最小值为 ()y≥ 1,A.2 B.3 C.4 D.5x+ y- 2≥ 0,5. (2014 ·安徽卷 )不等式组x+ 2y-4≤0,表示的平面地区的面积为x+ 3y-2≥0________.考点一二元一次不等式 (组)表示的平面地区x- y≥0,2x+y≤2,【例 1】 (1)若不等式组表示的平面地区是一个三角形,则 a 的取值范围是 ()y≥ 0,x+ y≤a4A. 3,+∞B.(0,1]4 4C. 1,3 D.(0,1] ∪3,+∞x≥ 0,4(2)若不等式组x+ 3y≥4,所表示的平面地区被直线y= kx+3分为面积相等的两部分,则k 的值3x+y≤4是()7 3A.3B.74 3C.3D.4x+y-3≤0,【训练 1】 (1)若函数 y=2x图象上存在点 (x,y)知足拘束条件x-2y- 3≤ 0,则实数 m 的最大值x≥m,1 3为()A. 2 B.1 C.2 D.2x+ y- 1≥ 0,(2)在平面直角坐标系中,若不等式组x- 1≤ 0, (a 为常数 )所表示的平面地区的面积等于 2,ax-y+1≥ 0则 a 的值为 ()A.-5 B.1 C.2 D.3考点二 简单线性目标函数的最值问题x +y -1≥0,【例2】 (1)(2014 新·课标全国 Ⅱ卷 设 , 知足拘束条件x -y -1≤0,)x yx -3y + 3≥ 0,则 z =x +2y 的最大值为 ()A .8B .7C .2D .1(2)(2014 ·新课标全国 Ⅰ 卷)设 x ,y 知足拘束条件x +y ≥a , x -y ≤- 1,(3)且 z = x + ay 的最小值为 7,则 a = () A .-5 B .3C .-5 或 3D .5 或- 33x -5y +6≥0, 【训练 2】 (1)(2015 潍·坊模拟 )若 x , y 知足条件 2x +3y -15≤ 0,y ≥0,当且仅当 x =y =3 时, z =ax +y 取最大值,则实数 a 的取值范围是 ()2 3A .(-3,5)3 2B .(-∞,- 5)∪(3,+∞ )3 2C .(-5,3)2 3D .(-∞,- 3)∪(5,+∞ )y ≤x ,(2)(2014 ·湖南卷 )若变量 x ,y 知足拘束条件 x +y ≤4,y ≥1,则 z =2x +y 的最大值为 ________.考点三 实质生活中的线性规 划问题【例 3】 某旅游社租用 A ,B 两种型号的客车安排36 人和 60 人,租金分别为 1 600 元/辆和 2 400 元车不多于 A 型车 7 辆,则租金最少为 ()A .31 200 元B .36 000 元C .36 800 元D .38 400 元900 名客人旅游, A ,B 两种车辆的载客量分别为辆,旅游社要求租车总数不超出 21辆,且 B 型微型专题 非线性目标函数的最值问题与二元一次不等式 (组)表示的平面地区有关的非线性目标函数的最值问题的求解一般要联合给定代数式的几何意义来达成.常有代数式的几何意义:(1) x 2+y 2表示点 (x ,y)与原点 (0,0)的距离;(2) ( x -a )2+( y -b )2 表示点 (x ,y)与点 (a ,b)之间的距离; (3)|Ax + By +C|表示点 (x , y)到直A 2+B 2yy -b线 Ax +By + C =0 的距离; (4)x 表示点 (x ,y)与原点 (0,0)连线的斜率; (5)x -a 表示点 (x ,y)与点 (a , b)连线的斜率.x - y +1≤0,】 实数x , y 知足 x > 0,【例 4y ≤ 2.y(1)若 z = x ,求 z 的最大值和最小值,并求 z 的取值范围;(2)若 z = x 2+y 2,求 z 的最大值与最小值,并求 z 的取值范围.基础稳固题组y≤- x+2,1. (2015 ·泰安模拟 )不等式组y≤x-1,y≥01 1 1A.1 B.2 C.3 D. 42. (2014 ·湖北卷 )若变量 x, y 知足拘束条件所表示的平面地区的面积为()x+y≤4,x-y≤2,则2x+y的最大值是() x≥0,y≥0,A.2 B.4 C.7 D.83.(2013 ·陕西卷 )若点 (x,y)位于曲线 y=|x|与 y=2 所围成的关闭地区,则 2x- y 的最小值为 () A.-6 B.- 2 C.0 D.2y≤1,4.(2014 ·大连模拟 )在平面直角坐标系xOy 中,P 为不等式组x+y-2≥0,所表示的平面地区上x-y- 1≤ 0一动点,则直线 OP 斜率的最大值为 ( )1 1A.2 B.1 C.2 D.3x-y≥1,5. (2015 ·济南模拟 )已知变量 x,y 知足拘束条件x+y≥1,目标函数z=x+2y,的最大值为 101<x≤a,则实数 a 的值为 ( )8A.2 B.3 C.4 D. 8能力提高题组(建议用时: 25 分钟 )x+y- 7≤ 0,11.(2014 ·福建卷 )已知圆 C: (x-a)2+(y-b)2=1,平面地区Ω:x-y+ 3≥ 0,若圆心C∈Ω,y≥0.且圆 C 与 x 轴相切,则 a2+ b2的最大值为 ()A.5 B.29C.37 D.49分析由已知得平面地区Ω为△MNP内部及界限.∵圆C与x轴相切,∴b=1.明显当圆心C位于直线 y= 1 与 x+y-7= 0 的交点 (6, 1)处时, a max=6.∴a2+ b2的最大值为 62+12= 37.应选 C.答案 Cx-y+2≥0,12.已知实数x, y 知足不等式组x+y-4≥0,若目标函数2x-y-5≤0,z= y- ax 获得最大值时的独一最优解是 (1, 3),则实数 a 的取值范围为( )A.(-∞,-C.[1,+∞ ) 1) B.(0,1) D.(1,+∞ )分析作出不等式组对应的平面地区 BCD,由 z= y- ax,得 y=ax+z,要使目标函数 y= ax+z仅在点 (1,3)处取最大值,则只要直线 y=ax+ z 仅在点 B(1,3)处的截距最大,由图象可知 a>k BD,因为k BD= 1,因此 a> 1,即 a 的取值范围是 (1,+∞).答案 Dx +4y ≥4,13.(2013 ·广东卷 )给定地区 D : x +y ≤4, 令点集 T ={( x 0,y 0)∈D|x 0, y 0∈Z ,(x 0,y 0)是 z =xx ≥0.+y 在 D 上获得最大值或最小值的点 } ,则 T 中的点共确立 ________条不一样的直线.分析 线性地区为图中暗影部分,获得最小值时点为 (0,1),最大值时点 为(0,4),(1,3),(2,2),(3,1), (4,0),点 (0,1) 与(0, 4),(1,3), (2, 2), (3,1), (4,0)中的任何一个点都能够构成一 条直线,共有 5 条, 又(0, 4),(1,3), (2,2), (3,1),(4, 0)都在直线 x +y =4 上,故 T 中的点共确立 6 条不一样的直线. 答案 6x - 4y +3≤0, 14.变量 x ,y 知足 3x +5y - 25≤0,x ≥ 1.y(1)设 z = x ,求 z 的最小值; (2)设 z = x 2+y 2,求 z 的取值范围;(3)设 z = x 2+y 2+6x -4y +13,求 z 的取值范围.x - 4y +3≤0,解 由拘束条件 3x +5y -25≤ 0,作出, 的可行域如图暗影部分所示.(x y)x ≥ 1.x = 1,22 由 3x +5y - 25=0,解得A 1, 5.x = 1,由解得 C(1,1).x - 4y +3=0,x - 4y +3=0,由解得 B(5,2).3x +5y - 25=0,y = y -0O 连线的斜率.察看图形可知 min=k OB2(1)∵ z =x x -0.∴z 的值即是可行域中的点与原点 z =5.(2)z=x2+y2的几何意义是可行域上的点到原点O 的距离的平方.联合图形可知,可行域上的点到原点的距离中,d min=|OC|=2, d max=|OB|=29.故 z 的取值范围是 [2,29].(3)z=x2+y2+ 6x-4y+ 13=(x+ 3)2+ (y-2)2的几何意义是可行域上的点到点 (-3,2)的距离的平方.联合图形可知,可行域上的点到 ( - 3 , 2) 的距离中, d min= 1 - ( - 3) = 4 , d max=(-3-5)2+(2-2)2=8.故 z 的取值范围是 [16,64].。

