(完整版)数列求和方法大全例题变式解析答案——强烈推荐,推荐文档
数列求和常用方法(含答案)

数列专题 数列求和常用方法一、公式法例1在数列{a n }中,2a n =a n -1+a n +1(n ≥2),且a 2=10,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 的最大值.解: (1)因为2a n =a n -1+a n +1(n ≥2),所以a n +1-a n =a n -a n -1(n ≥2),所以数列{a n }为等差数列,设首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 2=a 1+d =10,a 5=a 1+4d =-5,解得⎩⎪⎨⎪⎧a 1=15,d =-5, 所以a n =a 1+(n -1)d =15-5(n -1)=-5n +20.(2)由(1)可知S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-52n 2+352n ,因为对称轴n =72, 所以当n =3或4时,S n 取得最大值为S 3=S 4=30. 跟踪练习1、已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求b 1+b 3+b 5+…+b 2n -1. 解 (1)设等差数列{a n }的公差为d . 因为a 1=1,a 2+a 4=10, 所以2a 1+4d =10, 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5, 所以b 1q ·b 1q 3=9. 又b 1=1,所以q 2=3.所以b 2n -1=b 1q 2n -2=3n -1.则b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.二、分组转化法例2、已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n ={b n −n 2,n 为偶数2a n,n 为奇数,求数列{c n }的前2n 项的和T 2n .解:(1)设数列{a n }的公差为d ,由题意得,⎩⎪⎨⎪⎧5a 1+10d =20,(a 1+2d )2=(a 1+d )(a 1+4d ),化简得⎩⎪⎨⎪⎧a 1+2d =4,a 1d =0, 因为d ≠0,所以a 1=0,d =2,所以a n =2n -2(n ∈N *),S n =n 2-n ,n ∈N *, 因为S n +b n =2n 2,所以b n =n 2+n (n ∈N *).(2)由(1)知,c n ={b n −n 2,n 为偶数2a n ,n 为奇数=⎩⎪⎨⎪⎧n ,n 为偶数,4n -1,n 为奇数,所以T 2n =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =(2+4+…+2n )+(40+42+…+42n -2) =n (2+2n )2+1-16n 1-16=n (n +1)+115(16n -1).跟踪练习1、已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49. (1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7, 故公差d =a 4-a 3=7-5=2, 故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1, T n =21+1+23+3+…+22n -1+2n -1 =21+23+…+22n -1+(1+3+…+2n -1) =21-22n +11-4+n (1+2n -1)2=22n +13+n 2-23.易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000, 故T n ≥1 000,解得n ≥6,n ∈N *.三、并项求和法例3、已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25. (1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5, 又a 5=9=a 1+4d ,所以d =2,a 1=1, 所以a n =2n -1,S n =n (1+2n -1)2=n 2.(2)结合(1)知b n =(-1)n n 2,当n 为偶数时, T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)] =1+2+3+…+n =n (n +1)2.当n 为奇数时,n -1为偶数, T n =T n -1+(-1)n·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2.四、裂项相消法例4、已知数列{a n }的前n 项和为S n ,且2S n =3a n -3(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =1log 3a n ·log 3a n +1,求数列{b n }的前n 项和T n .解:(1)当n =1时,2a 1=3a 1-3,解得a 1=3;当n ≥2时,2a n =2S n -2S n -1=3a n -3-3a n -1+3=3a n -3a n -1,得a n =3a n -1, 因为a n ≠0,所以a na n -1=3,因为a 1=3, 所以数列{a n }是以3为首项,3为公比的等比数列,所以a n =3n . (2)因为log 3a n =log 33n =n ,所以b n =1log 3a n ·log 3a n +1=1n (n +1)=1n -1n +1,所以数列{b n }的前n 项和T n =⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1. 跟踪练习1、已知数列{a n }的前n 项和为S n ,S n =2a n -1,数列{b n }是等差数列,且b 1=a 1,b 6=a 5.(1)求数列{a n }和{b n }的通项公式;(2)若c n =1b n b n +1,记数列{c n }的前n 项和为T n ,证明:3T n <1.解: (1)由S n =2a n -1,可得n =1时,a 1=2a 1-1,解得a 1=1;n ≥2时,S n -1=2a n -1-1,又S n =2a n -1,两式相减可得a n =S n -S n -1=2a n -1-2a n -1+1,即有a n =2a n -1,所以数列{a n }是首项为1,公比为2的等比数列,所以a n =2n -1.设等差数列{b n }的公差为d ,且b 1=a 1=1,b 6=a 5=16,可得d =b 6-b 16-1=3,所以b n =1+3(n -1)=3n -2.(2)证明:c n =1b n b n +1=1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,所以T n =13⎝ ⎛⎭⎪⎫1-14+14-17+17-110+…+13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1<13,则3T n <1.2、设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =1a n -1,求数列{b n }的前n 项和S n .解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *,所以a n +1+a n -2a n +1a n =4,即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列, 所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列, 所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.3、已知数列{a n }满足:a 1=2,a n +1=a n +2n . (1)求{a n }的通项公式; (2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n . 解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n .又a 1=2,也满足上式,故a n =2n . (2)由(1)可知,b n =log 2a n =n , 1b n b n +1=1n (n +1)=1n -1n +1,T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1,故T n =nn +1.五、错位相减法例5、在数列{a n }中,a 1=1,a n +1=a n -2a n a n +1. (1)求{a n }的通项公式;(2)若b n =3na n ,求数列{b n }的前n 项和S n .解:(1)∵a 1=1,a n +1=a n -2a n a n +1,∴a n ≠0,∴1a n =1a n +1-2⇒1a n +1-1a n =2,又∵1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列, ∴1a n =1+2(n -1)=2n -1,∴a n =12n -1(n ∈N *). (2)由(1)知:b n =(2n -1)×3n ,∴S n =1×3+3×32+5×33+7×34+…+(2n -1)×3n , 3S n =1×32+3×33+5×34+7×35+…+(2n -1)×3n +1,两式相减得-2S n =3+2×32+2×33+2×34+…+2×3n -(2n -1)×3n +1 =3+2(32+33+34+…+3n )-(2n -1)×3n +1 =3+2×32(1-3n -1)1-3-(2n -1)×3n +1=3+3n +1-9-(2n -1)×3n +1=2(1-n )×3n +1-6 ∴S n =(n -1)×3n +1+3. 