2018年中考数学压轴题函数汇编
2018年全国各地中考数学压轴题汇编:函数(浙江专版)(解析卷)
2018年全国各地中考数学压轴题汇编(浙江专版)函数参考答案与试题解析1.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.2.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a ≠0),将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x <8).(2)当y=1.8时,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(3)当x=0时,y=﹣(x﹣3)2+5=.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,∵该函数图象过点(16,0),∴0=﹣×162+16b+,解得:b=3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+3x+=﹣(x﹣)2+.∴扩建改造后喷水池水柱的最大高度为米.3.温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x人生产乙产品.(1)根据信息填表产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲65﹣x2(65﹣x)15乙x x130﹣2x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.解:(1)由已知,每天安排x人生产乙产品时,生产甲产品的有(65﹣x)人,共生产甲产品2(65﹣x)件.在乙每件120元获利的基础上,增加x人,利润减少2x元每件,则乙产品的每件利润为(130﹣2x)元.故答案为:65﹣x;2(65﹣x);130﹣2x(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴x2﹣80x+700=0解得x1=10,x2=70(不合题意,舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200∵2m=65﹣x﹣m∴m=∵x、m都是非负数∴取x=26时,m=13,65﹣x﹣m=26=3198即当x=26时,W最大值答:安排26人生产乙产品时,可获得的最大利润为3198元.4.已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.解:(1)把(1,0),(0,)代入抛物线解析式得:,解得:,则抛物线解析式为y=﹣x2﹣x+;(2)抛物线解析式为y=﹣x2﹣x+=﹣(x+1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=﹣x2.5.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?解:(1)由图象可知,对于每一个摆动时间t,h都有唯一确定的值与其对应,∴变量h是关于t的函数;(2)①由函数图象可知,当t=0.7s时,h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度是0.5m;②由图象可知,秋千摆动第一个来回需2.8s.6.设二次函数y=ax2+bx﹣(a+b)(a,b是常数,a≠0).(1)判断该二次函数图象与x轴的交点的个数,说明理由.(2)若该二次函数图象经过A(﹣1,4),B(0,﹣1),C(1,1)三个点中的其中两个点,求该二次函数的表达式.(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.解:(1)由题意△=b2﹣4•a[﹣(a+b)]=b2+4ab+4a2=(2a+b)2≥0∴二次函数图象与x轴的交点的个数有两个或一个(2)当x=1时,y=a+b﹣(a+b)=0∴抛物线不经过点C把点A(﹣1,4),B(0,﹣1)分别代入得解得∴抛物线解析式为y=3x2﹣2x﹣1(3)当x=2时m=4a+2b﹣(a+b)=3a+b>0①∵a+b<0∴﹣a﹣b>0②①②相加得:2a>0∴a>07.如图,函数y=x的图象与函数y=(x>0)的图象相交于点P(2,m).(1)求m,k的值;(2)直线y=4与函数y=x的图象相交于点A,与函数y=(x>0)的图象相交于点B,求线段AB长.解:(1)∵函数y=x的图象过点P(2,m),∴m=2,∴P(2,2),∵函数y=(x>0)的图象过点P,∴k=2×2=4;(2)将y=4代入y=x,得x=4,∴点A(4,4).将y=4代入y=,得x=1,∴点B(1,4).∴AB=4﹣1=3.8.如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K 的范围.解:(1)将x=2代入y=2x,得:y=4,∴点M(2,4),由题意,得:,∴;(2)如图,过点P作PH⊥x轴于点H,∵点P的横坐标为m,抛物线的解析式为y=﹣x2+4x,∴PH=﹣m2+4m,∵B(2,0),∴OB=2,∴S=OB•PH=×2×(﹣m2+4m)=﹣m2+4m,∴K==﹣m+4,由题意得A(4,0),∵M(2,4),∴2<m<4,∵K随着m的增大而减小,∴0<K<2.9.某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.解:(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入,得:,解得:,∴P=t+2;(2)①当0<t≤8时,w=(2t+8)×=240;当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;当12<t≤24时,w=(﹣t+44)(t+2)=﹣t2+42t+88;②当8<t≤12时,w=2t2+12t+16=2(t+3)2﹣2,∴8<t≤12时,w随t的增大而增大,当2(t+3)2﹣2=336时,解题t=10或t=﹣16(舍),当t=12时,w取得最大值,最大值为448,此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;当12<t≤24时,w=﹣t2+42t+88=﹣(t﹣21)2+529,当t=12时,w取得最小值448,由﹣(t﹣21)2+529=513得t=17或t=25,∴当12<t≤17时,448<w≤513,此时P=t+2的最小值为14,最大值为19;综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.10.学校拓展小组研制了绘图智能机器人(如图1),顺次输入点P1,P2,P3的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)P1(4,0),P2(0,0),P3(6,6);(2)P1(0,0),P2(4,0),P3(6,6).解:(1)∵P1(4,0),P2(0,0),4﹣0=4>0,∴绘制线段P1P2,P1P2=4;(2)∵P1(0,0),0﹣0=0,∴绘制抛物线,设y=ax(x﹣4),把(6,6)代入得:6=12a,解得:a=,∴y=x(x﹣4)=x2﹣2x.11.已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时).(1)求v关于t的函数表达式.(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?解:(1)由题意可得:100=vt,则v=;(2)∵不超过5小时卸完船上的这批货物,∴t≤5,则v ≥=20,答:平均每小时至少要卸货20吨.12.“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A,B两个果园分别需用110吨和70吨有机化肥.两个仓库到A,B两个果园的路程如表所示:路程(千米)甲仓库乙仓库A果园1525B果园2020设甲仓库运往A果园x吨有机化肥,若汽车每吨每千米的运费为2元,(1)根据题意,填写下表.(温馨提示:请填写在答题卷相对应的表格内)运量(吨)运费(元)甲仓库乙仓库甲仓库乙仓库A果园x110﹣x2×15x2×25(110﹣x)B果园80﹣x x﹣102×20×(80﹣x)2×20×(x﹣10)(2)设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?解:(1)填表如下:运量(吨)运费(元)甲仓库乙仓库甲仓库乙仓库A果园x110﹣x2×15x2×25(110﹣x )B 果园80﹣xx ﹣102×20×(80﹣x )2×20×(x ﹣10)故答案为80﹣x ,x ﹣10,2×20×(80﹣x ),2×20×(x ﹣10);(2)y=2×15x +2×25×(110﹣x )+2×20×(80﹣x )+2×20×(x ﹣10), 即y 关于x 的函数表达式为y=﹣20x +8300, ∵﹣20<0,且10≤x ≤80,∴当x=80时,总运费y 最省,此时y 最小=﹣20×80+8300=6700.故当甲仓库运往A 果园80吨有机化肥时,总运费最省,最省的总运费是6700元.13.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.解:(1)由图象可知:汽车行驶400千米,剩余油量30升,∵行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升) ∴加满油时油箱的油量是40+30=70升. (2)设y=kx +b (k ≠0),把(0,70),(400,300)坐标代入可得:k=﹣0.1,b=70 ∴y=﹣0.1x +70, 当y=5 时,x=650即已行驶的路程的为650千米.14.设一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(﹣1,﹣1)两点.(1)求该一次函数的表达式;(2)若点(2a+2,a2)在该一次函数图象上,求a的值.(3)已知点C(x1,y1)和点D(x2,y2)在该一次函数图象上,设m=(x1﹣x2)(y1﹣y2),判断反比例函数y=的图象所在的象限,说明理由.解:(1)∵一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(﹣1,﹣1)两点,∴,得,即该一次函数的表达式是y=2x+1;(2)点(2a+2,a2)在该一次函数y=2x+1的图象上,∴a2=2(2a+2)+1,解得,a=﹣1或a=5,即a的值是﹣1或5;(3)反比例函数y=的图象在第一、三象限,理由:∵点C(x1,y1)和点D(x2,y2)在该一次函数y=2x+1的图象上,m=(x1﹣x2)(y1﹣y2),假设x1<x2,则y1<y1,此时m=(x1﹣x2)(y1﹣y2)>0,假设x1>x2,则y1>y1,此时m=(x1﹣x2)(y1﹣y2)>0,由上可得,m>0,∴m+1>0,∴反比例函数y=的图象在第一、三象限.15.已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小.解:(1)点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,∴M的坐标是(b,4b+1),把x=b代入y=4x+1,得y=4b+1,∴点M在直线y=4x+1上;(2)如图1,直线y=mx+5交y轴于点B,∴B点坐标为(0,5)又B在抛物线上,∴5=﹣(0﹣b)2+4b+1=5,解得b=2,二次函数的解析是为y=﹣(x﹣2)2+9,当y=0时,﹣(x﹣2)2+9=0,解得x1=5,x2=﹣1,∴A(5,0).由图象,得当mx+5>﹣(x﹣b)2+4b+1时,x的取值范围是x<0或x>5;(3)如图2,∵直线y=4x+1与直线AB交于点E,与y轴交于F,A(5,0),B(0,5)得直线AB的解析式为y=﹣x+5,联立EF,AB得方程组,解得,∴点E(,),F(0,1).点M在△AOB内,1<4b+1<∴0<b<.当点C,D关于抛物线的对称轴对称时,b﹣=﹣b,∴b=,且二次函数图象开口向下,顶点M在直线y=4x+1上,综上:①当0<b<时,y1>y2,②当b=时,y1=y2,③当<b<时,y1<y2.16.如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC关于AC所在的直线对称.(1)当OB=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OB的长;(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.解:(1)如图1中,作DE⊥x轴于E.∵∠ABC=90°,∴tan∠ACB==,∴∠ACB=60°,根据对称性可知:DC=BC=2,∠ACD=∠ACB=60°,∴∠DCE=60°,∴∠CDE=90°﹣60°=30°,∴CE=1,DE=,∴OE=OB+BC+CE=5,∴点D坐标为(5,).(2)设OB=a,则点A的坐标(a,2),由题意CE=1.DE=,可得D(3+a,),∵点A、D在同一反比例函数图象上,∴2a=(3+a),∴a=3,∴OB=3.(3)存在.理由如下:①如图2中,当∠PA1D=90°时.∵AD∥PA1,∴∠ADA1=180°﹣∠PA1D=90°,在Rt△ADA1中,∵∠DAA1=30°,AD=2,∴AA1==4,在Rt△APA1中,∵∠APA1=60°,∴PA=,∴PB=,设P(m,),则D1(m+7,),∵P、A1在同一反比例函数图象上,∴m=(m+7),解得m=3,∴P(3,),∴k=10.②如图3中,当∠PDA1=90°时.∵∠PAK=∠KDA1=90°,∠AKP=∠DKA1,∴△AKP∽△DKA1,∴=.∴=,∵∠AKD=∠PKA1,∴△KAD∽△KPA1,∴∠KPA1=∠KAD=30°,∠ADK=∠KA1P=30°,∴∠APD=∠ADP=30°,∴AP=AD=2,AA1=6,设P(m,4),则D1(m+9,),∵P、A1在同一反比例函数图象上,∴4m=(m+9),解得m=3,∴P(3,4),∴k=12.17.如图,公交车行驶在笔直的公路上,这条路上有A,B,C,D四个站点,每相邻两站之间的距离为5千米,从A站开往D站的车称为上行车,从D站开往A站的车称为下行车,第一班上行车、下行车分别从A站、D站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A,D站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B站、第一班下行车到C站分别用时多少?(2)若第一班上行车行驶时间为t小时,第一班上行车与第一班下行车之间的距离为s千米,求s与t的函数关系式;(3)一乘客前往A站办事,他在B,C两站间的P处(不含B,C站),刚好遇到上行车,BP=x千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B站或走到C站乘下行车前往A站.若乘客的步行速度是5千米/小时,求x满足的条件.解:(1)第一班上行车到B站用时=小时,第一班下行车到C站分别用时=小时;(2)当0≤t≤时,s=15﹣60t,当<t≤时,s=60t﹣15;(3)由(2)可知同时出发的一对上、下行车的位置关于BC中点对称,设乘客到达A站总时间为t分钟,①当x=2.5时,往B站用时30分钟,还需要再等下行车5分钟,t=30+5+10=45,不合题意;②当x<2.5时,只能往B站乘下行车,他离B站x千米,则离他右边最近的下行车离C站也是x千米,这辆下行车离B站(5﹣x)千米,如果能乘上右侧的第一辆下行车,则,解得:x≤,∴0<x≤,∵18≤t<20,∴0<x≤符合题意;如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,x>,,解得:x≤,∴,22≤t<28,∴符合题意;如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,x>,,解得:x≤,∴<x≤,35≤t<37,不合题意,∴综上,得0<x≤;③当x>2.5时,乘客需往C站乘坐下行车.离他左边最近的下行车离B站是(5﹣x)千米,离他右边最近的下行车离C站也是(5﹣x)千米.如果乘上右侧第一辆下行车,则≤,解得:x≥5,不合题意.∴x≥5,不合题意.如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,x<5,≤,解得x≥4,∴4≤x<5,30<t≤32,∴4≤x<5符合题意.如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,x<4,≤,解得x≥3,∴3≤x<4,42<t≤44,∴3≤x<4不合题意.综上,得4≤x<5.综上所述,0<x≤或4≤x<5.18.如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.解:(1)①如图1,∵m=4,∴反比例函数为y=,设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y==,∴B(4,),∴A(4﹣t,+t),C(4+t,+t),∴(4﹣t)(+t)=m,∴t=4﹣,∴C(8﹣,4),∴(8﹣)×4=n,∴m+n=32,∵点D的纵坐标为+2t=+2(4﹣)=8﹣,∴D(4,8﹣),∴4(8﹣)=n,∴m+n=32.。
上海市各区2018届中考数学二模试卷精选汇编压轴题专题(有答案)
上海市各区2018届九年级中考二模数学试卷精选汇编:压轴题专题宝山区、嘉定区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)在圆O 中,AO 、BO 是圆O 的半径,点C 在劣弧AB 上,10=OA,12=AC ,AC ∥OB ,联结AB . (1)如图8,求证:AB 平分OAC ∠;(2)点M 在弦AC 的延长线上,联结BM ,如果△AMB 是直角三角形,请你在如图9中画出 点M 的位置并求CM 的长;(3)如图10,点D 在弦AC 上,与点A 不重合,联结OD 与弦AB 交于点E ,设点D 与点C 的 距离为x ,△OEB 的面积为y ,求y 与x 的函数关系式,并写出自变量x 的取值范围.25.(1)证明:∵AO 、BO 是圆O 的半径 ∴BO AO =…………1分 ∴B OAB ∠=∠…………1分 ∵AC ∥OB∴B BAC ∠=∠…………1分 ∴BAC OAB ∠=∠∴AB 平分OAC ∠…………1分 (2)解:由题意可知BAM ∠不是直角,所以△AMB 是直角三角形只有以下两种情况:︒=∠90AMB 和︒=∠90ABM① 当︒=∠90AMB ,点M 的位置如图9-1……………1分 过点O 作AC OH ⊥,垂足为点H图8图10图8∵OH 经过圆心 ∴AC HC AH 21== ∵12=AC ∴6==HC AH 在Rt △AHO 中,222OA HO AH =+ ∵10=OA ∴8=OH∵AC ∥OB ∴︒=∠+∠180OBM AMB ∵︒=∠90AMB ∴︒=∠90OBM ∴四边形OBMH 是矩形 ∴10==HM OB∴4=-=HC HM CM ……………2分 ②当︒=∠90ABM ,点M 的位置如图9-2 由①可知58=AB ,552cos =∠CAB 在Rt △ABM 中,552cos ==∠AM AB CAB∴20=AM8=-=AC AM CM ……………2分综上所述,CM 的长为4或8.说明:只要画出一种情况点M 的位置就给1分,两个点都画正确也给1分. (3)过点O 作AB OG ⊥,垂足为点G 由(1)、(2)可知,CAB OAG ∠=∠sin sin 由(2)可得:55sin =∠CAB ∵10=OA ∴52=OG ……………1分 ∵AC ∥OB ∴ADOBAE BE =……………1分 又BE AE -=58,x AD -=12,10=OB ∴xBEBE -=-121058 ∴x BE -=22580 ……………1分∴52225802121⨯-⨯=⨯⨯=xOG BE y ∴xy -=22400……………1分自变量x 的取值范围为120<≤x ……………1分图10长宁区25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8, ∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO Θ,AO =5, ∴322=-=AC AO CO (1分)5=OD Θ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3 ∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO Θ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO O AC DBO BA C DBAOxx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F , 则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121Θ ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO Θ,AO =5, ∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分) ②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G , 则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO Θ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG , 在Rt △GAD 中,︒=∠90DGA Θ,∴622=+=DG AG AD ( 3分)综上得6514或=AD 崇明区25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)如图,已知ABC △中,8AB =,10BC =,12AC =,D 是AC 边上一点,且2AB AD AC =⋅,联结BD ,点E 、F 分别是BC 、AC 上两点(点E 不与B 、C 重合),AEF C ∠=∠,AE 与BD 相交于点G . (1)求证:BD 平分ABC ∠;(2)设BE x =,CF y =,求y 与x 之间的函数关系式; (3)联结FG ,当GEF △是等腰三角形时,求BE 的长度.25.(满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)(第25题图)A BCDGEF(备用图)ABCD(1)∵8AB =,12AC = 又∵2AB AD AC =g ∴163AD =∴16201233CD =-= ……………………………1分 ∵2AB AD AC =g ∴AD AB AB AC= 又∵BAC ∠是公共角 ∴ADB ABC △∽△ …………………………1分 ∴ABD C =∠∠,BD ADBC AB= ∴203BD =∴BD CD = ∴DBC C =∠∠ ………………………1分 ∴ABD DBC =∠∠ ∴BD 平分ABC ∠ ………………………1分 (2)过点A 作AH BC ∥交BD 的延长线于点H∵AH BC ∥ ∴16432053AD DH AH DC BD BC ==== ∵203BD CD ==,8AH = ∴163AD DH == ∴12BH = ……1分 ∵AH BC ∥ ∴AH HG BE BG = ∴812BG x BG -= ∴128xBG x =+…1分 ∵BEF C EFC =+∠∠∠ 即BEA AEF C EFC +=+∠∠∠∠ ∵AEF C =∠∠ ∴BEA EFC =∠∠ 又∵DBC C =∠∠∴BEG CFE △∽△ ……………………………………………………………1分∴BE BGCF EC= ∴12810x x x y x +=-∴228012x x y -++= …………………………………………………………1分(3)当△GEF 是等腰三角形时,存在以下三种情况:1° GE GF = 易证23GE BE EF CF == ,即23x y =,得到4BE = ………2分 2° EG EF = 易证BE CF =,即x y =,5BE =-+…………2分 3° FG FE = 易证 32GE BE EF CF == ,即32x y =3BE =-+ ………2分奉贤区25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知:如图9,在半径为2的扇形AOB 中,∠AOB=90°,点C 在半径OB 上,AC 的垂直平分线交OA 于点D ,交弧AB 于点E ,联结BE 、CD .(1)若C 是半径OB 中点,求∠OCD 的正弦值; (2)若E 是弧AB 的中点,求证:BC BO BE ⋅=2;(3)联结CE ,当△DCE 是以CD 为腰的等腰三角形时,求CD 的长.图9备用图ABO备用图ABO黄浦区25.(本题满分14分)如图,四边形ABCD中,∠BCD=∠D=90°,E是边AB的中点.已知AD=1,AB=2.(1)设BC=x,CD=y,求y关于x的函数关系式,并写出定义域;(2)当∠B=70°时,求∠AEC的度数;(3)当△ACE为直角三角形时,求边BC的长.25. 解:(1)过A作AH⊥BC于H,————————————————————(1分)由∠D=∠BCD=90°,得四边形ADCH为矩形.在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,所以22221y x =+-,——————————————————————(1分) 则()22303y x x x =-++<<.———————————————(2分)(2)取CD 中点T ,联结TE ,————————————————————(1分) 则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD .∴∠AET =∠B =70°. ———————————————————————(1分) 又AD =AE =1,∴∠AED =∠ADE =∠DET =35°. ——————————————————(1分) 由ET 垂直平分CD ,得∠CET =∠DET =35°,————————————(1分) 所以∠AEC =70°+35°=105°. ——————————————————(1分)(3)当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 则在△ABH 中,∠B =60°,∠AHB =90°,AB =2,得BH =1,于是BC =2. ——————————————————————(2分)当∠CAE =90°时,易知△CDA ∽△BCA ,又2224AC BC AB x =-=-,则2241174AD CAx x AC CBx -±=⇒=⇒=-(舍负)—————(2分) 易知∠ACE <90°.所以边BC 的长为2或117+.——————————————————(1分)金山区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5 分)如图9,已知在梯形ABCD 中,AD ∥BC ,AB =DC =AD =5,3sin 5B =,P 是线段BC 上 一点,以P 为圆心,PA 为半径的⊙P 与射线AD 的另一个交点为Q ,射线PQ 与射线CD 相交于点E ,设BP =x .(1)求证△ABP ∽△ECP ;(2)如果点Q 在线段AD 上(与点A 、D 不重合),设△APQ 的面积为y ,求y 关于x 的函数关系式,并写出定义域; (3)如果△QED 与△QAP 相似,求BP 的长.25.解:(1)在⊙P 中,PA =PQ ,∴∠PAQ =∠PQA ,……………………………(1分)∵AD ∥BC ,∴∠PAQ =∠APB ,∠PQA =∠QPC ,∴∠APB =∠EPC ,……(1分) ∵梯形ABCD 中,AD ∥BC ,AB =DC ,∴∠B =∠C ,…………………………(1分) ∴△APB ∽△ECP .…………………………………………………………(1分) (2)作AM ⊥BC ,PN ⊥AD ,∵AD ∥BC ,∴AM ∥PN ,∴四边形AMPN 是平行四边形,∴AM =PN ,AN =MP .………………………………………………………(1分) 在Rt △AMB 中,∠AMB =90°,AB =5,sinB =35, ∴AM =3,BM =4,∴PN =3,PM =AN =x -4,……………………………………(1分) ∵PN ⊥AQ ,∴AN =NQ ,∴AQ = 2x -8,……………………………………(1分) ∴()1128322y AQ PN x =⋅⋅=⋅-⋅,即312y x =-,………………………(1分) 定义域是1342x <<.………………………………………………………(1分) (3)解法一:由△QED 与△QAP 相似,∠AQP =∠EQD ,①如果∠PAQ =∠DEQ ,∵△APB ∽△ECP ,∴∠PAB =∠DEQ ,又∵∠PAQ =∠APB ,∴∠PAB =∠APB ,∴BP =BA =5.………………………(2分)ABCD图9备用图②如果∠PAQ =∠EDQ ,∵∠PAQ =∠APB ,∠EDQ =∠C ,∠B =∠C ,∴∠B =∠APB ,∴ AB =AP ,∵AM ⊥BC ,∴ BM =MP =4,∴ BP =8.………(2分) 综上所述BP 的长为5或者8.………………………………………………(1分) 解法二:由△QAP 与△QED 相似,∠AQP =∠EQD , 在Rt △APN 中,AP PQ ===∵QD ∥PC ,∴EQ EPQD PC=, ∵△APB ∽△ECP ,∴AP EPPB PC=,∴AP EQ PB QD =, ①如果AQ EQ QP QD =,∴AQ AP QP PB =x=,解得5x =………………………………………………………………………(2分) ②如果AQ DQ QP QE =,∴AQ PBQP AP==解得8x =………………………………………………………………………(2分) 综上所述BP 的长为5或者8.…………………………………………………(1分)静安区25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分) 如图,平行四边形ABCD 中,已知AB =6,BC =9,31cos =∠ABC .对角线AC 、BD 交于点O .动点P 在边AB 上,⊙P 经过点B ,交线段PA 于点E .设BP = x .(1) 求AC 的长;(2) 设⊙O 的半径为y ,当⊙P 与⊙O 外切时, 求y 关于x 的函数解析式,并写出定义域; (3) 如果AC 是⊙O 的直径,⊙O 经过点E , 求⊙O 与⊙P 的圆心距OP 的长.25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分) 解:(1)作AH ⊥BC 于H ,且31cos =∠ABC ,AB =6, A 第25题图B P OC DE · 第25题备用图ABOCDDA · POE那么2316cos =⨯=∠⋅=ABC AB BH …………(2分) BC =9,HC =9-2=7,242622=-=AH , ……………………(1分) 9493222=+=+=HC AH AC ﹒ ………(1分)(2)作OI ⊥AB 于I ,联结PO , AC =BC =9,AO =4.5 ∴∠OAB =∠ABC ,∴Rt △AIO 中, 31cos cos ==∠=∠AO AI ABC IAO∴AI =1.5,IO =2322=AI ……………………(1分) ∴PI =AB -BP -AI =6-x -1.5=x -29, ……………………(1分) ∴Rt △PIO 中,41539481918)29()23(2222222+-=+-+=-+=+=x x x x x OI PI OP ……(1分) ∵⊙P 与⊙O 外切,∴y x x x OP +=+-=415392 ……………………(1分) ∴y =x x x x x x -+-=-+-153364214153922…………………………(1分) ∵动点P 在边AB 上,⊙P 经过点B ,交线段PA 于点E .∴定义域:0<x ≤3…………(1分) (3)由题意得:∵点E 在线段AP 上,⊙O 经过点E ,∴⊙O 与⊙P 相交 ∵AO 是⊙O 半径,且AO >OI ,∴交点E 存在两种不同的位置,OE =OA =29① 当E 与点A 不重合时,AE 是⊙O 的弦,OI 是弦心距,∵AI =1.5,AE =3, ∴点E 是AB 中点,321==AB BE ,23==PE BP ,3=PI , IO =23 3327)23(32222==+=+=IO PI OP ……………………(2分)② 当E 与点A 重合时,点P 是AB 中点,点O 是AC 中点,2921==BC OP ……(2分) ∴33=OP 或29. 闵行区25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)如图,已知在Rt △ABC 中,∠ACB = 90o,AC =6,BC = 8,点F 在线段AB 上,以点B 为圆心,BF 为半径的圆交BC 于点E ,射线AE 交圆B 于点D (点D 、E 不重合).(1)如果设BF = x ,EF = y ,求y 与x 之间的函数关系式,并写出它的定义域;第25题图(2)(2)如果»»2EDEF =,求ED 的长; (3)联结CD 、BD ,请判断四边形ABDC 是否为直角梯形?说明理由.25.解:(1)在Rt △ABC 中,6AC =,8BC =,90ACB ∠=o∴10AB =.……………………………………………………………(1分) 过E 作EH ⊥AB ,垂足是H , 易得:35EH x =,45BH x =,15FH x =.…………………………(1分) 在Rt △EHF 中,222223155EF EH FH x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,∴(08)y x x =<<.………………………………………(1分+1分) (2)取»ED的中点P ,联结BP 交ED 于点G ∵»»2EDEF =,P 是»ED 的中点,∴»»»EP EF PD ==. ∴∠FBE =∠EBP =∠PBD .∵»»EPEF =,BP 过圆心,∴BG ⊥ED ,ED =2EG =2DG .…………(1分) 又∵∠CEA =∠DEB ,∴∠CAE =∠EBP =∠ABC .……………………………………………(1分)又∵BE 是公共边,∴BEH BEG ∆∆≌.∴35EH EG GD x ===.在Rt △CEA 中,∵AC = 6,8BC =,tan tan AC CECAE ABC BC AC∠=∠==, ∴66339tan 822CE AC CAE ⨯⨯=⋅∠===.……………………………(1分) (备用图)CBA (第25题图)CBEF DADEBACF∴9169782222BE =-=-=.……………………………………………(1分) ∴6672125525ED EG x ===⨯=.……………………………………(1分)(3)四边形ABDC 不可能为直角梯形.…………………………………(1分)①当CD ∥AB 时,如果四边形ABDC 是直角梯形, 只可能∠ABD =∠CDB = 90o. 在Rt △CBD 中,∵8BC =, ∴32cos 5CD BC BCD =⋅∠=, 24sin 5BD BC BCD BE =⋅∠==. ∴321651025CD AB ==,328153245CE BE -==; ∴CD CEAB BE≠. ∴CD 不平行于AB ,与CD ∥AB 矛盾.∴四边形ABDC 不可能为直角梯形.…………………………(2分) ②当AC ∥BD 时,如果四边形ABDC 只可能∠ACD =∠CDB = 90o. ∵AC ∥BD ,∠ACB = 90o, ∴∠ACB =∠CBD = 90o . ∴∠ABD =∠ACB +∠BCD > 90o. 与∠ACD =∠CDB = 90o矛盾.∴四边形ABDC 不可能为直角梯形.…………………………(2分)普陀区25.(本题满分14分)已知P 是O ⊙的直径BA 延长线上的一个动点,P ∠的另一边交O ⊙于点C 、D ,两点位于AB 的上方,AB =6,OP m =,1sin 3P =,如图11所示.另一个半径为6的1O ⊙经过点C 、D ,圆心距1OO n =.(1)当6m =时,求线段CD 的长;(2)设圆心1O 在直线AB 上方,试用n 的代数式表示m ;(3)△1POO 在点P 的运动过程中,是否能成为以1OO 为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.DEBACFDC25.解:(1)过点O 作OH ⊥CD ,垂足为点H ,联结OC .在Rt △POH 中,∵1sin 3P =,6PO =,∴2OH =. ········· (1分) ∵AB =6,∴3OC =. ······················ (1分)由勾股定理得 CH = ····················· (1分)∵OH ⊥DC ,∴2CD CH == ················ (1分) (2)在Rt △POH 中,∵1sin 3P =, PO m =,∴3mOH =. ········ (1分) 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. ················ (1分)在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. ·············· (1分)可得 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -=. ········· (2分)(3)△1POO 成为等腰三角形可分以下几种情况:● 当圆心1O 、O 在弦CD 异侧时①1OP OO =,即m n =,由23812n n n-=解得9n =. ········· (1分)即圆心距等于O ⊙、1O ⊙的半径的和,就有O ⊙、1O ⊙外切不合题意舍去.(1分)②11O P OO =n =,解得23m n =,即23n 23812n n -=,解得n ·········· (1分) ● 当圆心1O 、O 在弦CD 同侧时,同理可得 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132n n n-=,解得n . ·· (2分)综上所述,n .青浦区25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图9-1,已知扇形MON,∠MON=90o,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA= x,∠COM的正切值为y.(1)如图9-2,当AB⊥OM时,求证:AM =AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三角形时,求x的值.25.解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM =∠BAM=90°.··········(1分)∵∠ABM +∠M =∠DOM +∠M,∴∠ABM =∠DOM.·········(1分)∵∠OAC=∠BAM,OC =BM,∴△OAC≌△ABM,······················(1分)∴AC =AM.·························(1分)(2)过点D作DE//AB,交OM于点E.················(1分)∵OB=OM,OD⊥BM,∴BD=DM.················(1分)∵DE//AB,∴=MD MEDM AE,∴AE=EM,∵OM,∴AE=)12x.················(1分)∵DE//AB,∴2==OA OC DMOE OD OD,···················(1分)∴2=DM OAOD OE,∴=y(0<≤x·················(2分)(3)(i)当OA=OC时,∵111222===DM BM OC x,O MNDCBA图9-1ONDCBA图9-2NMO备用图在Rt △ODM中,==OD =DM y OD,1=x=x=x .(2分) (ii )当AO =AC 时,则∠AOC =∠ACO ,∵∠ACO >∠COB ,∠COB =∠AOC ,∴∠ACO >∠AOC ,∴此种情况不存在. ····················· (1分) (ⅲ)当CO =CA 时,则∠COA =∠CAO=α,∵∠CAO >∠M ,∠M =90α︒-,∴α>90α︒-,∴α>45︒,∴290α∠=>︒BOA ,∵90∠≤︒BOA ,∴此种情况不存在. ·· (1分)松江区25.(本题满分14分,第(1)小题4分,第(2)小题每个小题各5分)如图,已知Rt △ABC 中,∠ACB =90°,BC =2,AC =3,以点C 为圆心、CB 为半径的圆交AB 于点D ,过点A 作AE ∥CD ,交BC 延长线于点E.(1)求CE 的长;(2)P 是 CE 延长线上一点,直线AP 、CD 交于点Q.① 如果△ACQ ∽△CPQ ,求CP 的长;② 如果以点A 为圆心,AQ 为半径的圆与⊙C 相切,求CP 的长.25.(本题满分14分,第(1)小题4分,第(2)小题每个小题各5分) 解:(1)∵AE ∥CD∴BC DC BE AE=…………………………………1分 ∵BC=DC∴BE=AE …………………………………1分 设CE =x(第25题图)CBA DE(备用图)CBADECBA DE则AE =BE =x +2 ∵ ∠ACB =90°, ∴222AC CE AE +=即229(2)x x +=+………………………1分 ∴54x =即54CE =…………………………………1分 (2)①∵△ACQ ∽△CPQ ,∠QAC>∠P∴∠ACQ=∠P …………………………………1分 又∵AE ∥CD ∴∠ACQ=∠CAE∴∠CAE=∠P ………………………………1分 ∴△ACE ∽△PCA ,…………………………1分 ∴2AC CE CP =⋅…………………………1分 即2534CP =⋅ ∴365CP =……………………………1分 ②设CP =t ,则54PE t =- ∵∠ACB =90°,∴AP ∵AE ∥CD ∴AQ ECAP EP=……………………………1分5545454t t ==--∴AQ =1分若两圆外切,那么1AQ == 此时方程无实数解……………………………1分CBA DEPQ若两圆内切切,那么2595t AQ +== ∴21540160t t -+= 解之得2041015t ±=………………………1分又∵54t >∴2041015t +=………………………1分徐汇区25. 已知四边形ABCD 是边长为10的菱形,对角线AC 、BD 相交于点E ,过点C 作CF ∥DB 交AB 延长线于点F ,联结EF 交BC 于点H . (1)如图1,当EF BC ⊥时,求AE 的长;(2)如图2,以EF 为直径作⊙O ,⊙O 经过点C 交边CD 于点G (点C 、G 不重合),设AE 的长为x ,EH 的长为y ;① 求y 关于x 的函数关系式,并写出定义域;③ 联结EG ,当DEG ∆是以DG 为腰的等腰三角形时,求AE 的长.杨浦区25、(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图9,在梯形ABCD中,AD//BC,AB=DC=5,AD=1,BC=9,点P为边BC上一动点,作PH⊥DC,垂足H在边DC上,以点P为圆心PH为半径画圆,交射线PB于点E.(1)当圆P过点A时,求圆P的半径;(2)分别联结EH和EA,当△ABE△CEH时,以点B为圆心,r为半径的圆B与圆P相交,试求圆B的半径r的取值范围;(3)将劣弧沿直线EH翻折交BC于点F,试通过计算说明线段EH和EF的比值为定值,并求出此定值。
