离散数学第三章
离散数学 第三章 函数
下面先规定几个标准集合的基数: 1) 空集的基数为0。 2) 设n为一自然数,Nn为从1到n的连贯的自然数集合, Nn={1,2,3,…,n},Nn的基数为n,|Nn|=n 。 3) 设N为自然数的全体,N={1,2,3,…},N的基数为ℵ0(读成 阿列夫零, ℵ是希伯莱文的第一个字母)。 4) 设R为实数的全体,R的基数为ℵ ,|R|= ℵ 。 • • 以上四项规定,对于空集及Nn的基数,实际上就是集 合中元素的个数,关于ℵ0及ℵ,下面将予探讨。 有了标准基数之后,我们可以对各种集合测量其基数。 测量的手段是以双射函数为主体的等价关系一等势。 比如说,一个集合与N等势,那么这个集合的基数为 ℵ0 。
定理6 设A及B为两个可数集,那么A×B为一可数集。 定理 推论1 推论 设A1,A2,A3,…,An为n个可数集,那么 × A是可数集。
i=1 i n
定理7 (0,1)开区间上的实数不是可数集。 定理 定理8 设A为一集Y的函数,若f 是双射函数,则f 的逆关系 f –1是从Y到X的双射函数。 定理2 定理 设f 是从X到Y的函数,g 是从Y到Z的函数,则复合关 系f οg是从 X到Z的函数,将f ο g记为g ο f 。 定理3 定理 设f 是从X到Y的函数,g 是从Y到Z的函数。 1)若f 和g是满射函数,则g ο f 是满射函数; 2)若f 和g是单射函数,则g ο f 是单射函数; 3)若f 和g是双射函数,则g ο f 是双射函数。 定理4 定理 设f 是从X到Y的双射函数, f –1是f 的逆函数,则 1) (f –1) –1 = f 2) f –1 ο f = IX 3) f ο f –1 = IY
定义3 定义 设 |X|=n,P是从X到X的双射函数,称P为X上的置 换,称n为置换的阶。 • 在n个元素的集合中,不同的n阶置换的个数为n!。 • 通常用下面的方法表示置换。 x1 x2 x3 … xn P = p(x ) p(x ) p(x ) … p(x ) 1 2 3 n • 若∀xi∈X 有 p(xi) = xi ,则称P是恒等置换。 • P的逆函数P-1可表示为 p(x1) p(x2) p(x3) … p(xn) P-1 = x1 x2 x3 … xn • 置换的复合与关系的复合相同。 1 2 3 1 2 3 1 2 3 3 2 1 2 1 3 3 1 2
离散数学---集合
特定的一些集合的表示符号
自然数集N={0,1,2,…} , , , 自然数集 整数集合Z={…-2,-1,0,1,2,…} 整数集合 , , , , , 有理数集合Q={xx=P⁄⁄q,p,q∈Z} 有理数集合 , ∈ 实数集合R={ x x是实数 是实数} 实数集合 是实数 复数集合C={x x=a+bi,a,b∈R,i=复数集合C={x x=a+bi,a,b∈R,i=-1}
E B A
集合的相等
2、 相等: 、 相等: 定义: 相等, 定义:若 A⊆ B,且B⊆ A则 称A,B相等, ⊆ , ⊆ 则 , 相等 记 作A=B。 。 即 ∀ x∈A则 x∈B, 并且有 ∀ x∈B则 x∈A。 ∈ 则 ∈ , 并且有∀ ∈ 则 ∈ 。 若A,B 不相等记 作 A≠ B
真子集: 真子集:
集合的说明: 集合的说明:
1、描述法中A={ x 1≤x≤5}与A={y1≤y≤5} 、描述法中 与 是表示同一个集合 2、集合中元素是无序的。 、集合中元素是无序的。 {a,b,c},{a,c,b},{b,c,a}表示同一个集合 。 表示同一个集合。 表示同一个集合 3、集合中的元素可能也是集合, 、集合中的元素可能也是集合, 例:A={1,{2},2,{3,4},{6}} , , , , , =5, {2}∈ A,{6}∈ A=5,2∈A,{2}∈A,6∉A,{6}∈A
求幂集的过程
写出A的全部子集 设A={0,1,2}写出 的全部子集。 , , 写出 的全部子集。 元子集: 解:A的0元子集:∅ 的 元子集 A的1元子集:{0},{1},{2} 元子集: , , 的 元子集 A的 2元子集 : {0, 1}, {0, 2}, {1, 2}。 元子集: , , , , , 。 的 元子集 元子集: , , A的3元子集:{0,1,2} 的 元子集 A共有 个子集,即P(A)=8 共有8个子集, ( ) 共有 个子集 一般地如果 , 一般地如果A=n, 元子集有1个即空集 则A的0元子集有 个即空集∅, 的 元子集有 个即空集∅ A的1元子集共有 n1个, 元子集共有C 的 元子集共有 A的 2元子集共有 2n个,…, 元子集共有C 的 元子集共有 , A的m元子集共有 mn个,… 元子集共有C 的 元子集共有 n元子集共有 nn=1个, 元子集共有C 元子集共有 个 所以A的子集个数为 的子集个数为C 所以 的子集个数为 0n+ C1n+…+ Cnn=2n
离散数学第三章 谓词演算基础函数与量词.ppt
例3 If a program can not be told a fact,then it can not learn that fact.