高一数学不等式部分经典习题及答案

高一数学不等式部分经典习题及答案

ab ;⑥若a<b<0,贝贝—>—;cdab3.不等式一.不等式的性质:1■同向不等式可以相加;异向不等式可以相减:若a>b,c>d,则a+c>b+d(若a>b,c<d,则a-c>b-d),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若a>b>0,c>d>0,则ac>bd(若a>b>0,0<c<d,则a>—);3•左右同正不等式:两边可以同时乘方或开方:若a>b>0,则a n>—或%疮>n b;4.若ab>0,a>b,则1<1;若ab<0,a>b,则1>1。

如abab(1) 对于实数a,b,c中,给岀下列命题:①若a>b,则ac2>bc2;②若ac2>bc2,则a>b;③若a<b<0,贝Ua2>ab>b2;④若a<b<0,贝』<—;⑦若c>a>b>0,贝卩a>b;⑧若a>b丄>,则a>0,b<0oc一ac一bab其中正确的命题是(答:②③⑥⑦⑧);(2) __________________________________________________ 已知-1<x+y<1,1<x一y<3,则3x一y的取值围是(答:1<3x-y<7);c(3) 已知a>b>c,且a+b+c=0,则_的取值围是二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得岀结果2•作商(常用于分数指数幂的代数式);3•分析法;4. 平方法;答:5. 分子(或分母)有理化;6. 利用函数的单调性;7.寻找中间量或放缩法;8.图象法。

高一基本不等式典型例题

高一基本不等式典型例题

高一基本不等式典型例题咱们可以从简单的说起,比如说“算术几何不等式”,这就像是把两个世界放在一起。

想象一下,你和你的朋友比赛,谁能吃掉更多的冰淇淋。

你有个平整的碗,他却用一个歪歪扭扭的杯子,这可就显现出你们之间的差距了吧。

算术不等式就像在告诉我们,平均水平不一定是最好的。

追求均匀反而会让我们失去更多的乐趣。

大家都知道“冰淇淋越多越好”,但如果你的朋友吃到了一堆融化的冰淇淋,那可真是让人心疼了。

再来看看“柯西施瓦兹不等式”,哎,这个名字听起来就很高大上。

它的意思简单得不能再简单了。

想象你和你的另一半一起去逛街,你们买了两样东西。

结果,你买了很多小东西,他却只买了一个大包包。

你可能会觉得你们的选择有点不太对等。

这个不等式就像是在说,两个变量的乘积,其实不一定比各自的和要小。

听起来复杂,其实就是告诉我们,合作的力量比单打独斗要强大得多。

接着说说“赫尔德不等式”,这真的是个妙不可言的东西。

咱们假设有个小团队,大家各自分工,最后合力把事情做好。

就像一群小蚂蚁,虽然每只蚂蚁的力量微不足道,但它们合在一起,简直能搬起比自己大好几倍的东西。

赫尔德不等式就是在提醒我们,团结的力量是无限的,简直就是“众人拾柴火焰高”的真实写照。

不等式的世界里,总是充满了惊喜。

想象一下,如果有一天你发现你的成绩居然能通过不等式来提升,那感觉简直爽翻了。

只要你能掌握这些不等式,仿佛打开了一个新的大门,所有的数学问题都在向你招手,等待着你去探索。

说不定,这些公式和定理还能帮你在考试中逆袭,成为大家口中的“数学天才”。

理解不等式并不容易。

学习的过程就像走在沙滩上,脚下的沙子不断滑动,让你时而有点失去平衡。

不过没关系,咱们都知道,走路嘛,总是要有跌跌撞撞的。

重要的是,别放弃,要勇敢地走下去。

毕竟,“不经历风雨,怎能见彩虹”嘛!每一次的尝试都是一次成长,每一个错误都是一次进步。

想说的是,不等式就像是一把钥匙,打开了通往数学王国的大门。

只要你用心去理解,去感受,那些原本复杂的公式,都会变得简单明了。

高中数学不等式解法15种典型例题

高中数学不等式解法15种典型例题

x(2x + 5)(x − 3) 0
把方程
x(2x
+
5)(x

3)
=
0
的三个根
x1
=
0,
x2
=

5 2
,
x3
=
3
顺次标上数轴.然
后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.
∴原不等式解集为
x

5 2
x
0或 x
3
(2)原不等式等价于
(x + 4)(x + 5)2 (x − 2)3 0

(x (x
−1)(x − 5) 0, + 2)(x − 6) 0;
1 x 5, − 2 x
;或 6
x x
1,或x −2,或x
5, 6
1 x 5, 或 x −2 或 x 6 .∴原不等式解集是{x x −2,或1 x 5,或x 6} .
解法二:原不等式化为 (x −1)(x − 5) 0 . (x + 2)(x − 6)
例 8 解不等式 4x2 −10x − 3 3 .
分析:先去掉绝对值号,再找它的等价组并求各不等式的解,然后取它们的交集即可.
解答:去掉绝对值号得 − 3 4x2 −10x − 3 3 ,
∴原不等式等价于不等式组
− 3 4x2 −10x
4x
2
− 10 x

3
−3
3
4x2
4
x
2
−10x −10x
典型例题九
例 9 解关于 x 的不等式 x2 − (a + a2 )x + a3 0 . 分析:不等式中含有字母 a ,故需分类讨论.但解题思路与一般的一元二次不等式的解法完全一样:求出方程 x 2 − (a + a 2 )x + a3 = 0 的根,然后写出不等式的解,但由于方程的根含有字母 a ,故需比较两根的大小,从而引出讨论.