2018年全国各地中考数学压轴题汇编:函数(湖北专版)(解析卷)
2018年全国各地中考数学压轴题汇编(湖北专版)函数参考答案与试题解析1.(2018•襄阳)如图,已知双曲线y1=与直线y2=ax+b交于点A(﹣4,1)和点B(m,﹣4).(1)求双曲线和直线的解析式;(2)直接写出线段AB的长和y1>y2时x的取值范围.解:(1)把A(﹣4,1)代入y1=得k=﹣4×1=﹣4,∴反比例函数的解析式为y1=﹣,把B(m,﹣4)代入y1=﹣得﹣4m=﹣4,解得m=1,则B(1,﹣4),把A(﹣4,1),B(1,﹣4)代入y2=ax+b得,解得,∴直线解析式为y2=﹣x﹣3;(2)AB==5,当﹣4<x<0或x>1时,y1>y2.2.(2018•黄冈)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.解:(1)把点A(3,4)代入y=(x>0),得k=xy=3×4=12,故该反比例函数解析式为:y=.∵点C(6,0),BC⊥x轴,∴把x=6代入反比例函数y=,得y==6.则B(6,2).综上所述,k的值是12,B点的坐标是(6,2).(2)①如图,当四边形ABCD为平行四边形时,AD∥BC且AD=BC.∵A(3,4)、B(6,2)、C(6,0),∴点D的横坐标为3,y A﹣y D=y B﹣y C即4﹣y D=2﹣0,故y D=2.所以D(3,2).②如图,当四边形ACBD′为平行四边形时,AD′∥CB且AD′=CB.∵A(3,4)、B(6,2)、C(6,0),∴点D的横坐标为3,y D′﹣y A=y B﹣y C即y D﹣4=2﹣0,故y D′=6.所以D′(3,6).③如图,当四边形ACD″B为平行四边形时,AC=BD″且AC=BD″.∵A(3,4)、B(6,2)、C(6,0),∴x D″﹣x B=x C﹣x A即x D″﹣6=6﹣3,故x D″=9.y D″﹣y B=y C﹣y A即y D″﹣2=0﹣4,故y D″=﹣2.所以D″(9,﹣2).综上所述,符合条件的点D的坐标是:(3,2)或(3,6)或(9,﹣2).3.(2018•孝感)“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高,孝感市槐荫公司根据市场需求代理A,B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B 型净水器的数量相等.(1)求每台A型、B型净水器的进价各是多少元?(2)槐荫公司计划购进A,B两种型号的净水器共50台进行试销,其中A型净水器为x 台,购买资金不超过9.8万元.试销时A型净水器每台售价2500元,B型净水器每台售价2180元,槐荫公司决定从销售A型净水器的利润中按每台捐献a(70<a<80)元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为W,求W的最大值.解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m﹣200)元,根据题意得:=,解得:m=2000,经检验,m=2000是分式方程的解,∴m﹣200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.(2)根据题意得:2000x+1800(50﹣x)≤98000,解得:x≤40.W=(2500﹣2000)x+(2180﹣1800)(50﹣x)﹣ax=(120﹣a)x+19000,∵当70<a<80时,120﹣a>0,∴W随x增大而增大,∴当x=40时,W取最大值,最大值为(120﹣a)×40+19000=23800﹣40a,∴W的最大值是(23800﹣40a)元.4.(2018•天门)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为,求直线BC的解析式.解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.5.(2018•黄冈)已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.解:(1)联立化简可得:x2﹣(4+k)x﹣1=0,∴△=(4+k)2+4>0,故直线l与该抛物线总有两个交点;(2)当k=﹣2时,∴y=﹣2x+1过点A作AF⊥x轴于F,过点B作BE⊥x轴于E,∴联立解得:或∴A(1﹣,2﹣1),B(1+,﹣1﹣2)∴AF=2﹣1,BE=1+2易求得:直线y=﹣2x+1与x轴的交点C为(,0)∴OC==S△AOC+S△BOC∴S△AOB=OC•AF+OC•BE=OC(AF+BE)=××(2﹣1+1+2)=6.(2018•恩施州)如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D、E两点,求△CDE的面积.解:(1)令﹣2x+4=,则2x2﹣4x+k=0,∵直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C,∴△=16﹣8k=0,解得k=2,∴2x2﹣4x+2=0,解得x=1,∴y=2,即C(1,2);(2)∵直线l与直线y=﹣2x+4关于x轴对称,∴A(2,0),B'(0,﹣4),∴直线l为y=2x﹣4,令=2x﹣4,则x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴E(﹣1,﹣6),D(3,2),又∵C(1,2),∴CD=3﹣1=2,∴△CDE的面积=×2×(6+2)=8.7.(2018•天门)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.8.(2018•武汉)已知点A(a,m)在双曲线y=上且m<0,过点A作x轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,①若t=1,直接写出点C的坐标;②若双曲线y=经过点C,求t的值.(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x<0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D(d,n)处,求m和n的数量关系.解:(1)①如图1﹣1中,由题意:B(﹣2,0),P(1,0),PB=PC=3,∴C(1,3).②图1﹣2中,由题意C(t,t+2),∵点C在y=上,∴t(t+2)=8,∴t=﹣4 或2,(2)如图2中,①当点A与点D关于x轴对称时,A(a,m),D(d,n),∴m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,∴OB=OH,AB=D′H,∵A(a,m),∴D′(m,﹣a),即D′(m,n),∵D′在y=﹣上,∴mn=﹣8,综上所述,满足条件的m、n的关系是m+n=0或mn=﹣8.9.(2018•天门)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t 的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x 轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E、点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,将B(3,0)、C(0,﹣1)代入y=kx+b,,解得:,∴线段BC所在直线的解析式为y=x﹣1.∵点E在△ABC内(含边界),∴,解得:≤t≤.(3)当x<或x>3时,y=﹣x2+x﹣1;当≤x≤3时,y=x2﹣x+1.假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.①当m<或m>3时,点Q的坐标为(m,﹣x2+x﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:m1=,m2=,∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,x2﹣x+1)(如图2),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,解得:m3=,m4=2,∴点P的坐标为(,0)或(1,0).综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).10.(2018•武汉)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y 轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x 轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.解:(1)由题意知,解得:b=2、c=1,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,=1,即S△BNG﹣S△BMG=BG•x N﹣BG•x M=1,∵S△BMN∴x N﹣x M=1,由得x2+(k﹣2)x﹣k+3=0,解得:x==,则x N=、x M=,由x N﹣x M=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),①当△PCD∽△FOP时,=,∴=,∴t2﹣(1+m)t+2=0;②当△PCD∽△POF时,=,∴=,∴t=(m+1);(Ⅰ)当方程①有两个相等实数根时,△=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t1=1、t2=2,方程①有一个实数根t=1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).11.(2018•黄石)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表A(吨)B(吨)合计(吨)C x﹣60300﹣x240D260﹣x x260总计(吨)200300500(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.解:(1)∵D市运往B市x吨,∴D市运往A市(260﹣x)吨,C市运往B市(300﹣x)吨,C市运往A市200﹣(260﹣x)=(x﹣60)吨,故答案为:x﹣60、300﹣x、260﹣x;(2)由题意可得,w=20(x﹣60)+25(300﹣x)+15(260﹣x)+30x=10x+10200,∴w=10x+10200(60≤x≤260);(3)由题意可得,w=10x+10200﹣mx=(10﹣m)x+10200,当0<m<10时,x=60时,w取得最小值,此时w=(10﹣m)×60+10200≥10320,解得,0<m≤8,当m>10时,x=260时,w取得最小值,此时,w=(10﹣m)×260+10200≥10320,解得,m≤,∵<10,∴m>10这种情况不符合题意,由上可得,m的取值范围是0<m≤8.12.(2018•宜昌)如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y=(k≠0)与矩形OADB的边BD交于点E.(1)填空:OA=6,k=﹣6,点E的坐标为(﹣,4);(2)当1≤t≤6时,经过点M(t﹣1,﹣t2+5t﹣)与点N(﹣t﹣3,﹣t2+3t﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣x2+bx+c的顶点.①当点P在双曲线y=上时,求证:直线MN与双曲线y=没有公共点;②当抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.解:(1)∵A点坐标为(﹣6,0)∴OA=6∵过点C(﹣6,1)的双曲线y=∴k=﹣6y=4时,x=﹣∴点E的坐标为(﹣,4)故答案为:6,﹣6,(﹣,4)(2)①设直线MN解析式为:y1=k1x+b1由题意得:解得∵抛物线y=﹣过点M、N∴解得∴抛物线解析式为:y=﹣x2﹣x+5t﹣2∴顶点P坐标为(﹣1,5t﹣)∵P在双曲线y=﹣上∴(5t﹣)×(﹣1)=﹣6∴t=此时直线MN解析式为:联立∴8x2+35x+49=0∵△=352﹣4×8×48=1225﹣1536<0∴直线MN与双曲线y=﹣没有公共点.②当抛物线过点B,此时抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点∴4=5t﹣2,得t=当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点∴,得t=∴t=或t=③∵点P的坐标为(﹣1,5t﹣)∴y P=5t﹣当1≤t≤6时,y P随t的增大而增大此时,点P在直线x=﹣1上向上运动∵点F的坐标为(0,﹣)∴y F=﹣∴当1≤t≤4时,随者y F随t的增大而增大此时,随着t的增大,点F在y轴上向上运动∴1≤t≤4当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3)当t=4﹣时,直线MN过点A.当1≤t≤4时,直线MN在四边形AEBO中扫过的面积为S=13.(2018•黄石)已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点.(1)求抛物线的解析式;(2)若点B、C均在抛物线上,其中点B(0,),且∠BDC=90°,求点C的坐标;(3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点.①求证:∠PDQ=90°;②求△PDQ面积的最小值.解:(1)将点(3,1)代入解析式,得:4a=1,解得:a=,所以抛物线解析式为y=(x﹣1)2;(2)由(1)知点D坐标为(1,0),设点C的坐标为(x0,y0),(x0>1、y0>0),则y0=(x0﹣1)2,如图1,过点C作CF⊥x轴,∴∠BOD=∠DFC=90°、∠DCF+∠CDF=90°,∵∠BDC=90°,∴∠BDO+∠CDF=90°,∴∠BDO=∠DCF,∴△BDO∽△DCF,∴=,∴==,解得:x0=17,此时y0=64,∴点C的坐标为(17,64).(3)①证明:设点P的坐标为(x1,y1),点Q为(x2,y2),(其中x1<1<x2,y1>0,y2>0),由,得:x2﹣(4k+2)x+4k﹣15=0,∴,∴(x1﹣1)(x2﹣1)=﹣16,如图2,分别过点P、Q作x轴的垂线,垂足分别为M、N,则PM=y1=(x1﹣1)2,QN=y2=(x2﹣1)2,DM=|x1﹣1|=1﹣x1、DN=|x2﹣1|=x2﹣1,∴PM•QN=DM•DN=16,∴=,又∠PMD=∠DNQ=90°,∴△PMD∽△DNQ,∴∠MPD=∠NDQ,而∠MPD+∠MDP=90°,∴∠MDP+∠NDQ=90°,即∠PDQ=90°;②过点D作x轴的垂线交直线PQ于点G,则点G的坐标为(1,4),所以DG=4,=DG•MN=×4×|x1﹣x2|=2=8,∴S△PDQ取得最小值16.∴当k=0时,S△PDQ14.(2018•襄阳)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W元(利润=销售收入﹣成本).(1)m=﹣,n=25;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?解:(1)当第12天的售价为32元/件,代入y=mx﹣76m得32=12m﹣76m解得m=﹣当第26天的售价为25元/千克时,代入y=n则n=25故答案为:m=﹣,n=25(2)由(1)第x天的销售量为20+4(x﹣1)=4x+16当1≤x<20时W=(4x+16)(﹣x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968∴当x=18时,W最大=968当20≤x≤30时,W=(4x+16)(25﹣18)=28x+112∵28>0∴W随x的增大而增大∴当x=30时,W最大=952∵968>952∴当x=18时,W最大=968(3)当1≤x<20时,令﹣2x2+72x+320=870解得x1=25,x2=11∵抛物线W=﹣2x2+72x+320的开口向下∴11≤x≤25时,W≥870∴11≤x<20∵x为正整数∴有9天利润不低于870元当20≤x≤30时,令28x+112≥870解得x≥27∴27≤x≤30∵x为正整数∴有3天利润不低于870元∴综上所述,当天利润不低于870元的天数共有12天.15.(2018•荆门)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾放养t 天后的质量为akg,销售单价为y元/kg,根据往年的行情预测,a与t的函数关系为a=,y与t的函数关系如图所示.(1)设每天的养殖成本为m元,收购成本为n元,求m与n的值;(2)求y与P的函数关系式;(3)如果将这批小龙虾放养t天后一次性出售所得利润为W元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额﹣总成本)解:(1)依题意得,解得:;(2)当0≤t≤20时,设y=k1t+b1,由图象得:,解得:∴y=t+16;当20<t≤50时,设y=k2t+b2,由图象得:,解得:,∴y=﹣t+32,综上,;(3)W=ya﹣mt﹣n,当0≤t≤20时,W=10000(t+16)﹣600t﹣160000=5400t,∵5400>0,20=108000,∴当t=20时,W最大=5400×当20<t≤50时,W=(﹣t+32)(100t+8000)﹣600t﹣160000=﹣20t2+1000t+96000=﹣20(t﹣25)2+108500,∵﹣20<0,抛物线开口向下,∴当t=25,W最大=108500,∵108500>108000,∴当t=25时,W取得最大值,该最大值为108500元.16.(2018•襄阳)直线y=﹣x+3交x轴于点A,交y轴于点B,顶点为D的抛物线y=﹣x2+2mx﹣3m经过点A,交x轴于另一点C,连接BD,AD,CD,如图所示.(1)直接写出抛物线的解析式和点A,C,D的坐标;(2)动点P在BD上以每秒2个单位长的速度由点B向点D运动,同时动点Q在CA上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒.PQ交线段AD于点E.①当∠DPE=∠CAD时,求t的值;②过点E作EM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N,当PN=EM 时,求t的值.解:(1)在y=﹣x+3中,令x=0得y=3,令y=0得x=2,∴点A(2,0)、点B(0,3),将点A(2,0)代入抛物线解析式,得:﹣×4+4m﹣3m=0,解得:m=3,所以抛物线解析式为y=﹣x2+6x﹣9,∵y=﹣x2+6x﹣9=﹣(x﹣4)2+3,∴点D(4,3),对称轴为x=4,∴点C坐标为(6,0);(2)如图1,由(1)知BD=AC=4,根据0≤3t≤4,得:0≤t≤,①∵B(0,3)、D(4,3),∴BD∥OC,∴∠CAD=∠ADB,∵∠DPE=∠CAD,∴∠DPE=∠ADB,∵AB==、AD==,∴AB=AD,∴∠ABD=∠ADB,∴∠DPE=∠ABD,∴PQ∥AB,∴四边形ABPQ是平行四边形,∴AQ=BP,即2t=4﹣3t,解得:t=,即当∠DPE=∠CAD时,t=秒;②(Ⅰ)当点N在AB上时,0≤2t≤2,即0≤t≤1,连接NE,延长PN交x轴于点F,延长ME交x轴于点H,∵PN⊥BD、EM⊥BD,BD∥OC,PN=EM,∴OF=BP=2t,PF=OB=3,NE=FH、NF=EH,NE∥FQ,∴FQ=OC﹣OF﹣QC=6﹣5t,∵点N在直线y=﹣x+3上,∴点N的坐标为(2t,﹣3t+3),∴PN=PF﹣NF=3﹣(﹣3t+3)=3t,∵NE∥FQ,∴△PNE∽△PFQ,∴=,∴FH=NE=•FQ=×(6﹣5t)=6t﹣5t2,∵A(2,0)、D(4,3),∴直线AD解析式为y=x﹣3,∵点E在直线y=x﹣3上,∴点E的坐标为(4﹣2t,﹣3t+3),∵OH=OF+FH,∴4﹣2t=2t+6t﹣5t2,解得:t=1+>1(舍)或t=1﹣;(Ⅱ)当点N在AD上时,2<2t≤4,即1<t≤,∵PN=EM,∴点E、N重合,此时PQ⊥BD,∴BP=OQ,∴2t=6﹣3t,解得:t=,综上所述,当PN=EM时,t=(1﹣)秒或t=秒.17.(2018•荆门)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2.(1)求抛物线的解析式;(2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当时,求k的值;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ=1:2时,求出点P的坐标.(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=)解:(1)根据题意得,,∴,∴抛物线解析式为y=x2+x;(2)∵直线y=kx+4与抛物线两交点的横坐标分别为x1,x2,∴x2+x=kx+4,∴x2﹣4(k﹣1)x﹣16=0,根据根与系数的关系得,x1+x2=4(k﹣1),x1x2=﹣16,∵,∴2(x1﹣x2)=x1x2,∴4(x1﹣x2)2=(x1x2)2,∴4[(x1+x2)2﹣4x1x2]=(x1x2)2,∴4[16(k﹣1)2+64]=162,∴k=1;(3)如图,取OB的中点C,∴BC=OB,∵B(4,8),∴C (2,4),∵PQ ∥OB ,∴点O 到PQ 的距离等于点O 到OB 的距离,∵S △POQ :S △BOQ =1:2,∴OB=2PQ ,∴PQ=BC ,∵PQ ∥OB ,∴四边形BCPQ 是平行四边形,∴PC ∥AB ,∵抛物线的解析式为y=x 2+x ②,令y=0, ∴x 2+x=0,∴x=0或x=﹣4,∴A (﹣4,0),∵B (4,8),∴直线AB 解析式为y=x +4,设直线PC 的解析式为y=x +m ,∵C (2,4),∴直线PC 的解析式为y=x +2②, 联立①②解得,(舍)或,∴P (﹣2,﹣2+2).18.(2018•孝感)如图1,在平面直角坐标系xOy 中,已知点A 和点B 的坐标分别为A (﹣2,0),B (0,﹣6),将Rt △AOB 绕点O 按顺时针方向分别旋转90°,180°得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为(﹣6,0),点E的坐标为(2,0);抛物线C1的解析式为y=﹣.抛物线C2的解析式为y=﹣;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记h=PM+NM+BM,求h与x的函数关系式,当﹣5≤x≤﹣2时,求h的取值范围.解:(1)由旋转可知,OC=6,OE=2,则点C坐标为(﹣6,0),E点坐标为(2,0),分别利用待定系数法求C1解析式为:y=﹣,C2解析式为:y=﹣故答案为:(﹣6,0),(2,0),y=﹣,y=﹣(2)①若点P在x轴上方,∠PCA=∠ABO时,则CA1与抛物线C1的交点即为点P设直线CA1的解析式为:y=k1x+b1∴解得∴直线CA1的解析式为:y=x+2联立:解得或(不符合题意,舍)根据题意,P点坐标为(﹣);若点P在x轴下方,∠PCA=∠ABO时,则CA1关于x轴对称的直线CA2与抛物线C1的交点即为点P设直线CA2解析式为y=k2x+b2∴解得∴直线CA2的解析式为:y=﹣x﹣2联立解得或(不符合题意,舍)由题意,点P坐标为(﹣)∴符合条件的点P为(﹣)或(﹣);②设直线BC的解析式为:y=kx+b∴解得∴设直线BC的解析式为:y=﹣x﹣6过点B做BD⊥MN于点D,如图,则BM=∴BM=2BD=2|x|=﹣2x.h=PM+NM+=(y P﹣y M)+(y N﹣y M)+2|x|=y P﹣y M+y N﹣y M﹣2x=[﹣x2﹣4x﹣6﹣(﹣x﹣6)]+[﹣x2+6﹣(﹣x﹣6)]+(﹣2x)=﹣x2﹣6x+12∴h=﹣(x+3)2+21当x=﹣3时,h的最大值为21∵﹣5≤x≤﹣2∴当x=﹣5时,h=﹣(﹣5+3)2+21=17当x=﹣2时,h=﹣(﹣2+3)2+21=20∴h的取值范围是:17≤h≤2119.(2018•黄冈)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y=,每件产品的利润z (元)与月份x(月)的关系如下表:x123456789101112z191817161514131211101010(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?解;(1)当1≤x≤9时,设每件产品利润z(元)与月份x(月)的关系式为z=kx+b,,得,即当1≤x≤9时,每件产品利润z(元)与月份x(月)的关系式为z=﹣x+20,当10≤x≤12时,z=10,由上可得,z=;(2)当1≤x≤8时,w=(x+4)(﹣x+20)=﹣x2+16x+80,当x=9时,w=(﹣9+20)×(﹣9+20)=121,当10≤x≤12时,w=(﹣x+20)×10=﹣10x+200,由上可得,w=;(3)当1≤x≤8时,w=﹣x2+16x+80=﹣(x﹣8)2+144,∴当x=8时,w取得最大值,此时w=144;当x=9时,w=121,当10≤x≤12时,w=﹣10x+200,则当x=10时,w取得最大值,此时w=100,由上可得,当x为8时,月利润w有最大值,最大值144万元.20.(2018•咸宁)如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(4,2),直线y=﹣x+与边AB,BC分别相交于点M,N,函数y=(x>0)的图象过点M.(1)试说明点N也在函数y=(x>0)的图象上;(2)将直线MN沿y轴的负方向平移得到直线M′N′,当直线M′N′与函数y═(x>0)的图象仅有一个交点时,求直线M'N′的解析式.解:(1)∵矩形OABC的顶点B的坐标为(4,2),∴点M的横坐标为4,点N的纵坐标为2,把x=4代入y=﹣x+,得y=,∴点M的坐标为(4,),把y=2代入y=﹣x+,得x=1,∴点N的坐标为(1,2),∵函数y=(x>0)的图象过点M,∴k=4×=2,∴y=(x>0),把N(1,2)代入y=,得2=2,∴点N也在函数y=(x>0)的图象上;(2)设直线M'N′的解析式为y=﹣x+b,由得x2﹣2bx+4=0,∵直线y=﹣x+b与函数y═(x>0)的图象仅有一个交点,∴(﹣2b)2﹣4×4=0,解得b=2,b2=﹣2(舍去),∴直线M'N′的解析式为y=﹣x+2.21.(2018•随州)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:天数(x)13610每件成本p(元)7.58.51012任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=设李师傅第x天创造的产品利润为W元.(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?解:(1)设p与x之间的函数关系式为p=kx+b,,解得,,即p与x的函数关系式为p=0.5x+7(1≤x≤15,x为整数),当1≤x<10时,W=[20﹣(0.5x+7)](2x+20)=﹣x2+16x+260,当10≤x≤15时,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=;(2)当1≤x<10时,W=﹣x2+16x+260=﹣(x﹣8)2+324,∴当x=8时,W取得最大值,此时W=324,当10≤x≤15时,W=﹣20x+520,∴当x=10时,W取得最大值,此时W=320,∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元;(3)当1≤x<10时,令﹣x2+16x+260=299,得x1=3,x2=13,当W>299时,3<x<13,∵1≤x<10,∴3<x<10,当10≤x≤15时,令W=﹣20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李师傅获得奖金的月份是4月到11月,李师傅共获得奖金为:20×(11﹣3)=160(元),即李师傅共可获得160元奖金.22.(2018•咸宁)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)3042租金/(元/辆)300400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为8辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.解:(1)设老师有x名,学生有y名.依题意,列方程组为,解之得:,答:老师有16名,学生有284名;(2)∵每辆客车上至少要有2名老师,∴汽车总数不能大于8辆;又要保证300名师生有车坐,汽车总数不能小于=(取整为8)辆,综合起来可知汽车总数为8辆;故答案为:8;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,∵车总费用不超过3100元,∴400x+300(8﹣x)≤3100,解得:x≤7,为使300名师生都有座,∴42x+30(8﹣x)≥300,解得:x≥5,∴5≤x≤7(x为整数),∴共有3种租车方案:方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2900元;方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3000元;方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3100元;故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.23.(2018•恩施州)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30﹣a)台,,解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;(3)设总费用为w元,w=9000a+6000(30﹣a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.24.(2018•随州)如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.解:(1)∵点A的坐标为(﹣1,0),∴OA=1,∴OC=3OA,∴点C的坐标为(0,3),将A、C坐标代入y=ax2﹣2ax+c,得:,解得:,∴抛物线C1的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,所以点G的坐标为(1,4).(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,过点G′作G′D⊥x轴于点D,设BD′=m,∵△A′B′G′为等边三角形,∴G′D=B′D=m,则点B′的坐标为(m+1,0),点G′的坐标为(1,m),将点B′、G′的坐标代入y=﹣(x﹣1)2+4﹣k,得:,解得:(舍),,∴k=1;(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),∴PQ=OA=1,∵∠AOQ、∠PQN均为钝角,∴△AOQ≌△PQN,如图2,延长PQ交直线y=﹣1于点H,则∠QHN=∠OMQ=90°,又∵△AOQ≌△PQN,∴OQ=QN,∠AOQ=∠PQN,∴∠MOQ=∠HQN,∴△OQM≌△QNH(AAS),∴OM=QH,即x=﹣x2+2x+2+1,解得:x=(负值舍去),当x=时,HN=QM=﹣x2+2x+2=,点M(,0),∴点N坐标为(+,﹣1),即(,﹣1);或(﹣,﹣1),即(1,﹣1);如图3,同理可得△OQM≌△PNH,∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1,解得:x=﹣1(舍)或x=4,当x=4时,点M的坐标为(4,0),HN=QM=﹣(﹣x2+2x+2)=6,∴点N的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);综上点M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).25.(2018•恩施州)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.解:(1)由OC=2,OB=3,得到B(3,0),C(0,2),设抛物线解析式为y=a(x+1)(x﹣3),把C(0,2)代入得:2=﹣3a,即a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+x+2;(2)抛物线y=﹣(x+1)(x﹣3)=﹣x2+x+2=﹣(x﹣1)2+,∴D(1,),当四边形CBPD是平行四边形时,由B(3,0),C(0,2),得到P(4,);当四边形CDBP是平行四边形时,由B(3,0),C(0,2),得到P(2,﹣);当四边形BCPD是平行四边形时,由B(3,0),C(0,2),得到P(﹣2,);(3)设直线BC解析式为y=kx+b,把B(3,0),C(0,2)代入得:,解得:,∴y=﹣x+2,设与直线BC平行的解析式为y=﹣x+b,联立得:,消去y得:2x2﹣6x+3b﹣6=0,当直线与抛物线只有一个公共点时,△=36﹣8(3b﹣6)=0,解得:b=,即y=﹣x+,此时交点M1坐标为(,);可得出两平行线间的距离为,同理可得另一条与BC平行且平行线间的距离为的直线方程为y=﹣x+,联立解得:M2(,﹣),M3(,﹣﹣),此时S=1.26.(2018•咸宁)如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的点,连接OP交直线AB于点Q.设点P的横坐标为m,PQ与OQ的比值为y,求y与m的数关系式,并求出PQ与OQ的比值的最大值;(3)点D是抛物线对称轴上的一动点,连接OD、CD,设△ODC外接圆的圆心为M,当sin∠ODC的值最大时,求点M的坐标.(1)在y=﹣x+3种,令y=0得x=4,令x=0得y=3,∴点A(4,0)、B(0,3),把A(4,0)、B(0,3)代入y=﹣x2+bx+c,得:,。
2018年全国各地中考数学压轴题汇编:几何综合(浙江专版)(解析卷)