跟踪练习1、已知数列{a n }满足:a 1=1,a n +1=2a n +n -1.(1)证明:数列{a n +n }是等比数列并求数列{a n }的前n 项和S n ; (2)设b n =(2n -1)·(a n +n ),求数列{b n }的前n 项和T n .解: (1)因为a n +1=2a n +n -1,所以a n +1+(n +1)=2a n +2n ,即a n +1+(n +1)a n +n=2,又a 1+1=2,所以数列{a n +n }是以2为首项2为公比的等比数列, 则a n +n =2·2n -1=2n ,故a n =2n -n ,所以S n =(2+22+…+2n )-(1+2+…+n )=2·(1-2n )1-2-n (1+n )2=2n +1-2-n (1+n )2.(2)由(1)得,b n =(2n -1)·(a n +n )=(2n -1)·2n , 则T n =2+3×22+5×23+…+(2n -1)·2n ,①2T n =22+3×23+5×24+…+(2n -3)·2n +(2n -1)·2n +1,②①-②得-T n =2+2×22+2×23+…+2×2n -(2n -1)·2n +1=2×(2+22+…+2n )-2-(2n -1)·2n +1=-(2n -3)·2n +1-6,所以T n =(2n -3)·2n +1+6.2、已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式; (2)设b n =na n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n =3S n -1-2(n -1)+2,又S n +1=3S n -2n +2, 两式相减可得S n +1-S n =3S n -3S n -1-2,即a n +1=3a n -2, 即有a n +1-1=3(a n -1),令n =1,可得a 1+a 2=3a 1,解得a 2=2a 1=4,也符合a n +1-1=3(a n -1), 则数列{a n -1}是首项为1,公比为3的等比数列, 则a n -1=3n -1,故a n =1+3n -1. (2)由(1)知b n =na n =n +n ·3n -1,则T n =(1+2+…+n )+(1·30+2·31+3·32+…+n ·3n -1), 设M n =1·30+2·31+3·32+…+n ·3n -1, 3M n =1·3+2·32+3·33+…+n ·3n ,两式相减可得-2M n =1+3+32+…+3n -1-n ·3n =1-3n1-3-n ·3n , 化简可得M n =(2n -1)·3n +14.所以T n =12n (n +1)+(2n -1)·3n +14.3、设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和. 解 (1)设{a n }的公比为q , ∵a 1为a 2,a 3的等差中项, ∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0, ∴q 2+q -2=0, ∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n , a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n =1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n3,∴S n =1-(1+3n )(-2)n9,n ∈N *.4、设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜想{a n }的通项公式; (2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5, a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1. (2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,①2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1 =6+2×22×(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2, 即S n =(2n -1)·2n +1+2.5、已知正项数列{a n }的前n 项和为S n ,且a 2n +1=2S n +n +1,a 2=2. (1)求数列{a n }的通项公式a n ;(2)若b n =a n ·2n ,数列{b n }的前n 项和为T n ,求使T n >2 022的最小的正整数n 的值. 解 (1)当n ≥2时,由a 2n +1=2S n +n +1,a 2=2, 得a 2n =2S n -1+n -1+1,两式相减得a 2n +1-a 2n =2a n +1, 即a 2n +1=a 2n +2a n +1=(a n +1)2.∵{a n }是正项数列,∴a n +1=a n +1. 当n =1时,a 22=2a 1+2=4, ∴a 1=1,∴a 2-a 1=1,∴数列{a n }是以a 1=1为首项,1为公差的等差数列,∴a n =n . (2)由(1)知b n =a n ·2n =n ·2n ,∴T n =1×21+2×22+3×23+…+n ·2n , 2T n =1×22+2×23+…+(n -1)·2n +n ·2n +1, 两式相减得-T n =2·(1-2n )1-2-n ·2n +1=(1-n )2n +1-2, ∴T n =(n -1)2n +1+2.∴T n -T n -1=n ·2n >0, ∴T n 单调递增.当n =7时,T 7=6×28+2=1 538<2 022, 当n =8时,T 8=7×29+2=3 586>2 022, ∴使T n >2 022的最小的正整数n 的值为8.6、已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34.当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9,解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列,所以a n =-94×⎝⎛⎭⎫34n -1=-3n+14n .(2)因为3b n +(n -4)a n =0, 所以b n =(n -4)×⎝⎛⎭⎫34n.所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3. 所以-3≤λ≤1.。
数列求和的常用方法

专题2:数列求和的常用方法数列求和问题,一般从观察数列通项公式出发,根据通项的特征选择合适的方法。
一、公式法练习1. 已知数列{}n a ,{}n b 满足1a =1b =1,2a =-2b ,212n n n a a a +++=,1n b +=2n b . 求数列{}n a ,{}n b 的前n 项和.二、分组求和法【例1】求11111111111个n ++++之和. 解:由于 )110(91999991111111-=⨯=kk k个个 ,∴ 11111111111个n ++++=)110(91)110(91)110(91)110(91321-++-+-+-n=)111(91)101010(91121个n n+++-+++=9110)110(1091n n---⋅=)91010(8111n n --+练习2.求数列11111246248162n n ++,,,,, 的前n 项和n S .小结:在数列求和时,要认真观察通项公式是否能拆分成等差数列或等比数列之和。
三、错位相减法形如{}n n a b (其中{}n a 为等差数列,{}n b 为等比数列)的数列求和问题,可用此法.【例2】求数列 ,22,,26,24,2232n n前n 项的和.解:设n n nS 2226242232++++=………………………………① 14322226242221+++++=n n nS ……………………………② ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS 1122212+---=n n n ∴ 1224-+-=n n n S练习3.已知212n n a n -=⋅,求数列{}n a 的前n 项和.小结:错位相减法的步骤是:①在等式两边同时乘以等比数列{}n b 的公比;②将两个等式相减;③利用等比数列的前n 项和公式求和.四、裂项相消法裂项法的实质是将数列中的通项写成两项之差,求和能消去一些项。
数列求和(含解析)