高一数学含参数不等式的解法

高一数学含参数不等式的解法
ax (a 1) x 1 0
2
(a R)
分析:原不等式可转化为:( x 1)(ax 1) 0 先分 a 0 或 a 0 或 a 0 三种情况再具体分析 解:原不等式可转化为: ( x 1)(ax 1) 0
1 当 a 0 时,则不等式可化为: ( x 1)( x ) 0 a
; / 原单 外贸原单 原单和正品的区别 真标鞋 原单货 stz19qus
沉思又说:“但制作饺子馅儿必须得我自己来,而且馅儿的配料和搅拌程序咱绝对不能告诉别人!从小咱娘就告诉我,这肉馅儿怎么做,素馅儿 怎么做;哪种肉必须配哪几种调料,哪种馅儿最好采用哪些配料;哪些配料是必须早点儿搅拌了腌着让其入味儿,哪些配料则是晚点儿加入更好, 这些都是很有讲究的。同样的配料和调料,所采用的搅拌顺序不同,其味道可是大不相同的呢!还有啊,擀饺子皮儿的面团如何和、怎么揉和必 须醒更多长时间,这些也是很有讲究的,面团和得太软太硬都不行,而且必须充分揉到。如果一开始和得稍微硬一点儿,然后再揣水揉到软硬正 好,那是最好不过的了。等到醒一小会儿以后,还得再揉一揉,然后用湿笼布盖上多醒一会儿。如果能根据面的多少,按照比例揉进去一些蛋清 最好。这样一来,煮出来的饺子就不会粘皮儿了,而且揉进去的只是蛋清,所以并不会影响饺子皮儿的颜色。”见哥哥也放下饭碗一直在认真听 着并且不断地点头,耿英接着说:“但不管怎么说,这个也好说,咱们每天起早点儿和好上午包的面团醒上,午饭后再和好下午包的面团醒上, 也就行了。推猫耳朵的面团也可以早点儿和了醒上的。至于莜面鱼鱼,我每天上、下午自己搓就行。剔尖儿是客人点了现做的,也不是个问题。 盖饭和炒饭也好说,提前蒸好米饭备好配菜就得了。凉拌菜咱们提前抽空做好就行,杂烩菜咱估计着提前做一大锅放着。小炒菜也好说,提前择 好青菜洗干净了备着。肉什么的也可以提前切好了备着,都不是问题!”耿正还未说话,耿直就着急了。只见他瞪着一双大眼睛,有些不解地大 声说:“我说姐啊,你说了大半天,这还不都是咱们自己做嘛,只不过是聘请几个帮咱包饺子和推猫耳朵的人!”耿英说:“是只聘请几个帮咱 包饺子和推猫耳朵的人,但你要知道,包饺子和推猫耳朵是最费时间的事儿,也是别人能利利索索帮咱们做好的事儿。至于其他的事情,咱们都 可以抽空儿穿插着做了的。再说了,有一些事情交给别人做也不行!”耿正说:“小直子,你姐说得对!咱就这么办,先找几个定点儿帮工的人。 我看咱们可以先问一问对门儿的张婶儿和隔壁的大嫂,看她们愿不愿意。每天的固定帮工时间段儿可以定在上午的巳时末到午时初,下午的申时 末到酉时初,各一个时辰。至于工钱,咱们可以参照别的饭店,或者比别的饭店的报酬略微再多一点儿,但要求她们必须做得又快又好!”耿英 胸有成竹地说:“放心吧哥,她们肯定愿意做的!她们给咱做帮工出门儿就到,不用浪费跑路的功夫,而且咱们定的时间段儿也不大会影响她们 做自己家里的事情。更重要的是,咱们给的工钱比别的饭店里略微多一点儿,她们还可以学到新的做饭技能!”兄妹仨商量妥当后,高高兴兴地 继续

解不等式例题50道

解不等式例题50道

解不等式例题50道一、一元一次不等式1. 解不等式:2x + 5>9- 解析:- 首先对不等式进行移项,将常数项移到右边,得到2x>9 - 5。

- 计算右边式子得2x>4。

- 两边同时除以2,解得x > 2。

2. 解不等式:3x-1<8- 解析:- 移项可得3x<8 + 1。

- 即3x<9。

- 两边同时除以3,解得x<3。

3. 解不等式:5x+3≤slant2x + 9- 解析:- 移项,把含x的项移到左边,常数项移到右边,得到5x-2x≤slant9 - 3。

- 计算得3x≤slant6。

- 两边同时除以3,解得x≤slant2。

4. 解不等式:4x-7≥slant3x+1- 解析:- 移项得4x - 3x≥slant1+7。

- 即x≥slant8。

5. 解不等式:(1)/(2)x+3>x - 1- 解析:- 移项可得(1)/(2)x-x>-1 - 3。

- 通分计算,((1)/(2)-(2)/(2))x>-4,即-(1)/(2)x>-4。

- 两边同时乘以 - 2,不等号变向,解得x < 8。

6. 解不等式:(2)/(3)x-1≤slant(1)/(3)x+2- 解析:- 移项得(2)/(3)x-(1)/(3)x≤slant2 + 1。

- 计算得(1)/(3)x≤slant3。

- 两边同时乘以3,解得x≤slant9。

7. 解不等式:2(x + 3)>3(x - 1)- 解析:- 先展开括号,得到2x+6>3x - 3。

- 移项得2x-3x>-3 - 6。

- 计算得-x>-9。

- 两边同时乘以 - 1,不等号变向,解得x < 9。

8. 解不等式:3(x - 2)≤slant2(x+1)- 解析:- 展开括号得3x-6≤slant2x + 2。

- 移项得3x-2x≤slant2+6。

- 计算得x≤slant8。

高一数学一元二次不等式解法经典例题

高一数学一元二次不等式解法经典例题

例1若OVaVl,则不等式(x-a)(x--)<0的解是a[]1A・ a<x< 一1B・一Vx<aaC・ x>1 或xVaaD・ x< -或x>aa分析比较a与丄的大小后雪出答案.a解VO<a<l, Aa<-,解应当在“两根之间”,得aVxV丄.a a选A.例2 Jx2-x-6有意义,贝收的取值范围是___________ .分析求算术根,被开方数必须是非负数.解据题意有,x2-x-620,即(x—3)(x+2)20,解在“两根之外”,所以xN3或xW—2.例 3 若ax2+bx-l<0 的解集为{xl~l<x<2},则a= _______ , b= _________ .分析根据一元二次不等式的解公式可知,一1和2是方程ax?+bx—l= 0的两个根,考虑韦达定理.解根据题意,一1, 2应为方程ax2+bx—1= 0的两根,则由韦达定理知b__ =(_l)+ 2 = 1< : 得—— =(—l)X2 = —2a1 1 ap,b—亍例4解下列不等式(1)(x-l)(3-x)<5-2x(2)x(x+ll)23(x+l)2(3)(2x +l)(x-3)> 3(x2+2), 3 , (4)3x~ -3x + 1> - —9 1(5)x~ -x + 1> -x(x- 1)分析将不等式适当化简变为ax^+bx+c>0(<0)形式, 然后根据“解公式”给出答案(过程请同学们自己完成).答(l){xlx<2 或x>4}3(2){xllWxW 寸(3)0(4)R(5)R说明:不能使用解公式的时候要先变形成标准形式.例5不等式l+x> 丄的解集为1-X[A.{xlx>0}B.{xIxNl}C. {xlx>l}D. {xlx>l 或 x=0}分析直接去分母需要考虑分母的符号,所以通常是采用移项后通分.解不等式化为1+X —丄>0,通分得三即土>。