2018年全国各地中考数学压轴题汇编(浙江专版)几何综合参考答案与试题解析1.数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.2.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.3.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.解:符合条件的图形如图所示:4.如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.∴∠A=∠BEC,∵E是AB中点,∴AE=EB,∵∠AED=∠B,∴△AED≌△EBC.(2)解:∵△AED≌△EBC,∴AD=EC,∵AD∥EC,∴四边形AECD是平行四边形,∴CD=AE,∵AB=6,∴CD=AB=3.5.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.6.如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.(1)若∠A=28°,求∠ACD的度数.(2)设BC=a,AC=b.①线段AD的长是方程x2+2ax﹣b2=0的一个根吗?说明理由.②若AD=EC,求的值.解:(1)∵∠ACB=90°,∠A=28°,∴∠B=62°,∵BD=BC,∴∠BCD=∠BDC=59°,∴∠ACD=90°﹣∠BCD=31°;(2)①由勾股定理得,AB==,∴AD=﹣a,解方程x2+2ax﹣b2=0得,x==﹣a,∴线段AD的长是方程x2+2ax﹣b2=0的一个根;②∵AD=AE,由勾股定理得,a2+b2=(b+a)2,整理得,=.7.在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.解:(1)如图所示,线段BD即为所求;(2)如图所示,线段BE即为所求.8.如图,在▱ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.证明:如图,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF.又BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°.在△ABE与△CDF中,,∴得△ABE≌△CDF(AAS),∴AE=CF.9.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.证明:∵DE⊥AB,DF⊥BC,垂足分别为点E,F,∴∠AED=∠CFD=90°,∵D为AC的中点,∴AD=DC,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF,∴∠A=∠C,∴BA=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形.10.如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC 沿直线AD折叠,点C的对应点E落在BD上.(1)求证:AE=AB.(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.解:(1)由折叠的性质可知,△ADE≌△ADC,∴∠AED=∠ACD,AE=AC,∵∠ABD=∠AED,∴∠ABD=∠ACD,∴AB=AC,∴AE=AB;(2)如图,过A作AH⊥BE于点H,∵AB=AE,BE=2,∴BH=EH=1,∵∠ABE=∠AEB=∠ADB,cos∠ADB=,∴cos∠ABE=cos∠ADB=,∴=.∵∠BAC=90°,AC=AB,∴BC=3.11.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.解:(1)①在正方形ACDE中,DG=GE=6,中Rt△AEG中,AG==6,∵EG∥AC,∴△ACF∽△GEF,∴=,∴==,∴FG=AG=2.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC==12.(2)在Rt△ABC中,AB===15,如图2中,当点D中线段BC上时,此时只有GF=GD,∵DG∥AC,∴△BDG∽△BCA,设BD=3x,则DG=4x,BG=5x,∴GF=GD=4x,则AF=15﹣9x,∵AE∥CB,∴△AEF∽△BCF,∴=,∴=,整理得:x2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD为=4x=4.如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,∴FG=DG=12+4x,∵AE∥BC,∴△AEF∽△BCF,∴=,∴=,解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,过点D作DH⊥FG.设AE=3x,则EG=4x,AG=5x,DG=4x+12,∴FH=GH=DG•cos∠DGB=(4x+12)×=,∴GF=2GH=,∴AF=GF﹣AG=,∵AC∥DG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长GD=4x+12=,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.设AE=3x,则EG=4x,AG=5x,DG=4x﹣12,∴FH=GH=DG•cos∠DGB=,∴FG=2FH=,∴AF=AG﹣FG=,∵AC∥EG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长DG=4x﹣12=,综上所述,等腰三角形△DFG的腰长为4或20或或.12.如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2﹣AC2=AB•AC;(3)已知⊙O的半径为3.①若=,求BC的长;②当为何值时,AB•AC的值最大?解:(1)∵四边形EBDC为菱形,∴∠D=∠BEC,∵四边形ABDC是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=AE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴=,即BF•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(3)设AB=5k、AC=3k,∵BC2﹣AC2=AB•AC,∴BC=2k,连接ED交BC于点M,∵四边形BDCE是菱形,∴DE垂直平分BC,则点E、O、M、D共线,在Rt△DMC中,DC=AC=3k,MC=BC=k,∴DM==k,∴OM=OD﹣DM=3﹣k,在Rt△COM中,由OM2+MC2=OC2得(3﹣k)2+(k)2=32,解得:k=或k=0(舍),∴BC=2k=4;②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=36﹣4d2,AC2=DC2=DM2+CM2=(3﹣d)2+9﹣d2,由(2)得AB•AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣)2+,∴当x=,即OM=时,AB•AC最大,最大值为,∴DC2=,∴AC=DC=,∴AB=,此时=.13.小敏思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠PAQ=∠B,求证:AP=AQ.(1)小敏进行探索,若将点P,Q的位置特殊化;把∠PAQ绕点A旋转得到∠EAF,使AE⊥BC,点E,F分别在边BC,CD上,如图2.此时她证明了AE=AF,请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题的证明.(3)如果在原题中添加条件:AB=4,∠B=60°,如图1,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).(1)证明:∵四边形ABCD是菱形,∴∠B+∠C=180°,∠B=∠D,AB=AD,∵∠EAF=∠B,∴∠EAF+∠C=180°,∴∠AEC+∠AFC=180°,∵AE⊥BC,∴AF⊥CD,在△AEB和△AFD中,,∴△AEB≌△AFD,∴AE=AF;(2)证明:由(1)得,∠PAQ=∠EAF=∠B,AE=AF,∴∠EAP=∠FAQ,在△AEP和△AFQ中,,∴△AEP≌△AFQ,∴AP=AQ;(3)解:已知:AB=4,∠B=60°,求四边形APCQ的面积,解:连接AC、BD交于O,∵∠ABC=60°,BA=BC,∴△ABC为等边三角形,∵AE⊥BC,∴BE=EC,同理,CF=FD,∴四边形AECF的面积=×四边形ABCD的面积,由(2)得,四边形APCQ的面积=四边形AECF的面积,OA=AB=2,OB=AB=2,∴四边形ABCD的面积=×2×2×4=8,∴四边形APCQ的面积=4.14.如图,已知P为锐角∠MAN内部一点,过点P作PB⊥AM于点B,PC⊥AN 于点C,以PB为直径作⊙O,交直线CP于点D,连接AP,BD,AP交⊙O于点E.(1)求证:∠BPD=∠BAC.(2)连接EB,ED,当tan∠MAN=2,AB=2时,在点P的整个运动过程中.①若∠BDE=45°,求PD的长.②若△BED为等腰三角形,求所有满足条件的BD的长.(3)连接OC,EC,OC交AP于点F,当tan∠MAN=1,OC∥BE时,记△OFP 的面积为S1,△CFE的面积为S2,请写出的值.解:(1)∵PB⊥AM、PC⊥AN,∴∠ABP=∠ACP=90°,∴∠BAC+∠BPC=180°,又∠BPD+∠BPC=180°,∴∠BPD=∠BAC;(2)①如图1,∵∠APB=∠BDE=45°,∠ABP=90°,∴BP=AB=2,∵∠BPD=∠BAC,∴tan∠BPD=tan∠BAC,∴=2,∴BP=PD,∴PD=2;②当BD=BE时,∠BED=∠BDE,∴∠BPD=∠BPE=∠BAC,∴tan∠BPE=2,∵AB=2,∴BP=,∴BD=2;当BE=DE时,∠EBD=∠EDB,∵∠APB=∠BDE、∠DBE=∠APC,∴∠APB=∠APC,∴AC=AB=2,过点B作BG⊥AC于点G,得四边形BGCD是矩形,∵AB=2、tan∠BAC=2,∴AG=2,∴BD=CG=2﹣2;当BD=DE时,∠DEB=∠DBE=∠APC,∵∠DEB=∠DPB=∠BAC,∴∠APC=∠BAC,设PD=x,则BD=2x,∴=2,∴,∴x=,∴BD=2x=3,综上所述,当BD=2、3或2﹣2时,△BDE为等腰三角形;(3)如图3,过点O作OH⊥DC于点H,∵tan∠BPD=tan∠MAN=1,∴BD=PD,设BD=PD=2a、PC=2b,则OH=a、CH=a+2b、AC=4a+2b,∵OC∥BE且∠BEP=90°,∴∠PFC=90°,∴∠PAC+∠APC=∠OCH+∠APC=90°,∴∠OCH=∠PAC,∴△ACP∽△CHO,∴=,即OH•AC=CH•PC,∴a(4a+2b)=2b(a+2b),∴a=b,即CP=2a、CH=3a,则OC=a,∵△CPF∽△COH,∴=,即=,则CF=a,OF=OC﹣CF=a,∵BE∥OC且BO=PO,∴OF为△PBE的中位线,∴EF=PF,∴==.15.如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.解:(1)在△ACE和△BCD中,,∴△ACE≌△BCD,∴∠CAE=∠CBD;(2)如图2,在Rt△BCD中,点F是BD的中点,∴CF=BF,∴∠BCF=∠CBF,由(1)知,∠CAE=∠CBD,∴∠BCF=∠CAE,∴∠CAE+∠ACF=∠BCF+∠ACF=∠BAC=90°,∴∠AMC=90°,∴AE⊥CF;(3)如图3,∵AC=2,∴BC=AC=2,∵CE=1,∴CD=CE=1,在Rt△BCD中,根据勾股定理得,BD==3,∵点F是BD中点,∴CF=DF=BD=,同理:EG=AE=,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=CD=,=CE•FH=×1×=,∴S△CEF由(2)知,AE⊥CF,=CF•ME=×ME=ME,∴S△CEF∴ME=,∴ME=,∴GM=EG﹣ME=﹣=,=CF•GM=××=.∴S△CFG16.(2018年浙江省宁波市)如图1,直线l:y=﹣x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<).以点A为圆心,AC长为半径作⊙A交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE•EF的最大值.解:∵直线l:y=﹣x+b与x轴交于点A(4,0),∴﹣×4+b=0,∴b=3,∴直线l的函数表达式y=﹣x+3,∴B(0,3),∴OA=4,OB=3,在Rt△AOB中,tan∠BAO==;(2)①如图2,连接DF,∵CE=EF,∴∠CDE=∠FDE,∴∠CDF=2∠CDE,∵∠OAE=2∠CDE,∴∠OAE=∠ODF,∵四边形CEFD是⊙O的圆内接四边形,∴∠OEC=∠ODF,∴∠OEC=∠OAE,∵∠COE=∠EOA,∴△COE∽△EOA,②过点E⊥OA于M,由①知,tan∠OAB=,设EM=3m,则AM=4m,∴OM=4﹣4m,AE=5m,∴E(4﹣4m,3m),AC=5m,∴OC=4﹣5m,由①知,△COE∽△EOA,∴,∴OE2=OA•OC=4(4﹣5m)=16﹣20m,∵E(4﹣4m,3m),∴(4﹣4m)2+9m2=25m2﹣32m+16,∴25m2﹣32m+16=16﹣20m,∴m=0(舍)或m=,∴4﹣4m=,3m=,∴(,),(3)如图,设⊙O的半径为r,过点O作OG⊥AB于G,∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB=5,∴AB×OG=OA×OB,∴OG=,∴AG==×=,∴EG=AG﹣AE=﹣r,连接FH,∵EH是⊙O直径,∴EH=2r,∠EFH=90°=∠EGO,∵∠OEG=∠HEF,∴△OEG∽△HEF,∴,∴OE•EF=HE•EG=2r(﹣r)=﹣2(r﹣)2+,∴r=时,OE•EF最大值为.。
2018年全国各地中考数学压轴题汇编:函数(华北东北专版)(解析卷)
2018年全国各地中考数学压轴题汇编(华北东北专版)函数参考答案与试题解析1.(2018•北京)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx ﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.解:(1)与y轴交点:令x=0代入直线y=4x+4得y=4,∴B(0,4),∵点B向右平移5个单位长度,得到点C,∴C(5,4);(2)与x轴交点:令y=0代入直线y=4x+4得x=﹣1,∴A(﹣1,0),∵点B向右平移5个单位长度,得到点C,将点A(﹣1,0)代入抛物线y=ax2+bx﹣3a中得0=a﹣b﹣3a,即b=﹣2a,∴抛物线的对称轴x=﹣=﹣=1;(3)∵抛物线y=ax2+bx﹣3a经过点A(﹣1,0)且对称轴x=1,由抛物线的对称性可知抛物线也一定过A的对称点(3,0),①a>0时,如图1,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a<4,a>﹣,将x=5代入抛物线得y=12a,∴12a≥4,a≥,∴a≥;②a<0时,如图2,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a>4,a<﹣;③当抛物线的顶点在线段BC上时,则顶点为(1,4),如图3,将点(1,4)代入抛物线得4=a﹣2a﹣3a,解得a=﹣1.综上所述,a≥或a<﹣或a=﹣1.2.(2018•天津)某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(I)根据题意,填写下表:(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.解:(I)当x=20时,方式一的总费用为:100+20×5=200,方式二的费用为:20×9=180,当游泳次数为x时,方式一费用为:100+5x,方式二的费用为:9x,故答案为:200,100+5x,180,9x;(II)方式一,令100+5x=270,解得:x=34,方式二、令9x=270,解得:x=30;∵34>30,∴选择方式一付费方式,他游泳的次数比较多;(III)令100+5x<9x,得x>25,令100+5x=9x,得x=25,令100+5x>9x,得x<25,∴当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,但x>25时,小明选择方式一的付费方式.3.(2018•北京)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A(4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.4.(2018•河北)如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B 两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.解:(1)把C(m,4)代入一次函数y=﹣x+5,可得4=﹣m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,y=﹣x+5,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC﹣S△BOC=×10×4﹣×5×2=20﹣5=15;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=﹣;故k的值为或2或﹣.5.(2018•北京)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.解:(1)∵PA=6时,AB=6,BC=4.37,AC=4.11,∴AB2=AC2+BC2,∴∠ACB=90°,∴AB是直径.当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.6.(2018•河北)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A 处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.解:(1)由题意,点A(1,18)带入y=得:18=∴k=18设h=at2,把t=1,h=5代入∴a=5∴h=5t2(2)∵v=5,AB=1∴x=5t+1∵h=5t2,OB=18∴y=﹣5t2+18由x=5t+1则t=∴y=﹣当y=13时,13=﹣解得x=6或﹣4∵x≥1∴x=6把x=6代入y=y=3∴运动员在与正下方滑道的竖直距离是13﹣3=10(米)(3)把y=1.8代入y=﹣5t2+18得t2=解得t=1.8或﹣1.8(负值舍去)∴x=10∴甲坐标为(10,1.8)恰号落在滑道y=上此时,乙的坐标为(1+1.8v乙,1.8)由题意:1+1.8v乙﹣(1+5×1.8)>4.5∴v乙>7.57.(2018•山西)如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.解:(1)∵一次函数y1=k1x+b的图象经过点C(﹣4,﹣2),D(2,4),∴,解得.∴一次函数的表达式为y1=x+2.∵反比例函数的图象经过点D(2,4),∴.∴k2=8.∴反比例函数的表达式为.(2)由y1>0,得x+2>0.∴x>﹣2.∴当x>﹣2时,y1>0.(3)x<﹣4或0<x<2.8.(2018•天津)在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m(m 是常数),顶点为P.(Ⅰ)当抛物线经过点A时,求顶点P的坐标;(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.解:(Ⅰ)∵抛物线y=x2+mx﹣2m经过点A(1,0),∴0=1+m﹣2m,解得:m=1,∴抛物线解析式为y=x2+x﹣2,∵y=x2+x﹣2=(x+)2﹣,∴顶点P的坐标为(﹣,﹣);(Ⅱ)抛物线y=x2+mx﹣2m的顶点P的坐标为(﹣,﹣),由点A(1,0)在x轴的正半轴上,点P在x轴的下方,∠AOP=45°知点P在第四象限,如图1,过点P作PQ⊥x轴于点Q,则∠POQ=∠OPQ=45°,可知PQ=OQ,即=﹣,解得:m1=0,m2=﹣10,当m=0时,点P不在第四象限,舍去;∴m=﹣10,∴抛物线的解析式为y=x2﹣10x+20;(Ⅲ)由y=x2+mx﹣2m=x2+m(x﹣2)可知当x=2时,无论m取何值时y都等于4,∴点H的坐标为(2,4),过点A作AD⊥AH,交射线HP于点D,分别过点D、H作x轴的垂线,垂足分别为E、G,则∠DEA=∠AGH=90°,∵∠DAH=90°,∠AHD=45°,∴∠ADH=45°,∴AH=AD,∵∠DAE+∠HAG=∠AHG+∠HAG=90°,∴∠DAE=∠AHG,∴△ADE≌△HAG,∴DE=AG=1、AE=HG=4,则点D的坐标为(﹣3,1)或(5,﹣1);①当点D的坐标为(﹣3,1)时,可得直线DH的解析式为y=x+,∵点P(﹣,﹣)在直线y=x+上,∴﹣=×(﹣)+,解得:m1=﹣4、m2=﹣,当m=﹣4时,点P与点H重合,不符合题意,∴m=﹣;②当点D的坐标为(5,﹣1)时,可得直线DH的解析式为y=﹣x+,∵点P(﹣,﹣)在直线y=﹣x+上,∴﹣=﹣×(﹣)+,解得:m1=﹣4(舍),m2=﹣,综上,m=﹣或m=﹣,则抛物线的解析式为y=x2﹣x+或y=x2﹣x+.9.(2018•呼和浩特)已知变量x、y对应关系如下表已知值呈现的对应规律.(1)依据表中给出的对应关系写出函数解析式,并在给出的坐标系中画出大致图象;(2)在这个函数图象上有一点P(x,y)(x<0),过点P分别作x轴和y轴的垂线,并延长与直线y=x﹣2交于A、B两点,若△PAB的面积等于,求出P点坐标.解:(1)由图可知:y=(2)设点P(x,),则点A(x,x﹣2)由题意可知△PAB是等腰三角形,∵S△PAB=,∴PA=PB=5,∵x<0,∴PA=y P﹣y A=﹣x+2即﹣x+2=5解得:x1=﹣2,x2=﹣1∴点P(﹣2,1)或(﹣1,2)10.(2018•山西)综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.解:(1)当y=0,x﹣4=0,解得x1=﹣3,x2=4,∴A(﹣3,0),B(4,0),当x=0,y=x﹣4=﹣4,∴C(0,﹣4);(2)AC==5,易得直线BC的解析式为y=x﹣4,设Q(m,m﹣4)(0<m<4),当CQ=CA时,m2+(m﹣4+4)2=52,解得m1=,m2=﹣(舍去),此时Q点坐标为(,﹣4);当AQ=AC时,(m+3)2+(m﹣4)2=52,解得m1=1,m2=0(舍去),此时Q点坐标为(1,﹣3);当QA=QC时,(m+3)2+(m﹣4)2=52,解得m=(舍去),综上所述,满足条件的Q点坐标为(,﹣4)或(1,﹣3);(3)解:过点F作FG⊥PQ于点G,如图,则FG∥x轴.由B(4,0),C(0,﹣4)得△OBC为等腰直角三角形∴∠OBC=∠QFG=45∴△FQG为等腰直角三角形,∴FG=QG=FQ,∵PE∥AC,PG∥CO,∴∠FPG=∠ACO,∵∠FGP=∠AOC=90°,∴△FGP~△AOC.∴=,即=,∴PG=FG=•FQ=FQ,∴PQ=PG+GQ=FQ+FQ=FQ,∴FQ=PQ,设P(m,m2﹣m﹣4)(0<m<4),则Q(m,m﹣4),∴PQ=m﹣4﹣(m2﹣m﹣4)=﹣m2+m,∴FQ=(﹣m2+m)=﹣(m﹣2)2+∵﹣<0,∴QF有最大值.∴当m=2时,QF有最大值.11.(2018•呼和浩特)某市计划在十二年内通过公租房建设,解决低收入人群的住房问题.已知前7年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x(第x年)的关系构成一次函数,(1≤x≤7且x为整数),且第一和第三年竣工投入使的公租房面积分别为和百万平方米;后5年每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x(第x年)的关系是y=﹣x+(7<x≤12且x为整数).(1)已知第6年竣工投入使用的公租房面积可解决20万人的住房问题,如果人均住房面积,最后一年要比第6年提高20%,那么最后一年竣工投入使用的公租房面积可解决多少万人的住房问题?(2)受物价上涨等因素的影响,已知这12年中,每年竣工投入使用的公租房的租金各不相同,且第一年,一年38元/m2,第二年,一年40元/m2,第三年,一年42元/m2,第四年,一年44元/m2……以此类推,分析说明每平方米的年租金和时间能否构成函数,如果能,直接写出函数解析式;(3)在(2)的条件下,假设每年的公租房当年全部出租完,写出这12年中每年竣工投入使用的公租房的年租金W关于时间x的函数解析式,并求出W的最大值(单位:亿元).如果在W取得最大值的这一年,老张租用了58m2的房子,计算老张这一年应交付的租金.解:(1)设y=kx+b(1≤x≤7),由题意得,,解得k=﹣,b=4∴y=﹣x+4(1≤x≤7)∴x=6时,y=﹣×6+4=3∴300÷20=15,15(1+20%)=18,又x=12时,y=﹣×12+=∴×100÷18=12.5万人,所以最后一年可解决12.5万人的住房问题;(2)由于每平方米的年租金和时间都是变量,且对于每一个确定的时间x的值,每平方米的年租金m都有唯一的值与它对应,所以它们能构成函数.由题意知m=2x+36(1≤x≤12)(3)解:W=∵当x=3时W max=147,x=8时W max=143,147>143∴当x=3时,年租金最大,W max=1.47亿元当x=3时,m=2×3+36=42元58×42=2436元答:老张这一年应交租金为2436元.12.(2018•包头)如图,在平面直角坐标系中,已知抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.(1)求直线l的解析式;(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD ⊥AC时,求线段DE的长;(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)∵抛物线y=x2+x﹣2,∴当y=0时,得x1=1,x2=﹣4,当x=0时,y=﹣2,∵抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,∴点A的坐标为(﹣4,0),点B(1,0),点C(0,﹣2),∵直线l经过A,C两点,设直线l的函数解析式为y=kx+b,,得,即直线l的函数解析式为y=;(2)直线ED与x轴交于点F,如图1所示,由(1)可得,AO=4,OC=2,∠AOC=90°,∴AC=2,∴OD=,∵OD⊥AC,OA⊥OC,∠OAD=∠CAO,∴△AOD∽△ACO,∴,即,得AD=,∵EF⊥x轴,∠ADC=90°,∴EF∥OC,∴△ADF∽△ACO,∴,解得,AF=,DF=,∴OF=4﹣=,∴m=﹣,当m=﹣时,y=×()2+×(﹣)﹣2=﹣,∴EF=,∴DE=EF﹣FD=;(3)存在点P,使∠BAP=∠BCO﹣∠BAG,理由:作GM⊥AC于点M,作PN⊥x轴于点N,如图2所示,∵点A(﹣4,0),点B(1,0),点C(0,﹣2),∴OA=4,OB=1,OC=2,∴tan∠OAC=,tan∠OCB=,AC=2,∴∠OAC=∠OCB,∵∠BAP=∠BCO﹣∠BAG,∠GAM=∠OAC﹣∠BAG,∴∠BAP=∠GAM,∵点G(0,﹣1),AC=2,OA=4,∴OG=1,GC=1,∴AG=,,即,解得,GM=,∴AM===,∴tan∠GAM==,∴tan∠PAN=,设点P的坐标为(n,n2+n﹣2),∴AN=4+n,PN=n2+n﹣2,∴,解得,n1=,n2=﹣4(舍去),当n=时,n2+n﹣2=,∴点P的坐标为(,),即存在点P(,),使∠BAP=∠BCO﹣∠BAG.13.(2018•通辽)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?解:(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据题意可得,解得,答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,根据题意可得,解得75<m≤78,∵m为整数,∴m的值为76、77、78,∴进货方案有3种,分别为:方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W随m的增大而增大,且75<m≤78,∴当m=78时,W最大,W最大值为1390,答:当m=78时,所获利润最大,最大利润为1390元.14.(2018•赤峰)已知抛物线y=﹣x2﹣x的图象如图所示:(1)将该抛物线向上平移2个单位,分别交x轴于A、B两点,交y轴于点C,则平移后的解析式为y=﹣x2﹣x+2.(2)判断△ABC的形状,并说明理由.(3)在抛物线对称轴上是否存在一点P,使得以A、C、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.解:(1)将该抛物线向上平移2个单位,得y=﹣x2﹣x+2,故答案为:y=﹣x2﹣x+2;(2)当y=0时,﹣x 2﹣x +2=0,解得x 1=﹣4,x 2=1,即B (﹣4,0),A (1,0).当x=0时,y=2,即C (0,2).AB=1﹣(﹣4)=5,AB 2=25,AC 2=(1﹣0)2+(0﹣2)2=5,BC 2=(﹣4﹣0)2+(0﹣2)2=20,∵AC 2+BC 2=AB 2,∴△ABC 是直角三角形;(3)y=﹣x 2﹣x +2的对称轴是x=﹣,设P (﹣,n ),AP 2=(1+)2+n 2=+n 2,CP 2=+(2﹣n )2,AC 2=12+22=5当AP=AC 时,AP 2=AC 2, +n 2=5,方程无解;当AP=CP 时,AP 2=CP 2,+n 2=+(2﹣n )2,解得n=0,即P 1(﹣,0),当AC=CP 时AC 2=CP 2, +(2﹣n )2=5,解得n 1=2+,n 2=2﹣,P 2(﹣,2+),P 3(﹣,2﹣).综上所述:使得以A 、C 、P 为顶点的三角形是等腰三角形,点P 的坐标(﹣,0),(﹣,2+),(﹣,2﹣).15.(2018•黑龙江)如图,抛物线y=x 2+bx +c 与y 轴交于点A (0,2),对称轴为直线x=﹣2,平行于x 轴的直线与抛物线交于B 、C 两点,点B 在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P 在x 轴上,直线CP 将△ABC 面积分成2:3两部分,请直接写出P 点坐标.解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2, 则此抛物线的解析式为y=x 2+4x +2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P(﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).16.(2018•通辽)如图,抛物线y=ax2+bx﹣5与坐标轴交于A(﹣1,0),B(5,0),C(0,﹣5)三点,顶点为D.(1)请直接写出抛物线的解析式及顶点D的坐标;(2)连接BC与抛物线的对称轴交于点E,点P为线段BC上的一个动点(点P不与B、C两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①是否存在点P,使四边形PEDF为平行四边形?若存在,求出点P的坐标;若不存在,说明理由.②过点F作FH⊥BC于点H,求△PFH周长的最大值.解:(1)把A(﹣1,0),B(5,0)代入抛物线y=ax2+bx﹣5解得∴y=x2﹣4x﹣5∴顶点坐标为D(2,﹣9)(2)①存在设直线BC的函数解析式为y=kx+b(k≠0)把B(5,0),C(0,﹣5)代入得∴BC解析式为y=x﹣5当x=m时,y=m﹣5∴P(m,m﹣5)当x=2时,y=2﹣5=﹣3∴E(2.﹣3)∵PF∥DE∥y轴∴点F的横坐标为m当x=m时,y=m2﹣4m﹣5∴F(m,m2﹣4m﹣5)∴PF=(m﹣5)﹣(m2﹣4m﹣5)=﹣m2+5m∵E(2,﹣3),D(2,﹣9)∴DE=﹣3﹣(﹣9)=6如图,连接DF∵PF∥DE∴当PF=DE时,四边形PEDF为平行四边形即﹣m2+5m=6解得m1=3,m2=2(舍去)当m=3时,y=3﹣5=2此时P(3,﹣2)∴存在点P(3,﹣2)使四边形PEDF为平行四边形.②由题意在Rt△BOC中,OB=OC=5∴BC=5∴C△BOC=10+5∵PF∥DE∥y轴∴∠FPE=∠DEC=∠OCB∵FH⊥BC∴∠FHP=∠BOC=90°∴△PFH∽△BCO∴即C△PFH=∵0<m<5∴当m=﹣时,△PFH周长的最大值为17.(2018•黑龙江)某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米20吨,a=15.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?解:(1)由图象可知,第一天甲乙共加工220﹣185=35吨,第二天,乙停止工作,甲单独加工185﹣165=20吨,则乙一天加工35﹣20=15吨.a=15故答案为:20,15(2)设y=kx+b把(2,15),(5,120)代入解得∴y=35x﹣55(3)由图2可知当w=220﹣55=165时,恰好是第二天加工结束.当2≤x≤5时,两个车间每天加工速度为=55吨∴再过1天装满第二节车厢18.(2018•齐齐哈尔)某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20min后乘坐小轿车沿同一路线出行.大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程S(单位:km)和行驶时间t(单位:min)之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为40km,大客车途中停留了5min,a=15;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)小轿车司机到达景点入口时发现本路段限速80km/h ,请你帮助小轿车司机计算折返时是否超速?(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待 10 分钟,大客车才能到达景点入口.解:(1)由图形可得:学校到景点的路程为40km ,大客车途中停留了5min ,小轿车的速度: =1(千米/分),a=(35﹣20)×1=15,(3分)故答案为:40,5,15;(2)由(1)得:a=15,得大客车的速度: =(千米/分),(4分)小轿车赶上来之后,大客车又行驶了:(60﹣35)×=(千米),40﹣﹣15=(千米),(6分)答:在小轿车司机驶过景点入口时,大客车离景点入口还有千米;(3)∵A (20,0),F (60,40),设直线AF 的解析式为:S=kt +b ,则,解得:, ∴直线AF 的解析式为:S=t ﹣20,(7分)当S=46时,46=t ﹣20,t=66,小轿车赶上来之后,大客车又行驶的时间:=35,小轿车司机折返时的速度:6÷(35+35﹣66)=(千米/分)=90千米/时>80千米/时,(8分)∴小轿车折返时已经超速;(4)大客车的时间:=80min,80﹣70=10min,答:小轿车折返后到达景点入口,需等待10分钟,大客车才能到达景点入口.(10分)故答案为:10.19.(2018•哈尔滨)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E 在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.解:(1)如图1中,∵y=﹣x+,∴B(,0),C(0,),∴BO=,OC=,在Rt△OBC中,BC==7,∵四边形ABCD是菱形,∴AB=BC=7,∴OA=AB﹣OB=7﹣=,∴A(﹣,0).(2)如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠APB=60°,∴∠APB=∠ACB,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACE≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∵△CEF是等边三角形,∴∠CEF=60°,EC=CF,∵∠AFE=30°,∠CEF=∠H+∠EFH,∴∠H=∠CEF﹣∠EFH=30°,∴∠H=∠EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠PEC=∠AEH,∴△CPE≌△HAE,∴∠PCE=∠H,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠TCF=∠CTP﹣∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,∴AT⊥PF,设BF=m,则AE=PE=m,∴PF=AP=2m,TF=TP=m,TB=2m,BP=3m,在Rt△APT中,AT==m,在Rt△ABT中,∵AT2+TB2=AB2,∴(m)2+(2m)2=72,解得m=或﹣(舍弃),∴BF=,AT=,BP=3,sin∠ABT==,∵OK=PQ=BP•sin∠PBQ=3×=3,BQ==6,∴OQ=BQ﹣BO=6﹣=,∴P(﹣,3)20.(2018•大庆)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求△OAP的面积.解:(1)将点A(4,3)代入y=,得:k=12,则反比例函数解析式为y=;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴OA==5,∵AB∥x轴,且AB=OA=5,∴点B的坐标为(9,3);(3)∵点B坐标为(9,3),∴OB所在直线解析式为y=x,由可得点P坐标为(6,2),过点P作PD⊥x轴,延长DP交AB于点E,则点E坐标为(6,3),∴AE=2、PE=1、PD=2,则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=5..(2018•齐齐哈尔)综合与探究如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.(1)求抛物线的解析式(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N.①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为或4;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)解:(1)将A(﹣4,0)代入y=x+c∴c=4将A(﹣4,0)和c=4代入y=﹣x2+bx+c∴b=﹣3∴抛物线解析式为y=﹣x2﹣3x+4(2)做点C关于抛物线的对称轴直线l的对称点C′,连OC′,交直线l于点E.连CE,此时CE+OE的值最小.∵抛物线对称轴位置线x=﹣∴CC′=3由勾股定理OC′=5∴CE+OE的最小值为5(3)①当△CNP∽△AMP时,∠CNP=90°,则NC关于抛物线对称轴对称∴NC=NP=3∴△CPN的面积为当△CNP∽△MAP时由已知△NCP为等腰直角三角形,∠NCP=90°过点C作CE⊥MN于点E,设点M坐标为(a,0)∴EP=EC=﹣a,则N为(a,﹣a2﹣3a+4),MP=﹣a2﹣3a+4﹣(﹣2a)=﹣a2﹣a+4 ∴P(a,﹣a2﹣a+4)代入y=x+4解得a=﹣2∴△CPN的面积为4故答案为:或4②存在设M坐标为(a,0)则N为(a,﹣a2﹣3a+4)则P点坐标为(a,)把点P坐标代入y=﹣x+4解得a1=﹣4(舍去),a2=﹣1当PF=FM时,点D在MN垂直平分线上,则D()当PM=PF时,由菱形性质点D坐标为(﹣1+,)(﹣1﹣,﹣)当MP=MF时,M、D关于直线y=﹣x+4对称,点D坐标为(﹣4,3)22.(2018•大庆)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF 的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.解:(1)把B(4,0),C(0,4)代入y=x2+bx+c,得,解得,∴抛物线的解析式为y=x2﹣5x+4;(2)易得BC的解析式为y=﹣x+4,∵直线y=x+m与直线y=x平行,∴直线y=﹣x+4与直线y=x+m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图1,△EPG为等腰直角三角形,PE=PG,设P(t,t2﹣5t+4)(1<t<4),则G(t,﹣t+4),∴PF=PH=t,PG=﹣t+4﹣(t2﹣5t+4)=﹣t2+4t,∴PE=PG=﹣t2+2t,∴PE+EF=PE+PE+PF=2PE+PF=﹣t2+4t+t=﹣t2+5t=﹣(t﹣)2+,当t=时,PE+EF的最大值为;(3)①如图2,抛物线的对称轴为直线x=,设D(,y),则BC2=42+42=32,DC2=()2+(y﹣4)2,BD2=(4﹣)2+y2=+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即32+()2+(y﹣4)2=+y2,解得y=5,此时D点坐标为(,);当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即32++y2=()2+(y﹣4)2,解得y=﹣1,此时D点坐标为(,﹣);综上所述,符合条件的点D的坐标是(,)或(,﹣);②当△BCD是以BC为斜边的直角三角形时,DC2+DB2=BC2,即()2+(y﹣4)2++y2=32,解得y1=,y2=,此时D点坐标为(,)或(,),所以△BCD是锐角三角形,点D的纵坐标的取值范围为<y<或﹣<y<.23.(2018•吉林)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为4000m,小玲步行的速度为100m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.解:(1)结合题意和图象可知,线段CD为小玲路程与时间函数图象,折现O﹣A﹣B为为小东路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为2000÷20=200m/s故答案为:4000,100(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,∴他离家的路程y=4000﹣300x自变量x的范围为0≤x≤(3)由图象可知,两人相遇是在小玲改变速度之前∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.24.(2018•长春)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是1立方米,从打开输入口到关闭输出口共用的时间为11分钟.解:(1)每分钟向储存罐内注入的水泥量为15÷3=5立方米;(2)设y=kx+b(k≠0)把(3,15)(5.5,25)代入解得∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为5﹣4=1立方米;只打开输出口前,水泥输出量为5.5﹣3=2.5立方米,之后达到总量8立方米需需输出8﹣2.5=5.5立方米,用时5.5分钟∴从打开输入口到关闭输出口共用的时间为:5.5+5.5=11分钟故答案为:1,1125.(2018•吉林)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B 两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为(﹣1,4),OE=3;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m 的函数解析式及自变量m的取值范围.。