解:设 P(e)表示e为program; F(e)表示e为fact; T(e1,e2)表示e1 can be told e2; L(e1,e2)表示e1 can learn e2;
则原句译为: x(A(x) y(B(y) C(x,y)) )
例2 金子闪光,但闪光的并非全是金子。
解:设 G(e)表示e为金子; S(e)表示e闪光。
则原句译为:
x(G(x) S(x)) x(S(x) G(x))
或 x(G(x) S(x)) x(S(x) G(x))
试译:计算机学院的有些老师是青年教师。
解: 设 C(e)表示e为计算机学院的人; T(e)表示e为教师; Y(e)表示e为青年.
则原句译为:
x(C(x)T(x) Y(x))
此例中:x就取值于全总个体域U, 谓词C(e)限定x取值范围。
例1 某些人对某些食物过敏。
解:设 A(e)表示e为人; B(e)表示e为食物; C(e1,e2)表示e1对e2过敏。
例5 任何人均会犯错误。
解:设 P(e)表示e为人; M(e)表示e为错误; D(e1,e2)表示e1犯e2。
则原句译为:
x( P(x) y(M(y)D(x,y)) )
例6 己所不欲勿施于人。
解:设 P(e)表示e为人; T(e)表示e为东西; W(e1,e2)表示e1要e2; S(e1,e2,e3)表示e1施e2给e3。
x(N(xN)(x):x是y自(然N数(。y)
∧G(y,x))
则命题可以表示为:
也可以理解为x“(B(下x)∧句N(x)话) 是不对的‘存在一
离散数学第3章 集合
任取x, xX … xY (2) 证X=Y
方法一 分别证明 XY 和 YX 方法二 任取x,xX … xY
注意:在使用方法二的格式时,必须保证每步推理都是充分 必要的
27
第三章 集合
命题演算法
例3-3.2 证明A(AB) = A (吸收律)
元素a属于A,记作aA; 或者a不属于A,记作aA,也可以记作┓(aA)。
(4)任意性:集合的元素也可以是集合。 例:A={1,{2},2,{3,4},{6}} A=5,2A,{2}A,6A,{6}A
6
第三章 集合 例如:A={{a,b},d,{{b}}}。可以用一种树形图来表示这种
隶属关系,该图分层构成,每一层上的结点都表示一个集 合,它的儿子就是它的元素。 集合的树型层次结构
32
第三章 集合
§3-3-3 笛卡儿积
定义3-3.2 两个元素a,b组成二元组,若它们有次序 之别,称为二元有序组,或称为有序对或序偶,记为<a, b>,称a为第一分量,b为第二分量;若它们无次序区分, 称为二元无序组,或称为无序对,记为(a,b)。
有序对具有如下性质。 (1)有序性:当x≠y时<x,y>≠<y,x>。 (2)<x,y>与<u,v>相等的充分必要条件是
A
B
11
第三章 集合
§3-2 集合之间的关系
§3-2-1 集合之间的关系 (1)相等关系: • 两集合A和B相等,当且仅当它们有相同的元素。 • 若A与B相等,记为A=B;否则,记为A≠B。 • 可形式化为:A=B(x)(xAxB)。
12
第三章 集合
《离散数学》课件-第3章集合的基本概念
例题
计算以下幂集:
,{};{,{}}
解:
P()={} P({})={,{}} P({,{}})= {, {},{{}},{,{}}}
18
3.3 集合的运算
集合的运算 并,交,补(绝对补),差(相对补-),和对称差等。
19
集合的并运算
• 定义3.3.1 设A,B为集合,由A和B的所有元素组成的集 合称为A与B的并集, 可表示为: AB={x|xAxB} 其文氏图:
其文氏图如下:
~E = , ~ = E, ~(~A)= A A ~A = , A ~A = E
27
德.摩根定律
• 定理3.3.5 设A,B为任意二个集合,则有: • (1) (AB)= A B • (2) (A B)= A B • 证明 设E为全集,显然有AE=A,AE=E成立。 • (1) (AB)= {x | xEx(AB)}= {x |
据的增加、删除、修改、排序,以及数据间关系的描述。
集合论在计算机语言、数据结构、编译原理、数据库与
知识库、形式语言及人工智能等许多领域得到广泛的应
用。
2
3.1 集合及其表示
• 集合是由一些对象聚集在一起构成的。 例如,全体整数 全体中国人 26个英文字母
• 构成集合的对象可以是各种类型的事物。 • 定义3.1.1 集合中的对象叫集合的元素,或成员。