高中一年级数学不等式解法经典例题

高中一年级数学不等式解法经典例题

∴ 或
故原不等式的解集为 .
解法二:原不等式等价于
即 ∴ .
典型例题四
例4解不等式 .
分析:这是一个分式不等式,其左边是两个关于 二次式的商,由商的符号法则,它等价于下列两个不等式组:

所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.
解法一:原不等式等价下面两个不等式级的并集:
而 , .
对方程 两边同除以 得

令 ,该方程即为
,它的两根为 , ,
∴ , .∴ , ,
∴方程 的两根为 , .
∵ห้องสมุดไป่ตู้,∴ .
∴不等式 的解集是 .
说明:(1)万变不离其宗,解不等式的核心即是确定首项系数的正负,求出相应的方程的根;(2)结合使用韦达定理,本题中只有 , 是已知量,故所求不等式解集也用 , 表示,不等式系数 , , 的关系也用 , 表示出来;(3)注意解法2中用“变换”的方法求方程的根.
典型例题五
例5解不等式 .
分析:不等式左右两边都是含有 的代数式,必须先把它们移到一边,使另一边为0再解.
解:移项整理,将原不等式化为 .
由 恒成立,知原不等式等价于 .
解之,得原不等式的解集为 .
说明:此题易出现去分母得 的错误解法.避免误解的方法是移项使一边为0再解.
另外,在解题过程中,对出现的二项式要注意其是否有实根,以便分析不等式是否有解,从而使求解过程科学合理.

(3)当 (即 或1)时,不等式的解集为:

说明:对参数进行的讨论,是根据解题的需要而自然引出的,并非一开始就对参数加以分类、讨论.比如本题,为求不等式的解,需先求出方程的根 , ,因此不等式的解就是 小于小根或 大于大根.但 与 两根的大小不能确定,因此需要讨论 , , 三种情况.