2018年中考数学挑战压轴题(含答案)
2017挑战压轴题中考数学精讲解读篇因动点产生的相似三角形问题1. 如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P( 0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T (0,t) (t V2)是射线PO上一点, 当以P、B、Q为顶点的三角形与△ PAT相似时,求所有满足条件的t的值.图①图②备用图2. 如图,已知BC是半圆O的直径,BC=8过线段BO上一动点D,作AD丄BC 交半圆O于点A,联结AO,过点B作BH丄AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD(2)设BD=x, BE?BF=y求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当厶卩人丘与厶FBG相似时,求BD的长度.3•如图,在平面直角坐标系xOy中,直线AB过点A (3, 0)、B (0, m) (m>0), tan / BAO=2(1)求直线AB的表达式;(2)反比例函数y= 的图象与直线AB交于第一象限内的C、D两点(BD v BC),x当AD=2DB时,求&的值;(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y的图象于点F,分别联结OE OF,当厶OE2A OBE时,请直接写出满足条x4. 如图,在Rt A ABC中,/ ACB=90, AC=1, BC=7,点D是边CA延长线的一点,AE丄BD,垂足为点E, AE的延长线交CA的平行线BF于点F,连结CE交AB于点G.(1)当点E是BD的中点时,求tan / AFB的值;(2)CE?AF的值是否随线段AD长度的改变而变化?如果不变,求出CE?AF的值; 如果变化,请说明理由;(3)当△BGE和△ BAF相似时,求线段AF的长.5. 如图,平面直角坐标系xOy中,已知B (- 1, 0), —次函数y=-x+5的图象与x 轴、y轴分别交于点A、C两点,二次函数y=-x2+bx+c的图象经过点A、点B.(1)求这个二次函数的解析式;(2)点P是该二次函数图象的顶点,求△ APC的面积;(3)如果点Q在线段AC上,且△ ABC与厶AOQ相似,求点Q的坐标.6 .已知:半圆O的直径AB=6,点C在半圆O上,且tan / ABC=2匚,点D为弧AC 上一点,联结DC (如图)(1)求BC的长;(2)若射线DC交射线AB于点M,且△ MBC与厶MOC相似,求CD的长;(3)联结OD,当OD// BC时,作/ DOB的平分线交线段DC于点N,求ON的长.7•如图,已知二次函数y=«+bx+c(b, c为常数)的图象经过点A (3,- 1), 点C (0,- 4),顶点为点M,过点A作AB// x轴,交y轴与点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向上平移m (m > 0)个单位,使平移后得到的二次函数图象的顶点落在△ ABC的内部(不包含厶ABC的边界),求m的取值范围;(3)点P时直线AC上的动点,若点P,点C,点M所构成的三角形与△ BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程)•备用医I因动点产生的等腰三角形问题8 .如图1,在厶ABC中,/ ACB=90, / BAC=60,点E是/BAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH丄AC,垂足为H,连接EF, HF.(1)如图1,若点H是AC的中点,AC=2「,求AB, BD的长;(2)如图1,求证:HF=EF(3)如图2,连接CF, CE猜想:△ CEF是否是等边三角形?若是,请证明;若不是,说明理由.9 •已知,一条抛物线的顶点为E (- 1,4),且过点A (-3, 0),与y轴交于点C,点D是这条抛物线上一点,它的横坐标为m,且-3v m v- 1,过点D作DK 丄x轴,垂足为K, DK分别交线段AE、AC于点G、H.(1) 求这条抛物线的解析式;(2) 求证:GH=HK10.如图,已知在Rt A ABC中,/ ACB=90, AB=5, si nA丄,点P是边BC上的5一点,PEI AB,垂足为E,以点P为圆心,PC为半径的圆与射线PE相交于点Q, 线段CQ与边AB交于点D.(1) 求AD的长;(2) 设CP=x △ PCQ的面积为y,求y关于x的函数解析式,并写出定义域;(3) 过点C作CF丄AB,垂足为F,联结PF、QF,如果△ PQF是以PF为腰的等腰三角形,求CP的长.C C11 •如图(1),直线y=- x+n交x轴于点A,交y轴于点(0,4),抛物线y=「x2+bx+c3 3经过点A,交y轴于点B (0,-2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD丄PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当厶BDP为等腰直角三角形时,求线段PD的长;(3)如图(2),将厶BDP绕点B逆时针旋转,得到△ BD P'当旋转角/ PBP = / OAC且点P的对应点P落在坐标轴上时,请直接写出点P的坐标.12 •综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx - 8与x轴交于A,B两点,与y轴交于点C,直线I经过坐标原点0,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE已知点A,D的坐标分别为(-2, 0),(6,- 8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使厶FOE^A FCE若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0, m),直线PB与直线是等腰三角形.因动点产生的直角三角形问题13. 已知,如图1,在梯形ABCD中,AD// BC,/ BCD=90, BC=11, CD=6, tan / ABC=2点E在AD边上,且AE=3ED EF// AB交BC于点F,点M、N分别在射线FE和线段CD上.(1)求线段CF的长;(2)如图2,当点M在线段FE上,且AM丄MN,设FM?cos/ EFC=x CN=y求y关于x的函数解析式,并写出它的定义域;(3)如果△ AMN为等腰直角三角形,求线段FM的长.C C14. 如图,在矩形ABCD中,点0为坐标原点,点B的坐标为(4, 3),点A、C 在坐标轴上,点P在BC边上,直线h:y=2x+3,直线12:y=2x-3.(1)分别求直线l1与x轴,直线12与AB的交点坐标;(2)已知点M在第一象限,且是直线12上的点,若△ APM是等腰直角三角形,求点M的坐标;(3)我们把直线h和直线12上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).因动点产生的平行四边形问题15. 如图,在平面直角坐标系xOy 中,抛物线y=ax - 2ax -3a (a v 0)与x 轴交 于A , B 两点(点A 在点B 的左侧),经过点A 的直线I : y=kx+b 与y 轴交于点C , 与抛物线的另一个交点为D ,且CD=4AC(1) 直接写出点A 的坐标,并求直线I 的函数表达式(其中k , b 用含a 的式子 表示);(2) 点E 是直线I 上方的抛物线上的一点,若△ ACE 的面积的最大值为「,求a4的值;(3) 设P 是抛物线对称轴上的一点,点 Q 在抛物线上,以点A ,D ,P ,Q 为顶OA=5, AB=4,点D 为边AB 上一点,将△ BCD 沿直 线CD 折叠,使点B 恰好落在OA 边上的点E 处,分别以OC, OA 所在的直线为x 轴,y 轴建立平面直角坐标系.(1) 求点E 坐标及经过O , D , C 三点的抛物线的解析式;(2) 一动点P 从点C 出发,沿CB 以每秒2个单位长的速度向点B 运动,同时 动点Q 从E 点出发,沿EC 以每秒1个单位长的速度向点C 运动,当点P 到达点 B 时,两点同时停止运动.设运动时间为 t 秒,当t 为何值时,DP=DQ(3) 若点N 在(2)中的抛物线的对称轴上,点 M 在抛物线上,是否存在这样 的点M 与点N ,使得以M , N , C, E 为顶点的四边形是平行四边形?若存在, 请求出M 点的坐标;若不存在,请说明理由.16.如图,在矩形OABC 中, 请说明理由.17•如图,抛物线y=-X123+2X+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.1 求直线AD的解析式;2 如图1,直线AD上方的抛物线上有一点F,过点F作FG丄AD于点G,作FH平行于X轴交直线AD于点巴求厶FGH周长的最大值;3 点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A, M , P, Q为顶点的四边形是以AM为边的矩形•若点T和点Q关于AM所在直线对称,求点T 的坐标.18•如图,点A和动点P在直线I上,点P关于点A的对称点为Q,以AQ为边作Rt A ABQ,使/ BAQ=90 , AQ: AB=3: 4,作厶ABQ的外接圆0.点C在点P 右侧,PC=4过点C作直线m丄I,过点O作OD丄m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF冷CD,以DE, DF为邻边作矩形DEGF设AQ=3x.(1)用关于X的代数式表示BQ, DF.(2)当点P在点A右侧时,若矩形DEGF勺面积等于90,求AP的长.(3)在点P的整个运动过程中,①当AP为何值时,矩形DEGF是正方形?②作直线BG交。
中考数学复习《函数压轴题》经典题型及测试题(含答案)
中考数学复习《函数压轴题》经典题型及测试题(含答案)阅读与理解函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数关系式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.类型一 动点函数图象问题此类问题一般是通过分析动点在几何图形边上的运动情况,确定出有关动点函数图象的变化情况.分析此类问题,首先要明确动点在哪条边上运动,在运动过程中引起了哪个量的变化,然后求出在运动过程中对应的函数关系式,最后根据函数关系式判断图象的变化.例1 (2016·济南) 如图,在四边形ABCD 中,AB ∥CD ,∠B =90°,AB =AD =5,BC =4,M 、N 、E 分别是A B 、AD 、CB 上的点,AM =CE =1,AN =3,点P 从点M 出发,以每秒1个单位长度的速度沿折线MB -BE 向点E 运动,同时点Q 从点N ,以相同的速度沿折线ND -DC -CE 向点E 运动,设△APQ 的面积为S ,运动的时间为t 秒,则S 与t 函数关系的大致图象为( )【分析】 由点Q 从点N 出发,沿折线NDDCCE 向点E 运动,确定出点Q 分别在ND ,DC ,CE 运动时对应的t 的取值范围,再根据t 所在的取值范围分别求出其对应的函数关系式,最后根据函数关系式确定对应的函数图象.【自主解答】过点D 作DF ⊥AB 于点F (如图1),则DF =BC =4.第15题图 A BCDM N Q∵AD =5,DF =4,∴AF =3.∴sin ∠A=DF AD =45,MF =3-1=2,BF =AB -AF =5-3=2,DC =BF =2.∵AD =5,AN =3,∴ND =5-3=2.(1)当0≤t ≤2时,点P 在MF 上,点Q 在ND 上(如图2),此时AP =AM +MP =1+t ,AQ =AN +NQ =3+t .∴S =12AP •AQ •sin ∠A =12(1+t )(3+t )×45=25(t +2)2―25.当0≤t ≤2时,S随t 的增大而增大,且当t =2时,S =6.由此可知A 、B 选项都不对.(2)当t =5时,点P 在MF 上,点Q 在ND 上(如图3),此时BP =1,PE =BC -BP -CE =4-1-1=2.∴S =12AB •PE =12×5×2=5.∵6>5,∴选项D 正确.变式训练1.如图,△ABC 是等腰直角三角形,∠C =90°,AC =BC ,AB =4,D 为AB 上的动点,DP ⊥AB 交折线A -C -B 于点P.设AD =x ,△ADP 的面积为y ,则y 与x 的函数图象正确的是( )2.(2016·烟台)如图,⊙O 的半径为1,AD ,BC 是⊙O 的两条相互垂直的直径,图1 DC B A E M N QP F 图2 A B C D E M N Q P F 图3 A B C D E (Q )M N F P点P从点O出发(P点与O点不重合),沿OCD的路线运动.设AP=x,sin∠APB =y,那么y与x之间的关系图象大致是()类型二二次函数的实际问题解答此类问题时,首先要构建合理的坐标系,并写出对应的函数解析式,并利用二次函数的性质求解后续的问题.一般来说,选择的坐标系不同,得出的解析式必然不同,因此解答此类问题时,选择最恰当的坐标系往往显得尤为重要.例2 (2017·金华) 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.【分析】(1)①将点P(0,1)代入y=﹣(x﹣4)2+h即可求得h;②求出x=5时,y的值,与1.55比较即可得出判断;(2)将(0,1)、(7,)代入y=a(x﹣4)2+h代入即可求得a、h.【自主解答】解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣×16+h=1,解得:h=;②把x=5代入y=﹣(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,∵1.625>1.55,∴此球能过网;(2)把(0,1)、(7,)代入y=a(x﹣4)2+h,得:,解得:,∴a=﹣.变式训练3.(2017·沈阳)某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售单价是_____元时,才能在半月内获得最大利润.4、(2017•青岛)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数100日总收入(元)2400040000(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?【分析】(1)根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;(2)根据题意可以求得总收入和上涨价格之间的函数解析式,然后化为顶点式即可解答本题.【自主解答】解:(1)设淡季每间的价格为x元,酒店豪华间有y间,,解得,,∴x+x=600+=800,答:该酒店豪华间有50间,旺季每间价格为800元;(2)设该酒店豪华间的价格上涨x元,日总收入为y元,y=(800+x)(50﹣)=42025,∴当x=225时,y取得最大值,此时y=42025,答:该酒店将豪华间的价格上涨225元时,豪华间的日总收入最高,最高日总收入是42025元.类型三二次函数的综合题二次函数作为整套试卷的压轴题,往往会命制三个小问题,其中第一问求解二次函数的解析式,此问题往往利用待定系数法便可解决;第二、三问往往涉及动点问题及存在点问题,此问题需要利用全等三角形、相似三角形、平行四边形、圆等知识综合解答,计算量很大,且题目较为综合.例3 (2017·泰安) )如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为直线x=1,与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P,Q的坐标;若不存在,说明理由.【分析】(1)已知抛物线的对称轴,因而可以设出顶点式,利用待定系数法求函数解析式;(2)首先求得B和C的坐标,易证△OBC是等腰直角三角形,过点N作NH⊥y 轴,垂足是H,设点N纵坐标是(a,﹣a2+2a+3),根据CH=NH即可列方程求解;(3)四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,即可求解.【自主解答】解:(1)设抛物线的解析式是y=﹣(x﹣1)2+k.把(﹣1,0)代入得0=﹣(﹣1﹣1)2+k,解得k=4,则抛物线的解析式是y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中令x=0,则y=3,即C的坐标是(0,3),OC=3.∵B的坐标是(3,0),∴OB=3,∴OC=OB,则△OBC是等腰直角三角形.∴∠OCB=45°,过点N作NH⊥y轴,垂足是H.∵∠NCB=90°,∴∠NCH=45°,∴NH=CH,∴HO=OC+CH=3+CH=3+NH,设点N纵坐标是(a,﹣a2+2a+3).∴a+3=﹣a2+2a+3,解得a=0(舍去)或a=1,∴N的坐标是(1,4);(3)∵四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,则﹣t2+2t+3=(t+1)+,整理,得2t2﹣t=0,解得t=0或.∴﹣t2+2t+3的值为3或.∴P、Q的坐标是(0,3),(1,3)或(,)、(,).变式训练5.(2016·襄阳) 如图,已知点A的坐标为(﹣2,0),直线y=﹣x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点.(1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP 为平行四边形,求点P的坐标;(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC 于点N,点Q从点B出发,以每秒1个单位长度的速度沿线段BA 向点A运动,运动时间为t(秒),当t(秒)为何值时,存在△QMN 为等腰直角三角形?解:(1)令x=0代入y=﹣x+3∴y=3,∴C(0,3),令y=0代入y=﹣x+3∴x=4,∴B(4,0),设抛物线的解析式为:y=a(x+2)(x﹣4),把C(0,3)代入y=a(x+2)(x﹣4),∴a=﹣,∴抛物线的解析式为:y=(x+2)(x﹣4)=﹣x2+x+3,∴顶点D的坐标为(1,);(2)当DP∥BC时,此时四边形DEFP是平行四边形,设直线DP的解析式为y=mx+n,∵直线BC的解析式为:y=﹣x+3,∴m=﹣,∴y=﹣x+n,把D(1,)代入y=﹣x+n,∴n=,∴直线DP的解析式为y=﹣x+,∴联立,解得:x=3或x=1(舍去),∴把x=3代入y=﹣x+,y=,∴P的坐标为(3,);(3)由题意可知:0≤t≤6,设直线AC的解析式为:y=m1x+n1,把A(﹣2,0)和C(0,3)代入y=m1x+n1,得:,∴解得,∴直线AC的解析式为:y=x+3,由题意知:QB=t,如图1,当∠NMQ=90°,∴OQ=4﹣t,令x=4﹣t代入y=﹣x+3,∴y=t,∴M(4﹣t,t),∵MN∥x轴,∴N的纵坐标为t,把y=t代入y=x+3,∴x=t﹣2,∴N(t﹣2,t),∴MN=(4﹣t)﹣(﹣2)=6﹣t,∵MQ∥OC,∴△BQM∽△BOC,∴,∴MQ=t,当MN=MQ时,∴6﹣t=t,∴t=,此时QB=,符合题意,如图2,当∠QNM=90°时,∵QB=t,∴点Q的坐标为(4﹣t,0)∴令x=4﹣t代入y=x+3,∴y=9﹣t,∴N(4﹣t,9﹣t),∵MN∥x轴,∴点M的纵坐标为9﹣t,∴令y=9﹣t代入y=﹣x+3,∴x=2t﹣8,∴M(2t﹣8,9﹣t),∴MN=(2t﹣8)﹣(4﹣t)=3t﹣12,∵NQ∥OC,∴△AQN∽△AOC,∴=,∴NQ=9﹣t,当NQ=MN时,∴9﹣t=3t﹣12,∴t=,∴此时QB=,符合题意如图3,当∠NQM=90°,过点Q作QE⊥MN于点E,过点M作MF⊥x轴于点F,设QE=a,令y=a代入y=﹣x+3,∴x=4﹣,∴M(4﹣a,a),令y=a代入y=x+3,∴x=﹣2,∴N(﹣2,0),∴MN=(4﹣a)﹣(a﹣2)=6﹣2a,当MN=2QE时,∴6﹣2a=2a,∴a=,∴MF=QE=,∵MF∥OC,∴△BMF∽△BCO,∴=,∴BF=2,∴QB=QF+BF=+2=,∴t=,此情况符合题意,综上所述,当△QMN为等腰直角三角形时,此时t=或或6.(2017·潍坊) 如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P在直线l上方抛物线上一动点,设点P的横坐标为t(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF =S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴=,即=,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.。
2-2018年全国各地中考数学压轴题汇编:函数(华北东北专版)(解析卷)
2018年全国各地中考数学压轴题汇编(华北东北专版)函数1.(2018•北京)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx ﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.解:(1)与y轴交点:令x=0代入直线y=4x+4得y=4,∴B(0,4),∵点B向右平移5个单位长度,得到点C,∴C(5,4);(2)与x轴交点:令y=0代入直线y=4x+4得x=﹣1,∴A(﹣1,0),∵点B向右平移5个单位长度,得到点C,将点A(﹣1,0)代入抛物线y=ax2+bx﹣3a中得0=a﹣b﹣3a,即b=﹣2a,∴抛物线的对称轴x=﹣=﹣=1;(3)∵抛物线y=ax2+bx﹣3a经过点A(﹣1,0)且对称轴x=1,由抛物线的对称性可知抛物线也一定过A的对称点(3,0),①a>0时,如图1,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a<4,a>﹣,将x=5代入抛物线得y=12a,∴12a≥4,a≥,∴a≥;②a<0时,如图2,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a>4,a<﹣;③当抛物线的顶点在线段BC上时,则顶点为(1,4),如图3,将点(1,4)代入抛物线得4=a﹣2a﹣3a,解得a=﹣1.综上所述,a≥或a<﹣或a=﹣1.2.(2018•天津)某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(I)根据题意,填写下表:游泳次数10 15 20 (x)方式一的总费用(元)150 175 200…100+5x方式二的总费用(元)90 135 180 (9x)(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.解:(I)当x=20时,方式一的总费用为:100+20×5=200,方式二的费用为:20×9=180,当游泳次数为x时,方式一费用为:100+5x,方式二的费用为:9x,故答案为:200,100+5x,180,9x;(II)方式一,令100+5x=270,解得:x=34,方式二、令9x=270,解得:x=30;∵34>30,∴选择方式一付费方式,他游泳的次数比较多;(III)令100+5x<9x,得x>25,令100+5x=9x,得x=25,令100+5x>9x,得x<25,∴当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,但x>25时,小明选择方式一的付费方式.3.(2018•北京)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A(4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.4.(2018•河北)如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B 两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.解:(1)把C(m,4)代入一次函数y=﹣x+5,可得4=﹣m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,y=﹣x+5,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC﹣S△BOC=×10×4﹣×5×2=20﹣5=15;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=﹣;故k的值为或2或﹣.5.(2018•北京)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm 0 1 2 3 4 5 6y1/cm 5.62 4.67 3.76 3 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.解:(1)∵PA=6时,AB=6,BC=4.37,AC=4.11,∴AB2=AC2+BC2,∴∠ACB=90°,∴AB是直径.当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.6.(2018•河北)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A 处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.解:(1)由题意,点A(1,18)带入y=得:18=∴k=18设h=at2,把t=1,h=5代入∴a=5∴h=5t2(2)∵v=5,AB=1∴x=5t+1∵h=5t2,OB=18∴y=﹣5t2+18由x=5t+1则t=∴y=﹣当y=13时,13=﹣解得x=6或﹣4∵x≥1∴x=6把x=6代入y=y=3∴运动员在与正下方滑道的竖直距离是13﹣3=10(米)(3)把y=1.8代入y=﹣5t2+18得t2=解得t=1.8或﹣1.8(负值舍去)∴x=10∴甲坐标为(10,1.8)恰号落在滑道y=上此时,乙的坐标为(1+1.8v乙,1.8)由题意:1+1.8v乙﹣(1+5×1.8)>4.5∴v乙>7.57.(2018•山西)如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.解:(1)∵一次函数y1=k1x+b的图象经过点C(﹣4,﹣2),D(2,4),∴,解得.∴一次函数的表达式为y1=x+2.∵反比例函数的图象经过点D(2,4),∴.∴k2=8.∴反比例函数的表达式为.(2)由y1>0,得x+2>0.∴x>﹣2.∴当x>﹣2时,y1>0.(3)x<﹣4或0<x<2.8.(2018•天津)在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m(m 是常数),顶点为P.(Ⅰ)当抛物线经过点A时,求顶点P的坐标;(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.解:(Ⅰ)∵抛物线y=x2+mx﹣2m经过点A(1,0),∴0=1+m﹣2m,解得:m=1,∴抛物线解析式为y=x2+x﹣2,∵y=x2+x﹣2=(x+)2﹣,∴顶点P的坐标为(﹣,﹣);(Ⅱ)抛物线y=x2+mx﹣2m的顶点P的坐标为(﹣,﹣),由点A(1,0)在x轴的正半轴上,点P在x轴的下方,∠AOP=45°知点P在第四象限,如图1,过点P作PQ⊥x轴于点Q,则∠POQ=∠OPQ=45°,可知PQ=OQ,即=﹣,解得:m1=0,m2=﹣10,当m=0时,点P不在第四象限,舍去;∴m=﹣10,∴抛物线的解析式为y=x2﹣10x+20;(Ⅲ)由y=x2+mx﹣2m=x2+m(x﹣2)可知当x=2时,无论m取何值时y都等于4,∴点H的坐标为(2,4),过点A作AD⊥AH,交射线HP于点D,分别过点D、H作x轴的垂线,垂足分别为E、G,则∠DEA=∠AGH=90°,∵∠DAH=90°,∠AHD=45°,∴∠ADH=45°,∴AH=AD,∵∠DAE+∠HAG=∠AHG+∠HAG=90°,∴∠DAE=∠AHG,∴△ADE≌△HAG,∴DE=AG=1、AE=HG=4,则点D的坐标为(﹣3,1)或(5,﹣1);①当点D的坐标为(﹣3,1)时,可得直线DH的解析式为y=x+,∵点P(﹣,﹣)在直线y=x+上,∴﹣=×(﹣)+,解得:m1=﹣4、m2=﹣,当m=﹣4时,点P与点H重合,不符合题意,∴m=﹣;②当点D的坐标为(5,﹣1)时,可得直线DH的解析式为y=﹣x+,∵点P(﹣,﹣)在直线y=﹣x+上,∴﹣=﹣×(﹣)+,解得:m1=﹣4(舍),m2=﹣,综上,m=﹣或m=﹣,则抛物线的解析式为y=x2﹣x+或y=x2﹣x+.9.(2018•呼和浩特)已知变量x、y对应关系如下表已知值呈现的对应规律.x …﹣4 ﹣3 ﹣2 ﹣1 1 2 3 4 …y … 1 2 ﹣2 ﹣1 ﹣﹣…(1)依据表中给出的对应关系写出函数解析式,并在给出的坐标系中画出大致图象;(2)在这个函数图象上有一点P(x,y)(x<0),过点P分别作x轴和y轴的垂线,并延长与直线y=x﹣2交于A、B两点,若△PAB的面积等于,求出P点坐标.解:(1)由图可知:y=(2)设点P(x,),则点A(x,x﹣2)由题意可知△PAB是等腰三角形,∵S△PAB=,∴PA=PB=5,∵x<0,∴PA=y P﹣y A=﹣x+2即﹣x+2=5解得:x1=﹣2,x2=﹣1∴点P(﹣2,1)或(﹣1,2)10.(2018•山西)综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.解:(1)当y=0,x﹣4=0,解得x1=﹣3,x2=4,∴A(﹣3,0),B(4,0),当x=0,y=x﹣4=﹣4,∴C(0,﹣4);(2)AC==5,易得直线BC的解析式为y=x﹣4,设Q(m,m﹣4)(0<m<4),当CQ=CA时,m2+(m﹣4+4)2=52,解得m1=,m2=﹣(舍去),此时Q点坐标为(,﹣4);当AQ=AC时,(m+3)2+(m﹣4)2=52,解得m1=1,m2=0(舍去),此时Q点坐标为(1,﹣3);当QA=QC时,(m+3)2+(m﹣4)2=52,解得m=(舍去),综上所述,满足条件的Q点坐标为(,﹣4)或(1,﹣3);(3)解:过点F作FG⊥PQ于点G,如图,则FG∥x轴.由B(4,0),C(0,﹣4)得△OBC为等腰直角三角形∴∠OBC=∠QFG=45∴△FQG为等腰直角三角形,∴FG=QG=FQ,∵PE∥AC,PG∥CO,∴∠FPG=∠ACO,∵∠FGP=∠AOC=90°,∴△FGP~△AOC.∴=,即=,∴PG=FG=•FQ=FQ,∴PQ=PG+GQ=FQ+FQ=FQ,∴FQ=PQ,设P(m,m2﹣m﹣4)(0<m<4),则Q(m,m﹣4),∴PQ=m﹣4﹣(m2﹣m﹣4)=﹣m2+m,∴FQ=(﹣m2+m)=﹣(m﹣2)2+∵﹣<0,∴QF有最大值.∴当m=2时,QF有最大值.11.(2018•呼和浩特)某市计划在十二年内通过公租房建设,解决低收入人群的住房问题.已知前7年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x(第x年)的关系构成一次函数,(1≤x≤7且x为整数),且第一和第三年竣工投入使的公租房面积分别为和百万平方米;后5年每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x(第x年)的关系是y=﹣x+(7<x≤12且x为整数).(1)已知第6年竣工投入使用的公租房面积可解决20万人的住房问题,如果人均住房面积,最后一年要比第6年提高20%,那么最后一年竣工投入使用的公租房面积可解决多少万人的住房问题?(2)受物价上涨等因素的影响,已知这12年中,每年竣工投入使用的公租房的租金各不相同,且第一年,一年38元/m2,第二年,一年40元/m2,第三年,一年42元/m2,第四年,一年44元/m2……以此类推,分析说明每平方米的年租金和时间能否构成函数,如果能,直接写出函数解析式;(3)在(2)的条件下,假设每年的公租房当年全部出租完,写出这12年中每年竣工投入使用的公租房的年租金W关于时间x的函数解析式,并求出W的最大值(单位:亿元).如果在W取得最大值的这一年,老张租用了58m2的房子,计算老张这一年应交付的租金.解:(1)设y=kx+b(1≤x≤7),由题意得,,解得k=﹣,b=4∴y=﹣x+4(1≤x≤7)∴x=6时,y=﹣×6+4=3∴300÷20=15,15(1+20%)=18,又x=12时,y=﹣×12+=∴×100÷18=12.5万人,所以最后一年可解决12.5万人的住房问题;(2)由于每平方米的年租金和时间都是变量,且对于每一个确定的时间x的值,每平方米的年租金m都有唯一的值与它对应,所以它们能构成函数.由题意知m=2x+36(1≤x≤12)(3)解:W=∵当x=3时W max=147,x=8时W max=143,147>143∴当x=3时,年租金最大,W max=1.47亿元当x=3时,m=2×3+36=42元58×42=2436元答:老张这一年应交租金为2436元.12.(2018•包头)如图,在平面直角坐标系中,已知抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.(1)求直线l的解析式;(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD ⊥AC时,求线段DE的长;(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)∵抛物线y=x2+x﹣2,∴当y=0时,得x1=1,x2=﹣4,当x=0时,y=﹣2,∵抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,∴点A的坐标为(﹣4,0),点B(1,0),点C(0,﹣2),∵直线l经过A,C两点,设直线l的函数解析式为y=kx+b,,得,即直线l的函数解析式为y=;(2)直线ED与x轴交于点F,如图1所示,由(1)可得,AO=4,OC=2,∠AOC=90°,∴AC=2,∴OD=,∵OD⊥AC,OA⊥OC,∠OAD=∠CAO,∴△AOD∽△ACO,∴,即,得AD=,∵EF⊥x轴,∠ADC=90°,∴EF∥OC,∴△ADF∽△ACO,∴,解得,AF=,DF=,∴OF=4﹣=,∴m=﹣,当m=﹣时,y=×()2+×(﹣)﹣2=﹣,∴EF=,∴DE=EF﹣FD=;(3)存在点P,使∠BAP=∠BCO﹣∠BAG,理由:作GM⊥AC于点M,作PN⊥x轴于点N,如图2所示,∵点A(﹣4,0),点B(1,0),点C(0,﹣2),∴OA=4,OB=1,OC=2,∴tan∠OAC=,tan∠OCB=,AC=2,∴∠OAC=∠OCB,∵∠BAP=∠BCO﹣∠BAG,∠GAM=∠OAC﹣∠BAG,∴∠BAP=∠GAM,∵点G(0,﹣1),AC=2,OA=4,∴OG=1,GC=1,∴AG=,,即,解得,GM=,∴AM===,∴tan∠GAM==,∴tan∠PAN=,设点P的坐标为(n,n2+n﹣2),∴AN=4+n,PN=n2+n﹣2,∴,解得,n1=,n2=﹣4(舍去),当n=时,n2+n﹣2=,∴点P的坐标为(,),即存在点P(,),使∠BAP=∠BCO﹣∠BAG.13.