• 集合中的元素可以具有共同性质,也可以表面上看起来不相干。
• 如{2,Tom,计算机,广州}
• 在集合论中,规定元素之间是彼此相异的,并且是没有次序关 系的。
例如,{3,4,5},{3,4,4,5,5},{5,3,4}都是同一个集合。
• 例如,A={3,4,5},
离散数学 第三章
思考: 思考: ≠ 和 ⊄ 的定义 注意 ∈ 和 ⊆ 是不同层次的问题
空集与全集
空集 ∅ 不含任何元素的集合 实例 {x | x2+1=0∧x∈R} 就是空集 ∧ ∈ 定理 空集是任何集合的子集 ∅⊆A ∈∅→x∈ ∅⊆ ⇔ ∀x (x∈∅→ ∈A) ⇔T ∈∅→ 空集是惟一的. 推论 空集是惟一的. 假设存在∅ 证 假设存在∅1和∅2,则∅1⊆∅2 且∅1⊆∅2, 因此∅ ∅ 因此∅1=∅2 全集 E 相对性 在给定问题中,全集包含任何集合, 在给定问题中,全集包含任何集合,即∀A (A⊆E ) ⊆
1、集合基本运算的定义 、 ∪ ∩ − ∼ ⊕ 2、文氏图(John Venn) 、文氏图( ) 3、例题 、 4、集合运算的算律 、 5、集合 A∪B = { x | x∈A ∨ x∈B } ∪ ∈ ∈ A∩B = { x | x∈A ∧ x∈B } ∩ ∈ ∈ A−B = { x | x∈A ∧ x∉B } − ∈ ∉ A⊕B = (A−B)∪(B−A) ⊕ − ∪ − = (A∪B)−(A∩B) ∪ − ∩ 绝对补 ∼A = E−A −
i =1 m 1≤i < j ≤ m
∑
| Ai ∩ Aj | −
1≤i < j < k ≤ m
∑
| Ai ∩ Aj ∩ Ak | +...
+(−1)m | A1 ∩ A2 ∩ ... ∩ Am |
应用
之间( 在内) 例1 求1到1000之间(包含 和1000在内)既不能 到 之间 包含1和 在内 整除, 整除的数有多少个? 被 5 和6 整除,也不能被 8 整除的数有多少个? 解:S ={ x | x∈Z, 1≤ x ≤1000 }, ∈ ≤ 如下定义 S 的 3 个子集 A, B, C: : A={ x | x∈S, 5 | x }, ∈ , B={ x | x∈S, 6 | x }, ∈ , C={ x | x∈S, 8 | x } ∈
离散数学 第3章 基于归结原理的推理证明
7
3.1.1.2 斯柯林(Skolem)标准范式
定义 3.1.2 从前束范式中消去全部存在量词所得到的公式即为 Skolem 标准范式。 例如,如果用 Skolem 函数 f(x)代替前束形范式 x (y)(z)( P( x) F ( y, z) Q( y, z)) 中 的 y 即得到 Skolem 标准范式: ( x) ( z)(P(x)∧F(f(x), z)∧Q(f(x), z)) Skolem 标准型的一般形式是
(x1 )(x2 )...(xn )M ( x1, x2 ,...,xn )
其中,M(x1,x2,…,xn)是一个合取范式,称为 Skolem 标准型的母式。
8
将谓词公式 G 化为 Skolem 标准型的步骤如下: (1)消去谓词公式 G 中的蕴涵(→)和双条件符号() ,以A∨B 代替 A→B,以(A∧ B)∨(A∧B)替换 AB。 (2)减少否定符号()的辖域,使否定符号“”最多只作用到一个谓词上。 (3)重新命名变元名,使所有的变元的名字均不同,并且自由变元及约束变元亦不同。 (4)消去存在量词。这里分两种情况,一种情况是存在量词不出现在全称量词的辖域内,此 时,只要用一个新的个体常量替换该存在量词约束的变元,就可以消去存在量词;另一种情况 是,存在量词位于一个或多个全称量词的辖域内,这时需要用一个 Skolem 函数替换存在量词 而将其消去。
15
例 3.2.1 求子句集 S={T(x)∨Q(z),R(f(y))}的 H 域。 解 此例中没有个体常量,任意指定一个常量 a 作为个体常量;只有一个函数 f(y),有: H0={a} H1={a,f(a)} H2={a,(a),f(f(a))} …… H∞={a,f(a),f(f(a)),f(f(f(a))),…}
《离散数学》谓词逻辑
内容导航
CONTENTS
第 3章 谓词逻辑
7
1 历史人物 学习要求
3.1 自然语言的谓词符号化 3.2 谓词公式与解释 3.3 谓词公式的标准型——前束范式 3.4 谓词逻辑的推理理论 3.5 谓词逻辑的应用 3.6 作业
3.1 自然语言的谓词符号化
第 3章 谓词逻辑
8