数列求和一、公式法(1)等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d .(2)等比数列的前n 项和公式①当q =1时,S n =na 1;②当q ≠1时,S n =a 1(1-q n )1-q =5a 1-a n q1-q .还要记住一些正整数的幂和公式22233332222)1(41]2)1([321)12)(1(61321+=+=++++++=++++n n n n n n n n n 例1 已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,. (1)求{}n a 的通项公式; (2)求{}n b 的前n 项和. 解 (1)在11n n n n a b b nb +++=中选1n =,得1221a b b b +=,即11111,233a a +==. 又因为{}n a 是公差为3的等差数列,所以23(1)31n a n n =+-=-. (2)由(1)得()1131n n n n b b nb ++-+=,即113n n b b +=,得{}n b 是以1为首项,13为公比的等比数列,得113n n b -⎛⎫= ⎪⎝⎭.所以{}n b 的前n 项和111313122313n n n S --==-⋅-. 练习1 (1) 等差数列{a n }中,a 6 + a 35 = 10,则S 40 =_________. 200 (2) 等比数列{a n }中,a 1 = 2 , a 2a 6 = 256,则S 5 =_________. 62或22 二、倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. 例2 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值 答案:289 练习2(选做) 求正整数m 与()n m n <之间的分母为3的所有既约分数的和S .解 显然,这些既约分数为31,32,34,,34,32,31---+++n n n m m m有 )31()32()34()34()32()31(-+-+-++++++=n n n m m m S也有 )31()32()34()34()32()31(++++++-+-+-=m m m n n n S所以 2222),(2)(2)(2m n S m n m n n m S -=-=-⋅+= 三、分组求和法把一个数列分成几个可以直接求和的数列.一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.例3 (1) 求和:112+2122+3123+…+⎝⎛⎭⎫n +12n . (2) 求和:S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2(x ≠0). 解析: (1) 求和:112+2122+3123+…+⎝⎛⎭⎫n +12n . 答案 112+2122+3123+…+⎝⎛⎭⎫n +12n =(1+2+3+…+n )+⎝⎛⎭⎫12+122+123+…+12n =n (n +1)2+12⎝⎛⎭⎫1-12n 1-12=n (n +1)2+1-12n . 梳理 分组分解求和的基本思路:通过分解每一项重新组合,化归为等差数列和等比数列求和. (2) 求和:S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2(x ≠0). 解 当x ≠±1时,S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2 =⎝⎛⎭⎫x 2+2+1x 2+⎝⎛⎭⎫x 4+2+1x 4+…+⎝⎛⎭⎫x 2n +2+1x 2n =(x 2+x 4+…+x 2n )+2n +⎝⎛⎭⎫1x 2+1x 4+…+1x 2n =x 2(x 2n -1)x 2-1+x -2(1-x -2n )1-x -2+2n =(x 2n -1)(x 2n +2+1)x 2n (x 2-1)+2n ;当x =±1时,S n =4n . 综上知,S n =⎩⎪⎨⎪⎧4n ,x =±1,(x 2n -1)(x 2n +2+1)x 2n (x 2-1)+2n ,x ≠±1且x ≠0.反思与感悟 某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列的求和公式分别求和,从而得出原数列的和. 练习3 (1) 求数列{1+2n -1}的前n 项和 . 解析 ∵a n =1+2n -1,∴S n =n +1-2n 1-2=n +2n -1.(2) 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项和S n .解 由数列的前几项可归纳出a n =3n +2n -1,∴S n =(3+2-1)+(6+22-1)+(9+23-1)+...+(3n +2n -1) =(3+6+9+...+3n)+(2+22+...+2n )-(1+1+ (1)=n (3+3n )2+2(2n -1)2-1-n =3n 2+n 2+2n +1-2.(3) 已知{a n }是各项均为正数的等比数列,且a 1+a 2=2⎝⎛⎭⎫1a 1+1a 2,a 3+a 4+a 5=64⎝⎛⎭⎫1a 3+1a 4+1a 5①求{a n }的通项公式;①设b n =⎝⎛⎭⎫a n +1a n 2,求数列{b n }的前n 项和T n . [思路探索] (1)设出公比q ,根据条件列出关于a 1与q 的方程(组),求得a 1与q ,可求得数列的通项公式.(2)由(1)中求得的数列通项公式,可求出{b n }的通项公式,由其通项公式可知其和可分成两个等比数列与一常数列分别求和.解 ①设公比为q ,则a n =a 1q n -1.由已知得⎩⎨⎧a 1+a 1q =2⎝⎛⎭⎫1a 1+1a 1q ,a 1q 2+a 1q 3+a 1q 4=64⎝⎛⎭⎫1a 1q 2+1a 1q 3+1a 1q 4.化简得⎩⎪⎨⎪⎧a 21q =2,a 21q 6=64.又a 1>0,故q =2,a 1=1,所以a n =2n -1.②由①知,b n =⎝⎛⎭⎫a n +1a n 2=a 2n +1a 2n +2=4n -1+14n -1+2, 所以数列{b n }的前n 项和T n =(1+4+ (4)-1)+⎝⎛⎭⎫1+14+…+14n -1+2n =4n -14-1+1-14n 1-14+2n =13(4n -41-n )+2n +1.(3) 求数列{n(n+1)(2n+1)}的前n 项和.答案:n n n a n ++=23322)2()1()321()321(3)321(2222223333++=++++++++++++++=n n n n n n S(4)数列{a n }中,a 1 = 1 , a 2 = 2 , a n+2 – a n = 1 + (–1)n ,则S 100 =__________。
数列求和7种方法(方法全-例子多)精选全文

可编辑修改精选全文完整版数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。
数列求和最全方法例题含答案

求数列前n项和题型方法总结1、考纲解读(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式)。
(2)了解数列是自变量为正整数的一类函数。
(3)理解等差数列、等比数列的概念。
(4)掌握等差数列、等比数列通项公式和前n项和公式。
(5)能在具体的问题情境中识别等差关系或等比关系,并能利用有关知识解决问题。
(6)了解等车数列与一次函数,等比数列与指数函数的关系。
常考题型:填空题,选择题,解答题占分比重:10~17分二、考点梳理(命题特点)&考试趋势2.1.数列的概念与简单表示法2.2.等差数列2.3.等比数列2.4.数列求和、数列的综合应用三、题型讲解3.1解题技巧归纳(提分秘笈)3.1.1公式法公式法:直接利用等差等比数列的前n项和公式.q q a a q q a S q na S q n dn n na a a n S n nn n n n n n --=--=≠==-+=+=11)1(,1.b 1.a 2)1(2)(11111时当;时,当项和公式②等比数列的前项和公式①等差数列的前例1{}.6-3942的值,求项和,且为其前为等差数列,若数列s a a n s a n n =答案 27 解析:{}()272292)(9,346-3359195111=⨯=+===++=+a a a S a d a d a d a d a n ,得,有的公差为设数列【注意事项】(1)善于识别题目类型,确定是等差数列还是等比数列. (2)等比数列中要注意公比为1的情况.3.1.2分组求和分组求和法:把一个数列分成几个可以直接求和的数列例2{}{}{}.)2(2)1(.4-2n n n n n n n T n s n s n a s n a s 项和的前求数列为等比数列;证明:项和,且满足的前是数列已知+-=-答案 (1)见解析;(2)283223--++n n n解析:()[]()()()()283222)1(212142212222-2,2212.24}2{421,3,2122,424)(212313211111-11--+=-++--=-+++++++=+==+-+-=+-=+--=+-+-=-=--++++--n n n n n n n T n S n S n S S a n S n S n S S n S S Sn n n n n n n n n n n n n n n n于,所以)知由(的等比数列,公比为是首项首所以,所以又易知)(所以,即已知【注意事项】(1)数列求和应从通项入手,若无通项,则先求通项.(2)将通项分解成一些等差和等比数列或可直接求和的数列再进行求和.补充:常见数列的前n 项和()()()()()2333322222221321612132112531264221321⎥⎦⎤⎢⎣⎡+=++++++=++++=-+++++=+++++=++++n n n n n n n n n nn n n n n3.1.3裂项相消裂项相消法:把一个数列的通项分成两项差的形式,相加过程中消去中间项,只剩有限项再求和.