(2018•通辽)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?解:(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据题意可得,解得,答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,根据题意可得,解得75<m≤78,∵m为整数,∴m的值为76、77、78,∴进货方案有3种,分别为:方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W随m的增大而增大,且75<m≤78,∴当m=78时,W最大,W最大值为1390,答:当m=78时,所获利润最大,最大利润为1390元.14.(2018•赤峰)已知抛物线y=﹣x2﹣x的图象如图所示:(1)将该抛物线向上平移2个单位,分别交x轴于A、B两点,交y轴于点C,则平移后的解析式为y=﹣x2﹣x+2.(2)判断△ABC的形状,并说明理由.(3)在抛物线对称轴上是否存在一点P,使得以A、C、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.解:(1)将该抛物线向上平移2个单位,得y=﹣x2﹣x+2,故答案为:y=﹣x2﹣x+2;(2)当y=0时,﹣x2﹣x+2=0,解得x1=﹣4,x2=1,即B(﹣4,0),A(1,0).当x=0时,y=2,即C(0,2).AB=1﹣(﹣4)=5,AB2=25,AC2=(1﹣0)2+(0﹣2)2=5,BC2=(﹣4﹣0)2+(0﹣2)2=20,∵AC2+BC2=AB2,∴△ABC是直角三角形;(3)y=﹣x2﹣x+2的对称轴是x=﹣,设P(﹣,n),AP2=(1+)2+n2=+n2,CP2=+(2﹣n)2,AC2=12+22=5当AP=AC时,AP2=AC2, +n2=5,方程无解;当AP=CP时,AP2=CP2, +n2=+(2﹣n)2,解得n=0,即P1(﹣,0),当AC=CP时AC2=CP2, +(2﹣n)2=5,解得n1=2+,n2=2﹣,P2(﹣,2+),P3(﹣,2﹣).综上所述:使得以A、C、P为顶点的三角形是等腰三角形,点P的坐标(﹣,0),(﹣,2+),(﹣,2﹣).15.(2018•黑龙江)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P(﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).16.(2018•通辽)如图,抛物线y=ax2+bx﹣5与坐标轴交于A(﹣1,0),B(5,0),C(0,﹣5)三点,顶点为D.(1)请直接写出抛物线的解析式及顶点D的坐标;(2)连接BC与抛物线的对称轴交于点E,点P为线段BC上的一个动点(点P不与B、C两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①是否存在点P,使四边形PEDF为平行四边形?若存在,求出点P的坐标;若不存在,说明理由.②过点F作FH⊥BC于点H,求△PFH周长的最大值.解:(1)把A(﹣1,0),B(5,0)代入抛物线y=ax2+bx﹣5解得∴y=x2﹣4x﹣5∴顶点坐标为D(2,﹣9)(2)①存在设直线BC的函数解析式为y=kx+b(k≠0)把B(5,0),C(0,﹣5)代入得∴BC解析式为y=x﹣5当x=m时,y=m﹣5∴P(m,m﹣5)当x=2时,y=2﹣5=﹣3∴E(2.﹣3)∵PF∥DE∥y轴∴点F的横坐标为m当x=m时,y=m2﹣4m﹣5∴F(m,m2﹣4m﹣5)∴PF=(m﹣5)﹣(m2﹣4m﹣5)=﹣m2+5m∵E(2,﹣3),D(2,﹣9)∴DE=﹣3﹣(﹣9)=6如图,连接DF∵PF∥DE∴当PF=DE时,四边形PEDF为平行四边形即﹣m2+5m=6解得m1=3,m2=2(舍去)当m=3时,y=3﹣5=2此时P(3,﹣2)∴存在点P(3,﹣2)使四边形PEDF为平行四边形.②由题意在Rt△BOC中,OB=OC=5∴BC=5∴C△BOC=10+5∵PF∥DE∥y轴∴∠FPE=∠DEC=∠OCB∵FH⊥BC∴∠FHP=∠BOC=90°∴△PFH∽△BCO∴即C△PFH=∵0<m<5∴当m=﹣时,△PFH周长的最大值为17.(2018•黑龙江)某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米20吨,a=15.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?解:(1)由图象可知,第一天甲乙共加工220﹣185=35吨,第二天,乙停止工作,甲单独加工185﹣165=20吨,则乙一天加工35﹣20=15吨.a=15故答案为:20,15(2)设y=kx+b把(2,15),(5,120)代入解得∴y=35x﹣55(3)由图2可知当w=220﹣55=165时,恰好是第二天加工结束.当2≤x≤5时,两个车间每天加工速度为=55吨∴再过1天装满第二节车厢18.(2018•齐齐哈尔)某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20min后乘坐小轿车沿同一路线出行.大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程S(单位:km)和行驶时间t(单位:min)之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为40km,大客车途中停留了5min,a=15;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)小轿车司机到达景点入口时发现本路段限速80km/h,请你帮助小轿车司机计算折返时是否超速?(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待10分钟,大客车才能到达景点入口.解:(1)由图形可得:学校到景点的路程为40km,大客车途中停留了5min,小轿车的速度:=1(千米/分),a=(35﹣20)×1=15,(3分)故答案为:40,5,15;(2)由(1)得:a=15,得大客车的速度:=(千米/分),(4分)小轿车赶上来之后,大客车又行驶了:(60﹣35)×=(千米),40﹣﹣15=(千米),(6分)答:在小轿车司机驶过景点入口时,大客车离景点入口还有千米;(3)∵A(20,0),F(60,40),设直线AF的解析式为:S=kt+b,则,解得:,∴直线AF的解析式为:S=t﹣20,(7分)当S=46时,46=t﹣20,t=66,小轿车赶上来之后,大客车又行驶的时间:=35,小轿车司机折返时的速度:6÷(35+35﹣66)=(千米/分)=90千米/时>80千米/时,(8分)∴小轿车折返时已经超速;(4)大客车的时间:=80min,80﹣70=10min,答:小轿车折返后到达景点入口,需等待10分钟,大客车才能到达景点入口.(10分)故答案为:10.19.(2018•哈尔滨)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E 在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.解:(1)如图1中,∵y=﹣x+,∴B(,0),C(0,),∴BO=,OC=,在Rt△OBC中,BC==7,∵四边形ABCD是菱形,∴AB=BC=7,∴OA=AB﹣OB=7﹣=,∴A(﹣,0).(2)如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠APB=60°,∴∠APB=∠ACB,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACE≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∵△CEF是等边三角形,∴∠CEF=60°,EC=CF,∵∠AFE=30°,∠CEF=∠H+∠EFH,∴∠H=∠CEF﹣∠EFH=30°,∴∠H=∠EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠PEC=∠AEH,∴△CPE≌△HAE,∴∠PCE=∠H,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠TCF=∠CTP﹣∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,∴AT⊥PF,设BF=m,则AE=PE=m,∴PF=AP=2m,TF=TP=m,TB=2m,BP=3m,在Rt△APT中,AT==m,在Rt△ABT中,∵AT2+TB2=AB2,∴(m)2+(2m)2=72,解得m=或﹣(舍弃),∴BF=,AT=,BP=3,sin∠ABT==,∵OK=PQ=BP•sin∠PBQ=3×=3,BQ==6,∴OQ=BQ﹣BO=6﹣=,∴P(﹣,3)20.(2018•大庆)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求△OAP的面积.解:(1)将点A(4,3)代入y=,得:k=12,则反比例函数解析式为y=;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴OA==5,∵AB∥x轴,且AB=OA=5,∴点B的坐标为(9,3);(3)∵点B坐标为(9,3),∴OB所在直线解析式为y=x,由可得点P坐标为(6,2),过点P作PD⊥x轴,延长DP交AB于点E,则点E坐标为(6,3),∴AE=2、PE=1、PD=2,则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=5..(2018•齐齐哈尔)综合与探究如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.(1)求抛物线的解析式(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N.①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为或4;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)解:(1)将A(﹣4,0)代入y=x+c∴c=4将A(﹣4,0)和c=4代入y=﹣x2+bx+c∴b=﹣3∴抛物线解析式为y=﹣x2﹣3x+4(2)做点C关于抛物线的对称轴直线l的对称点C′,连OC′,交直线l于点E.连CE,此时CE+OE的值最小.∵抛物线对称轴位置线x=﹣∴CC′=3由勾股定理OC′=5∴CE+OE的最小值为5(3)①当△CNP∽△AMP时,∠CNP=90°,则NC关于抛物线对称轴对称∴NC=NP=3∴△CPN的面积为当△CNP∽△MAP时由已知△NCP为等腰直角三角形,∠NCP=90°过点C作CE⊥MN于点E,设点M坐标为(a,0)∴EP=EC=﹣a,则N为(a,﹣a2﹣3a+4),MP=﹣a2﹣3a+4﹣(﹣2a)=﹣a2﹣a+4 ∴P(a,﹣a2﹣a+4)代入y=x+4解得a=﹣2∴△CPN的面积为4故答案为:或4②存在设M坐标为(a,0)则N为(a,﹣a2﹣3a+4)则P点坐标为(a,)把点P坐标代入y=﹣x+4解得a1=﹣4(舍去),a2=﹣1当PF=FM时,点D在MN垂直平分线上,则D()当PM=PF时,由菱形性质点D坐标为(﹣1+,)(﹣1﹣,﹣)当MP=MF时,M、D关于直线y=﹣x+4对称,点D坐标为(﹣4,3)22.(2018•大庆)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF 的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.解:(1)把B(4,0),C(0,4)代入y=x2+bx+c,得,解得,∴抛物线的解析式为y=x2﹣5x+4;(2)易得BC的解析式为y=﹣x+4,∵直线y=x+m与直线y=x平行,∴直线y=﹣x+4与直线y=x+m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图1,△EPG为等腰直角三角形,PE=PG,设P(t,t2﹣5t+4)(1<t<4),则G(t,﹣t+4),∴PF=PH=t,PG=﹣t+4﹣(t2﹣5t+4)=﹣t2+4t,∴PE=PG=﹣t2+2t,∴PE+EF=PE+PE+PF=2PE+PF=﹣t2+4t+t=﹣t2+5t=﹣(t﹣)2+,当t=时,PE+EF的最大值为;(3)①如图2,抛物线的对称轴为直线x=,设D(,y),则BC2=42+42=32,DC2=()2+(y﹣4)2,BD2=(4﹣)2+y2=+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即32+()2+(y﹣4)2=+y2,解得y=5,此时D点坐标为(,);当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即32++y2=()2+(y﹣4)2,解得y=﹣1,此时D点坐标为(,﹣);综上所述,符合条件的点D的坐标是(,)或(,﹣);②当△BCD是以BC为斜边的直角三角形时,DC2+DB2=BC2,即()2+(y﹣4)2++y2=32,解得y1=,y2=,此时D点坐标为(,)或(,),所以△BCD是锐角三角形,点D的纵坐标的取值范围为<y<或﹣<y<.23.(2018•吉林)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为4000m,小玲步行的速度为100m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.解:(1)结合题意和图象可知,线段CD为小玲路程与时间函数图象,折现O﹣A﹣B为为小东路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为2000÷20=200m/s故答案为:4000,100(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,∴他离家的路程y=4000﹣300x自变量x的范围为0≤x≤(3)由图象可知,两人相遇是在小玲改变速度之前∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.24.(2018•长春)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是1立方米,从打开输入口到关闭输出口共用的时间为11分钟.解:(1)每分钟向储存罐内注入的水泥量为15÷3=5立方米;(2)设y=kx+b(k≠0)把(3,15)(5.5,25)代入解得∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为5﹣4=1立方米;只打开输出口前,水泥输出量为5.5﹣3=2.5立方米,之后达到总量8立方米需需输出8﹣2.5=5.5立方米,用时5.5分钟∴从打开输入口到关闭输出口共用的时间为:5.5+5.5=11分钟故答案为:1,1125.(2018•吉林)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B 两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为(﹣1,4),OE=3;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m 的函数解析式及自变量m的取值范围.。
2018年中考数学二次函数压轴题集锦(50道含解析)
1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围.3.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.4.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.5.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.6.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.7.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.8.在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx ﹣2m(m是常数),顶点为P.(Ⅰ)当抛物线经过点A时,求顶点P的坐标;(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.9.如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.10.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(圆可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.11.已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.12.在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.13.如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标14.小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b=,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(3)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1,其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n,其顶点为A n…(n为正整数).求A n A n+1的长(用含n的式子表示).15.如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;(3)抛物线上是否存在点Q,使得S△AOC =S△AOQ?若存在,求出点Q的坐标;若不存在,请说明理由.16.如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C 为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.17.如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为﹣,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.18.已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.19.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.20.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①=;②=;③“十字形”ABCD的周长为12.21.如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.22.如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.23.如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1,),点B (3,﹣),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC的大小及点C的坐标.24.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.25.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.26.如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在请说明理由.27.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M,N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.28.如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K的范围.29.抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.(1)如图1,连接CD,求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC 交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC 的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C绕点B2旋转一周,在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.30.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE ∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.31.如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在,求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.32.如图,在平面直角坐标系中,二次函数y=(x﹣a)(x﹣3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C 作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上?若能,求出a的值;若不能,请说明理由.33.如图,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y 轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.34.已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小.35.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.(1)求此抛物线的表达式;(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD 的面积;(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.36.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.37.直线y=﹣x+3交x轴于点A,交y轴于点B,顶点为D的抛物线y=﹣x2+2mx ﹣3m经过点A,交x轴于另一点C,连接BD,AD,CD,如图所示.(1)直接写出抛物线的解析式和点A,C,D的坐标;(2)动点P在BD上以每秒2个单位长的速度由点B向点D运动,同时动点Q 在CA上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒.PQ交线段AD于点E.①当∠DPE=∠CAD时,求t的值;②过点E作EM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N,当PN=EM时,求t的值.38.如图1,在平面直角坐标系中,直线y=x﹣1与抛物线y=﹣x2+bx+c交于A、B两点,其中A(m,0)、B(4,n),该抛物线与y轴交于点C,与x轴交于另一点D.(1)求m、n的值及该抛物线的解析式;(2)如图2,若点P为线段AD上的一动点(不与A、D重合),分别以AP、DP为斜边,在直线AD的同侧作等腰直角△APM和等腰直角△DPN,连接MN,试确定△MPN面积最大时P点的坐标;(3)如图3,连接BD、CD,在线段CD上是否存在点Q,使得以A、D、Q为顶点的三角形与△ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由.39.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.40.如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(﹣2,0),B(0,﹣6),将Rt△AOB绕点O按顺时针方向分别旋转90°,180°得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为,点E的坐标为;抛物线C1的解析式为.抛物线C2的解析式为;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记h=PM+NM+BM,求h与x的函数关系式,当﹣5≤x≤﹣2时,求h的取值范围.41.如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C (0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.42.如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y 轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y0≤9时,直接写出L的取值范围.43.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.44.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y 轴交于点C(0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.45.如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.46.如图,已知抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0)和点B(1,0),交y轴于点C,过点C作CD∥x轴,交抛物线于点D.(1)求抛物线的解析式;(2)若直线y=m(﹣3<m<0)与线段AD、BD分别交于G、H两点,过G点作EG⊥x轴于点E,过点H作HF⊥x轴于点F,求矩形GEFH的最大面积;(3)若直线y=kx+1将四边形ABCD分成左、右两个部分,面积分别为S1,S2,且S1:S2=4:5,求k的值.47.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.48.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.49.在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D (4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.50.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.一.解答题(共50小题)1.如图1,已知二次函数y=ax 2+x +c (a ≠0)的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC .(1)请直接写出二次函数y=ax 2+x +c 的表达式;(2)判断△ABC 的形状,并说明理由;(3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请写出此时点N 的坐标;(4)如图2,若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM ∥AC ,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B 的坐标,然后根据勾股定理分别求得AB 2=20,AC 2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC 是直角三角形. (3)分别以A 、C 两点为圆心,AC 长为半径画弧,与x 轴交于三个点,由AC 的垂直平分线与x 轴交于一个点,即可求得点N 的坐标;(4)设点N 的坐标为(n ,0),则BN=n +2,过M 点作MD ⊥x 轴于点D ,根据三角形相似对应边成比例求得MD=(n +2),然后根据S △AMN =S △ABN ﹣S △BMN 得出关于n 的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax 2+x +c 的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0), ∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,AB==2,BC=8﹣(﹣2)=10,AC==4,∴AB2+AC2=BC2,∴∠BAC=90°.∴AC⊥AB.∵AC∥MN,∴MN⊥AB.设点N的坐标为(n,0),则BN=n+2,∵MN∥AC,△BMN∽△BAC∴=,∴=,BM==,MN==,AM=AB﹣BM=2﹣==AM•MN∵S△AMN=××=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数的综合题,解(1)的关键是待定系数法求解析式,解(2)的关键是勾股定理和逆定理,解(3)的关键是等腰三角形的性质,解(4)的关键是三角形相似的判定和性质以及函数的最值等.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围.【分析】(1)根据点A、B、C三点的坐标作出△ABC,利用“闭距离”的定义即可得;(2)由题意知y=kx在﹣1≤x≤1范围内函数图象为过原点的线段,再分别求得经过(1,﹣1)和(﹣1,﹣1)时k的值即可得;(3)分⊙T在△ABC的左侧、内部和右侧三种情况,利用“闭距离”的定义逐一判断即可得.【解答】解:(1)如图所示,点O到△ABC的距离的最小值为2,∴d(点O,△ABC)=2;(2)y=kx(k≠0)经过原点,在﹣1≤x≤1范围内,函数图象为线段,当y=kx(﹣1≤x≤1,k≠0)经过(1,﹣1)时,k=﹣1,此时d(G,△ABC)=1;当y=kx(﹣1≤x≤1,k≠0)经过(﹣1,﹣1)时,k=1,此时d(G,△ABC)=1;∴﹣1≤k≤1,∵k≠0,∴﹣1≤k≤1且k≠0;。
2018中考数学二次函数压轴题汇编
1.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB 及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.3.在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M 的关联点.(1)当⊙O的半径为2时,①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是.②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.4.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y 轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.5.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.6.已知抛物线y=x2+bx﹣3(b是常数)经过点A(﹣1,0).(1)求该抛物线的解析式和顶点坐标;(2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P'.①当点P'落在该抛物线上时,求m的值;②当点P'落在第二象限内,P'A2取得最小值时,求m的值.7.在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.8.已知函数y=﹣x2+(m﹣1)x+m(m为常数).(1)该函数的图象与x轴公共点的个数是.A.0B.1C.2D.1或2(2)求证:不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当﹣2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.9.已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.10.在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.11.定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(P点与A、B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.(1)直接写出抛物线y=﹣x2+1的勾股点的坐标.(2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,)是抛物线C的勾股点,求抛物线C的函数表达式.(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的Q点(异于点P)的坐标.12.如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.13.如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.14.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.15.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.16.如图,已知二次函数y=x2﹣4的图象与x轴交于A,B两点,与y轴交于点C,⊙C的半径为,P为⊙C上一动点.(1)点B,C的坐标分别为B(),C();(2)是否存在点P,使得△PBC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)连接PB,若E为PB的中点,连接OE,则OE的最大值= .17.已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.18.已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;(3)延长AD、BO相交于点E,求证:DE=CO.19.如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m 的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0,y0)总有n+≥﹣4my 02﹣12y0﹣50成立,求实数n的最小值.20.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点,①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE 的面积为S2,求的最大值;②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.21.在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,且经过点A(0,)(1)若此抛物线经过点B(2,﹣),且与x轴相交于点E,F.①填空:b= (用含a的代数式表示);②当EF2的值最小时,求抛物线的解析式;(2)若a=,当0≤x≤1,抛物线上的点到x轴距离的最大值为3时,求b 的值.22.如图,在平面直角坐标系中,抛物线y=ax2+bx+1交y轴于点A,交x 轴正半轴于点B(4,0),与过A点的直线相交于另一点D(3,),过点D作DC⊥x轴,垂足为C.(1)求抛物线的表达式;(2)点P在线段OC上(不与点O、C重合),过P作PN⊥x轴,交直线AD于M,交抛物线于点N,连接CM,求△PCM面积的最大值;(3)若P是x轴正半轴上的一动点,设OP的长为t,是否存在t,使以点M、C、D、N为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.23.如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.24.已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1.①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P 落在以原点为圆心,半径为的圆内或圆上.设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.25.如图,抛物线y=x2+x+c与x轴的负半轴交于点A,与y轴交于点B,连结AB,点C(6,)在抛物线上,直线AC与y轴交于点D.(1)求c的值及直线AC的函数表达式;(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.①求证:△APM∽△AON;②设点M的横坐标为m,求AN的长(用含m的代数式表示).26.如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.27.如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=x+1与抛物线交于B,D两点,以BD 为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求BE:MF的值.28.