命题是具有真假意义的陈述句,从语法上分析,一个陈述句由主语和谓语两部分组成。
学习要求
重点
1 自然语言的谓词符号化 2 谓词公式的解释 3 特性谓词识别与翻译 4 基本等价规律 5 量词去掉/添加规则 6 谓词逻辑的推理
第 3章 谓词逻辑
6
难点
1 自然语言的谓词符号化 2 谓词逻辑与命题逻辑的联系与区别 3 谓词翻译的两条原则 4 合式公式的解释 5 量词去掉/添加规则的正确使用
历史人物
第 3章 谓词逻辑
4
1848-1923,德国数学家、 逻辑学家和哲学家
1906-1978,美籍奥地利数学家、逻 辑学家和哲学家,二十世纪最伟大的 逻辑学家之一
内容导航
CONTENTS
第 3章 谓词逻辑
5
1 历史人物 学习要求
3.1 自然语言的谓词符号化 3.2 谓词公式与解释 3.3 谓词公式的标准型——前束范式 3.4 谓词逻辑的推理理论 3.5 谓词逻辑的应用 3.6 作业
(x)(P(x)∧C(x))
谓词符号
变量符号
提出问题
第 3章 谓词逻辑
22
符号化“李兰的母亲是高级工程师”
设M(x,y):x是y的母亲,
设g(x):x的母亲;
P(x):x是高级工程师;
P(x):x是高级工程师;
离散数学导论第三章消解原理
在自然语言处理中的应用
总结词
消解原理在自然语言处理中用于解决语义歧义和信息抽取。
详细描述
在自然语言处理中,消解原理主要用于解决语义歧义和信息抽取问题。通过消解语义歧 义,可以确定句子中词语的准确含义,提高自然语言处理的准确率。此外,消解原理还 可以用于信息抽取,从大量的文本数据中抽取关键信息,为后续的数据分析和知识挖掘
提供支持。
06
总结与展望
消解原理的总结
消解原理是离散数学中的一种重要理论,主要用于解决逻辑推理和决策问题。它通过将问题分解为更 小的子问题,并利用已知信息来逐步解决这些子问题,最终达到解决原始问题的目的。
消解原理的应用范围广泛,包括人工智能、自然语言处理、计算机科学等领域。它为许多问题提供了有 效的解决方案,如逻辑推理、规划、约束满足问题等。
02
例如,在约束满足问题中,可以 通过改进消解原理来减少搜索空 间的大小,从而更快地找到满足 约束条件的解。
混合消解原理
混合消解原理是指将不同的消解原理结合起来,形成一个新的消解原理,以处理特定的问题或领域。
例如,在电路验证中,可以将约束满足问题和逻辑推理中的消解原理结合起来,形成一个混合消解原 理,以更有效地处理电路验证问题。
05
消解原理的应用案例
在逻辑电路设计中的应用
总结词
详细描述
消解原理在逻辑电路设计中发挥了重要作用, 通过消解矛盾的逻辑表达式,可以优化电路 设计,减少冗余和冲突。
在逻辑电路设计中,消解原理主要用于解决 逻辑表达式的矛盾。通过将矛盾的逻辑表达 式进行消解,可以找到最简化的解决方案, 优化电路设计。消解原理的应用可以减少冗 余的逻辑门,降低电路的复杂度,提高电路 的性能和可靠性。
02
离散数学第3章 命题逻辑
0
0
0
1 1 0 0
1 0 1 0
0
13
一般来说, 只要不是非常明显的不可兼就使用.
例 p: 今天晚上我在寝室上自习, q :今天晚上我去电影 院看电影. 今天晚上我在寝室上自习或去电影院看电影。 p q.
14
5. 蕴涵(条件)联结词 : p q p: 我有时间, q : 我去看望我的父母. p q : 如果我有时间, 那么我去看望我的父母 . “”相当于“如果…那么…”, “若…则…”,等. p q 可读作“(若)p则q”. p称为前件, q称为后件.
p 1 1 0 0 q 1 0 1 0 pq 1 1 1 0
12
4. 异或联结词 : p q “不可兼或”, 它表示两者不能同时为真
例 p: 明天去深圳的飞机是上午八点起飞, q :明天去深圳 的飞机是上午八点半起飞. p q: 明天去深圳的飞机是上午八点或上午八点半起飞 . p 1 1 0 q 1 0 1 pq 0 1 1 p q pq 1 1 1
2
例
判断下列语句是否是命题. 2 + 3 = 5. √ 大熊猫产在我国东北. √ x > 3. 立正! 这朵花真漂亮! 你喜欢网络游戏吗? 1+1=10. √ 火星上有生物. √ 我说的都是假话. 小王和小李是同学. √ 你只有刻苦学习,才能取得好成绩. √
3
2. 命题的真值 命题的真值就是命题的逻辑取值. 经典逻辑值只有两个: 1和0 在数理逻辑中, 更多时候逻辑真是用 T(True) 或 t, 逻辑假用 F(False) 或 f 表示的.