常见裂项公式{}()()().10log 1log 11log )4(;111)3(;1111)2();11(11),0(0)1(11≠>-+=⎪⎭⎫⎝⎛+-+=+-⎪⎭⎫⎝⎛+-=+-=⋅≠++a a n n n n n n n k n n d k n n a a d a a d d a a a a n n n n n 且则的等差数列,公差为为各项都不为若例3{}{}{}.,)2()1(.240,110111510n n n nn n n n n n T n b a a a a b a s s n a s 项和的前求数列令的通项通项公求数列项和,且满足的前是等差数列设+++===答案()()nn nT nan n21221++== 解析:()()nn nn n n T n n n n n n n n n n b na d a d a d a d n n n 21211141313121211,21111122222222,222402141515110291010,1111++=++-++-+-+-=++-=+++=+++====⎪⎩⎪⎨⎧=⨯+=⨯+ ,解得则有设公差为【注意事项】(1)对于裂项后明显有能够相消的项的一类数列,在求和时常用“裂项相消法”,分式型数列的求和多用此法.(2)利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前边剩两项,后边也剩两项.(3)有些情况下,裂项时需要调整前面的系数,使裂开后的两项之差和系数之积与原项相等.3.1.4错位相减错位相减法:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.例4{}{}{}.,)2()1(.2,22,04322n n nn n n n T n b a nb a a s a s q s n a 项和的前求数列设的通项求数列,公比项和为的前已知等比数列=-=-=>答案()()nn nnn T a222221+-==解析:()()()nn n n n n n n n n n n n n n n n nn n T n n n T n n T n n T n ba a q a q a a a a a a S q q q q a a a a S a S222221122112112122121212121,22122212122123222121222,22,2222.2,0,02222211113213213211112212222434322+-=-⎪⎭⎫ ⎝⎛-=--⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=-++++=-+-+++=+-++++===∴=∴-=+∴-=+∴-==>=---=--=-=++++-则②得①②①,知,由所以又因为,则①得,②②,①,已知【注意事项】(1)善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“Sn ”与“qSn ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确写出“Sn-qSn ”的表达式.(3)应用等比数列求和公式必须注意公比q 时候等于1,如果不能确定公比q 是否为1,应分两种情况进行讨论,这在以前的高考中经常会考查.3.1.5倒序相加倒序相加法:把数列正着写和倒着写再相加,例如等差数列前n 项和公式的推导方法.例5()()()()().,lg lg lg lg lg ,12lg ,1,1,lg 1221S y xyy x y x x S b a y b x a nn n n n 求且满足已知平面向量+++++==⋅==---答案()16+=n n S解析:()()()()()()()()()()()[]()()[]()n n n n n n n n nn n n nn n n n n x y y x xy xy y x y x S x y x y xxyy S y xy y x y x x S xy y x b a y b x a lg lg lg lg lg lg lg lg 2lg lg lg lg lg lg lg lg lg lg .12)lg(,12lg lg 12lg ,1,1,lg 111112211221++++++++=+++++=+++++===+=⋅==---------- 两式相加得,,所以,因为即所以,满足因为为平面向()()()()()()[]()()()()16S 112lg 1lg lg lg lg lg lg 11+=+=+=+++=++⋅+=--n n n n xy n n xy xy xy n x y xy y x y x n n n n n n 所以【注意事项】(1)数列特征是“与首末两项等距离的两项之和相等”(2)把数列正着写和倒着写再相加,,即可求出该数列前n 项和的2倍,不要忘记除以 2.3.1.6合并求和合并求和法:针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在数列求和时,可将这些项放在一起先求和,在求Sn.例7{}.log log log 9103231365的值,求中,数列在各项各项均为正数的a a a a a a n +++=答案 10解析:{}109log )(log )(log log log log 95365921013109321310323136592101==⨯⨯⨯==+++====a a a a a a a a a a a a a a a a a a a a a n 所以,是等比数列,所以因为为数【注意事项】(1)善于发现数列的特殊性质,如对数指数的运算等. (2)计算时不要出现错误.3.1.7构造法构造法:先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求和.例8 之和求个11111111111n ++++ 答案81109101--+n n解析:()()()()()()()[]()()811091091011011091910101010911101101109111111*********199999111111109199991111,11091999111,110919911132121191321--=---⨯=-++++⨯=-++-+-⨯=++++-⨯=⨯=-⨯=⨯=-⨯=⨯=-⨯=⨯=+n n n n n nnn nn n 个个个所以【注意事项】(1)善于发现数列的规律,并能找出其通项.(2)计算时不要出现错误.3.2易错易混归纳3.2.1裂项时不注意系数例1{}{}.611)2()1(.,2,12<⎭⎬⎫⎩⎨⎧∈+=+*n n n n n n n n T T n a a a N n n n S S n a ,求证项和为的前设数列的通项求数列且项和为的前已知数列答案见解析)()2(121+=n a n解析:(1);(2)()()()()()()()()()613121321-3121321-1217151513121321-12121321211122121121212122,311112211=⋅<⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡++=++=+=+=+⨯=+=----+=-=≥==+-n n n T n n n n a a n an a a n n n n n S S a n an n n n nn n n n 则所以,因为所以且时,当时,当3.2.2通项公式与n 为奇数有关时,需要分情况讨论例2{}{}{}.,log )2()1(.21n 2n 1n n 1n n n n n S n b a b a a a a a 项和的前求数列若的通项通项公求数列,中,已知在数列===+答案⎪⎩⎪⎨⎧-=⎪⎩⎪⎨⎧=-为偶数,为奇数)(为偶数,为奇数)(n n n n S n n a n nn n 4,4122,2122221解析:{}{}⎪⎩⎪⎨⎧==⋅==⋅======≥=---++为偶数,为奇数的通项通综上,数列为偶数时,当为奇数时,所以当,,又构成等比数列的奇数项奇数项与偶数所以数列,,所以时,,所以当因为n n a a a n a n a a a a a a a a n a a nn n n n n n n n n n 22121-2n 2121n 1211-n 1n 1-n 1-n 1n n 2,2222;221221.2222)1({}⎪⎩⎪⎨⎧-==-+++=++++++=-=-++++=+++++++===+===--++为偶数,为奇数项和的前综上,数列为偶数时当为奇数时当所以,因为n n n n S n b n n b b b b b b S n n n b b b b b b b S n b n b b a b a a a n n n n n n n n n 4,41.4)1(31)()()(,;41)1(420)()()(,,0,,log ,21)2(22214321215432111n n n 2n 1n n 111。
(完整版)数列求前N项和方法总结(方法大全,强烈推荐),推荐文档

Sn an (an d ) [an (n 1)d ] ②
①等差数列:
Sn
n(a1 2
an )
na1
n(n 1) 2
d
nan
n(n 1) 2
d
①+②得:
n个
2Sn a1 an (a1 an ) (a1 an )
n(a1 an )
Smn Sm Sn mnd Sn Snm Sm (n 2m, m, n N *) n n 2m
②等比数列:
Sn
n(a1 2
an )
Sn
a1 (1 q n ) 1 q
a1 an q 1 q
; (q
1)
1 n2 (n 1)2 4
(3)错位相减法
(4)分组化归法
此种方法主要用于数列{anbn }的求和,
此方法主要用于无法整体求和的数列,可
其中{an }为等差数列,{bn }是公比为 q 的
k (4k
2
1)
a1[a1 (n 1)d ]
(2)当 n >7 时, bn <0
则 n =k+1 时,
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十多个OK地方价格
此时,
Sk1 = Sk + (2k 1)2
建议收藏下载本文,以便随时学习! 1
,设 bn
=log2
an
,求数列
{| bn |}的前 n 项和 Sn . 解: an = a1 q n1 = 27n