高一数学含参数不等式的解法

高一数学含参数不等式的解法

; https://com/ 棋牌游戏网 ;
少女写好信不小心遗落的,二是她随手丢弃,三是男朋友收到后,非常生气,回家的路上就顺手扔了。 不管如何,这封没有地址与署名的诀别信,一定是亲手递交的,可见这个少女非常有诚意,又写诀别信、又亲手交托。不像我们年轻时的感情事件,对方离开时的理由到如今都还是谜一样。 三月在信里说:“在你十八岁生日时,无论我在不在你身旁,一定会送你一枚银戒指,传说在十八岁生日时收到银戒指,此后将会一路顺畅平安。如今,这段甜蜜的过去就要放弃,明知你是真心爱我,December,回头再看一眼,再看一眼就好,珍重!再见!” 这结尾写得真不错,我坐在公园的 长椅上,读着路上偶然捡到的情书,想到少年时代我们的情感都是如此纠缠的,因为不能了解一切都只是偶然。 银戒指何必等到分手之后再送,今天送不是很好吗?明天的事,谁知道呢? 不知道后来三月找到四月,十二月找到一月没有? 那信纸也选得很好,是一个背着行李站在铁轨交叉点的 少女,不知道走哪一条路好。“不管怎么走,都会有路。”我把诀别的情书收好,想起这句话。 咸也好,淡也好 一个青年为着情感离别的苦痛来向我倾诉,气息哀怨,令人动容。 等他说完,我说:“人生里有离别是好事呀!” 他茫然的望着我。 我说:“如果没有离别,人就不能真正珍惜相 聚的时刻;如果呋有离别,人间就再也没有重逢的喜悦。离别从这个观点看,是好的。” 我们总是认为相聚是幸福的,离别便不免哀伤。但这幸福是比较而来,若没有哀伤作衬托,幸福的滋味也就不能体会了。 再从深一点的观点来思考,这世间有许多的“怨憎会”,在相聚时感到重大痛苦的 人比比皆是,如果没有离别这件好事,他们不是要永受折磨,永远沉沦于恨海之中吗? 幸好,人生有离别。 因相聚而幸福的人,离别是好,使那些相思的泪都化成甜美的水晶。 因相聚而痛苦的人,离别最好,雾散云消看见了开阔的蓝天。 可以因缘离散,对处在苦难中的人,有时候正是生命 的期待与盼望。 聚与散、幸福与悲哀、失望与希望,假如我们愿意品尝,样样都有滋味,样样都是生命中不可或缺的。 高僧弘一大师,晚年把生活与修行统合起来,过着随遇而安的生活。有一天,他的老友夏丐尊来拜访他,吃饭时,他只配一道咸菜。 夏丐尊不忍的问他:“难道这咸菜不会太 咸吗?” “咸有咸的味道。”弘一大师回答道。 吃完饭后,弘一大师倒了一杯白开水喝,夏丐尊又问:“没有茶叶吗?怎么喝这平淡的开水?” 弘一大师笑着说:“开水虽淡,淡也有淡的味道。” 我觉得这个故事很能表达弘一大师的道风,夏丐尊因为和弘一大师是青年时代的好友,知道弘 一大师在李叔同时代,有过歌舞繁华的日子,故有此问。弘一大师则早就超越咸淡的分别,这超越并不是没有味觉,而是真能品味咸菜的好滋味与开水的真清凉。 生命里的幸福是甜的,甜有甜的滋味。 情爱中的离别是咸的,成有成的滋味。 生活的平常是淡的,淡也有淡的滋味。 我对年轻人 说:“在人生里,我们只能随遇而安,来什么品味什么,有时候是没有能力选择的。就像我昨天在一个朋友家喝的茶真好,今天虽不能再喝那么好的茶,但只要有茶喝就很好了。如果连茶也没有,喝开水也是很好的事呀!” 知?了 山上有一种蝉,叫声特别奇异,总是吱的一声向上拔高,沿着树 木、云朵,拉高到难以形容的地步。然后,在长音的最后一节突然以低音“了”作结,戛然而止。倾听起来,活脱脱就是: 知——了! 知——了! 这是我第一次听到蝉如此清楚的叫着“知了”,终于让我知道“知了’这个词的形声与会意。从前,我一直以为蝉的幼虫名叫“蜘蟟”,长大蝉蜕 之后就叫作“知了”了。 蝉,是这世间多么奇特的动物,它们的幼虫长住地下达一两年的时间,经过如此漫长的黑暗飞上枝头,却只有短短一两星期的生命。所以庄子在《逍遥游》里才会感慨: “惠蛄不知春秋!” 蝉的叫声严格说起来,声量应该属噪音一类,因为声音既大又尖,有时可以越 过山谷,说它优美也不优美,只有单节没有变化的长音。 但是,我们总喜欢听蝉,因为蝉声里充满了生命力、充满了飞上枝头之后对这个世界的咏叹。如果在夏日正盛,林中听万蝉齐鸣,会使我们心中荡漾,想要学蝉一样,站在山巅长啸。 蝉的一生与我们不是非常接近吗?我们大部分人把半 生的光阴用在学习,渴望利用这种学习来获得成功,那种漫长匐匍的追求正如知了一样;一旦我们被世人看为成功,自足的在枝头欢唱,秋天已经来了。 孟浩然有一前写蝉的诗,中间有这样几句: 黄金然桂尽, 壮志逐年衰。 日夕凉风至, 闻蝉但益悲。 听蝉声鸣叫时,想起这首诗,就觉得 “知了”两字中有更深的含义。什么时候,我们才能一边在树上高歌,一边心里坦然明了,对自己说:“知了,关于生命的实相,我明白了。” 前世与今生 有一个人来问我关于前世的问题,说他常常在梦里梦见自己的前世,他问我:“前世真的存在吗?” 前世真的存在吗?我不能回答。 我 告诉他:“我可以确定的是,昨天的我是今天的我的前世,明天的我就是今天的我的来生。我们的前世已经来不及参加了,让它去吧!我们希望有什么样的来生,就掌握今天吧!” 前世或来生看起来遥远而深奥,但我总是相信,一个人只要有很好的领悟力,就能找到一些过去与未来的消息。 就好像,我们如果愿意承认自己的坏习惯与坏思想,就会发现自己在过去是走了多么偏斜的道路。我们如果愿意去测量,去描绘心灵的地图,也会发现心灵的力量推动我们的未来。 因此,一个人只要很努力,就可以预见未来的路,但再大的努力也无法回到过去。 所以,真正值得关心的是现在。 我对那时常做前世梦的朋友说:“与其把时间浪费在前世的梦,还不如活在真实的眼前。” 真的,世人很少对今生有恳切的了解,却妄图去了解前世,世人也多不肯依赖眼前的真我,却花许多时间寄托于来世,想来令人遗憾。 纯善的心 我每一次去买花,并不会先看花,而是先看卖花的人,因 为我认为一个人如果不能把自己打扮得与花相衬,是不应该来卖花的。 惟有像花的人,才有资格卖花。 像花的人指的不是美丽的少女,而是有活力,有风采的人。 所以,每次我看到俗人卖花,一脸的庸俗或势利,就会感到同情,想到我国民间有一种说法,有三种行业是前世修来的福报,就是 卖花、卖伞和卖香。那是因为这三种行业是纯善的行业,对众生只有利益,没有伤害,可以一直和人结善缘。 可叹的是,有的人是以痛苦埋怨的心在经营这纯善的行业。 我经常去买花的花店,卖花的是一位中年妇人,永远笑着,很有活力;永远穿着干净而朴素,却很有风采。 当我对她说起民 间的说法,赞美她说:“老板娘一定是前世修来的福报,才能经营这纯善的行业呀!”她笑得很灿烂,就像一朵花,不疾不徐地说:“其实,只要有纯善的心,和人结善缘,所有的行业都是前世修来的。” 静心与抽烟 ?有一个关于禅者的笑话说:两个有烟瘾的人,一起去向一位素以严苛出名的 禅师学习打坐。当他们打坐的时候,由于摄心,烟瘾就被抑制了,可是每坐完一注香,问题就来了。 那一段休息时间被称为“静心”,可以在花园散步,并讨论打坐的心得。每到静心时间,甲乙两人便忍不住想抽烟,于是在花园互相交换抽烟的心得,愈谈愈想抽。 甲提议说:“抽烟也不是什 么大不了的事,我们干脆直接去请示师父,看能不能抽。” 乙非常同意,问道:“由谁去问呢?” “师父很强调个别教导,我们轮流去问好了。”甲说。 甲去请教师父,不久之后,微笑着走出禅堂对乙说:“轮到你了。” 乙走进师父房里,接着传来师父怒斥和拳打脚踢的声音,乙鼻青眼肿 地爬出来,却看见甲正在悠闲地抽烟。他无比惊讶地说:“你怎么敢在这里抽烟?我刚刚去问帅父的时候,他非常生气,几乎把我打死了。” 甲说:“你怎么问的?” 乙说:“我问师父:‘静心的时候,可不可以抽烟?’师父立刻就生气了,你是怎么说的,师父怎么准你抽烟?” 甲得意地说: “我问师父:‘抽烟的时候,可不可以静心?’师父听了很高兴,说:‘当然可以了!”这虽然是一个笑话,却说明了同样的一件事,如果转一个弯来看,烦恼就是菩提。 随风吹笛 远远的地方吹过来一股凉风。 风里夹着呼呼的响声。 侧耳仔细听,那像是某一种音乐,我分析了很久,确定那 是嫡子的声音,因为萧的声音没有那么清晰,也没有那么高扬。 由于来得遥远,使我对自己的判断感到怀疑;有什么人的笛声可以穿透广大的平野,而且天上还有雨,它还能穿过雨声,在四野里扩散呢?笛的声音好像没有那么悠长,何况只有简单的几种节奏。 我站的地方是一片乡下的农田, 左右两面是延展到远处的稻田,我的后面是一座山,前方是一片麻竹林。音乐显然是来自麻竹林,而后面的远方仿佛也在回响。 竹林里是不是有人家呢?小时候我觉得所有的林间,竹林是最神秘的,尤其是那些历史悠远的竹林。因为所有的树林再密,阳光总可以毫无困难的穿透,唯有竹林的密 叶,有时连阳光也无能为力;再大的树林也有规则,人能在其间自由行走,唯有某些竹林是毫无规则的,有时走进其间就迷途了。因此自幼,父亲就告诉我们“逢竹林莫人”的道理,何况有的竹林中是有乱刺的,像刺竹林。 这样想着,使我本来要走进竹林的脚步又迟疑了,在稻田田硬坐下来, 独自听那一段音乐。我看看天色尚早,离竹林大约有两里路,遂决定到竹林里去走一遭——我想,有音乐的地方一定是安全的。 等我站在竹林前面时,整个人被天风海雨似的音乐震摄了,它像一片乐海,波涛汹涌,声威远大,那不是人间的音乐,竹林中也没有人家。 竹子的本身就是乐器,风 是指挥家,竹于和竹叶的关系便是演奏者。我研究了很久才发现,原来竹子洒过了小雨,上面有着水渍,互相摩擦便发生尖利如笛子的声音。而上面满天摇动的竹叶间隙,即使有雨,也阻不住风,发出许多细细的声音,配合着竹子的笛声。 每个人都会感动于自然的声音,譬如夏夜里的蛙虫鸣唱, 春晨雀鸟的跃飞歌唱,甚至刮风天里涛天海浪的交响。凡是自然的声音没有不令我们赞叹的,每年到冬春之交,我在寂静的夜里听到远处的春雷乍响,心里总有一种喜悦的颤动。 我有一个朋友,偏爱蝉的歌唱。孟夏的时候,他常常在山中独座一日,为的是要听蝉声,有一次他送我一卷录音带, 是在花莲山中录的蝉声。送我的时候已经冬天了,我在寒夜里放着录音带,一时万蝉齐鸣,