离散数学第三章
离散数学第三章第一篇:离散数学第三章第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r 结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r 结论:p∧q 证明:(2)①⌝(q∧r)前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p ⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q)⑤ 置换⑦(q→t)⑥化简⑧q ②⑥ 假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q 结论:s→r 证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r)前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s 结论:⌝p 证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦ 合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第二篇:离散数学离散数学课件作业第一部分集合论第一章集合的基本概念和运算1-1 设集合 A ={1,{2},a,4,3},下面命题为真是[ B ]A.2 ∈A;B.1 ∈ A;C.5 ∈A;D.{2} ⊆ A。
1-2 A,B,C 为任意集合,则他们的共同子集是[ D ]A.C;B.A;C.B;D.Ø。
1-3 设 S = {N,Z,Q,R},判断下列命题是否成立?(1)N ⊆ Q,Q ∈S,则 N ⊆ S[不成立](2)-1 ∈Z,Z ∈S,则-1 ∈S[不成立]1-4 设集合 A ={3,4},B = {4,3} ∩ Ø,C = {4,3} ∩{ Ø },D ={ 3,4,Ø },2E = {x│x ∈R 并且 x-7x + 12 = 0},F = { 4,Ø,3,3},试问哪两个集合之间可用等号表示?答:A = E;B = C;D = F1-5 用列元法表示下列集合(1)A = { x│x ∈N 且x2 ≤ 9 }(2)A = { x│x ∈N 且 3-x 〈 3 }答:(1)A = { 0,1,2,3 };(2)A = { 1,2,3,4,……} = Z+;第二章二元关系2-1 给定 X =(3, 2,1),R 是 X 上的二元关系,其表达式如下:R = {〈x,y〉x,y ∈X 且x≤ y }求:(1)domR =?;(2)ranR =?;(3)R 的性质。
离散数学 第3章 命题逻辑的推理理论
例 构造下面推理的证明 2 是素数或合数. 若 2 是素数,则 2 是无理数. 若 2 是无理数,则 4 不是素数. 所以,如果 4 是素数,则 2 是合数. 用附加前提证明法构造证明 (1)设 p:2 是素数,q:2 是合数, r: 2 是无理数,s:4 是素数 (2)形式结构 前提:pq, pr, rs 结论:sq
结论(不正确)是对的 方法四 直接观察出 10 是成假赋值
解(2)答案:推理正确 方法一 方法二 方法三 方法四 真值表法(自己做) 等值演算法(自己做) 主析取范式法(自己做) P 系统中构造证明 ① pr ② rp ③ qr ④ qp (前提引入) (①置换) (前提引入) (③②假言三段论)
(8) 假言三段论规则: AB BC AC (9) 析取三段论规则: AB B A (10) 构造性二难推理规则: AB CD AC BD
(11) 破坏性二难推理规则: AB CD BD AC (12)合取引入规则: A B AB
三、P 中的证明 例 在自然推理系统 P 中构造下面推理的证明: (1)前提:p∨q,q→r,p→s,┐s 结论:r∧(p∨q) (2)前提:┐p∨q, r∨┐q ,r→s 结论:p→s 解 (1)证明: ① p→s 前提引入 ② ┐s 前提引入 ③ ┐p ①②拒取式 ④ p∨q 前提引入 ⑤ q ③④析取三段论 ⑥ q→r 前提引入 ⑦ r ⑤⑥假言推理 ⑧ r∧(p∨q) ⑦④合取 此证明的序列长为 8,最后一步为推理的结论,所以推理正确,r∧(p∨q) 是有效结论。
例
判断下面推理是否正确:
(1)若 a 能被 4 整除,则 a 能被 2 整除;a 能被 4 整除。所以 a 能被 2 整除。 (2)若 a 能被 4 整除,则 a 能被 2 整除;a 能被 2 整除。所以 a 能被 4 整除。 (3)下午马芳或去看电影或去游泳;她没有看电影。所以,她去游泳 了。 (4)若下午气温超过 30℃,则王小燕必去游泳;若她去游泳,她就不 去看电影了。所以王小燕没有去看电影,下午气温必超过了 30℃。
离散数学第三章 命题逻辑的推理理论
推理实例