解: S1 1, S2 10 , S3 35 ,
S4 84 , S5 165 ,…
观察得:
Sn
(完整版)数列求和方法归纳

数列求和一、直接求和法(或公式法)掌握一些常见的数列的前n 项和:123+++……+n=(1)2n n +,1+3+5+……+(2n-1)=2n 2222123+++……+n =(1)(21)6n n n ++,3333123+++……+n =2(1)2n n +⎡⎤⎢⎥⎣⎦等. 例1 求2222222212345699100-+-+-+--+.解:原式22222222(21)(43)(65)(10099)3711199=-+-+-++-=++++.由等差数列求和公式,得原式50(3199)50502⨯+==.变式练习:已知3log 1log 23-=x ,求............32+++++n x x x x 的前n 项和. 解:1-n21二、倒序相加法此方法源于等差数列前n 项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和.例2 求222222222222123101102938101++++++++的和. 解:设222222222222123101102938101S =++++++++ 则222222222222109811012938101S =++++++++. 两式相加,得 2111105S S =+++=∴=,.三、裂项相消法常见的拆项公式有:1()n n k =+111()k n n k -+ ,=1k, 1(21)(21)n n =-+111()22121n n --+,等.例3 已知222112(1)(21)6n n n n +++=++,求 22222222235721()11212312n n n*+++++∈++++++N 的和. 解:22221216112(1)(1)(21)6n n n a n n n n n n ++===++++++,11161223(1)111116122311611ln .1n S n n n n n n ⎡⎤∴=+++⎢⎥⨯⨯+⎣⎦⎡⎤⎛⎫⎛⎫=-+-++-⎪ ⎪⎢⎥+⎝⎭⎝⎭⎣⎦⎛⎫=- ⎪+⎝⎭=+小结:如果数列{}n a 的通项公式很容易表示成另一个数列{}n b 的相邻两项的差,即1n n n a b b +=-,则有11n n S b b +=-.这种方法就称为裂项相消求和法.变式练习:求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S.解:∵)2(1+n n =211(21+-n n )S n =⎥⎦⎤⎢⎣⎡+-+⋅⋅⋅+-+-)211()4121()311(21n n =)2111211(21+-+--n n =42122143+-+-n n 四、错位相减法源于等比数列前n 项和公式的推导,对于形如{}n n a b 的数列,其中{}n a 为等差数列,{}n b 为等比数列,均可用此法. 例4 求2335(21)n x x x n x ++++-的和.解:当1x ≠时,21122(1)(21)1(1)1n n n x x x n x S x x x-+--=+----; 当1x =时,2n S n =. 小结:错位相减法的步骤是:①在等式两边同时乘以等比数列{}n b 的公比;②将两个等式相减;③利用等比数列的前n 项和公式求和.)1(2)1(=+a n n变式练习:求数列a,2a 2,3a 3,4a 4,…,na n , …(a 为常数)的前n 项和。
数列求和方法大全例题变式解析答案强烈推荐

1.7 数列前n 项和求法知识点一 倒序相加法特征描述:此种方法主要针对类似等差数列中112n n a a a a -+=+=,具有这样特点的数列.思考: 你能区分这类特征吗?知识点二 错位相减法特征描述:此种方法主要用于数列}{n n b a 的求和,其中}{n a 为等差数列,}{n b 是公比为q 的等比数列,只需用n n S qS -便可转化为等比数列的求和,但要注意讨论q=1和q ≠1两种情况.思考:错位时是怎样的对应关系?知识点三 分组划归法特征描述:此方法主要用于无法整体求和的数列,例如1,112+,11124++,……, 11124+++……+112n -,可将其通项写成等比、等差等我们熟悉的数列分别进行求和,再综合求出所有项的和.思考:求出通项公式后如何分组?知识点四 奇偶求合法特征描述:此种方法是针对于奇、偶数项,要讨论的数列 例如11357(1)(21)n n S n -=-++++--,要求S n ,就必须分奇偶来讨论,最后进行综合.思考:如何讨论?知识点五 裂项相消法 特征描述:此方法主要针对12231111n na a a a a a -+++这样的求和,其中{a n }是等差数列.思考:裂项公式你知道几个?知识点六 分类讨论法特征描述:此方法是针对数列{n a }的其中几项符号与另外的项不同,而求各项绝对值的和的问题,主要是要分段求. 思考:如何表示分段求和?考点一 倒序相加法例题1:等差数列求和12n n S a a a =+++变式1:求证:nn n n n n n C n C C C 2)1()12(53210+=+++++变式2:数列求和2222sin 1sin 2sin 3sin 89++++考点二 错位相减法例题2:试化简下列和式: 21123(0)n n S x x nx x -=++++≠变式1:已知数列)0()12(,,5,3,112≠--a a n a a n ,求前n 项和。
高中数列求和方法大全(配练习及答案)

数列的求和1.直接法:即直接用等差、等比数列的求和公式求和。
(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。
常见拆项公式:111)1(1+-=+n n n n ;1111()(2)22n n n n =-++ )121121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=⋅5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。
6.合并求和法:如求22222212979899100-++-+- 的和。
7.倒序相加法:8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:例1.求和:①个n n S 111111111++++= ②22222)1()1()1(n n n xx x x x x S ++++++= ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。
解:①)110(9110101011112-=++++==kkk k a个])101010[(91)]110()110()110[(9122n S n n n -+++=-++-+-= 8110910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++=nnn x x x x x x S n xx x x x x n n 2)111()(242242++++++++=(1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)1()1)(1(21)1(1)1(22222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时 ③kk k k k k k k k k a k 23252)]23()12[()]1()12[()12(2)12(2-=-+-=-+-+++++-=2)1(236)12)(1(25)21(23)21(2522221+-++⋅=+++-+++=+++=n n n n n n n a a a S n n)25)(1(61-+=n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。
数列求和的经典方法(含答案)

数列求和的经典方法(含答案)数列前n 项和的求法知识归纳:1.拆项求和法:将一个数列拆成若干个简单数列(如等差数列、等比数列、常数数列等等),然后分别求和.(“拆项”的典型例子是数列“n S =n n 21813412211++++”的求和) 2.并项求和法:将数列的相邻的两项(或若干项)并成一项(或一组)得到一个新的且更容易求和的数列.(“并项”的典型例子是数列“n S n n ?-++-+-+-=+1)1(654321 ”的求和.) 3.裂项求和法:将数列的每一项拆(裂开)成两项之差,使得正负项能互相抵消,剩下首尾若干项.(“裂项”的典型例子是数列“)1(1321211+++?+?=n n S n ”的求和) 4.错位求和法:将一个数列的每一项都作相同的变换,然后将得到的新数列错动一个位置与原数列的各项相减,这是仿照推导等比数列前n 项和公式的方法.若}{n a 是等差数列,{n b }是等比数列,则数列{n n b a ?}的求和运用错位求和方法.(比如:.}{,)10 9()(n n nn S n a n a 项和的前求?=) 5.倒序求和法:将一个数列的倒数第k 项(k =1,2,3,…,n )变为顺数第k 项,然后将得到的新数列与原数列进行变换(相加、相减等),这是仿照推导等差数列前n 项和公式的方法.例1(错位求和法):求数列}{1-n nq (q 为常数)的前n 项和。