高一数学的不等式证明经典例题

高一数学的不等式证明经典例题

典型例题一例1 假如10<<x ,证明)1(log )1(log x x a a +>-〔0>a 且1≠a 〕.分析1 用作差法来证明.需分为1>a 和10<<a 两种情况,去掉绝对值符号,然后比拟法证明.解法1 〔1〕当1>a 时,因为 11,110>+<-<x x , 所以 )1(log )1(log x x a a +--)1(log )1(log x x a a +---=0)1(log 2>--=x a .〔2〕当10<<a 时, 因为 11,110>+<-<x x 所以 )1(log )1(log x x a a +--)1(log )1(log x x a a ++-=0)1(log 2>-=x a .综合〔1〕〔2〕知)1(log )1(log x x a a +>-.分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比拟法.因为 )1(log )1(log x x a a +--a x a x lg )1lg(lg )1lg(+--=[])1lg()1lg(lg 1x x a+--=[])1lg()1lg(lg 1x x a+---=0)1lg(lg 12>--=x a, 所以)1(log )1(log x x a a +>-.说明:解法一用分类相当于增设了条件,便于在变形中脱去绝对值符号;解法二用对数性质〔换底公式〕也能达到同样的目的,且不必分而治之,其解法自然简捷、明快.典型例题二例2 设0>>b a ,求证:.abba b a b a >分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式.证明:b a a b ba ab b a b a b aba b a ---=⋅=)( ∵0>>b a ,∴.0,1>->b a ba∴1)(>-b a b a . ∴a b ba ba b a .1> 又∵0>abb a , ∴.abba b a b a >.说明:此题考查不等式的证明方法——比拟法(作商比拟法).作商比拟法证明不等式的步骤是:判断符号、作商、变形、判断与1的大小.典型例题三例3 对于任意实数a 、b ,求证444()22a b a b ++≥〔当且仅当a b =时取等号〕 分析 这个题假如使用比拟法来证明,将会很麻烦,因为,所要证明的不等式中有4()2a b +,展开后很复杂。

高中数学不等式解法15种典型例题

高中数学不等式解法15种典型例题

x + 5 0 (x + 4)(x

2)
0
x x
−5 −4或x
2
∴原不等式解集为 x x −5或 − 5 x −4或x 2
说明:用“穿根法”解不等式时应注意:①各一次项中 x 的系数必为正;②对
于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇 穿偶不穿”,其法如下图.
典型例题七
∴原不等式解集是{x x −2,或1 x 5,或x 6} . 说明:解法一要注意求两个等价不等式组的解集是求每组两个不等式的交集,再求两组的解的并集,否则会产生误解. 解法二中,“定符号”是关键.当每个因式 x 的系数为正值时,最右边区间一定是正值,其他各区间正负相间;也可以先决 定含0的区间符号,其他各区间正负相间.在解题时要正确运用.
2x2 3x2
− −
3x 7x
+ +
1200或32xx22
− −
3x 7x
+ +
1 0 20
∴原不等式解集为
(−,
1) 3
(
1 2
,1)
(2,+)

x 1 或 1 x 1或x 2 32
解法二:原不等式等价于 (2x −1)(x −1) 0 (3x −1)(x − 2)
(2x −1)(x −1)(3x −1) (x − 2) 0 用“穿根法”∴原不等式解集为 (−, 1) (1 ,1) (2,+)
画数轴,找因式根,分区间,定符号. (x − 1)(x − 5) 符号 (x + 2)(x − 6)
解之,得原不等式的解集为{x −1 x 2或x 3}.
说明:此题易出现去分母得 x2 + 2x − 2 x(3 + 2x − x2 ) 的错误解法.避免误解的方法是移项使一边为0再解. 另外,在解题过程中,对出现的二项式要注意其是否有实根,以便分析不等式是否有解,从而使求解过程科学合理.

高一数学含参数不等式的解法

高一数学含参数不等式的解法

解: 原不等式可化为:
(x a)( x a2 ) 0
当a 0时,则a a2,原不等式的解集为 {x | x a或x a2}
当a 0时,则a a2 0,原不等式的解集为 {x | x 0}
当0 a 1时,则a2 a,原不等式的解集为 {x | x a2或x a}
若b 0,则原不等式的解集为
若b 0, 则原不等式的解集为R
综上所述原不等式的解集为:
当a 0时, 解集为{x | x b}
a 当a 0时, 解集为{x | x b}
a
当a 0且b 0时, 解集为
当a 0且b 0时, 解集为R
例2.解关于x的不等式
x2 (a a2 )x a3 0(a R)
当a 1时,则a2 a 1,原不等式的解集为 {x | x 1}
当a 1时,则a2 a,原不等式的解集为 {x | x a或x a2}
例3. 解关于x的不等式
ax2 (a 1)x 1 0 (a R)
分析:原不等式可转化为:(x 1)(ax 1) 0Leabharlann ; 欧洲杯直播/;
可当他快到终点时,才发现机会全错过了。 第三个弟子吸取了前边两个弟子的教训。当走过全程三分之一时,即分出大中小三类;再走三分之一时,验是否正确;等到最后三分之一时,他选择了属于大类中的一个美丽的穗。虽说,这穗不是田里最好最大的一个,但对他来说,已经 是心满意足了。 137、科学史上因语文而失误例谈 ①美国化学家路易斯于1916年在一篇中提出了共价键理论,但在本世纪20年代曾一度被称为朗缪尔理论。原因是路易斯虽很聪明,但性格内向,不善言谈,他提出功价键理论后,并未引起多大反响。致使这一理论濒临泯灭的困 境。幸亏三年后,一
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型例题一例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要注意处理好有重根的情况.解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.典型例题二例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x 分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形①0)()()()(<⋅⇔<xgxfxgxf②0)()()()()()()()()()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤xgxfxfxgxfxgxgxfxgxf或或(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-)2)(2()2)(2)(1)(6()2)(2()1)(6()2)(2(65)2)(2()2()2(32232232xxxxxxxxxxxxxxxxxxxxxxxxx用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。

(2)解法一:原不等式等价于027313222>+-+-xxxx212131273132273132)273)(132(222222><<<⇔⎪⎩⎪⎨⎧<+-<+-⎪⎩⎪⎨⎧>+->+-⇔>+-+-⇔xxxxxxxxxxxxxxx或或或∴原不等式解集为),2()1,21()31,(+∞⋃⋃-∞。