平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A、B,且a、m满足2a﹣m=d(d 为常数).(1)若一次函数y1=kx+b的图象经过A、B两点.①当a=1、d=﹣1时,求k的值;②若y1随x的增大而减小,求d的取值范围;(2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由;(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.29.如图,抛物线y=﹣x2+x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC交于点F.设点P的运动时间为t秒(t>0).(1)求直线BC的函数表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)②在点P、Q运动的过程中,当PQ=PD时,求t的值;(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD 的中点?若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.30.如图,在平面直角坐标系xOy中,抛物线y=x2﹣2x﹣3交x轴于A,B 两点(点A在点B的左侧),将该抛物线位于x轴上方曲线记作M,将该抛物线位于x轴下方部分沿x轴翻折,翻折后所得曲线记作N,曲线N交y轴于点C,连接AC、BC.(1)求曲线N所在抛物线相应的函数表达式;(2)求△ABC外接圆的半径;(3)点P为曲线M或曲线N上的一动点,点Q为x轴上的一个动点,若以点B,C,P,Q为顶点的四边形是平行四边形,求点Q的坐标.31.如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为x=1,与x 轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P、Q的坐标;若不存在,说明理由.32.如图,已知二次函数y=ax2+bx+3(a≠0)的图象经过点A(3,0),B(4,1),且与y轴交于点C,连接AB、AC、BC.(1)求此二次函数的关系式;(2)判断△ABC的形状;若△ABC的外接圆记为⊙M,请直接写出圆心M 的坐标;(3)若将抛物线沿射线BA方向平移,平移后点A、B、C的对应点分别记为点A1、B1、C1,△A1B1C1的外接圆记为⊙M1,是否存在某个位置,使⊙M1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.33.抛物线y=4x2﹣2ax+b与x轴相交于A(x1,0),B(x2,0)(0<x1<x2)两点,与y轴交于点C.(1)设AB=2,tan∠ABC=4,求该抛物线的解析式;(2)在(1)中,若点D为直线BC下方抛物线上一动点,当△BCD的面积最大时,求点D的坐标;(3)是否存在整数a,b使得1<x1<2和1<x2<2同时成立,请证明你的结论.34.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B (4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值.35.如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E 的直线l将平行四边形ABCD分割为面积相等的两部分,与抛物线交于另一点F.点P为直线l上方抛物线上一动点,设点P的横坐标为t.(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.36.如图,某日的钱塘江观潮信息如图:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数s=t2+bt+c(b,c是常数)刻画.(1)求m的值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t﹣30),v0是加速前的速度).37.如图1,抛物线y=ax2+bx+2与x轴交于A,B两点,与y轴交于点C,AB=4,矩形OBDC的边CD=1,延长DC交抛物线于点E.(1)求抛物线的解析式;(2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l 的最大值;(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M的坐标;若不存在,请说明理由.38.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值.39.抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.40.《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A,则a= .【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y随x增大而增大时x的取值范围.【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围.1.如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A (,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.2.如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b= ,c= ;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;(3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P 为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;(4)如图②,点N的坐标为(﹣,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.3.定义:对于给定的两个函数,任取自变量x 的一个值,当x <0时,它们对应的函数值互为相反数;当x ≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x ﹣1,它的相关函数为y=.(1)已知点A (﹣5,8)在一次函数y=ax ﹣3的相关函数的图象上,求a 的值;(2)已知二次函数y=﹣x 2+4x ﹣.①当点B (m ,)在这个函数的相关函数的图象上时,求m 的值;②当﹣3≤x ≤3时,求函数y=﹣x 2+4x ﹣的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M ,N 的坐标分别为(﹣,1),(,1),连结MN .直接写出线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象有两个公共点时n 的取值范围.4.如图,在平面直角坐标系xOy 中,已知A ,B 两点的坐标分别为(﹣4,0),(4,0),C (m ,0)是线段A B 上一点(与 A ,B 点不重合),抛物线L 1:y=ax 2+b 1x+c 1(a <0)经过点A ,C ,顶点为D ,抛物线L 2:y=ax 2+b 2x+c 2(a <0)经过点C ,B ,顶点为E ,AD ,BE 的延长线相交于点F .(1)若a=﹣,m=﹣1,求抛物线L 1,L 2的解析式;(2)若a=﹣1,AF ⊥BF ,求m 的值;(3)是否存在这样的实数a (a <0),无论m 取何值,直线AF 与BF 都不可能互相垂直?若存在,请直接写出a 的两个不同的值;若不存在,请说明理由.5.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P 的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.6.如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.(1)求点D的坐标和抛物线M1的表达式;(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m(m >0)个单位得到抛物线M2.①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m的取值范围.7.如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)当点P移动到抛物线的什么位置时,使得∠PAB=75°,求出此时点P的坐标;(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动;与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止.当两个动点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?8.如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.9.如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】10.如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q 为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.11.如图,已知抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),C (0,3),点M、N为抛物线上的动点,过点M作MD∥y轴,交直线BC 于点D,交x轴于点E.(1)求二次函数y=ax2+bx+c的表达式;(2)过点N作NF⊥x轴,垂足为点F,若四边形MNFE为正方形(此处限定点M在对称轴的右侧),求该正方形的面积;(3)若∠DMN=90°,MD=MN,求点M的横坐标.12.如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A(4,0),函数图象最低点M的纵坐标为﹣,直线l 的解析式为y=x.(1)求二次函数的解析式;(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.13.如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.14.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y 轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C 交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x 轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边=8S△QAB,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若形OPMN不存在,请说明理由.15.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.16.已知抛物线y=ax2+bx+c,其中2a=b>0>c,且a+b+c=0.(1)直接写出关于x的一元二次方程ax2+bx+c=0的一个根;(2)证明:抛物线y=ax2+bx+c的顶点A在第三象限;(3)直线y=x+m与x,y轴分别相交于B,C两点,与抛物线y=ax2+bx+c 相交于A,D两点.设抛物线y=ax2+bx+c的对称轴与x轴相交于E.如果在对称轴左侧的抛物线上存在点F,使得△ADF与△BOC相似,并且S△=S△ADE,求此时抛物线的表达式.ADF。
2018年中考数学真题汇编--二次函数压轴题(含答案解析)
2018年中考数学真题汇编--二次函数压轴题1.(2018·甘肃)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.2.(2018·盐城)如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(−1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ 上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为−1,求△DPQ面积的最大值,并求此时点D的坐标;2(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.3.(2018·邵阳)如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+ 2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边?若存在,求tan∠MAN的值;若不存的Rt△AMN,使△AMN的面积为△ABC面积的13在,请说明理由.4.(2018·随州)如图1,抛物线C1:y=ax2−2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(−1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=−1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.5.(2018·杭州临安)如图,△OAB是边长为2+√3的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.(1)当A′E//x轴时,求点A′和E的坐标;x2+bx+c经过点A′和E时,求抛物线与x轴的交点(2)当A′E//x轴,且抛物线y=−16的坐标;(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.6.(2018·荆门)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=−2.(1)求抛物线的解析式;(2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当1x2−1x1=12时,求k的值;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ=1:2时,求出点P的坐标.(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=√(x1−x2)2+(y1−y2)2)7.(2018·安顺)如图,已知抛物线y=ax2+bx+C(a≠0)的对称轴为直线x=−1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物成的解析式;(2)在抛物线的对称轴x=−1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=−1上的一个动点,求使△BPC为直角三角形的点P的坐标.8.(2018·株洲)如图,已知二次函数y=ax2−5√3x+c(a>0)的图象抛物线与x 轴相交于不同的两点A(x1,0),B(x2,0),且x1<x2,(1)若抛物线的对称轴为x=√3求的a值;(2)若a=15,求c的取值范围;(3)若该抛物线与y轴相交于点D,连接BD,且∠OBD=60∘,抛物线的对称轴l与x轴相交点E,点F是直线l上的一点,点F的纵坐标为3+1,连接AF,满足∠ADB=∠AFE,求2a该二次函数的解析式.9.(2018·永州)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,−3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.10.(2018·南通)已知,正方形ABCD,A(0,−4),B(l,−4),C(1,−5),D(0,−5),抛物线y=x2+mx−2m−4(m为常数),顶点为M.(1)抛物线经过定点坐标是______,顶点M的坐标(用m的代数式表示)是______;(2)若抛物线y=x2+mx−2m−4(m为常数)与正方形ABCD的边有交点,求m的取值范围;(3)若∠ABM=45∘时,求m的值.11.(2018·湘潭)如图,点P为抛物线y=14x2上一动点.(1)若抛物线y=14x2是由抛物线y=14(x+2)2−1通过图象平移得到的,请写出平移的过程;(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,−1),过点P作PM⊥l 于M.①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由.②问题解决:如图二,若点Q的坐标为(1.5),求QP+PF的最小值.12.(2018·宜昌)如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(−6,0),B(0,4).过点C(−6,1)的双曲线y=kx(k≠0)与矩形OADB的边BD交于点E.(1)填空:OA=______,k=______,点E的坐标为______;(2)当1≤t≤6时,经过点M(t−1,−12t2+5t−32)与点N(−t−3,−12t2+3t−72)的直线交y轴于点F,点P是过M,N两点的抛物线y=−12x2+bx+c的顶点.①当点P在双曲线y=kx 上时,求证:直线MN与双曲线y=kx没有公共点;②当抛物线y=−12x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.13.(2018·浙江)已知,点M为二次函数y=−(x−b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>−(x−b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(14,y1),D(34,y2)都在二次函数图象上,试比较y1与y2的大小.14.(2018·恩施)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(−1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.15.(2018·孝感)如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(−2,0),B(0,−6),将Rt△AOB绕点O按顺时针方向分别旋转90∘,180∘得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为______,点E的坐标为______;抛物线C1的解析式为______.抛物线C2的解析式为______;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记ℎ=PM+NM+√2BM,求h与x的函数关系式,当−5≤x≤−2时,求h的取值范围.2018年最新中考数学压轴精选15题二次函数类【答案】1. 解:(1)将点B 和点C 的坐标代入函数解析式,得 {c =39a+6+c=0,解得{c =3a=−1,二次函数的解析是为y =−x 2+2x +3;(2)若四边形POP′C 为菱形,则点P 在线段CO 的垂直平分线上, 如图1,连接PP′,则PE ⊥CO ,垂足为E ,∵C(0,3),∴E(0,32),∴点P 的纵坐标32,当y =32时,即−x 2+2x +3=32,解得x 1=2+√102,x 2=2−√102(不合题意,舍), ∴点P 的坐标为(2+√102,32);(3)如图2,P 在抛物线上,设P(m,−m 2+2m +3), 设直线BC 的解析式为y =kx +b , 将点B 和点C 的坐标代入函数解析式,得 {b =33k+3=0, 解得{b =3k=−1.直线BC 的解析为y =−x +3, 设点Q 的坐标为(m,−m +3),PQ =−m 2+2m +3−(−m +3)=−m 2+3m . 当y =0时,−x 2+2x +3=0, 解得x 1=−1,x 2=3, OA =1,AB =3−(−1)=4,S 四边形ABPC =S △ABC +S △PCQ +S △PBQ =12AB ⋅OC +12PQ ⋅OF +12PQ ⋅FB =12×4×3+12(−m 2+3m)×3 =−32(m −32)2+758,当m =32时,四边形ABPC 的面积最大. 当m =32时,−m 2+2m +3=154,即P 点的坐标为(32,154). 当点P 的坐标为(32,154)时,四边形ACPB 的最大面积值为758.2. 解:(1)将A(−1,0)、B(3,0)代入y =ax 2+bx +3,得:{9a +3b +3=0a−b+3=0,解得:{b =2a=−1, ∴抛物线的表达式为y =−x 2+2x +3.(2)(I)当点P 的横坐标为−12时,点Q 的横坐标为72, ∴此时点P 的坐标为(−12,74),点Q 的坐标为(72,−94). 设直线PQ 的表达式为y =mx +n , 将P(−12,74)、Q(72,−94)代入y =mx +n ,得: {−12m +n =7472m +n =−94,解得:{m =−1n =54, ∴直线PQ 的表达式为y =−x +54.如图②,过点D 作DE//y 轴交直线PQ 于点E ,设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−x +54), ∴DE =−x 2+2x +3−(−x +54)=−x 2+3x +74,∴S △DPQ =12DE ⋅(x Q −x P )=−2x 2+6x +72=−2(x −32)2+8.∵−2<0,∴当x =32时,△DPQ 的面积取最大值,最大值为8,此时点D 的坐标为(32,154). (II)假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,∴点P 的坐标为(t,−t 2+2t +3),点Q 的坐标为(4+t,−(4+t)2+2(4+t)+3), 利用待定系数法易知,直线PQ 的表达式为y =−2(t +1)x +t 2+4t +3. 设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−2(t +1)x +t 2+4t +3), ∴DE =−x 2+2x +3−[−2(t +1)x +t 2+4t +3]=−x 2+2(t +2)x −t 2−4t , ∴S △DPQ =12DE ⋅(x Q −x P )=−2x 2+4(t +2)x −2t 2−8t =−2[x −(t +2)]2+8.∵−2<0,∴当x =t +2时,△DPQ 的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ 面积有最大值,面积的最大值为8.3. 解:(1)y =x 2+2x +1=(x +1)2的图象沿x 轴翻折,得y =−(x +1)2.把y =−(x +1)2向右平移1个单位,再向上平移4个单位,得y =−x 2+4, ∴所求的函数y =ax 2+bx +c 的解析式为y =−x 2+4; (2)∵y =x 2+2x +1=(x +1)2, ∴A(−1,0),当y =0时,−x 2+4=0,解得x =±2,则D(−2,0),C(2,0); 当x =0时,y =−x 2+4=4,则B(0,4),从点A ,C ,D 三个点中任取两个点和点B 构造三角形的有:△ACB ,△ADB ,△CDB , ∵AC =3,AD =1,CD =4,AB =√17,BC =2√5,BD =2√5,∴△BCD 为等腰三角形,∴构造的三角形是等腰三角形的概率=13; (3)存在.易得BC 的解析是为y =−2x +4,S △ABC =12AC ⋅OB =12×3×4=6, M 点的坐标为(m,−2m +4)(0≤m ≤2),①当N 点在AC 上,如图1,∴△AMN 的面积为△ABC 面积的13, ∴12(m +1)(−2m +4)=2,解得m 1=0,m 2=1,当m =0时,M 点的坐标为(0,4),N(0,0),则AN =1,MN =4, ∴tan∠MAC =MN AN=41=4;当m =1时,M 点的坐标为(1,2),N(1,0),则AN =2,MN =2,∴tan∠MAC =MN AN=22;②当N 点在BC 上,如图2, BC =√22+42=2√5,∵12BC ⋅AN =12AC ⋅BC ,解得AN =3×42√5=6√55, ∵S △AMN =12AN ⋅MN =2, ∴MN =4AN =2√53, ∴∠MAC =MNAN =2√536√55=59; ③当N 点在AB 上,如图3,作AH ⊥BC 于H ,设AN =t ,则BN =√17−t , 由②得AH =6√55,则BH =√(√17)2−(6√55)2=7√55, ∵∠NBG =∠HBA , ∴△BNM ∽△BHA , ∴MN AH=BNBH ,即MN 6√55=√17−t7√55,∴MN=6√17−6t7,∵12AN⋅MN=2,即12⋅(√17−t)⋅6√17−6t7=2,整理得3t2−3√17t+14=0,△=(−3√17)2−4×3×14=−15<0,方程没有实数解,∴点N在AB上不符合条件,综上所述,tan∠MAN的值为1或4或59.4. 解:(1)∵点A的坐标为(−1,0),∴OA=1,∴OC=3OA,∴点C的坐标为(0,3),将A、C坐标代入y=ax2−2ax+c,得:{c=3a+2a+c=0,解得:{c=3a=−1,∴抛物线C1的解析式为y=−x2+2x+3=−(x−1)2+4,所以点G的坐标为(1,4).(2)设抛物线C2的解析式为y=−x2+2x+3−k,即y=−(x−1)2+4−k,过点G′作G′D⊥x轴于点D,设BD′=m,∵△A′B′G′为等边三角形,∴G′D=√3B′D=√3m,则点B′的坐标为(m+1,0),点G′的坐标为(1,√3m),将点B′、G′的坐标代入y=−(x−1)2+4−k,得:{−m 2+4−k=04−k=√3m,解得:{k1=4m1=0(舍),{m2=√3k2=1,∴k=1;(3)设M(x,0),则P(x,−x 2+2x +3)、Q(x,−x 2+2x +2), ∴PQ =OA =1,∵∠AOQ 、∠PQN 均为钝角, ∴△AOQ ≌△PQN ,如图2,延长PQ 交直线y =−1于点H ,则∠QHN =∠OMQ =90∘, 又∵△AOQ ≌△PQN ,∴OQ =QN ,∠AOQ =∠PQN , ∴∠MOQ =∠HQN , ∴△OQM ≌△QNH(AAS),∴OM =QH ,即x =−x 2+2x +2+1, 解得:x =1±√132(负值舍去), 当x =1+√132时,HN =QM =−x 2+2x +2=√13−12,点M(1+√132,0),∴点N 坐标为(1+√132+√13−12,−1),即(√13,−1); 或(1+√132−√13−12,−1),即(1,−1); 如图3,同理可得△OQM≌△PNH,∴OM=PH,即x=−(−x2+2x+2)−1,解得:x=−1(舍)或x=4,当x=4时,点M的坐标为(4,0),HN=QM=−(−x2+2x+2)=6,∴点N的坐标为(4+6,−1)即(10,−1),或(4−6,−1)即(−2,−1);综上点M1(1+√132,0)、N1(√13,−1);M2(1+√132,0)、N2(1,−1);M3(4,0)、N3(10,−1);M4(4,0)、N4(−2,−1).5. 解:(1)由已知可得∠A′OE=60∘,A′E=AE,由A′E//x轴,得△OA′E是直角三角形,设A′的坐标为(0,b),AE=A′E=√3b,OE=2b,√3b+2b=2+√3,所以b=1,A′、E的坐标分别是(0,1)与(√3,1).(2)因为A′、E在抛物线上,所以{1=c1=−16⋅(√3)2+√3b+c,所以{c=1b=√36,函数关系式为y=−16x2+√36x+1,由−16x2+√36x+1=0,得x1=−√3,x2=2√3,与x轴的两个交点坐标分别是(−√3,0)与(2√3,0).(3)不可能使△A′EF成为直角三角形.∵∠FA′E=∠FAE=60∘,若△A′EF 成为直角三角形,只能是∠A′EF =90∘或∠A′FE =90∘ 若∠A′EF =90∘,利用对称性,则∠AEF =90∘, A 、E 、A 三点共线,O 与A 重合,与已知矛盾; 同理若∠A′FE =90∘也不可能, 所以不能使△A′EF 成为直角三角形. 6. 解:(1)根据题意得,{−b2a=−216a +4b +c =8c =0,∴{a =14b =1c =0, ∴抛物线解析式为y =14x 2+x ;(2)∵直线y =kx +4与抛物线两交点的横坐标分别为x 1,x 2, ∴14x 2+x =kx +4, ∴x 2−4(k −1)x −16=0,根据根与系数的关系得,x 1+x 2=4(k −1),x 1x 2=−16, ∵1x 2−1x 1=12,∴2(x 1−x 2)=x 1x 2, ∴4(x 1−x 2)2=(x 1x 2)2,∴4[(x 1+x 2)2−4x 1x 2]=(x 1x 2)2, ∴4[16(k −1)2+64]=162, ∴k =1;(3)如图,取OB 的中点C , ∴BC =12OB , ∵B(4,8), ∴C(2,4), ∵PQ//OB ,∴点O 到PQ 的距离等于点O 到OB 的距离, ∵S △POQ :S △BOQ =1:2, ∴OB =2PQ ,∴PQ =BC ,∵PQ//OB , ∴四边形BCPQ 是平行四边形, ∴PC//AB ,∵抛物线的解析式为y =14x 2+x②,令y =0, ∴14x 2+x =0, ∴x =0或x =−4, ∴A(−4,0), ∵B(4,8),∴直线AB 解析式为y =x +4,设直线PC 的解析式为y =x +m , ∵C(2,4),∴直线PC 的解析式为y =x +2②,联立①②解得,{x =2√2y =2√2+2(舍)或{x =−2√2y =−2√2+2,∴P(−2√2,−2√2+2).7. 解:(1)依题意得:{−b2a =−1a +b +c =0c =3,解之得:{a =−1b =−2c =3,∴抛物线解析式为y =−x 2−2x +3 ∵对称轴为x =−1,且抛物线经过A(1,0), ∴把B(−3,0)、C(0,3)分别代入直线y =mx +n ,得{n =3−3m+n=0,解之得:{n =3m=1,∴直线y =mx +n 的解析式为y =x +3;(2)设直线BC 与对称轴x =−1的交点为M ,则此时MA +MC 的值最小.把x =−1代入直线y =x +3得,y =2, ∴M(−1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(−1,2);(3)设P(−1,t), 又∵B(−3,0),C(0,3),∴BC 2=18,PB 2=(−1+3)2+t 2=4+t 2,PC 2=(−1)2+(t −3)2=t 2−6t +10,①若点B 为直角顶点,则BC 2+PB 2=PC 2即:18+4+t 2=t 2−6t +10解之得:t =−2; ②若点C 为直角顶点,则BC 2+PC 2=PB 2即:18+t 2−6t +10=4+t 2解之得:t =4,③若点P 为直角顶点,则PB 2+PC 2=BC 2即:4+t 2+t 2−6t +10=18解之得:t 1=3−√172,t 2=3−√172;综上所述P 的坐标为(−1,−2)或(−1,4)或(−1,3+√172) 或(−1,3−√172).8. 解:(1)抛物线的对称轴是:x =−b 2a =−−5√32a=√3,解得:a =52;(2)由题意得二次函数解析式为:y =15x 2−5√3x +c , ∵二次函数与x 轴有两个交点, ∴△>0,∴△=b 2−4ac =(−5√3)2−4×15c , ∴c <54;(3)∵∠BOD =90∘,∠DBO =60∘, ∴tan60∘=ODOB =cOB =√3, ∴OB =√33c , ∴B(√33c,0),把B(√33c,0)代入y =ax 2−5√3x +c 中得:ac 23−5√3⋅√3c 3+c =0,ac 23−5c +c =0,∵c ≠0, ∴ac =12, ∴c =12a,把c =12a代入y =ax 2−5√3x +c 中得:y =a(x 2−5√3x a+12a 2)=a(x −4√3a)(x −√3a), ∴x 1=4√3a,x 2=√3a, ∴A(√3a ,0),B(4√3a,0),D(0,12a ), ∴AB =4√3a −√3a=3√3a ,AE =3√32a, ∵F 的纵坐标为3+12a , ∴F(5√32a ,6a+12a),过点A作AG⊥DB于G,∴BG=12AB=AE=3√32a,AG=92a,DG=DB−BG=8√3a −3√32a=13√32a,∵∠ADB=∠AFE,∠AGD=∠FEA=90∘,∴△ADG∽△AFE,∴AEAG =FEDG,∴3√32a92a=6a+12a13√32a,∴a=2,c=6,∴y=2x2−5√3x+6.9. 解:(1)设抛物线的表达式为:y=a(x−1)2+4,把(0,3)代入得:3=a(0−1)2+4,a=−1,∴抛物线的表达式为:y=−(x−1)2+4=−x2+2x+3;(2)存在,如图1,作E关于对称轴的对称点,连接交对称轴于G,此时EG+FG的值最小,∵E(0,3),,易得的解析式为:y=3x−3,当x=1时,y=3×1−3=0,∴G(1,0)(3)如图2,∵A(1,4),B(3,0),易得AB的解析式为:y=−2x+6,设N(m,−m2+2m+3),则Q(m,−2m+6),(0≤m≤3),∴NQ=(−m2+2m+3)−(−2m+6)=−m2+4m−3,∵AD//NH,∴∠DAB=∠NQM,∵∠ADB=∠QMN=90∘,∴△QMN∽△ADB,∴QNMN =ABBD,∴−m2+4m−3MN =2√52,∴MN=−√55(m−2)2+√55,∵−√55<0,∴当m=2时,MN有最大值;过N作NG⊥y轴于G,∵∠GPN=∠ABD,∠NGP=∠ADB=90∘,∴△NGP∽△ADB,∴PGNG =BDAD=24=12,∴PG=12NG=12m,∴OP=OG−PG=−m2+2m+3−12m=−m2+32m+3,∴S△PON=12OP⋅GN=12(−m2+32m+3)⋅m,当m=2时,S△PON=12×2(−4+3+3)=2.10. (2,0);(−m2,−14m2−2m−4)11. 解:(1)∵抛物线y=14(x+2)2−1的顶点为(−2,−1)∴抛物线y=14(x+2)2−1的图象向上平移1个单位,再向右2个单位得到抛物线y=14x2的图象.(2)①存在一定点F,使得PM=PF恒成立.如图一,过点P作PB⊥y轴于点B设点P坐标为(a,14a2)∴PM=PF=14a2+1∵PB=a ∴Rt△PBF中BF=√PF2−PB2=√(14a2+1)2−a2=14a2−1∴OF=1∴点F坐标为(0,1)②由①,PM=PFQP+PF的最小值为QP+QM的最小值当Q、P、M三点共线时,QP+QM有最小值为点Q纵坐标5.∴QP+PF的最小值为5.,4)12. 6;−6;(−3213. 解:(1)点M为二次函数y=−(x−b)2+4b+1图象的顶点,∴M的坐标是(b,4b+1),把x=b代入y=4x+1,得y=4b+1,∴点M在直线y=4x+1上;(2)如图1,直线y=mx+5交y轴于点B,∴B点坐标为(0,5)又B在抛物线上,∴5=−(0−b)2+4b+1=5,解得b=2,二次函数的解析是为y=−(x−2)2+9,当y=0时,−(x−2)2+9=0,解得x1=5,x2=−1,∴A(5,0).由图象,得当mx+5>−(x−b)2+4b+1时,x的取值范围是x<0或x>5;(3)如图2,∵直线y=4x+1与直线AB交于点E,与y轴交于F,A(5,0),B(0,5)得直线AB的解析式为y=−x+5,联立EF,AB得方程组{y =−x +5y=4x+1, 解得{x =45y =215,∴点E(45,215),F(0,1). 点M 在△AOB 内,1<4b +1<215∴0<b <45.当点C ,D 关于抛物线的对称轴对称时,b −14=34−b ,∴b =12, 且二次函数图象开口向下,顶点M 在直线y =4x +1上, 综上:①当0<b <12时,y 1>y 2, ②当b =12时,y 1=y 2, ③当12<b <45时,y 1<y 2.14. 解:(1)由OC =2,OB =3,得到B(3,0),C(0,2),设抛物线解析式为y =a(x +1)(x −3), 把C(0,2)代入得:2=−3a ,即a =−23,则抛物线解析式为y =−23(x +1)(x −3)=−23x 2+43x +2;(2)抛物线y =−23(x +1)(x −3)=−23x 2+43x +2=−23(x −1)2+83, ∴D(1,83),当四边形CBPD 是平行四边形时,由B(3,0),C(0,2),得到P(4,23); 当四边形CDBP 是平行四边形时,由B(3,0),C(0,2),得到P(2,−23); 当四边形BCPD 是平行四边形时,由B(3,0),C(0,2),得到P(−2,143); (3)设直线BC 解析式为y =kx +b , 把B(3,0),C(0,2)代入得:{b =23k+b=0,解得:{k =−23b =2, ∴y =−23x +2,设与直线BC 平行的解析式为y =−23x +b , 联立得:{y =−23x +by =−23x 2+43x +2, 消去y 得:2x 2−6x +3b −6=0,当直线与抛物线只有一个公共点时,△=36−8(3b −6)=0, 解得:b =72,即y =−23x +72, 此时交点M 1坐标为(32,52);可得出两平行线间的距离为√1313,同理可得另一条与BC 平行且平行线间的距离为√1313的直线方程为y =−23x +12,联立解得:M 2(3−3√22,√2−12),M 3(3+3√22,−√2−12),此时S =1.15. (−6,0);(2,0);y =−12x 2−4x −6;y =−12x 2−2x +6【解析】1. (1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P 点的纵坐标,根据自变量与函数值的对应关系,可得P 点坐标;(3)根据平行于y 轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ 的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用菱形的性质得出P 点的纵坐标,又利用了自变量与函数值的对应关系;解(3)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.2. (1)根据点A 、B 的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I)由点P 的横坐标可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,过点D 作DE//y 轴交直线PQ 于点E ,设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−x +54),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =−2x 2+6x +72,再利用二次函数的性质即可解决最值问题;(II)假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,进而可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−2(t +1)x +t 2+4t +3),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =−2x 2+4(t +2)x −2t 2−8t ,再利用二次函数的性质即可解决最值问题. 