例1 判断下面推理是否正确 (1) 若今天是 号,则明天是 号. 今天是 号. 所以 明天是 号. 若今天是1号 则明天是5号 今天是1号 所以, 明天是5号 (2) 若今天是 号,则明天是 号. 明天是 号. 所以 今天是 号. 若今天是1号 则明天是5号 明天是5号 所以, 今天是1号 解 设 p:今天是 号,q:明天是 号. :今天是1号 :明天是5号 → ∧ → (1) 推理的形式结构 (p→q)∧p→q 推理的形式结构: 用等值演算法 (p→q)∧p→q → ∧ → ⇔ ¬((¬p∨q)∧p)∨q ¬ ∨ ∧ ∨ ∨¬q∨ ⇔ ¬p∨¬ ∨q ⇔ 1 ∨¬ 由定理3.1可知推理正确 由定理 可知推理正确
19
练习1: 练习 :判断推理是否正确
1. 判断下面推理是否正确 判断下面推理是否正确: (1) 前提:¬p→q, ¬q 前提: → 结论: 结论:¬p ∧¬q→¬ 推理的形式结构: ¬ → ∧¬ →¬p 解 推理的形式结构 (¬p→q)∧¬ →¬ 方法一:等值演算法 方法一: (¬p→q)∧¬ →¬ ∧¬q→¬ ¬ → ∧¬ →¬p ∧¬q)∨¬ ⇔ ¬((p∨q)∧¬ ∨¬ ∨ ∧¬ ∨¬p ∧¬q)∨ ∨¬ ∨¬p ⇔ (¬p∧¬ ∨q∨¬ ¬ ∧¬ ∨¬p ⇔ ((¬p∨q)∧(¬q∨q))∨¬ ¬ ∨ ∧ ¬ ∨ ∨¬ ⇔ ¬p∨q ∨ 易知10是成假赋值,不是重言式,所以推理不正确 易知 是成假赋值,不是重言式,所以推理不正确. 是成假赋值
16
例4 前提:¬(p∧q)∨r, r→s, ¬s, p 前提: ∧ ∨ → 结论: 结论:¬q 证明 用归缪法 ①q 结论否定引入 ② r→s → 前提引入 ③ ¬s 前提引入 ②③拒取式 ④ ¬r ②③拒取式 ⑤ ¬(p∧q)∨r ∧ ∨ 前提引入 ④⑤析取三段论 ⑥ ¬(p∧q) ∧ ④⑤析取三段论 ∨¬q ⑦ ¬p∨¬ ∨¬ ⑥置换 ①⑦析取三段论 ⑧ ¬p ①⑦析取三段论 ⑨p 前提引入 ⑧⑨合取 ¬p∧p ∧ ⑧⑨合取
离散数学第三章集合的基本概念和运算
3.1 集合的基本概念
3.2 集合的基本运算
3.3 集合中元素的计数
3.1 集合的基本概念
1.子集:若 B⊆A⇔∀x(x∈B→x∈A),则称B为A的子集. 2.真子集:若 B⊆A ∧ B≠A,则称B为A的真子集. 3.集合相等: B⊆A ∧ A⊆B⇔A=B,称集合A与B相等. 4.空集:不含任何元素的集合称为空集.记作φ. 空集是一切集合的子集;空集是唯一的. 5.n元集:含有n个元素的集合称为n元集. 6.全集:如果所涉及的集合都是某个集合的子集,则称这个集 合为全集(E). 7.幂集:设A为集合,把A的全体子集构成的集合,称为A的幂集 记作P(A),P(A)={x|x⊆A}. 若A是n元集,则P(A)有2n个元集(n元集有2n个子集).
二.集合运算的算律 幂等律:A∪A=A, A∩A=A;
结合律: (A∪B)∪C=A∪(B∪C), (A∩B)∩C=A∩(B∩C); 交换律: A∪B=B∪A , A∩B=B∩A; 分配律: A∪(B∩C)=(A∪B)∩(A∪C), A∩(B∪C)=(A∩B)∪(A∩C); 同一律: A∪φ=A, 排中律: A∪~A=E; A∩E=A; 零律: A∪E=E, A∩φ=φ;
| Ai I A j I Ak | +... + ( −1) m | A1 I A2 I ...I Am | ∑
推论: 推论:在S中至少具有一条性质的元素数是
| A1 U A 2 U ... U A m |= +
1≤ i < j < k ≤ m
∑|A
i =1
m
i
|−
1≤ i < j ≤ m
∑|AI
i
二.包含排斥原理 包含排斥原理
《离散数学》课件-第3章命题逻辑的推理理论
判断方法一:真值表法
真值表的最后一列全为1,所以((p∨q)∧┐p) →q为重言式。因而推理正确。
判断方法二:等值演算法
((p∨q)∧┐p)→q ⇔ ((p∧┐p)∨(q∧┐p))→q ⇔ ( q∧┐p )→q ⇔ ┐q∨p∨q ⇔1
因为((p∨q)∧┐p)→q为重言式,所 以推理正确。
判断方法三:主析取范式法
★ ★★
可见,如果能证明★★是重言式,则★也是重言式。 在★★中,原来的结论中的前件A已经变成前提了,称A为 附加前提。称这种将结论中的前件作为前提的证明方法为 附加前提法。
例:在自然推理系统P中构造下面推理的证明 如果小张和小王去看电影,则小李也去看电影。小
赵不去看电影或小张去看电影。小王去看电影。所 以,当小赵去看电影时,小李也去。
前提引入
② ┐s
前提引入
③ ┐p
①②拒取式(A→B)∧┐B⇒┐A
④ p∨q
B)∧┐B⇒A
⑥ q→r
前提引入
⑦r
⑤⑥假言推理(A→B)∧A⇒B
⑧ r∧(p∨q) ⑦④合取引入
(2)前提:┐p∨q,r∨┐q,r→s 结论:p→s
证明:
① ┐p∨q 前提引入
② p→q
①置换
(A→B)∧(C→D)∧(┐B∨┐D) ⇒(┐A∨┐C)
(12)合取引入规则:若证明的公式序列中出现过 A和B,则A∧B是A和B的有效结论。
推理规则(12个)
(1)前提引入规则 (2)结论引入规则(隐规则) (3)置换规则:等值置换 (4)假言推理规则:(A→B)∧A⇒B (5)附加规则:A⇒(A∨B) (6)化简规则:A∧B ⇒A (7)拒取式规则:(A→B)∧┐B⇒┐A (8)假言三段论规则:(A→B)∧(B→C)⇒(A→C) (9)析取三段论规则:(A∨B)∧┐B⇒A (10)构造性二难推理规则 (11)破坏性二难推理规则 (12)合取引入规则
离散数学第三章 函数
第三章 函数
二、反函数
1、定义1:设f:AB是双射,则逆关系 f -1:BA