解法二:原不等式等价于0)2)(13()1)(12(>----xxxx)2()13)(1)(12(>-⋅---⇔xxxx用“穿根法”∴原不等式解集为),2()1,21()31,(+∞⋂⋃-∞典型例题三例3 解不等式242+<-x x分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义⎩⎨⎧<-≥=)0()0(a a a a a二是根据绝对值的性质:a x a x a x a a x >⇔<<-⇔<.,或a x -<,因此本题有如下两种解法.解法一:原不等式⎪⎩⎪⎨⎧+<-<-⎪⎩⎪⎨⎧+<-≥-⇔240424042222x x x x x x 或 即⎩⎨⎧>-<<<-⎩⎨⎧<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<<x故原不等式的解集为{}31<<x x .解法二:原不等式等价于 24)2(2+<-<+-x x x即⎪⎩⎪⎨⎧+->-+<-)2(42422x x x x ∴312132<<⎩⎨⎧-<><<-x x x x 故或.典型例题四例4 解不等式04125622<-++-x x x x . 分析:这是一个分式不等式,其左边是两个关于x 二次式的商,由商的符号法则,它等价于下列两个不等式组:⎪⎩⎪⎨⎧>-+<+-041205622x x x x 或⎪⎩⎪⎨⎧<-+>+-041205622x x x x 所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解. 解法一:原不等式等价下面两个不等式级的并集:⎪⎩⎪⎨⎧>-+<+-0412,05622x x x x 或⎪⎩⎪⎨⎧<-+>+-0412,05622x x x x ⎩⎨⎧<-+<--⇔;0)6)(2(,0)5)(1(x x x x 或⎩⎨⎧>-+>--;0)6)(2(,0)5)(1(x x x x;⎩⎨⎧<<-<<⇔62,51x x 或⎩⎨⎧>-<><6,2,5,1x x x x 或或 ,51<<⇔x 或2-<x 或6>x .∴原不等式解集是}6512{><<-<x x x x ,或,或.解法二:原不等式化为0)6)(2()5)(1(>-+--x x x x .画数轴,找因式根,分区间,定符号.)6)(2()5)(1(-+--x x x x 符号∴原不等式解集是}6512{><<-<x x x x ,或,或.说明:解法一要注意求两个等价不等式组的解集是求每组两个不等式的交集,再求两组的解的并集,否则会产生误解. 解法二中,“定符号”是关键.当每个因式x 的系数为正值时,最右边区间一定是正值,其他各区间正负相间;也可以先决定含0的区间符号,其他各区间正负相间.在解题时要正确运用.典型例题五例5 解不等式x x x x x <-+-+222322. 分析:不等式左右两边都是含有x 的代数式,必须先把它们移到一边,使另一边为0再解.解:移项整理,将原不等式化为0)1)(3()1)(2(2>+-++-x x x x x . 由012>++x x 恒成立,知原不等式等价于0)1)(3()2(>+--x x x .解之,得原不等式的解集为}321{><<-x x x 或.说明:此题易出现去分母得)23(2222x x x x x -+<-+的错误解法.避免误解的方法是移项使一边为0再解.另外,在解题过程中,对出现的二项式要注意其是否有实根,以便分析不等式是否有解,从而使求解过程科学合理.典型例题六例6 设R m ∈,解关于x 的不等式03222<-+mx x m . 分析:进行分类讨论求解.解:当0=m 时,因03<-一定成立,故原不等式的解集为R . 当0≠m 时,原不等式化为0)1)(3(<-+mx mx ;当0>m 时,解得m x m 13<<-; 当0<m 时,解得mx m 31-<<.∴当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-m x m x 13;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<m x mx31. 说明:解不等式时,由于R m ∈,因此不能完全按一元二次不等式的解法求解.因为当0=m 时,原不等式化为03<-,此时不等式的解集为R ,所以解题时应分0=m 与0≠m 两种情况来讨论.在解出03222=-+mx x m 的两根为m x 31-=,m x 12=后,认为mm 13<-,这也是易出现的错误之处.这时也应分情况来讨论:当0>m 时,mm 13<-;当0<m 时,m m 13>-.典型例题七例7 解关于x 的不等式)0(122>->-a x a ax .分析:先按无理不等式的解法化为两个不等式组,然后分类讨论求解.解:原不等式⎪⎩⎪⎨⎧->-≥->-⇔;)1(2,01,02)1(222x a ax x a ax 或⎩⎨⎧<-≥-.01,02)2(2x a x由0>a ,得:⎪⎪⎩⎪⎪⎨⎧<+++-≤>⇔;01)1(2,1,2)1(22a x a x x a x ⎪⎩⎪⎨⎧>≥⇔.1,2)2(x a x由判别式08)1(4)1(422>=+-+=∆a a a ,故不等式01)1(222<+++-a x a x 的解是a a x a a 2121++<<-+.当20≤<a 时,1212≤-+≤a a a,121>++a a ,不等式组(1)的解是121≤<-+x a a ,不等式组(2)的解是1>x .当2>a 时,不等式组(1)无解,(2)的解是2a x ≥. 综上可知,当20≤<a 时,原不等式的解集是[)+∞-+,21a a ;当2>a 时,原不等式的解集是⎪⎭⎫⎢⎣⎡+∞,2a .说明:本题分类讨论标准“20≤<a ,2>a ”是依据“已知0>a 及(1)中‘2ax >,1≤x ’,(2)中‘2ax ≥,1>x ’”确定的.解含有参数的不等式是不等式问题中的难点,也是近几年高考的热点.一般地,分类讨论标准(解不等式)大多数情况下依“不等式组中的各不等式的解所对应的区间的端点”去确定.本题易误把原不等式等价于不等式)1(22x a ax ->-.纠正错误的办法是熟练掌握无理不等式基本类型的解法.典型例题八例8 解不等式331042<--x x .分析:先去掉绝对值号,再找它的等价组并求各不等式的解,然后取它们的交集即可. 解答:去掉绝对值号得3310432<--<-x x , ∴原不等式等价于不等式组⇒⎪⎩⎪⎨⎧<-->-⇒⎪⎩⎪⎨⎧<----<-06104010433104310432222x x x x x x x x ⎪⎪⎩⎪⎪⎨⎧<<-><⇒⎩⎨⎧<+->-.321,2500)12)(3(20)52(2x x x x x x x 或 ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<<<-325021x x x 或.说明:解含绝对值的不等式,关键是要把它化为不含绝对值的不等式,然后把不等式等价转化为不等式组,变成求不等式组的解.典型例题九例9 解关于x 的不等式0)(322>++-a x a a x .分析:不等式中含有字母a ,故需分类讨论.但解题思路与一般的一元二次不等式的解法完全一样:求出方程0)(322=++-a x a a x 的根,然后写出不等式的解,但由于方程的根含有字母a ,故需比较两根的大小,从而引出讨论.解:原不等式可化为0))((2>--a x a x .