本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出S △DPQ =−2x 2+6x +72;(II)利用三角形的面积公式找出S △DPQ =−2x 2+4(t +2)x −2t 2−8t .3. (1)利用配方法得到y =x 2+2x +1=(x +1)2,然后根据抛物线的变换规律求解;(2)利用顶点式y =(x +1)2得到A(−1,0),解方程−x 2+4=0得D(−2,0),C(2,0)易得B(0,4),列举出所有的三角形,再计算出AC =3,AD =1,CD =4,AB =√17,BC =2√5,BD =2√5,然后根据等腰三角形的判定方法和概率公式求解;(3)易得BC 的解析是为y =−2x +4,S △ABC =6,M 点的坐标为(m,−2m +4)(0≤m ≤2),讨论:①当N 点在AC 上,如图1,利用面积公式得到12(m +1)(−2m +4)=2,解得m 1=0,m 2=1,当m =0时,求出AN =1,MN =4,再利用正切定义计算tan∠MAC 的值;当m =1时,计算出AN =2,MN =2,再利用正切定义计算tan∠MAC 的值;②当N 点在BC 上,如图2,先利用面积法计算出AN =6√55,再根据三角形面积公式计算出MN =2√53,然后利用正切定义计算tan∠MAC 的值;③当N 点在AB 上,如图3,作AH ⊥BC 于H ,设AN =t ,则BN =√17−t ,由②得AH =6√55,利用勾股定理可计算出BH =7√55,证明△BNM ∽△BHA ,利用相似比可得到MN =6√17−6t 7,利用三角形面积公式得到12⋅(√17−t)⋅6√17−6t7=2,根据此方程没有实数解可判断点N 在AB 上不符合条件,从而得到tan∠MAN 的值为1或4或59. 本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的判定、概率公式;理解二次函数图象的图象变换规律,会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式,会利用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.4. (1)由点A 的坐标及OC =3OA 得点C 坐标,将A 、C 坐标代入解析式求解可得;(2)设抛物线C 2的解析式为y =−x 2+2x +3−k ,即y =−(x −1)2+4−k ,′作G′D ⊥x 轴于点D ,设BD′=m ,由等边三角形性质知点B′的坐标为(m +1,0),点G′的坐标为(1,√3m),代入所设解析式求解可得;(3)设M(x,0),则P(x,−x2+2x+3)、Q(x,−x2+2x+2),根据PQ=OA=1且∠AOQ、∠PQN 均为钝角知△AOQ≌△PQN,延长PQ交直线y=−1于点H,证△OQM≌△QNH,根据对应边相等建立关于x的方程,解之求得x的值从而进一步求解.本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、等边三角形的性质、全等三角形的判定与性质等知识点.5. (1)当A′E//x轴时,△A′EO是直角三角形,可根据∠A′OE的度数用O′A表示出OE和A′E,由于A′E=AE,且A′E+OE=OA=2+√3,由此可求出OA′的长,也就能求出A′E的长.据此可求出A′和E的坐标;(2)将A′,E点的坐标代入抛物线中,即可求出其解析式.进而可求出抛物线与x轴的交点坐标;(3)根据折叠的性质可知:∠FA′E=∠A,因此∠FA′E不可能为直角,因此要使△A′EF成为直角三角形只有两种可能:①∠A′EF=90∘,根据折叠的性质,∠A′EF=∠AEF=90∘,此时A′与O重合,与题意不符,因此此种情况不成立.②∠A′FE=90∘,同①,可得出此种情况也不成立.因此A′不与O、B重合的情况下,△A′EF不可能成为直角三角形.本题着重考查了待定系数法求二次函数解析式、图形旋转变换、直角三角形的判定和性质等知识点,综合性较强.6. (1)先利用对称轴公式得出b=4a,进而利用待定系数法即可得出结论;(2)先利用根与系数的关系得出,x1+x2=4(k−1),x1x2=−16,转化已知条件,代入即可得出结论;(3)先判断出OB=2PQ,进而判断出点C是OB中点,再求出AB解析式,判断出PC//AB,即可得出PC解析式,和抛物线解析式联立解方程组即可得出结论.此题是二次函数综合题,主要考查了待定系数法,一元二次方程的根与系数的关系,平行四边形的判定和性质,等高的两三角形面积的比等于底的比,判断出OB=2PQ是解本题的关键.7. (1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=−1的交点为M,则此时MA+MC的值最小.把x=−1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(−1,t),又因为B(−3,0),C(0,3),所以可得BC2=18,PB2=(−1+3)2+t2=4+t2,PC2=(−1)2+(t−3)2=t2−6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.8. (1)根据抛物线的对称轴公式代入可得a的值;(2)根据已知得:抛物线与x轴有两个交点,则△>0,列不等式可得c的取值范围;(3)根据60∘的正切表示点B的坐标,把点B的坐标代入抛物线的解析式中得:ac=12,则c=12a,从而得A和B的坐标,表示F的坐标,作辅助线,构建直角△ADG,根据已知的角相等可得△ADG∽△AFE,列比例式得方程可得a和c的值.本题是二次函数综合题,涉及的知识点有:代入法的运用,根与判别式的关系,对称轴公式,解方程,三角形相似的性质和判定,勾股定理等知识,第3问有难度,利用特殊角的三角函数表示A、B两点的坐标是关键,综合性较强.9. (1)根据顶点式可求得抛物线的表达式;(2)根据轴对称的最短路径问题,作E关于对称轴的对称点,连接交对称轴于G,此时EG+FG的值最小,先求的解析式,它与对称轴的交点就是所求的点G;(3)如图2,先利用待定系数法求AB的解析式为:y=−2x+6,设N(m,−m2+2m+3),则Q(m,−2m+6),(0≤m≤3),表示NQ=−m2+4m−3,证明△QMN∽△ADB,列比例式可得MN的表达式,根据配方法可得当m=2时,MN有最大值,证明△NGP∽△ADB,同理得PG的长,从而得OP的长,根据三角形的面积公式可得结论,并将m=2代入计算即可.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、三角形的面积、轴对称的最短路径问题,根据比例式列出关于m的方程是解题答问题(3)的关键.10. 解:(1)y=x2+mx−2m−4=(x2−4)+m(x−2)=(x−2)(x+2+m),当x=2时,y=0,∴抛物线经过定点坐标是(2,0).∵抛物线的解析式为y=x2+mx−2m−4,∴顶点M的对称轴为直线x=−b2a =−m2当x═−m2时,y=(−m2)2+m⋅(−m2)−2m−4=−14m2−2m−4故答案为:(2,0);(−m2,−14m2−2m−4).(2)设x=−m2,y=−14m2−2m−4则m=−2x,带入y=−m2,−14m2−2m−4.整理得y=−x2+4x−4即抛物线的顶点在抛物线y=−x2+4x−4上运动.其对称轴为直线x=2,当抛物线顶点直线x=2右侧时即m<−4时,抛物线y=x2+mx−2m−4与正方形ABCD 无交点.当m>−4时,观察抛物线的顶点所在抛物线y=−x2+4x−4恰好过点A(0,−4),此时m= 0当抛物线y=x2+mx−2m−4过点C(1,−5)时−5=1+m−2m−4,得m=2∴抛物线y=x2+mx−2m−4(m为常数)与正方形ABCD的边有交点时m的范围为:0≤m≤2(3)由(2)抛物线顶点M在抛物线y=−x2+4x−4上运动当点M在线段AB上方时,过点B且使∠ABM=45∘的直线解析式为y=−x−3联立方程−x2+4x−4=−x−3求交点横坐标的x1=5+√212(舍去)x2=5−√212m=−5+√21当点M在线段AB下方时过点B且使∠ABM=45∘的直线解析式为y=x−5联立方程−x2+4x−4=x−5求交点横坐标为x1=3+√132(舍去)x2=3−√132m=−3+√13∴m的值为−5+√21或−3+√13(1)判断函数图象过定点时,可以分析代入的x值使得含m的同类项合并后为系数为零.(2)由(1)中用m表示的顶点坐标,可以得到在m变化时,抛物线顶点M抛物线在y=−x2+ 4x−4上运动,分析该函数图象和正方形ABCD的顶点位置关系可以解答本题;(3)由已知点M在过点B且与AB夹角为45∘角的直线与抛物线在y=−x2+4x−4的交点上,则问题可解.本题考查含有字母参数的二次函数图象及其性质,解答过程中注意数形结合,关注m的变化过程中,抛物线的变化趋势.11. (1)找到抛物线顶点坐标即可找到平移方式.(2)①设出点P坐标,利用PM=PF计算BF,求得F坐标;②利用PM=PF,将QP+PF转化为QP+QM,利用垂线段最短解决问题.本题以二次函数为背景,考查了数形结合思想、转换思想和学生解答问题的符号意思.12. 解:(1)∵A点坐标为(−6,0)∴OA=6∵过点C(−6,1)的双曲线y=kx∴k=−6y=4时,x=−64=−32∴点E 的坐标为(−32,4) 故答案为:6,−6,(−32,4)(2)①设直线MN 解析式为:y 1=k 1x +b 1 由题意得:{−12t 2+5t −32=k 1(t −1)+b 1−12t 2+3t −72=k 1(−t −3)+b 1 解得{k 1=1b =−12t 2+4t −12∵抛物线y =−12x 2+bx +c 过点M 、N∴{−12t 2+5t −32=−12(t −1)2+b(t −1)+c−12t 2+3t −72=−12(−t −3)2+b(−t −3)+c 解得{c =5t −2b=−1∴抛物线解析式为:y =−12x 2−x +5t −2 ∴顶点P 坐标为(−1,5t −32) ∵P 在双曲线y =−6x 上∴(5t −32)×(−1)=−6∴t =32此时直线MN 解析式为: 联立{y =x +358y =−6x∴8x 2+35x +49=0∵△=352−4×8×48=1225−1536<0∴直线MN 与双曲线y =−6x 没有公共点.②当抛物线过点B ,此时抛物线y =−12x 2+bx +c 与矩形OADB 有且只有三个公共点 ∴4=5t −2,得t =65当抛物线在线段DB 上,此时抛物线与矩形OADB 有且只有三个公共点 ∴10t−32=4,得t =1110∴t =65或t =1110③∵点P 的坐标为(−1,5t −32)∴y P =5t −32当1≤t ≤6时,y P 随t 的增大而增大 此时,点P 在直线x =−1上向上运动 ∵点F 的坐标为(0,−12t 2+4t −12)∴y F =−12(t −4)2+152∴当1≤t ≤4时,随者y F 随t 的增大而增大 此时,随着t 的增大,点F 在y 轴上向上运动∴1≤t ≤4当t =1时,直线MN :y =x +3与x 轴交于点G(−3,0),与y 轴交于点H(0,3) 当t =4−√3时,直线MN 过点A .当1≤t ≤4时,直线MN 在四边形AEBO 中扫过的面积为S =12×(32+6)×4−12×3×3=212(1)根据题意将先关数据带入(2)①用t 表示直线MN 解析式,及b ,c ,得到P 点坐标带入双曲线y =kx 解析式,证明关于t 的方程无解即可;②根据抛物线开口和对称轴,分别讨论抛物线过点B 和在BD 上时的情况;③由②中部分结果,用t 表示F 、P 点的纵坐标,求出t 的取值范围及直线MN 在四边形OAEB 中所过的面积.本题为二次函数与反比例函数综合题,考查了数形结合思想和分类讨论的数学思想.解题过程中,应注意充分利用字母t 表示相关点坐标.13. (1)根据顶点式解析式,可得顶点坐标,根据点的坐标代入函数解析式检验,可得答案; (2)根据待定系数法,可得二次函数的解析式,根据函数图象与不等式的关系:图象在下方的函数值小,可得答案;(3)根据解方程组,可得顶点M 的纵坐标的范围,根据二次函数的性质,可得答案. 本题考查了二次函数综合题,解(1)的关键是把点的坐标代入函数解析式检验;解(2)的关键是利用函数图不等式的关系:图象在上方的函数值大;解(3)的关键是解方程组得出顶点M 的纵坐标的范围,又利用了二次函数的性质:a <0时,点与对称轴的距离越小函数值越大.14. (1)由OC 与OB 的长,确定出B 与C 的坐标,再由A 坐标,利用待定系数法确定出抛物线解析式即可;(2)分三种情况讨论:当四边形CBPD 是平行四边形;当四边形BCPD 是平行四边形;四边形BDCP 是平行四边形时,利用平移规律确定出P 坐标即可;(3)由B 与C 坐标确定出直线BC 解析式,求出与直线BC 平行且与抛物线只有一个交点时交点坐标,。
7.20几何压轴题(第3部分)-2018年中考数学试题分类汇编(word解析版)
第七部分专题拓展7.20 几何压轴题【一】知识点清单【二】分类试题汇编及参考答案与解析一、选择题1.(2018年贵州省遵义市-第12题-3分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.D.【知识考点】勾股定理;相似三角形的判定与性质.【思路分析】先求出AC,进而判断出△ADF∽△CAB,即可设DF=x,AD=x,利用勾股定理求出BD,再判断出△DEF∽△DBA,得出比例式建立方程即可得出结论.【解答过程】解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,则AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,故选:D.【总结归纳】此题主要考查了勾股定理,相似三角形的判定和性质,平行线的性质,正确作出辅助线是解本题的关键.2.(2018年内蒙古鄂尔多斯市-第6题-3分)如图,在菱形ABCD中,按以下步骤作图:①分别以点C和点D为圆心,大于12CD为半径作弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE,则下列说法错误的是()A.∠ABC=60°B.S△ABE=2S△ADEC.若AB=4,则BE D.sin∠CBE【知识考点】三角形的面积;线段垂直平分线的性质;菱形的性质;作图—基本作图;解直角三角形.【思路分析】由作法得AE垂直平分CD,则∠AED=90°,CE=DE,于是可判断∠DAE=30°,∠D=60°,从而得到∠ABC=60°;利用AB=2DE得到S△ABE=2S△ADE;作EH⊥BC于H,如图,若AB=4,则可计算出CH=CE=1,EH=CH=,利用勾股定理可计算出BE=2;利用正弦的定义得sin∠CBE==.【解答过程】解:由作法得AE垂直平分CD,∴∠AED=90°,CE=DE,∵四边形ABCD为菱形,∴AD=2DE,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,所以A选项的说法正确;∵AB=2DE,∴S△ABE=2S△ADE,所以B选项的说法正确;作EH⊥BC于H,如图,若AB=4,在Rt△ECH中,∵∠ECH=60°,∴CH=CE=1,EH=CH=,在Rt△BEH中,BE==2,所以C选项的说法错误;sin∠CBE===,所以D选项的说法正确.故选:C.【总结归纳】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了菱形的性质和解直角三角形.3.(2018年江苏省无锡市-第8题-3分)如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0 B.1 C.2 D.3【知识考点】矩形的性质;切线的判定.【思路分析】连接DG、AG,作GH⊥AD于H,连接OD,如图,先确定AG=DG,则GH垂直平分AD,则可判断点O在HG上,再根据HG⊥BC可判定BC与圆O相切;接着利用OG=OG可判断圆心O不是AC与BD的交点;然后根据四边形AEFD为⊙O的内接矩形可判断AF与DE的交点是圆O的圆心.【解答过程】解:连接DG、AG,作GH⊥AD于H,连接OD,如图,∵G是BC的中点,∴AG=DG,∴GH垂直平分AD,∴点O在HG上,∵AD∥BC,∴HG⊥BC,∴BC与圆O相切;∵OG=OG,∴点O不是HG的中点,∴圆心O不是AC与BD的交点;而四边形AEFD为⊙O的内接矩形,∴AF与DE的交点是圆O的圆心;∴(1)错误,(2)(3)正确.故选:C.【总结归纳】本题考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了矩形的性质.4.(2018年山东省潍坊市-第6题-3分)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A.∠CBD=30°B.S△BDC=AB2C.点C是△ABD的外心D.sin2A+cos2D=l【知识考点】作图—基本作图;线段垂直平分线的性质;三角形的外接圆与外心;解直角三角形的应用.【思路分析】根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;【解答过程】解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S △ABD =AB 2,∵AC=CD , ∴S △BDC =AB 2,故A 、B 、C 正确, 故选:D .【总结归纳】本题考查作图﹣基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 5.(2018年四川省南充市-第10题-3分)如图,正方形ABCD 的边长为2,P 为CD 的中点,连结AP ,过点B 作BE ⊥AP 于点E ,延长CE 交AD 于点F ,过点C 作CH ⊥BE 于点G ,交AB 于点H ,连接HF .下列结论正确的是( )A .B .EF=2 C .cos ∠CEP=5D .HF 2=EF•CF 【知识考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质;解直角三角形. 【思路分析】首先证明BH=AH ,推出EG=BG ,推出CE=CB ,再证明△CEH ≌△CBH ,Rt △HFE ≌Rt △HFA ,利用全等三角形的性质即可一一判断. 【解答过程】解:连接EH .∵四边形ABCD 是正方形, ∴CD=AB═BC=AD=2,CD ∥AB , ∵BE ⊥AP ,CH ⊥BE , ∴CH ∥PA ,∴四边形CPAH 是平行四边形, ∴CP=AH , ∵CP=PD=1, ∴AH=PC=1, ∴AH=BH ,在Rt△ABE中,∵AH=HB,∴EH=HB,∵HC⊥BE,∴BG=EG,∴CB=CE=2,故选项A错误,∵CH=CH,CB=CE,HB=HE,∴△ABC≌△CEH,∴∠CBH=∠CEH=90°,∵HF=HF,HE=HA,∴Rt△HFE≌Rt△HFA,∴AF=EF,设EF=AF=x,在Rt△CDF中,有22+(2﹣x)2=(2+x)2,∴x=,∴EF=,故B错误,∵PA∥CH,∴∠CEP=∠ECH=∠BCH,∴cos∠CEP=cos∠BCH==,故C错误.∵HF=,EF=,FC=∴HF2=EF•FC,故D正确,故选:D.【总结归纳】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.二、填空题1.(2018年内蒙古鄂尔多斯市-第16题-3分)如图1,AF,BE是△ABC的中线,AF⊥BE,垂足为点P,设BC=a,AC=b,AB=c,则a2+b2=5c2,利用这一性质计算.如图2,在▱ABCD中,E,F,G分别是AD,BC,CD的中点,EB⊥EG于点E,AD=8,AB=则AF=.【知识考点】勾股定理;三角形中位线定理;平行四边形的性质.【思路分析】连接AC交EF于H,设BE与AF的交点为P,由点E、G分别是AD,CD的中点,得到EG是△ACD的中位线于是证出BE⊥AC,由四边形ABCD是平行四边形,得到AD∥BC,根据E,F分别是AD,BC的中点,得到AE=BF=CF=AD,证出四边形ABFE是平行四边形,证得EH=FH,推出EH,AH分别是△AFE的中线,由题目中的结论得即可得到结果.【解答过程】解:如图2,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,∵点E、G分别是AD,CD的中点,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=8,∴∠EAH=∠FCH,∵E,F分别是AD,BC的中点,∴AE=AD,BF=BC,∴AE=BF=CF=AD=4,∵AE∥BF,∴四边形ABFE是平行四边形,∴EF=AB=2,AP=PF,在△AEH和△CFH中,,∴△AEH≌△CFH(AAS),∴EH=FH,∴EP,AH分别是△AFE的中线,由a2+b2=5c2得:AF2+EF2=5AE2,∴AF2=5×42﹣(2)2=60,∴AF=2.故答案为:2.【总结归纳】本题考查了平行四边形的性质,勾股定理,三角形的中位线的性质,正确的作出辅助线是解题的关键.2.(2018年贵州省遵义市-第18题-4分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为.【知识考点】菱形的性质;翻折变换(折叠问题).【思路分析】作EH⊥BD于H,根据折叠的性质得到EG=EA,根据菱形的性质、等边三角形的判定定理得到△ABD为等边三角形,得到AB=BD,根据勾股定理列出方程,解方程即可.【解答过程】解:作EH⊥BD于H,由折叠的性质可知,EG=EA,由题意得,BD=DG+BG=8,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=8,设BE=x,则EG=AE=8﹣x,在Rt△EHB中,BH=x,EH=x,在Rt△EHG中,EG2=EH2+GH2,即(8﹣x)2=(x)2+(6﹣x)2,解得,x=2.8,即BE=2.8,故答案为:2.8.【总结归纳】本题考查的是翻转变换的性质、菱形的性质、勾股定理、解直角三角形,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.3.(2018年湖北省咸宁市-第16题-3分)如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,有下列结论:①AD=CD;②∠ACD的大小随着α的变化而变化;③当α=30°时,四边形OADC为菱形;④△ACD2;其中正确的是.(把你认为正确结论的序号都填上).【知识考点】等边三角形的性质;菱形的判定与性质;轴对称的性质;旋转的性质.【思路分析】①根据对称的性质:对称点的连线被对称轴垂直平分可得:OM'是AC的垂直平分线,再由垂直平分线的性质可作判断;②作⊙O,根据四点共圆的性质得:∠ACD=∠E=60°,说明∠ACD是定值,不会随着α的变化而变化;③当α=30°时,即∠AOD=∠COD=30°,证明△AOC是等边三角形和△ACD是等边三角形,得OC=OA=AD=CD,可作判断;④先证明△ACD是等边三角形,当AC最大时,△ACD的面积最大,当AC为直径时最大,根据面积公式计算后可作判断.【解答过程】解:①∵A、C关于直线OM'对称,∴OM'是AC的垂直平分线,∴CD=AD,故①正确;②连接OC,由①知:OM'是AC的垂直平分线,∴OC=OA,∴OA=OB=OC,以O为圆心,以OA为半径作⊙O,交AO的延长线于E,连接BE,则A、B、C都在⊙O上,∵∠MON=120°,∴∠BOE=60°,∵OB=OE,∴△OBE是等边三角形,∴∠E=60°,∵A、C、B、E四点共圆,∴∠ACD=∠E=60°,故②不正确;③当α=30°时,即∠AOD=∠COD=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴∠OAC=60°,OC=OA=AC,由①得:CD=AD,∴∠CAD=∠ACD=∠CDA=60°,∴△ACD是等边三角形,∴AC=AD=CD,∴OC=OA=AD=CD,∴四边形OADC为菱形;故③正确;④∵CD=AD,∠ACD=60°,∴△ACD是等边三角形,当AC最大时,△ACD的面积最大,∵AC是⊙O的弦,即当AC为直径时最大,此时AC=2OA=2a,α=90°,∴△ACD面积的最大值是:AC2==,故④正确,所以本题结论正确的有:①③④故答案为:①③④.【总结归纳】本题是圆和图形变换的综合题,考查了轴对称的性质、四点共圆的性质、等边三角形的判定、菱形的判定、三角形面积及圆的有关性质,有难度,熟练掌握轴对称的性质是关键,是一道比较好的填空题的压轴题.4.(2018年江苏省无锡市-第18题-2分)如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是.【知识考点】等边三角形的性质;含30度角的直角三角形;平行四边形的判定与性质.【思路分析】作辅助线,构建30度的直角三角形,先证明四边形EODP是平行四边形,得EP=OD=a,在Rt△HEP中,∠EPH=30°,可得EH的长,计算a+2b=2OH,确认OH最大和最小值的位置,可得结论.【解答过程】解:过P作PH⊥OY交于点H,∵PD∥OY,PE∥OX,∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,Rt△HEP中,∠EPH=30°,∴EH=EP=a,∴a+2b=2(a+b)=2(EH+EO)=2OH,当P在AC边上时,H与C重合,此时OH的最小值=OC=OA=1,即a+2b的最小值是2;当P在点B时,OH的最大值是:1+=,即(a+2b)的最大值是5,∴2≤a+2b≤5.【总结归纳】本题考查了等边三角形的性质、直角三角形30度角的性质、平行四边形的判定和性质,有难度,掌握确认a+2b的最值就是确认OH最值的范围.5.(2018年江苏省苏州市-第18题-3分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为(结果留根号).【知识考点】垂线段最短;三角形中位线定理;菱形的性质;梯形.【思路分析】连接PM、PN.首先证明∠MPN=90°设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),构建二次函数,利用二次函数的性质即可解决问题;【解答过程】解:连接PM、PN.∵四边形APCD,四边形PBFE是菱形,∠DAP=60°,∴∠APC=120°,∠EPB=60°,∵M,N分别是对角线AC,BE的中点,∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,∴∠MPN=60°+30°=90°,设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),∴MN===,∴a=3时,MN有最小值,最小值为2,故答案为2.【总结归纳】本题考查菱形的性质、勾股定理二次函数的性质等知识,解题的关键是学会添加常用辅助线,构建二次函数解决最值问题.6.(2018年辽宁省大连市-第16题-3分)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF 的长为.【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】如图作A′H⊥BC于H.由△CDF∽△A′HC,可得=,延长构建方程即可解决问题;【解答过程】解:如图作A′H⊥BC于H.∵∠ABC=90°,∠ABE=∠EBA′=30°,∴∠A′BH=30°,∴A′H=BA′=1,BH=A′H=,∴CH=3﹣,∵△CDF∽△A′HC,∴=,∴=,∴DF=6﹣2,故答案为6﹣2.【总结归纳】本题考查翻折变换、矩形的性质、勾股定理、直角三角形30度角性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.6.(2018年山东省潍坊市-第17题-3分)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y 于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按A B的长是.此作法进行下去,则20192018【知识考点】弧长的计算;规律型:点的坐标;一次函数图象上点的坐标特征.【思路分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.【解答过程】解:直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2==4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是=.故答案为:.【总结归纳】本题主要考查了一次函数图象上点的坐标特征,做题时要注意数形结合思想的运用,是各地的中考热点,学生在平常要多加训练,属于中档题.8.(2018年浙江省嘉兴市舟山市-第16题-4分)如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是.【知识考点】矩形的性质;勾股定理.【思路分析】先根据圆周角定理确定点P在以EF为直径的圆O上,且是与矩形ABCD的交点,先确定特殊点时AF的长,当F与A和B重合时,都有两个直角三角形.符合条件,即AF=0或4,再找⊙O与AD和BC相切时AF的长,此时⊙O与矩形边各有一个交点或三个交点,在之间运动过程中符合条件,确定AF的取值.【解答过程】解:∵△EFP是直角三角形,且点P在矩形ABCD的边上,∴P是以EF为直径的圆O与矩形ABCD的交点,①当AF=0时,如图1,此时点P有两个,一个与D重合,一个交在边AB上;②当⊙O与AD相切时,设与AD边的切点为P,如图2,此时△EFP是直角三角形,点P只有一个,当⊙O与BC相切时,如图4,连接OP,此时构成三个直角三角形,则OP⊥BC,设AF=x,则BF=P1C=4﹣x,EP1=x﹣1,∵OP∥EC,OE=OF,∴OG=EP1=,∴⊙O的半径为:OF=OP=,在Rt△OGF中,由勾股定理得:OF2=OG2+GF2,∴,解得:x=,∴当1<AF<时,这样的直角三角形恰好有两个,③当AF=4,即F与B重合时,这样的直角三角形恰好有两个,如图5,综上所述,则AF的值是:0或1<AF或4.故答案为:0或1<AF或4.【总结归纳】本题考查了矩形的性质的运用,勾股定理的运用,三角形中位线定理的运用,圆的性质的运用,分类讨论思想的运用,解答时运用勾股定理求解是关键,并注意运用数形结合的思想解决问题.三、解答题1.(2018年内蒙古鄂尔多斯市-第24题-12分)(1)【操作发现】如图1,将△ABC绕点A顺时针旋转60°,得到△ADE,连接BD,则∠ABD=度.(2)【类比探究】如图2,在等边三角形ABC内任取一点P,连接PA,PB,PC,求证:以PA,PB,PC的长为三边必能组成三角形.(3)【解决问题】如图3ABC内有一点P,∠APC=90°,∠BPC=120°,求△APC 的面积.(4)【拓展应用】如图4是A,B,C三个村子位置的平面图,经测量AC=4,BC=5,∠ACB=30°,P为△ABC 内的一个动点,连接PA,PB,PC.求PA+PB+PC的最小值.【知识考点】几何变换综合题.【思路分析】(1)【操作发现】:如图1中,只要证明△DAB是等边三角形即可;(2)【类比探究】:如图2中,以PA为边长作等边△PAD,使P、D分别在AC的两侧,连接CD.利用全等三角形的性质以及三角形的三边关系即可解决问题;(3)【解决问题】:如图3中,将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,只要证明∠PP′C=90°,利用勾股定理即可解决问题;(4)【拓展应用】:如图4中,先由旋转的性质得出△APC≌△EDC,则∠ACP=∠ECD,AC=EC=4,∠PCD=60°,再证明∠BCE=90°,然后在Rt△BCE中,由勾股定理求出BE的长度,即为PA+PB+PC的最小值;【解答过程】(1)【操作发现】解:如图1中,连接BD.∵△ABC绕点A顺时针旋转60°,得到△ADE,∴AD=AB,∠DAB=60°,∴△DAB是等边三角形,∴∠ABD=60°故答案为60.(2)【类比探究】证明:如图2中,以PA为边长作等边△PAD,使P、D分别在AC的两侧,连接CD.∵∠BAC=∠PAD=60°,∴∠BAP=∠CAD,∵AB=AC,AP=AD,∴△PAB≌△ACD(SAS),∴BP=CD,在△PCD中,∵PD+CD>PC,又∵PA=PD,∴AP+BP>PC.∴PA,PB,PC的长为三边必能组成三角形.(3)【解决问题】解:如图3中,∵将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,∴△APP′是等边三角形,∠AP′C=∠APB=360°﹣90°﹣120°=150°,∴PP′=AP,∠AP′P=∠APP′=60°,∴∠PP′C=90°,∠P′PC=30°,∴PP′=PC,即AP=PC,∵∠APC=90°,∴AP2+PC2=AC2,即(PC)2+PC2=()2,∴PC=2,∴AP=,∴S△APC=AP•PC=××2=.(4)【拓展应用】解:如图4中,将△APC绕点C顺时针旋转60°,得到△EDC,连接PD、BE.∵将△APC绕点C顺时针旋转60°,得到△EDC,∴△APC≌△EDC(旋转的性质),∴∠ACP=∠ECD,AC=EC=4,∠PCD=60°,∴∠ACP+∠PCB=∠ECD+∠PCB,∴∠ECD+∠PCB=∠ACB=30°,∴∠BCE=∠ECD+∠PCB+∠PCD=30°+60°=90°,在Rt△BCE中,∵∠BCE=90°,BC=5,CE=4,∴BE===,即PA+PB+PC的最小值为;【总结归纳】本题属于几何变换综合题,考查了旋转变换,等边三角形的性质,勾股定理等知识,解题的关键是添加常用辅助线,构造全等三角形解决问题,用转化的思想思考问题,属于中考压轴题.2.(2018年湖北省襄阳市-第24题-10分)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:AGBE的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE 之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=BC=.【知识考点】相似形综合题.【思路分析】(1)①由GE⊥BC、GF⊥CD结合∠BCD=90°可得四边形CEGF是矩形,再由∠ECG=45°即可得证;②由正方形性质知∠CEG=∠B=90°、∠ECG=45°,据此可得=、GE∥AB,利用平行线分线段成比例定理可得;(2)连接CG,只需证△ACG∽△BCE即可得;(3)证△AHG∽△CHA得==,设BC=CD=AD=a,知AC=a,由=得AH= a、DH=a、CH=a,由=可得a的值.【解答过程】解:(1)①∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形;②由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴=,GE∥AB,∴==,故答案为:;(2)连接CG,由旋转性质知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=cos45°=、=cos45°=,∴==,∴△ACG∽△BCE,∴==,∴线段AG与BE之间的数量关系为AG=BE;(3)∵∠CEF=45°,点B、E、F三点共线,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴==,设BC=CD=AD=a,则AC=a,则由=得=,∴AH=a,则DH=AD﹣AH=a,CH==a,∴=得=,解得:a=3,即BC=3,故答案为:3.【总结归纳】本题主要考查相似形的综合题,解题的关键是掌握正方形的判定与性质、相似三角形的判定与性质等知识点.3.(2018年湖南省湘潭市-第25题-10分)如图,AB是以O为圆心的半圆的直径,半径CO⊥AO,点M是AB上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连结OM与CM.(1)若半圆的半径为10.①当∠AOM=60°时,求DM的长;②当AM=12时,求DM的长.(2)探究:在点M运动的过程中,∠DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由.【知识考点】圆的综合题.【思路分析】(1)①当∠AOM=60°时,所以△AMO是等边三角形,从而可知∠MOD=30°,∠D=30°,所以DM=OM=10;②过点M作MF⊥OA于点F,设AF=x,OF=10﹣x,利用勾股定理即可求出x的值.易证明△AMF∽△ADO,从而可知AD的长度,进而可求出MD的长度.(2)根据点M的位置分类讨论,然后利用圆周角定理以及圆内接四边形的性质即可求出答案.【解答过程】解:(1)①当∠AOM=60°时,∵OM=OA,∴△AMO是等边三角形,∴∠A=∠MOA=60°,∴∠MOD=30°,∠D=30°,∴DM=OM=10②过点M作MF⊥OA于点F,设AF=x,∴OF=10﹣x,∵AM=12,OA=OM=10,由勾股定理可知:122﹣x2=102﹣(10﹣x)2∴x=,∴AF=,∵MF∥OD,∴△AMF∽△ADO,∴,∴,∴AD=∴MD=AD﹣AM=(2)当点M位于之间时,连接BC,∵C是的中点,∴∠B=45°,∵四边形AMCB是圆内接四边形,此时∠CMD=∠B=45°,当点M位于之间时,连接BC,由圆周角定理可知:∠CMD=∠B=45°综上所述,∠CMD=45°【总结归纳】本题考查圆的综合问题,涉及圆周角定理,勾股定理,相似三角形的判定与性质,含30度角的直角三角形性质,解方程等知识,综合程度较高,需要学生灵活运用所学知识.4.(2018年湖南邵阳市-第25题-8分)如图1所示,在四边形ABCD中,点O,E,F,G分别是AB,BC,CD,AD的中点,连接OE,EF,FG,GO,GE.(1)证明:四边形OEFG是平行四边形;(2)将△OGE绕点O顺时针旋转得到△OMN,如图2所示,连接GM,EN.①若OG=1,求ENGM的值;②试在四边形ABCD中添加一个条件,使GM,EN的长在旋转过程中始终相等.(不要求证明)【知识考点】相似形综合题.【思路分析】(1)连接AC,由四个中点可知OE∥AC、OE=AC,GF∥AC、GF=AC,据此得出OE=GF、OE=GF,即可得证;(2)①由旋转性质知OG=OM、OE=ON,∠GOM=∠EON,据此可证△OGM∽△OEN得==;②连接AC、BD,根据①知△OGM∽△OEN,若要GM=EN只需使△OGM≌△OEN,添加使AC=BD 的条件均可以满足此条件.【解答过程】解:(1)如图1,连接AC,∵点O、E、F、G分别是AB、BC、CD、AD的中点,∴OE∥AC、OE=AC,GF∥AC、GF=AC,∴OE=GF,OE=GF,∴四边形OEFG是平行四边形;(2)①∵△OGE绕点O顺时针旋转得到△OMN,∴OG=OM、OE=ON,∠GOM=∠EON,∴=,∴△OGM∽△OEN,∴==.