解:Ⅰ、若q =0,则n S =0Ⅱ、若q =1,则)1(21321+=+?+++=n n n S n Ⅲ、若q ≠0且q ≠1,则12321-+?+++=n n nq q q S ①n n nq q q q qS +?+++=3232 ②①式—②式:n n n nq q q q q S q -+?++++=--1321)1( )1(11132n n n nq q q q q qS -+?++++-=- ?)11(11n nn nq qq q S ----=qnq q q S nn n ----=1)1(12综上所述:≠≠----=+==)10(1)1(1)1)(1(21)0(02q q q nq q q q n n q S nn n 且例二(裂项求和法): 1、乘积形式,如:(1)、111)1(1+-=+=n n n n a n (2)、)121121(211)12)(12()2(2+--+=+-=n n n n n a n (3)、])2)(1(1)1(1[21)2)(1(1++-+=++=n n n n n n n a n(4)、nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-?=?+-+=?++= -则 2、根式形式,如:n n nn a n -+=++=111练习1:求数列211?,321?,431?,…,)1(1+n n ,…的前n 项和n S 解:∵)1(1+n n =111+-n n111313121211+-+?++-+-=n n S n ?111+-=n S n 练习2:求数列311?,421?,531?,…,)2(1+n n ,…的前n 项和n S 解:由于:)2(1+n n =211(21+-n n )则:??+-++-+-=)211()4121()311(21n n S n)2111211(21+-+--=n n S n ? 42122143+-+-=n n S n例三(倒序法):已知函数()xf x = (1)证明:()()11f x f x +-=;(2)求128910101010f f f f ??++++的值.练习:若函数)(x f 对任意R x ∈都有2)1()(=-+x f x f 。
第39招 数列求和的方法

【知识要点】一、数列的求和要有通项意识,先要对通项特征进行分析(数列的通项决定了数列的求和方法),再确定数列求和的方法.二、数列常用的求和方法有六种:求和六法 一公二错三分四裂五倒六并,最后一定要牢记,公比为1不为1.1、公式法:如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n 项和的公式来求和.对于一些特殊的数列(正整数数列、正整数的平方和立方数列等)也可以直接使用公式求和.①等差数列求和公式:()()11122n n n a a n n S na d +-==+ ②等比数列求和公式:()()()11111111n n n na q S a q a a q q qq ⎧=⎪=-⎨-=≠⎪--⎩③常见的数列的前n 项和:123+++……+n=(1)2n n +,135721n ++++⋅⋅⋅+-=2n ,2222123+++……+n =(1)(21)6n n n ++,3333123+++……+n =2(1)2n n +⎡⎤⎢⎥⎣⎦等. 2、错位相减法:若数列{}n n b c ,其中{}n b 是等差数列,{}n c 是等比数列,则采用错位相减法. 若n n n a b c =∙,其中{}n b 是等差数列,{}n c 是公比为q 等比数列,令 112211n n n n n S b c b c b c b c --=++++,则n qS =122311n n n n b c b c b c b c -+++++两式错位相减并化简整理即得. 3、分组求和法:有一类数列{}n n a b +,它既不是等差数列,也不是等比数列,但是数列{},{}n n a b 是等差数列或等比数列或常见特殊数列,则可以将这类数列适当拆开,可分为几个等差、等比数列或常见的特殊数列,然后分别求和,再将其合并即可.4、裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n 项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法.适用于类似1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项不为零的等差数列,c 为常数)的数列、部分无理数列等.用裂项相消法求和,需要掌握一些常见的裂项方法: ①()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭,特别地当1k =时,()11111n n n n =-++1k=,特别地当1k ==③2222(2)(41)1111111()(21)(21)414122121n n n a n n n n n n -+===+=+--+---+ ④])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n⑤ 1212(1)111(1)2(1)22(1)2n n n n nn n n a n n n n n n -++-=⋅=⋅=-++⋅+ ⑥![(1)1]!(1)!!n n n n n n ⋅=+-=+- 5、倒序相加法:类似于等差数列的前n 项和的公式的推导方法.如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和.这一种求和的方法称为倒序相加法.6.并项求和法.有些数列的通项里有1n(-),这种数列求和时,一般要分奇数和偶数来分类讨论.【方法讲评】【例1】已知等比数列{n a }中,164a =,公比1q ≠,234,,a a a 又分别是某等差数列的第7项,第3项,第1项.(1)求n a ;(2)设2log n n b a =,求数列{||}n b 的前n 项和n T . 【解析】(1)依题意有24343()a a a a -=-,即432230a a a -+=,32111230a q a q a q -+=,即22310q q -+= 2.∵1q ≠,∴12q =. 故1164()2n n a -=⨯.【点评】(1)利用公式法求数列的前n 项和,一般先求好数列前n 项和公式的各个基本量,再代入公式.(2)第2问注意要分类讨论,因为n 与7的大小关系不能确定.【反馈检测1】已知{}n a 是公差不为零的等差数列,11a =,且139,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项;(Ⅱ)求数列{2n a}的前n 项和n S .}n c ,其中n n b c ∙,其中23b c ++两式相减并整理即得.【例2】 已知函数x x x f 63)(2+-= ,n S 是数列}{n a 的前n 项和,点(n ,n S )(n N *∈)在曲线)(x f y =上.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)若1)21(-=n n b ,6n n n b a c ∙=,且n T 是数列}{n c 的前n 项和. 试问n T 是否存在最大值?若存在,请求出n T 的最大值;若不存在,请说明理由.(Ⅱ)因为111(96)()1112(),(32)()2662n n n n n n n n b c a b n ---====- ① 所以231111(1)()(3)()(32)(),2222n n T n =+-+-++- ②234111111()(1)()(3)()(32)(),22222n n T n +=+-++-++- ③ ②-③得 132)21)(23()21)(2()21)(2()21)(2(2121+---++-+-+=n n n n T112)21)(23(211])21(1[)21()2(21+-----=-+=n n n .整理得1)21)(12(-+=n n n T , ④策略二 利用商值比较法由④式得0)21)(12(1>+=+n n n T .因为111(23)()123(21)22,112(21)2(21)(21)()2n n n n n T n n T n n n +++++++===++++165)1221(21)1221(21<=++≤++=n 所以111+<++n n T T ,即n n T T <+1. 所以 >>>>>>+1321n n T T T T T 所以n T 存在最大值211=T . 策略三 利用放缩法由①式得0)21)(21()21)](1(23[111<-=+-=+++n n n n n c ,又因为n T 是数列}{n c 的前n 项和, 所以n n n n T c T T <+<++11. 所以 >>>>>>+1321n n T T T T T 所以n T 存在最大值211=T . 【反馈检测2】数列{}n a 的通项n a 是关于x 的不等式2x x nx -<的解集中正整数的个数,(1)求数列{}n a 的通项公式; (2)若2nn na b =,求数列{}n b 的前n 项和n S ; (3)求证:对2n ≥且*n N ∈恒有7()112f n ≤<.【例3】已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;(2)数列{n a }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足201522>++nn T n 的最小正整数n .(2)(21)2n nn b n n n =-⋅=⋅-设231222322nn K n =⨯+⨯+⨯++⨯… ①【点评】(1)数列2n n b n n =⋅-求和时,要分成两个数列求和,其中一个是数列通项是2nn c n =⋅,它用错位相减来求和,另外一个数列是n d n =,它是一个等差数列,直接用公式法求和.(2)解不等式1(1)222015n n +-⨯+>时,直接用代值试验解答就可以了.【反馈检测3】已知数列{}n a 的前n 项和为n S ,且满足()*23n n a S n N =-∈. (1)求数列{}n a 的通项公式;(2)设2log n n b a =,求数列{}n n a b +的前n 项和n T .【例4】 已知等差数列{}n a 满足:37a =,5726a a +=.