是从B到A的函数,称为 f 的反函数。
记 f -1 :BA。 由定义可知:当函数 f:AB的反函数存在,若 f (x) = y,则f -1 (y) = x 且
f f 1 I A , f 1 f I B
f 0 ( x) x n 1 n f ( x ) f ( f ( x ))
第三章 函数
(2) 定理2: 设f: A→B,则 f。IB=IA。f=f
(3) 定理3:设有函数f:AB,g:BC
① 若f ,g是单射,则f g也是单射。
② 若f ,g是满射,则f g也是满射。
所以 f。g={(x, 4x 2+4x+2)}, g。f={(x, 2x 2+3)}
f。f={(x, 4x+3)}, g。g={(x, x 4+2x 2+2)}
第三章 函数
2、性质:
⑴ 定理1:设有函数f:AB,g:BC,h:
CD,则f ( g h) 和( f g ) h都是函数,且
③ 若f ,g是双射,则f g也是双射。
注:定理3的逆不成立。
第三章 函数
例3:设A={ 1, 2, 3 }, B={ a, b, c, d }, C={ x, y, z }
令 f = {(1, a), (2, b), (3, c)},
g = {(a , x), (b, y), (c, z), ( d, z)}
f ( g h) = ( f g ) h = f g h 证明: f。(g。h)(x) =(g。h) (f (x))=h (g (f (x)) =h((f。g) (x))=(f。g)。h (x)
离散数学第三章-集合课件.ppt
例1、选择适当的谓词表示下列集合。
(1) 小于5的非负整数集 {x | x N x 5}
(2) 奇整数集合
{x | x 2n 1 n Z}
(3) 10的整倍数集合, {x | x 10n n Z} (4) {3,5,7,11,13,17,19} {x | x是素数 2 x 20}
则 A B为 mn 元集。
(2) 笛卡儿积是集合,有关集合的运算都适合。
(3) 一般,A B B A 。
3、 n 阶(n 2)笛卡儿积。
A1 A2 An
x1, x2, , xn | x1 A1 x2 A2 xn An
特别,当 A1 A2 记为 An 。
An A 时,
(4) A (~ B C)
例3、用集合公式表示下列文氏图中的阴影部分。 (1)
解: A B C
(2)
解:(A B) (A C) (B C)
三 包含排斥定理
设A和 B是两个有限集合,则 A B A B A B ,
其中 A, B 分别表示 A、B的元数.
把包含排斥定理推广到n个集合的情况可用如下定
A {a1, a2 , an}
表示集合 A 含有元素 a1, a2 , an
注意: (1) a A或 a A
(2) 集合中的元素均不相同
{a,b, c},{a,b,b, c},{c, a,b}
表示同一个集合。 (3) 集合的元素可以是任何类型的事物,
一个集合也可以作为另一个集合的元素。
例如:A a,{b,c},b,{b}
2、集合的表示法。 (1) 列举法(将元素一一列出)
例如:A {2,3, 4,5}
(2) 描述法(用谓词概括元素的属性)
例如:B {x | x Z 2 x 5}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(12)合取引入规则:若证明的公式序列中出现过 A和B,则A∧B是A和B的有效结论。
推理规则(12个)
(1)前提引入规则 (2)结论引入规则(隐规则) (3)置换规则:等值置换 (4)假言推理规则:(A→B)∧A⇒B (5)附加规则:A⇒(A∨B) (6)化简规则:A∧B ⇒A (7)拒取式规则:(A→B)∧┐B⇒┐A (8)假言三段论规则:(A→B)∧(B→C)⇒(A→C) (9)析取三段论规则:(A∨B)∧┐B⇒A (10)构造性二难推理规则 (11)破坏性二难推理规则 (12)合取引入规则
1、字母表 (1)命题变项符号:p,q,r,…, pi,qi,ri,… (2)联结词符号:┐,∧,∨,→,↔ (3)括号与逗号:() ,
2、公式 参见命题公式的定义
3、推理规则(12个)
(1)前提引入规则:在证明的任何步骤上都可 以引入前提。
(2)(中间)结论引入规则:在证明的任何步骤 上所得到的中间结论都可以作为后继证明的前提。 (这是12个推理规则中唯一的一个隐规则。)
(5)附加规则:A⇒(A∨B) (6)化简规则:A∧B ⇒A (7)拒取式规则:(A→B)∧┐B⇒┐A
(8)假言三段论规则:
(A→B)∧(B→C)⇒(A→C)
(9)析取三段论规则:(A∨B)∧┐B⇒A (10)构造性二难推理规则:
(A→B)∧(C→D)∧(A∨C)⇒(B∨D) (11)破坏性二难推理规则:
判断方法一:真值表法
真值表的最后一列全为1,所以((p∨q)∧┐p) →q为重言式。因而推理正确。
判断方法二:等值演算法
((p∨q)∧┐p)→q ⇔ ((p∧┐p)∨(q∧┐p))→q ⇔ ( q∧┐p )→q ⇔ ┐q∨p∨q ⇔1
因为((p∨q)∧┐p)→q为重言式,所 以推理正确。
判断方法三:主析取范式法
构造性二难 (9)(A→B)∧(C→D)∧(┐B∨┐D)⇒(┐A∨┐C)
破坏性二难
思考:A⇒B和A⇔B的关系?