(1)当2a a <(即1>a 或0<a )时,不等式的解集为:{}2a x a x x ><或;(2)当2a a >(即10<<a )时,不等式的解集为:{}a x a x x><或2;(3)当2a a =(即0=a 或1)时,不等式的解集为:{}a x R x x≠∈且.说明:对参数进行的讨论,是根据解题的需要而自然引出的,并非一开始就对参数加以分类、讨论.比如本题,为求不等式的解,需先求出方程的根a x =1,22a x =,因此不等式的解就是x 小于小根或x 大于大根.但a 与2a 两根的大小不能确定,因此需要讨论2a a <,2a a >,2a a =三种情况.典型例题十例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集.分析:按照一元二次不等式的一般解法,先确定系数c 的正负,然后求出方程02=++a bx cx 的两根即可解之.解:(解法1)由题可判断出α,β是方程02=++c bx ax 的两根, ∴a b -=β+α,ac =β⋅α. 又02>++c bx ax 的解集是{}β<<αx x ,说明0<a . 而0>α,0>β000<⇒>⇒>αβ⇒c ac,∴0022<++⇔>++cax c b x a bx cx . ⎪⎪⎩⎪⎪⎨⎧--==--=+-=⇒⎪⎪⎩⎪⎪⎨⎧=⋅-=+),1)(1(1,11βααββααββαβαβαa c c b a c ab ∴02<++cax c b x ,即0)1)(1()11(2<β-α-+β-α-+x x ,即0)1)(1(<β-α-x x .又β<α<0,∴β>α11,∴0)1)(1(<β-α-x x 的解集为⎭⎬⎫⎩⎨⎧α<<β11x x . (解法2)由题意可判断出α,β是方程02=++c bx ax 的两根,∴ac=β⋅α. 又02>++c bx ax 的解集是{}β<<αx x ,说明0<a . 而0>α,0>β000<⇒>⇒>αβ⇒c ac. 对方程02=++a bx cx 两边同除以2x 得0)1()1(2=+⋅+⋅c x b x a .令xt 1=,该方程即为02=++c t b t a ,它的两根为α=1t ,β=2t ,∴α=11x ,β=21x .∴α=11x ,β=12x ,∴方程02=++a bx cx 的两根为α1,β1. ∵β<α<0,∴β>α11. ∴不等式02>++a bx cx 的解集是⎭⎬⎫⎩⎨⎧α<<β11x x. 说明:(1)万变不离其宗,解不等式的核心即是确定首项系数的正负,求出相应的方程的根;(2)结合使用韦达定理,本题中只有α,β是已知量,故所求不等式解集也用α,β表示,不等式系数a ,b ,c 的关系也用α,β表示出来;(3)注意解法2中用“变换”的方法求方程的根.典型例题十二例12 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,,Y ,求a 、b 的值.分析:不等式本身比较复杂,要先对不等式进行同解变形,再根据解集列出关于a 、b 式子.解:∵043)21(122>++=++x x x ,043)21(122>+-=+-x x x ,∴原不等式化为0)()2(2>-++--+b a x b a x b a .依题意⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++=-+->-+34231202b a b a b a ba b a , ∴⎪⎪⎩⎪⎪⎨⎧==2325b a . 说明:解有关一元二次方程的不等式,要注意判断二次项系数的符号,结合韦达定理来解.典型例题十三例13 不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值.分析:此题为一元二次不等式逆向思维题,要使解集为{}21<<-x x ,不等式022<-+bx ax 需满足条件0>a ,0>∆,022=-+bx ax 的两根为11-=x ,22=x .解法一:设022=-+bx ax 的两根为1x ,2x ,由韦达定理得:⎪⎪⎩⎪⎪⎨⎧-=⋅-=+a x x ab x x 22121 由题意:⎪⎪⎩⎪⎪⎨⎧⨯-=-+-=-21221aa b∴1=a ,1-=b ,此时满足0>a ,0)2(42>-⨯-=∆a b .解法二:构造解集为{}21<<-x x 的一元二次不等式:0)2)(1(<-+x x ,即022<--x x ,此不等式与原不等式022<-+bx ax 应为同解不等式,故需满足:2211--=-=b a ∴1=a ,1-=b . 说明:本题考查一元二次方程、一元二次不等式解集的关系,同时还考查逆向思维的能力.对有关字母抽象问题,同学往往掌握得不好.典型例题十四例14 解关于x 的不等式01)1(2<++-x a ax .分析:本题考查一元一次不等式与一元二次不等式的解法,因为含有字母系数,所以还考查分类思想.解:分以下情况讨论(1)当0=a 时,原不等式变为:01<+-x ,∴1>x (2)当0≠a 时,原不等式变为:0)1)(1(<--x ax ①①当0<a 时,①式变为0)1)(1(>--x a x ,∴不等式的解为1>x 或a x 1<.②当0>a 时,①式变为0)1)(1(<--x ax . ②∵a a a -=-111,∴当10<<a 时,11>a ,此时②的解为a x 11<<.当1=a 时,11=a,此时②的解为11<<x a.说明:解本题要注意分类讨论思想的运用,关键是要找到分类的标准,就本题来说有三级分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧>=<<><≠=∈11100000a a a a a a a R a 分类应做到使所给参数a 的集合的并集为全集,交集为空集,要做到不重不漏.另外,解本题还要注意在讨论0<a 时,解一元二次不等式01)1(2<++-x a ax 应首选做到将二次项系数变为正数再求解.典型例题十五例15 解不等式x x x ->--81032. 分析:无理不等式转化为有理不等式,要注意平方的条件和根式有意义的条件,一般情况下,)()(x g x f ≥可转化为)()(x g x f >或)()(x g x f =,而)()(x g x f >等价于:⎩⎨⎧<≥0)(0)(x g x f 或⎪⎩⎪⎨⎧>≥≥2)]([)(0)(0)(x g x f x g x f . 解:原不等式等价于下面两个不等式组:①⎩⎨⎧≥--<-0103082x x x ②⎪⎩⎪⎨⎧->--≥--≥-222)8(103010308x x x x x x由①得⎩⎨⎧-≤≥>258x x x 或,∴8>x由②得∴⎪⎪⎩⎪⎪⎨⎧>-≤≥≤.1374258x x x x 或 81374≤<x ,所以原不等式的解集为⎭⎬⎫⎩⎨⎧>≤<881374x x x 或,即为⎭⎬⎫⎩⎨⎧>1374x x .说明:本题也可以转化为)()(x g x f ≤型的不等式求解,注意:⎪⎩⎪⎨⎧≤≥≥⇔≤2)]([)(0)(0)()()(x g x f x g x f x g x f , 这里,设全集}52{}0103{2≥-≤=≥--=x x x x x x U 或,⎭⎬⎫⎩⎨⎧-≤--=x x x x A 81032,则所求不等式的解集为A 的补集A ,由2)8(10301030881032222-≤⇒⎪⎩⎪⎨⎧-≤--≥--≥-⇔-≤--x x x x x x x x x x 或13745≤≤x .即⎭⎬⎫⎩⎨⎧≤≤≤=137452x x x A 或,∴原不等式的解集是⎭⎬⎫⎩⎨⎧>=1374x x A .。

相关文档
最新文档