{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ;(Ⅱ)令211n n b a =-(n N +∈),求数列{}n b 的前n 项和n T . 【解析】(Ⅰ)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有112721026a d a d +=⎧⎨+=⎩,解得13,2a d ==,所以321)=2n+1n a n =+-(;nS =n(n-1)3n+22⨯=2n +2n . (Ⅱ)由(Ⅰ)知2n+1n a =,所以b n =211n a -=21=2n+1)1-(114n(n+1)⋅=111(-)4n n+1⋅,【点评】利用裂项相消时,注意消了哪些项,保留了哪些项.如1(2)n a n n =+111()22n n =-+,121111111(2132435n n S a a a =+++=-+-+-++111111)2112n n n n n n -+-+---++11111()21212n n =+--++.为了确定保留了哪些项,最好前后多写一些项. 【反馈检测4】 设数列{}n a 满足321212222n n aa a a n -++++=,n N *∈. (1)求数列{}n a 的通项公式;(2)设()()111nn n n a b a a +=--,求数列{}n b 的前n 项和n S .【反馈检测5】已知各项均为正数的数列{}n a 的前n 项和为n S ,且242n n n S a a =+(*n ∈N ).(Ⅰ) 求1a 的值及数列{}n a 的通项公式; (Ⅱ) 记数列31n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:532n T <(*n ∈N ).【例5 】 已知数列{}n a 的前n 项和()2*24n n S n N +=-∈,函数()f x 对R x ∈∀有()(1)1f x f x +-=,数列{}n b 满足12(0)()()n b f f f n n=+++1()(1)n f f n-++. (1)分别求数列{}n a 、{}n b 的通项公式;(2)若数列{}n c 满足n n n b a c ⋅=,n T 是数列{}n c 的前n 项和,若存在正实数k ,使不等式n n a n T n n k 226)369(>+-对于一切的*n N ∈恒成立,求k 的取值范围.【解析】(1) 12111,244n a S +===-=()()21112,24242n n n n n n n a S S +++-≥=-=---=①-②得231422(1)2n n T n +-=+++⋅⋅⋅-+⋅ 即 12n n T n +=⋅要使得不等式n n a n T n n k 226)369(>+-恒成立,26936nk n n ∴>-+对于一切的*n N ∈恒成立, 即6369k n n >+-令6()369g n n n =+-,则6()2369g n n n=≤=+-当且仅当6n =时等号成立,故max ()2g n = 所以2k >为所求.【点评】如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,则可以利用倒序相加法求和.【例6】求证:nn n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++【点评】如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,则可以利用倒序相加法求和.【反馈检测6】已知函数()xf x =(1)证明:()()11f x f x +-=; (2)求128910101010f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值.【例7】求和:22221234n S =-+-+ (1)2(1)n n -+-.【解析】当n 为偶数时,222222(12)(34)[(1)]n S n n =-+-++--3711(21)n =------(321)(1)222n n n n +-+=-⋅=-. 当n 为奇数时,【点评】(1)如果数列的通项里有1n(-),这种数列求和时,一般要分奇数和偶数来分类讨论.把两项合成一项来求和. (2)这种情况最好先计算偶数的情况,再计算奇数的情况.讨论奇数情况时,为了减少计算量,提高计算效率,可以利用1n n n S S a -=+,而1n S -可以利用前面计算出来的偶数的结论(因为1n -是偶数),只要把偶数情况下n S 表达式中所有的n 都换成1n -即可. 【反馈检测7】已知数列{}n a 的首项为11a =,前n 项和n S ,且数列n S n ⎧⎫⎨⎬⎩⎭是公差为2的等差数列. (1)求数列{}n a 的通项公式;(2)若(1)nn n b a =-,求数列{}n b 的前n 项和n T .高中数学常见题型解法归纳及反馈检测第39讲:数列求和的方法参考答案【反馈检测1答案】(1)n a n =;(2)122n n S +=-.【反馈检测1详细解析】(Ⅰ)由题设知公差0d ≠, 由11a =,139,,a a a 成等比数列得121d +=1812dd++, 解得10(d d ==或舍去), 故{}n a 的通项1(1)1n a n n =+-⨯=. (Ⅱ)由(Ⅰ)知22na n =,由等比数列前n 项和公式得2312(122222=2212n nn n S +-=+++⋅⋅⋅+=--). 【反馈检测2答案】(1)n a n =;(2)12(2)()2n n S n =-+;(3)见解析.(3 1111n nn<+++= 由111111()1212n n n f n a a a n n n n n=+++=+++++++++…… 知11111(+1)++2322122f n n n n n n =+++++++… 于是111111(1)()021********f n f n n n n n n n +-=+->+-=++++++故(1)()f n f n +>()f n ∴当2n ≥且*n N ∈时为增函数7()(2)12f n f ∴≥= 综上可知7()112f n ≤< .(2)由(1)知2112n n a -⎛⎫= ⎪⎝⎭,故12n b n =-数列{}n n a b +的前n 项和()()112211n n n n n T a b a b a b a a b b =+++++=++++()2*11124112221,1233414nn n n n n N ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭-+-⎢⎥⎛⎫⎣⎦=+=--∈ ⎪⎝⎭- 【反馈检测4答案】(1)2nn a =;(2)11121n n S +=--.【反馈检测4详细解答】(1)因为321212222n n a a a a n -++++=,n N *∈, ① 所以当1=n 时,12a =. 当2≥n 时,()31212221222n n a a a a n --++++=-, ② , ①-②得,122nn a -=,所以2n n a =. 因为12a =,适合上式,所以()2n n a n N *=∈;(2)由(1)得2nn a =,所以()()()()1112111121212121n n n n n n n n n a b a a +++===-------,所以12111111111111337715212121n n n n n S b b b ++⎛⎫⎛⎫⎛⎫⎛⎫=+++=-+-+-++-=- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭【反馈检测5答案】(1)12a =,2n a n =;(2)见后面解析.【反馈检测5详细解析】(Ⅰ)当1n =时,21111442a S a a ==+,解得12a =或10a =(舍去).当2n ≥时,242n n n S a a =+,211142n n n S a a ---=+,相减得2211422n n n n na a a a a --=-+-即()22112n n n n a a a a ---=+,又0n a >,所以10n n a a -+≠,则12n n a a --=,所以{}n a 是首项为2,公差为2的等差数列,故2n a n =.证法二:当1n =时,131114583232T a ===<. 当2n ≥时,先证()341n n n ≥-,即证()()()232414420n n n n n n n n --=-+=-≥显然成立.所以()331111118321321n a n n n n n ⎛⎫=≤=- ⎪--⎝⎭所以33331231111n n T a a a a =++++()333311112462n =++++3111111111111511232223183283232n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫≤+-+-++-=+-<+= ⎪ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 综上,对任意*n ∈N ,均有532n T <成立.【反馈检测6答案】(1)()()11f x f x +-=;(2)92S =.学科.网【反馈检测7答案】(1)43n a n =-;(2)2,2,,21,21,.n n n k k T n n k k **⎧ =∈⎪=⎨-+=-∈⎪⎩N N【反馈检测7详细解析】(1)(1)由已知得1(1)221nS n n n=+-⨯=-, ∴22n S n n =-. 当2n ≥时,2212[2(1)(1)]43n n n a S S n n n n n -=-=-----=-.11413a S ==⨯-,∴43n a n =-,*n ∈N .(2)由⑴可得(1)(1)(43)n nn n b a n =-=--.当n 为偶数时,(15)(913)[(45)(43)]422n nT n n n =-++-++⋅⋅⋅+--+-=⨯=,综上,2,2,,21,21,.n n n k k T n n k k **⎧ =∈⎪=⎨-+=-∈⎪⎩N N。