如果A⇔B成立,则推理A⇒B是正确的; 同时推理B⇒A也是正确的。
说明:第2.1节 等值式中给出的24个等值式,每个等值 式可以派出两条推理定律。
例如:A→B ⇔ ┐A∨B产生两条推理定律
构造证明法的证明形式
前提:p∨q,q→r,p→s,┐s
结论:r∧(p∨q)
证明:
① p→s
前提引入
② ┐s
前提引入
③ ┐p
①②拒取式
④ p∨q
前提引入
⑤q
③④析取三段论
⑥ q→r
前提引入
⑦r
⑤⑥假言推理
⑧ r∧(p∨q) ⑦④合取引入
3.2 自然推理系统P
定义(自然推理系统P)
自然推理系统P由以下三个部分组成:
(p→q)∧(q→┐r)→(┐r→p)(*)
⇔ m1∨m3∨m4∨m5∨m6∨m7
可见(*)不是重言式,所以推理不正确。
推理定律(重言蕴涵式) (1) A⇒ A∨B 附加律 (2) A∧B ⇒ A 化简律 (3)(A→B)∧ A ⇒ B 假言推理 (4)(A→B)∧┐B ⇒ ┐A 拒取式 (5)(A∨B)∧┐B ⇒ A 析取三段论 (6)(A→B)∧(B→C)⇒(A→C)假言三段论 (7)(A↔B)∧(B↔C)⇒(A↔C)等价三段论 (8)(A→B)∧(C→D)∧(A∨C)⇒(B∨D)
第三章 命题逻辑的推理理论
数理逻辑的主要任务是推理,即提供一套推理 规则,从给定的前提出发,推导出一个结论来。
前提是指已知的公式的集合。 结论是对前提应用推理规则推出的公式。
3.1 推理的形式结构
定义(推理的形式结构)
设 A1,A2,…,Ak,B 都 是 命 题 公 式 , 若 ( A1∧A2∧…∧Ak)→B 为 重 言 式 , 则 称 由 前 提 A1, A2,…,Ak 推 出 B 的 推 理 是 有 效 的 或 正 确 的 , 称 B 是 A1, A2,…,Ak的有效结论或正确结论。
前提:A1,A2,…,Ak 结论:B 推理的形式结构:(A1∧A2∧…∧Ak)→B (3)进行判断(真值表法,等值演算法,主析取范式法)
(1)马芳或去看电影或去游泳。她没去看电影。 所以她去游泳了。
解:
设:p:马芳去看电影,q:马芳去游泳 前提:p∨q,┐p 结论:q 推理的形式结构:((p∨q)∧┐p))→q
称(A1∧A2∧…∧Ak)→B为由前提A1,A2,…,Ak推 出结论B的推理的形式结构。
说明: (1)用(A1∧A2∧…∧Ak)⇒B来表示A1,A2,…,Ak推
出B的推理是有效的,即(A1∧A2∧…∧Ak)→B为重言式。 (2)判断推理是否正确的方法就是判断重言蕴涵式的方
法:真值表法,等值演算法,主析取范式法
(3)置换规则:在证明的任何步骤上,命题公式 中的子公式都可以用与之等值的公式置换,得到公式 序列中的又一个公式。
由九条推理定律和结论引入规则可以导出以下 各条推理定律。
(4)假言推理规则(分离推理规则):若证明的 公 式 序 列 中 出 现 过 A→B 和 A, 则 由 假 言 推 理 定 律 (A→B)∧A⇒B可知,B是A→B和A的有效结论,由结 论引入规则可知,可将B引入到命题序列中来。
A→B⇒┐A∨B和┐A∨B⇒ A→B
在解推理问题的过程中,如果命题变项较多, 则采用真值表法,等值演算法,主析取范式法这三种 方法来判断推理的形式结构的公式类型都不方便。
解推理问题的构造证明法。
构造证明是一个描述推理过程的命题公式的序 列,其中每个公式或者是已知前提,或者是由某些前 提应用推理规则得到的结论。
((p∨q)∧┐p)→q ⇔ m0∨m1∨m2∨m3 所以((p∨q)∧┐p)→q为重言式,推理正确。
(2)若下午气温超过30度,则王燕必去游泳。若 她去游泳,她就不去看电影了。所以,若王燕没去看 电影,下午气温必超过30度。
解:设p:下午气温超过30度;q:王燕去游泳; r:王燕去看电影
前提:p→q,q→┐r 结论:┐r→p 推理的形式结构:
例:判断下面各推理是否正确。
(1)马芳或去看电影或去游泳。她没去看电影。所以 她去游泳了。
(2)若下午气温超过30度,则王燕必去游泳。若她去 游泳,她就不去看电影了。所以,若王燕没去看电影,下 午气温必超过30度。
解推理问题的步骤:
(1)将简单命题符号化 (2)以下述形式写出前提、结论和推理的形式结构