数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)一、前言在高中数学以及各类应用数学问题中,数列求和问题是非常常见的。
解决数列求和问题不仅需要对常用数列的规律进行深刻的理解,还需要掌握多种数列求和的方法。
本文将介绍数列求和的八种常用方法,并且会结合具体的数列实例来进行讲解。
尽力做到对每一种方法的介绍都能够做到极致详细,希望对读者有所帮助。
二、数列求和的8种常用方法1. 等差数列求和公式对于一个首项为$a_1$,公差为$d$,共有$n$ 项的等差数列,其求和公式为:$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,3,5,7,9$ 的和。
分析:此数列的首项为1,公差为2,总共有5项。
解答:$$S_5 = \frac{5}{2}(2\times 1 + (5-1)\times 2)=25$$因此,数列$1,3,5,7,9$ 的和为25。
2. 等比数列求和公式对于一个首项为$a_1$,公比为$q$,共有$n$ 项的等比数列,其求和公式为:$$S_n = \frac{a_1(1-q^n)}{1-q}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$2,4,8,16,32$ 的和。
分析:此数列的首项为2,公比为2,总共有5项。
解答:$$S_5=\frac{2\times (1-2^5)}{1-2}=-62$$因此,数列$2,4,8,16,32$ 的和为-62。
3. 几何级数通项公式求和对于一般形式为$a_1r^{n-1}$ 的数列,其求和公式为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16}$ 的和。
分析:此数列的首项是1,公比是$-\frac{1}{2}$,总共有5项。
详解数列求和的六种方法八个典型例题,值得收藏

详解数列求和的六种方法八个典型例题,值得收藏数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。
第一类:公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法。
1、等差数列的前n项和公式2、等比数列的前项和公式3、常用几个数列的求和公式第二类:乘公比错项相减(等差x等比)这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{a ×b,}的前n项和,其中{a},{b}分别是等差数列和等比数列。
第三类:裂项相消法这是分解与组合思想在数列求和中的具体应用。
裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的通项分解(裂项)如:解析:要先观察通项类型,在裂项求和时候,尤其要注意:究竟是像例2-样剩下首尾两项,还是像例3-样剩下四项。
第四类:倒序相加法解析:此类型关键是抓住数列中与首末两端等距离的两项之和相等这--特点来进行倒序相加的。
此例题不仅利用了倒序相加法,还利用了裂项相消法。
在数列问题中,要学会灵活应用不同的方法加以求解。
第五类:分组求和法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可。
这个题,除了注意分组求和外,还要注意分类讨论思想的应用。
第六类:拆项求和法在这类方法中,我们先研究通项,通项可以分解成几个等差或等比数列的和或差的形式,再代入公式求和。
解析:根据通项的特点,通项可以拆成两项或三项的常见数列,然后再分别求和。
这篇文章中,有6类重要方法,8个典型例题,大部分常见数列的前n项和都可以求出来了,由于知识的不完备,在该类知识上还有些缺憾,在此希望这篇文章可以带给学习数列的同学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点五:裂项相消法
例五:{an}为首项为
a1,公差为
d
的等差数列,求 Sn
1 a1a2
1 a2a3
1 a3a4
1 an1an
变式 1: 1 , 1 , 1 ,, 1 , ; 1 3 2 4 3 5 n(n 2)
②若 x≠1,则 Sn 1 2x 3x2 nxn1 xSn x 2x2 3x3 nxn
两式相减得:
(1 x)Sn 1 x x2 +…+ x n1 nx n
1 xn nxn 1 x
变式 1:在等差数列{an }中, a16 a17 a18 a9 36, 其前 n 项和为 Sn . (1)求 Sn 的最小值,并求出 Sn 的最小值时 n 的值; (2)求 Tn a1 a2 an .
变式 2:设数列{an }满足 a1 5, an1 2an 3n 1,已知存在常数 p, q 使数列 {an pn q} 为等比数列.求 a1 a2 an .
例如 Sn 1 3 5 7 (1)n1(2n 1) ,要求 Sn,就必须分奇偶来讨论,最后进行综
合. 思考:如何讨论?
1
知识点五 裂项相消法
特征描述:此方法主要针对
1 a1a2
1 a2a3
1 an1an
这样的求和,其中{an}是等差数列.
思考:裂项公式你知道几个?
知识点六 分类讨论法
特征描述:此方法是针对数列{ an }的其中几项符号与另外的项不同,而求各项绝对值的和
变式 2:数列通项公式为 an
1
;求该数列前 n 项和
n n1
4
变式
3::求和 Sn
22 13
42 35
(2n) 2 (2n 1)(2n 1)
考点六:分类讨论法 例六:在公差为 d 的等差数列{an}中,已知 a1=10,且 a1,2a2+2,5a3 成等比数列. (1)求 d,an; (2)若 d<0,求|a1|+|a2|+|a3|+…+|an|.
n an
考点三:分组划归法
例三:求数列
1, 1
1 2
,1
1 2
1 4
,……, 1
1 2
1 4
+……+
1 2n1
的和.
变式 1:5,55,555,5555,…, 5 (10n 1) ,…; 9
变式 2:1 3, 2 4,3 5,, n(n 2), ;
变式 3:数列 1,(1+2),(1+2+22),……(1+2+2 2+…+2 n-1),……前 n 项的和是
例题 2:试化简下列和式: Sn 1 2x 3x2 nxn1(x 0)
变式 1:已知数列1,3a,5a 2 ,, (2n 1)a n1 (a 0) ,求前 n 项和。
2
变式 2:求数列 a, 2a2 , 3a3,, nan , ;的前 n 项和
变式 3:求和: Sn
1 a
2 a2
3 a3
1.7 数列前 n 项和求法
知识点一 倒序相加法 特征描述:此种方法主要针对类似等差数列中
an a1 an1 a2 ,具有这样特点的数列.
思考: 你能区分这类特征吗?
知识点二 错位相减法
特征描述:此种方法主要用于数列{anbn }的求和,其中{an }为等差数列,{bn }是公比为
q 的等比数列,只需用 Sn qSn 便可转化为等比数列的求和,但要注意讨论 q=1 和 q≠1 两
Sn an (an d ) [an (n 1)d ] ②
①+②得:
n个
2Sn a1 an (a1 an ) (a1 an )
n(a1 an )
Sn
n(a1 2
an )
变式 1:
思路分析:由 Cnm
C nm n
可用倒序相加法求和。
证:令 Sn
C
0 n
3C
1 n
5C
2 n
(2n
1)C
n n
(1)
则 Sn
(2n
1)C
n n
(2n
1)C
n1 n
5C
2 n
3C
1 n
C
0 n
(2)
C
m n
C nm n
(1) (2)有 : 2Sn
(2n
2)C
0 n
(2n
2)C
1 n
(2n
2)C
2 n
(2n
2)C
n n
Sn
(n
1)[C
0 n
Cn1
C
2 n
C
n n
]
(n 1) 2n
种情况. 思考:错位时是怎样的对应关系?
知识点三 分组划归法
特征描述:此方法主要用于无法整体求和的数列,例如 1,1 1 ,1 1 1 ,……, 2 24
1
1 2
1 4
+……+
1 2n1
,可将其通项写成等比、等差等我们熟悉的数列分别进行求和,再综
合求出所有项的和. 思考:求出通项公式后如何分组?
知识点四 奇偶求合法 特征描述:此种方法是针对于奇、偶数项,要讨论的数列
1 变式 3:已知等比数列{ an }中, a1 =64,q= 2 ,设 bn =log2 an ,求数列{| bn解析 考点一 例一: 等差数列求和
Sn a1 a2 an
a1 (a1 d ) [a1 (n 1)d ] ①
把项的次序反过来,则:
等式成立
变式 2:
设 S sin2 1 sin2 2 sin2 3 sin2 89 , 又∵ S sin2 89 sin2 88 sin2 87 sin2 1 , ∴ 2S 89 , S 89 . 2
6
考点二 例二:
Sn 1 2x 3x2 nxn1(x 0)
n(n 1) 解:①若 x=1,则 Sn=1+2+3+…+n = 2
的问题,主要是要分段求. 思考:如何表示分段求和?
考点一 倒序相加法
例题 1:等差数列求和 Sn a1 a2 an
变式
1:求证:
C
0 n
3C
1 n
5C
2 n
(2n
1)C
n n
(n 1)2n
变式 2:数列求和 sin2 1 sin2 2 sin2 3 sin2 89
考点二 错位相减法
(
)
A.2 n
B.2 n-2
C.2 n+1-n-2
D.n2n
考点四:奇偶求合法
例四: Sn 1 3 5 7 (1)n1(2n 1)
3
变式 1:求和: Sn … (- 1)n(1 4n-3 ) n N
变式 2:已知数列{an}中 a1=2,an+an+1=1,Sn 为{an}前 n 项和,求 Sn