②添加AC=BD,如图2,连接AC、BD,∵点O、E、F、G分别是AB、BC、CD、AD的中点,∴OG=EF=BD、OE=GF=BD,∵AC=BD,∴OG=OE,∵△OGE绕点O顺时针旋转得到△OMN,∴OG=OM、OE=ON,∠GOM=∠EON,∴OG=OE、OM=ON,在△OGM和△OEN中,∵,∴△OGM≌△OEN(SAS),∴GM=EN.【总结归纳】本题主要考查相似形的综合题,解题的关键是熟练掌握中位线定义及其定理、平行四边形的判定、旋转的性质、相似三角形与全等三角形的判定与性质等知识点.5.(2018年江苏省淮安市-第26题-12分)如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.【知识考点】四边形综合题.【思路分析】(1)根据“准互余三角形”的定义构建方程即可解决问题;(2)只要证明△CAE∽△CBA,可得CA2=CE•CB,由此即可解决问题;(3)如图②中,将△BCD沿BC翻折得到△BCF.只要证明△FCB∽△FAC,可得CF2=FB•FA,设FB=x,则有:x(x+7)=122,推出x=9或﹣16(舍弃),再利用勾股定理求出AC即可;【解答过程】解:(1)∵△ABC是“准互余三角形”,∠C>90°,∠A=60°,∴2∠B+∠A=60°,解得,∠B=15°,故答案为:15°;(2)如图①中,在Rt△ABC中,∵∠B+∠BAC=90°,∠BAC=2∠BAD,∴∠B+2∠BAD=90°,∴△ABD是“准互余三角形”,∵△ABE也是“准互余三角形”,∴只有2∠A+∠BAE=90°,∵∠A+∠BAE+∠EAC=90°,∴∠CAE=∠B,∵∠C=∠C=90°,∴△CAE∽△CBA,可得CA2=CE•CB,∴CE=,∴BE=5﹣=.(3)如图②中,将△BCD沿BC翻折得到△BCF.∴CF=CD=12,∠BCF=∠BCD ,∠CBF=∠CBD , ∵∠ABD=2∠BCD ,∠BCD+∠CBD=90°, ∴∠ABD+∠DBC+∠CBF=180°, ∴A 、B 、F 共线, ∴∠A+∠ACF=90° ∴2∠ACB+∠CAB≠90°, ∴只有2∠BAC+∠ACB=90°, ∴∠FCB=∠FAC ,∵∠F=∠F , ∴△FCB ∽△FAC , ∴CF 2=FB•FA ,设FB=x , 则有:x (x+7)=122, ∴x=9或﹣16(舍弃), ∴AF=7+9=16, 在Rt △ACF 中,AC===20.【总结归纳】本题考查四边形综合题、相似三角形的判定和性质、“准互余三角形”的定义等知识,解题的关键是理解题意,学会利用翻折变换添加辅助线,构造相似三角形解决问题,学会利用已知模型构建辅助线解决问题,属于中考压轴题.6.(2018年江苏省无锡市-第27题-10分)如图,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上. (1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若11A E EC =,求nm的值.【知识考点】轨迹;旋转的性质.【思路分析】(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出∠ABA1,得到旋转角即可解决问题;(2)由△BCE∽△BA2D2,推出==,可得CE=由=﹣1推出=,推出AC=•,推出BH=AC==•,可得m2﹣n2=6•,可得1﹣=6•,由此解方程即可解决问题;【解答过程】解:(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.∴AD=HA1=n=1,在Rt△A1HB中,∵BA1=BA=m=2,∴BA1=2HA1,∴∠ABA1=30°,∴旋转角为30°,∵BD==,∴D到点D1所经过路径的长度==π.(2)∵△BCE∽△BA2D2,∴==,∴CE=∵=﹣1∴=,∴AC=•,∴BH=AC==•,∴m2﹣n2=6•,∴m4﹣m2n2=6n4,1﹣=6•,∴=(负根已经舍弃).【总结归纳】本题考查轨迹,旋转变换、解直角三角形、弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.7.(2018年江苏省苏州市-第27题-10分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,SS'=;(2)设AD=m,请你用含字母m的代数式表示SS'.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=12BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示SS'.【知识考点】三角形中位线定理;相似三角形的判定与性质.【思路分析】问题1:(1)先根据平行线分线段成比例定理可得:,由同高三角形面积的比等于对应底边的比,则==,根据相似三角形面积比等于相似比的平方得:==,可得结论;(2)解法一:同理根据(1)可得结论;解法二:作高线DF、BH,根据三角形面积公式可得:=,分别表示和的值,代入可得结论;问题2:解法一:如图2,作辅助线,构建△OBC,证明△OAD∽△OBC,得OB=8,由问题1的解法可知:===,根据相似三角形的性质得:=,可得结论;解法二:如图3,连接AC交EF于M,根据AD=BC,可得=,得:S△ADC=S,S△ABC=,由问题1的结论可知:=,证明△CFM∽△CDA,根据相似三角形面积比等于相似比的平方,根据面积和可得结论.【解答过程】解:问题1:(1)∵AB=4,AD=3,∴BD=4﹣3=1,∵DE∥BC,∴,∴==,∵DE∥BC,∴△ADE∽△ABC,∴==,∴=,即,故答案为:;(2)解法一:∵AB=4,AD=m,∴BD=4﹣m,∵DE∥BC,∴==,∴==,∵DE∥BC,∴△ADE∽△ABC,∴==,∴===,即=;解法二:如图1,过点B作BH⊥AC于H,过D作DF⊥AC于F,则DF∥BH,∴△ADF∽△ABH,∴=,∴===,即=;问题2:如图②,解法一:如图2,分别延长BD、CE交于点O,∵AD∥BC,∴△OAD∽△OBC,∴,∴OA=AB=4,∴OB=8,∵AE=n,∴OE=4+n,∵EF∥BC,由问题1的解法可知:===,∵==,∴=,∴===,即=;解法二:如图3,连接AC交EF于M,∵AD∥BC,且AD=BC,∴=,∴S△ADC=,∴S△ADC=S,S△ABC=,由问题1的结论可知:=,∵MF∥AD,∴△CFM∽△CDA,∴===,∴S△CFM=×S,∴S△EFC=S△EMC+S△CFM=+×S=,∴=.。
2018年中考数学压轴题100题精选
2018年中考数学压轴题100题精选【001】如图,已知抛物线2(1)y a x=-+(a≠0)经过点(2)A-,0,抛物线的顶点为D,过O作射线OM AD∥.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为()t s.问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB=,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s,连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C 出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ 于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B 时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t = 2时,AP = ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.(4)当DE经过点C 时,请直接..写出t【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C 出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t 为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形?请直接写出相应的t值。
2018年全国各省市初中数学中考-函数真题汇编含解析
2018年全国各省市中考数学函数与几何综合压轴题汇编含解析函数(共8小题)1.(2018•上海)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?解:(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,,解得:,∴该一次函数解析式为y=﹣x+60.(2)当y=﹣x+60=8时,解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.2.(2018•江西)如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tanC的值.解:(1)把A(1,a)代入y=2x得a=2,则A(1,2),把A(1,2)代入y=得k=1×2=2,∴反比例函数解析式为y=,解方程组得或,∴B点坐标为(﹣1,﹣2);(2)作BD⊥AC于D,如图,∴∠BDC=90°,∵∠C+∠CBD=90°,∠CBD+∠ABD=90°,∴∠C=∠ABD,在Rt△ABD中,tan∠ABD===2,即tanC=2.3.(2018•安徽)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?解:(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,所以W1=(50+x)(160﹣2x)=﹣2x2+60x+8000,W2=19(50﹣x)=﹣19x+950;(2)根据题意,得:W=W1+W2=﹣2x2+60x+8000﹣19x+950=﹣2x2+41x+8950=﹣2(x﹣)2+,∵﹣2<0,且x为整数,∴当x=10时,W取得最大值,最大值为9160,答:当x=10时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是9160元.4.(2018•福建)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.解:(1)设AD=x米,则AB=依题意得,解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10米.(2)设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意得:S=,0<x<a∵0<α<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a ﹣②如按图2方案围成矩形菜园,依题意得S=,a≤x<50+当a<25+<50时,即0<a <时,则x=25+时,S最大=(25+)2=当25+≤a,即时,S随x的增大而减小∴x=a时,S最大=综合①②,当0<a <时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;教习网-课件试卷试题含解析免费下载当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.5.(2018•江西)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.解:(1)设y与x的函数关系式为y=kx+b,将(10,200)、(15,150)代入,得:,解得:,∴y与x的函数关系式为y=﹣10x+300(8≤x≤30);(2)设每天销售获得的利润为w,则w=(x﹣8)y=(x﹣8)(﹣10x+300)=﹣10(x﹣19)2+1210,∵8≤x≤30,∴当x=19时,w取得最大值,最大值为1210;(3)由(2)知,当获得最大利润时,定价为19元/千克,则每天的销售量为y=﹣10×19+300=110千克,∵保质期为40天,∴总销售量为40×110=4400,又∵4400<4800,∴不能销售完这批蜜柚.6.(2018•上海)在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.解:(1)把A(﹣1,0)和点B(0,)代入y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2+2x+;(2)∵y=﹣(x﹣2)2+,∴C(2,),抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,﹣t),∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处,∴∠PDC=90°,DP=DC=t,∴P(2+t,﹣t),把P(2+t ,﹣t)代入y=﹣x2+2x+得﹣(2+t)2+2(2+t)+=﹣t,整理得t2﹣2t=0,解得t1=0(舍去),t2=2,∴线段CD的长为2;(3)P点坐标为(4,),D点坐标为(2,),∵抛物线平移,使其顶点C(2,)移到原点O的位置,∴抛物线向左平移2个单位,向下平移个单位,而P点(4,)向左平移2个单位,向下平移个单位得到点E,∴E点坐标为(2,﹣2),设M(0,m),当m>0时,•(m++2)•2=8,解得m=,此时M点坐标为(0,);当m<0时,•(﹣m++2)•2=8,解得m=﹣,此时M点坐标为(0,﹣);综上所述,M点的坐标为(0,)或(0,﹣).7.(2018•福建)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;教习网-课件试卷试题含解析免费下载(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.解:(1)∵抛物线y=ax2+bx+c过点A(0,2),∴c=2.又∵点(﹣,0)也在该抛物线上,∴a(﹣)2+b(﹣)+c=0,∴2a﹣b+2=0(a≠0).(2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,∴x1﹣x2<0,y1﹣y2<0,∴当x<0时,y随x的增大而增大;同理:当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,开口向下,∴b=0.∵OA为半径的圆与拋物线的另两个交点为B、C,∴△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC为等边三角形.设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,又∵OB=OC=OA=2,∴CD=OC•cos30°=,OD=OC•sin30°=1.不妨设点C在y轴右侧,则点C的坐标为(,﹣1).∵点C在抛物线上,且c=2,b=0,∴3a+2=﹣1,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2.②证明:由①可知,点M的坐标为(x 1,﹣+2),点N的坐标为(x2,﹣+2).直线OM的解析式为y=k1x(k1≠0).∵O、M、N三点共线,∴x1≠0,x2≠0,且=,∴﹣x1+=﹣x2+,∴x1﹣x2=﹣,∴x1x2=﹣2,即x2=﹣,∴点N的坐标为(﹣,﹣+2).设点N关于y轴的对称点为点N′,则点N′的坐标为(,﹣+2).∵点P是点O关于点A的对称点,∴OP=2OA=4,∴点P的坐标为(0,4).设直线PM的解析式为y=k2x+4,∵点M的坐标为(x,﹣+2),∴﹣+2=k 2x1+4,∴k2=﹣,∴直线PM的解析式为y=﹣+4.∵﹣•+4==﹣+2,∴点N′在直线PM上,∴PA平分∠MPN.8.(2018•江西)小资与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b= ﹣4 ,顶点坐标为(﹣2,1),该抛物线关于点(0,1)成中心对称的抛物线表达式是y=x2﹣4x+5 .抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(1)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两个抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1;其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n;其顶点为A n…(n为正整数)求A n A n+1的长(用含n的式子表示).解:求解体验:(1)∵抛物线y=﹣x2+bx﹣3经过点(﹣1,0),∴﹣1﹣b﹣3=0,∴b=﹣4,∴抛物线解析式为y=﹣x2﹣4x﹣3=﹣(x+2)2+1,∴抛物线的顶点坐标为(﹣2,1),∴抛物线的顶点坐标(﹣2,1)关于(0,1)的对称点为(2,1),即:新抛物线的顶点坐标为(2,1),令原抛物线的x=0,∴y=﹣3,∴(0,﹣3)关于点(0,1)的对称点坐标为(0,5),设新抛物线的解析式为y=a(x﹣2)2+1,∵点(0,5)在新抛物线上,∴5=a(0﹣2)2+1,∴a=1,∴新抛物线解析式为y=(x﹣2)2+1=x2﹣4x+5,故答案为﹣4,(﹣2,1),y=x2﹣4x+5;抽象感悟:(2)∵抛物线y=﹣x2﹣2x+5=﹣(x+1)2+6①,∴抛物线的顶点坐标为(﹣1,6),抛物线上取点(0,5),∴点(﹣1,6)和(0,5)关于点(0,m)的对称点为(1,2m﹣6)和(0,2m﹣5),设衍生抛物线为y′=a(x﹣1)2+2m﹣6,∴2m﹣5=a+2m﹣6,∴a=1,∴衍生抛物线为y′=(x﹣1)2+2m﹣6=x2﹣2x+2m﹣5②,联立①②得,x2﹣2x+2m﹣5=﹣x2﹣2x+5,整理得,2x2=10﹣2m,∵这两条抛物线有交点,∴10﹣2m≥0,∴m≤5;问题解决:(1)①抛物线y=ax2+2ax﹣b=a(x+1)2﹣a﹣b,∴此抛物线的顶点坐标为(﹣1,﹣a﹣b),∵抛物线y的衍生抛物线为y′=bx2﹣2bx+a2=b(x﹣1)2+a2﹣b,∴此函数的顶点坐标为(1,a2﹣b),∵两个抛物线有两个交点,且恰好是它们的顶点,∴,∴a=0(舍)或a=3,∴b=﹣3,∴抛物线y的顶点坐标为(﹣1,0),抛物线y的衍生抛物线的顶点坐标为(1,12),∴衍生中心的坐标为(0,6);②抛物线y=ax2+2ax﹣b的顶点坐标为(﹣1,﹣a﹣b),∵点(﹣1,﹣a﹣b)关于点(0,k+n2)的对称点为(1,a+b+k+n2),∴抛物线y n的顶点坐标A n为(1,a+b+k+n2),同理:A n+1(1,a+b+k+(n+1)2)∴A n A n+1=a+b+k+(n+1)2﹣(a+b+k+n2)=2n+1.几何综合(共10小题)9.(2018•上海)如图,已知△ABC中,AB=BC=5,tan∠ABC=.教习网-课件试卷试题含解析免费下载(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.解:(1)作A作AE⊥BC,在Rt△ABE中,tan∠ABC==,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根据勾股定理得:AC==;(2)∵DF垂直平分BC,∴BD=CD,BF=CF=,∵tan∠DBF==,∴DF=,在Rt△BFD中,根据勾股定理得:BD==,∴AD=5﹣=,则=.10.(2018•安徽)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.解:(1)如图,AE为所作;(2)连接OE交BC于F,连接OC,如图,∵AE平分∠BAC,∴∠BAE=∠CAE,∴=,∴OE⊥BC,∴EF=3,∴OF=5﹣3=2,在Rt△OCF中,CF==,在Rt△CEF中,CE==.11.(2018•上海)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF ⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.证明:(1)∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵BE⊥AP,DF⊥AP,∴∠BEA=∠AFD=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABE和△DAF中,∴△ABE≌△DAF,∴BE=AF,∴EF=AE﹣AF=AE﹣BE;(2)如图,∵=,而AF=BE,∴=,∴=,∴Rt△BEF∽Rt△DFA,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而BE⊥EP,∴EF=EP.12.(2018•江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.解:(1)如图1所示,AF即为所求:(2)如图2所示,BH即为所求.13.(2018•福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF 过点D.(1)求∠BDF的大小;(2)求CG的长.解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AC=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.14.(2018•江西)如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC相切于点C,过点A作AD⊥BO交BO的廷长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.解:(1)过点O作OE⊥AB于点E,∵AD⊥BO于点D,∴∠D=90°,∴∠BAD+∠ABD=90°,∠AOD+∠OAD=90°,∵∠AOD=∠BAD,∴∠ABD=∠OAD,又∵BC为⊙O的切线,∴AC⊥BC,∴∠BOC=∠D=90°,∵∠BOC=∠AOD,∴∠OBC=∠OAD=∠ABD,在△BOC和△BOE中,∵,∴△BOC≌△BOE(AAS),∴OE=OC,∵OE⊥AB,∴AB是⊙O的切线;(2)∵∠ABC+∠BAC=90°,∠EOA+∠BAC=90°,∴∠EOA=∠ABC,∵tan∠ABC=、BC=6,∴AC=BC•tan∠ABC=8,则AB=10,由(1)知BE=BC=6,∴AE=4,∵tan∠EOA=tan∠ABC=,∴=,∴OE=3,OB==3,∵∠ABD=∠OBC,∠D=∠ACB=90°,∴△ABD∽△OBC,∴=,即=,∴AD=2.15.(2018•福建)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.解:(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如图2,连接OD,∵AC是⊙O的直径,教习网-免费精品课件试卷任意下载∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四边形DHBC是平行四边形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰三角形DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.16.(2018•安徽)如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB 于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.(1)证明:如图1中,∵DE⊥AB,∴∠DEB=∠DCB=90°,∵DM=MB,∴CM=DB,EM=DB,∴CM=EM.(2)解:∵∠AED=90°,∠A=50°,∴∠ADE=40°,∠CDE=140°,∵CM=DM=ME,∴∠NCD=∠MDC,∠MDE=∠MED,∴∠CME=360°﹣2×140°=80°,∴∠EMF=180°﹣∠CME=100°.(3)证明:如图2中,设FM=a.∵△DAE≌△CEM,CM=EM,∴AE=ED=EM=CM=DM,∠AED=∠CME=90°∴△ADE是等腰直角三角形,△DEM是等边三角形,∴=,=,∴=,∴EM∥AN.17.(2018•上海)已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.解:(1)∵OD⊥AC,∴=,∠AFO=90°,又∵AC=BD,∴=,即+=+,∴=,∴==,∴∠AOD=∠DOC=∠BOC=60°,∵AB=2,∴AO=BO=1,∴AF=AOsin∠AOF=1×=,则AC=2AF=;(2)如图1,连接BC,∵AB为直径,OD⊥AC,∴∠AFO=∠C=90°,∴OD∥BC,∴∠D=∠EBC,∵DE=BE、∠DEF=∠BEC,∴△DEF≌△BEC(ASA),∴BC=DF、EC=EF,又∵AO=OB,∴OF是△ABC的中位线,设OF=t,则BC=DF=2t,∵DF=DO﹣OF=1﹣t,∴1﹣t=2t,解得:t=,则DF=BC=、AC===,∴EF=FC=AC=,∵OB=OD,∴∠ABD=∠D,(3)如图2,∵BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,∴∠BOC=、∠AOD=∠COD=,则+2×=180,解得:n=4,∴∠BOC=90°、∠AOD=∠COD=45°,∴BC=AC=,∵∠AFO=90°,∴OF=AOcos∠AOF=,则DF=OD﹣OF=1﹣,∴S △ACD=AC•DF=××(1﹣)=.18.(2018•江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP 为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是BP=CE ,CE与AD的位置关系是AD⊥CE ;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2,BE=2,求四边形ADPE的面积.解:(1)如图1中,结论:PB=EC,CE⊥AD.理由:连接AC.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°,∵△APE是等边三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°,∴△BAP≌△CAE,∴BP=CE,∠BAP=∠ACE=30°,延长CE交AD于H,∵∠CAH=60°,∴∠CAH+∠ACH=90°,∴∠AHC=90°,即CE⊥AD.故答案为PB=EC,CE⊥AD.(2)结论仍然成立.理由:选图2,连接AC交BD于O,设CE交AD于H.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°,∵△APE是等边三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°,∴△BAP≌△CAE,∴BP=CE,∠BAP=∠ACE=30°,∵∠CAH=60°,∴∠CAH+∠ACH=90°,∴∠AHC=90°,即CE⊥AD.选图3,连接AC交BD于O,设CE交AD于H.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°,∵△APE是等边三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°,∴△BAP≌△CAE,∴BP=CE,∠BAP=∠ACE=30°,∵∠CAH=60°,∴∠CAH+∠ACH=90°,∴∠AHC=90°,即CE⊥AD.(3)∴△BAP≌△CAE,由(2)可知EC⊥AD,CE=BP,在菱形ABCD中,AD∥BC,∴EC⊥BC,教习网-免费精品课件试卷任意下载教习网-课件试卷试题含解析免费下载∵BC=AB=2,BE=2,在Rt △BCE 中,EC==8, ∴BP=CE=8,∵AC 与BD 是菱形的对角线,∴∠ABD=∠ABC=30°,AC ⊥BD ,∴BD=2BO=2AB•cos30°=6,∴OA=AB=,DP=BP ﹣BD=8﹣6=2,∴OP=OD+DP=5,在Rt △AOP 中,AP==2,∴S 四边形ADPE =S △ADP +S △AEP =×2×+×(2)2=8.。
2018年中考数学选择填空压轴题专题3函数的几何综合问题
专题03函数的几何综合问题例1.如图,在平面直角坐标系中,直线 l : y= W3x — #与x 轴交于点B i ,以OB 为边长作等边三角 形A l OB |,过点A i 作A i B 2平行于x 轴,交直线l 于点B2 ,以A i B 2为边长作等边三角形 A 2A 1B 2,过点A 2 作A 2B 3平行于x 轴,交直线l 于点B 3 ,以A 2B 3为边长作等边三角形 A3A2B3 ,…,则点A 2017的横坐标同类题型1.1如图,直线l : y= x+1交y 轴-于点A i ,在x 轴正方向上取点B i ,使OB = OA ;过点B i 作A 2B i ,x 轴,交l 于点A 2 ,在x 轴正方向上取点B 2 ,使B i B 2=B 1A 2 ;过点 也彳^。
改,x 轴,交l 于点A 3 ,在 x 轴正方向上取点B 3 ,使B 2B3=E 2A 3 ;…记△ 0AB i 面积为S 1, △ B]A 2B 2面积为S 2 ,△ B 2A 3B 3面积为S3 ,…则S 2017等于 ( )同类题型1.2如图,已知直线| : y= W3 x,过点A (0, 1)作y 轴的垂线交直线l 于点B,过点B 作直 3 线l 的垂线交y 轴于点A 1 ;过点A 1作y 轴的垂线交直线l 于点B 1 ,过点B 1作直线l 的垂线交y 轴于点 A2 ;…;按此作法继续下去,则点 A 4的坐标为( )A. (0, 128)B. (0, 256)C. (0, 512)D. (0, 1024)八 c4030 A. 24031B. 2C. 240324033D. 2同类题型1.3如图,在平面直角坐标系中,直线 l : y= g 3 x+1交x 轴于点B,交y 轴于点A,过点A 作AB1 LAB 交x 轴于点M ,过点'彳^B1A 1,x 轴交直线l 于点A 2…依次作下去,则点 牛 的横坐标为例2.高速公路上依次有 3个标志点A 、R C,甲、乙两车分别从 A C 两点同时出发,匀速行驶,甲车从-B-C,乙车从 OB-A,甲、乙两车离 B 的距离y 1、V2 (千米)与行驶时间 x (小时)之间的函数关 系图象如图所示.观察图象,给出下列结论:① A C 之间的路程为690千米;②乙车比甲车每小时快30千米;③4.5小时两车相遇;④点 E 的坐标为(7, 180),「其中正确的有 号都填在横线上).2「千羽450同类题型2.1甲、乙两辆汽车沿同一路线从 A 地前往B 地,甲车以a 千米/时的速度匀速行驶,途中出现 故障后停车维修,修好后以 2a 千米/时的速度继续行驶;乙车在甲车出发 2小时后匀速前往 B 地,比甲车 早30分钟到达.到达 B 地后,乙车按原速度返回 A 地,甲车以2a 千米/时的速度返回 A 地.设甲、乙两 车与A 地相距s (千米),甲车离开 A 地的时间为t (小时),s 与t 之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为 1小时;③两车在途中第二次相遇时 相距40千米,其中不正确的个数为一…一、- 7 . 一、,(1) a=40, n^ 1; (2)乙的速度是 80km/h ; (3)甲比乙迟-h 到达B 地;240t 的值为5.25 ;④当t = 3时,两车 ( ) C. 2个D. 3个甲车比乙车早行驶 2h,并且甲车的函数图象.则下列结论:(把所有正确结论的序并以各自的速度匀速行驶, y (km)与时间x (h)50km.正确的个数是C. 3D. 4同类题型2.3甲、乙两人从科技馆出发, 沿相同的路线分别以不同的速度匀速跑向极地馆, 程后,乙开始出发,当乙超出甲 150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向极1例3.如图,已知动点P 在函数y= — (x>0)的图象上运动,PML x 轴于点 MPN! y 轴于点N,线段2xPM PN 分别与直线 AB : y=—x+ 1交于点E, F,则AF. BE 的值为6,,点D 在AB 的右侧,△ OA 丽△BCDTB 是等腰直角三角形,/ OAB= / BCD= 90 ,若函数y= - (x>0)的 x甲先跑一段路 地馆.如图是甲、乙两人在跑步的全过程中经过的路程下列四种说法:①甲的速度为 1.5米/秒;②a=750; 相遇时乙跑了 375米.其中正确的个数是 y (米)与甲出发的时间 x (秒)的函数图象.则 ③乙在途中等候甲 100秒;④乙出发后第一次与甲 疝眯900C.D.「4 个A. 4B. 2C. 1同类题型3.1如图,,一 一 一一 3 ,,一 ,,,, ,」在反比例函数y=法的图象上有一动点A,连接 AO 并延长交图象的另一支于点 B,在第二象限内有一点 C,满足AC= BC 当点A 运动时,点C 始终在函数 k ....... ................... y=x 的图象上运动,若tan/CABC. — 9D. — 12A 在x 轴的正半轴上,点B 在第一象限,点C 在线段AB 上,A. 1个B. 2个150A=2,则k 的值为同类题型3.2如图,在平面直角坐标系中,点一 6图象经过点 D,则^ OABW △ BCD 勺面积之差为( A. 12 B . 6 C. 3 D . 2一 .一 ................. .. ................ ......................... . . 1 一 9同类题型3.3如图,在平面直角坐标系 xOy 中,已知直线y = kx (k>0)分别交反比例函数y= -和丫= - x x在第一象限的图象于点 A, B,过点B 作BDLx 轴于点D,交y=1的图象于点C,连结AC.若△ABB 等x例4.如图,一次函,数y = x+b 的图象与反比例函数y= k 的图象交于点 A (3, 6)与点B,且与 x.... ___ k ............. ................................... ...............................................点C,右点P 是反比例函数y= -图象上的一个动点,作直线 AP 与x 轴、y 轴分别交于点 M N,x2同类题型4.2方程x 2 +3x —1 = 0的根可视为函数y=x+3的图象与函数....... 一 .、一一 2 .......... ............ ........ ....那么用此方法可推断出方程 x 2 +2x- 1=0的实数根x o 所在的范围是( )2 2例5.在平面直角坐标系 xOy 中,抛物线y= —x +2mx- m - 1父y 轴于点为A,顶点为D,对称轴与 x 轴交于点H.当抛物线顶点 D 在第二象限时,如果/ ADH / AHO 则m=.y 轴交于连结BNA. b> 2 2 , 9B. bv 2C. b<3D. 2 V2<b<1 . ................... ...... y=;的图象交点的横坐标,A. - 1<x 0 <0B. 0<xo <1C. 1<xo <2D. 2<xo <3A取值范围为AP1 ,点在函数y= x 的图象下万,同类题型5.1已知抛物线y= 4x 2 +1具有如下性质:该抛物线上任意一点到定点 F (0, 2)的距离与到12x 轴的距离始终相等,如图,点M 的坐标为(木,3), P 是抛物线丫= 4x 2 +1上一个动点,则4 PMF周长的最小值是()A. 3B. 4C. 5D. 6同类题型5.2抛物线y=ax2+bx+3 (aw0)经过点A(—1, 0), B( 2 , 0),且与y 轴相交于点C.设点D 是所求抛物线第一象限上一点,且在对称轴的右侧,点AOCf 似时,求点 D 的坐标.同类题型5.3小明家的洗手盆上装有一种抬启式水龙头(如图 1),完全开启后,水流路线呈抛物线,把手端点A,出水口 B 和落水点C 恰好在同一直线上,点 A 至出水管BD 的距离为12cm,洗手盆及水龙头的相 关数据如图2所示,现用高10.2cm 的圆柱型水杯去接水,若水流所在抛物线经过点 D 和杯子上底面中心 E, 则点E 到洗手盆内侧的距离 EH 为 cm.E 在线段 AC 上,且 DEL AG 当△ DCE^A图1图2参考答案例1 .如图,在平面直角坐标系中,直线l :y= W3x—率与x轴交于点B i ,以OB为边长作等边三角形々0耳,过点A1作A1B2平行于x轴,交直线l于点B2 ,以A1B2为边长作等边三角形A2A l B2,过点为作A2B3平行于x轴,交直线l于点B3 ,以A2B3为边长作等边三角形A3A2B3 ,…,则点A2017的横坐标是.Bi ,可得Bi (1, 0), D (0,—・•.OB =1, / OB D= 30 ,1一1如图所不,过A1作A1Al OB于A,则OA= 2。
2018中考数学专题复习九_中考压轴题
专题九:二次函数压轴题【问题解析】中考压轴题是中考必不可少的试题,这类题一般是融代数、几何为一体的综合题,或者是解决实际问题的综合题.此类题注重对数学思想方法、探究性思维能力和创新思维能力的考查,涉及的知识比较多,信息量大,题目灵活,要求学生有较高的分析问题、解决问题的能力.它符合新课标对学生能力提高的要求.从近几年各省市中考数学压轴题来看,作为试卷的最后一题,一般都是循序渐进地设置几个问题,对学生的要求一步步的抬高.压轴题涉及知识多,覆盖面广,综合性强,难度系数大,关系比较复杂,解法灵活,既考查了学生的基础知识和基本技能,又考查了学生的数学思想方法和探索创新能力、解决问题能力,是必不可少的.近几年来主要以函数和几何综合题、二次函数与代数知识综合应用、一次函数与二次函数综合题、开放探究题等类型出现,【热点探究】类型一:抛物线与三角形的综合问题【例题1】(2016·云南省昆明市)如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由对称轴的对称性得出点A的坐标,由待定系数法求出抛物线的解析式;(2)作辅助线把四边形COBP分成梯形和直角三角形,表示出面积S,化简后是一个关于S的二次函数,求最值即可;(3)画出符合条件的Q点,只有一种,①利用平行相似得对应高的比和对应边的比相等列比例式;②在直角△OCQ和直角△CQM利用勾股定理列方程;两方程式组成方程组求解并取舍.【解答】解:(1)由对称性得:A(﹣1,0),设抛物线的解析式为:y=a(x+1)(x﹣2),把C(0,4)代入:4=﹣2a,a=﹣2,∴y=﹣2(x+1)(x﹣2),∴抛物线的解析式为:y=﹣2x2+2x+4;(2)如图1,设点P(m,﹣2m2+2m+4),过P作PD⊥x轴,垂足为D,∴S=S梯形+S△PDB=m(﹣2m2+2m+4+4)+(﹣2m2+2m+4)(2﹣m),S=﹣2m2+4m+4=﹣2(m﹣1)2+6,∵﹣2<0,∴S有最大值,则S大=6;(3)如图2,存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形,理由是:设直线BC的解析式为:y=kx+b,把B(2,0)、C(0,4)代入得:,解得:,∴直线BC的解析式为:y=﹣2x+4,设M(a,﹣2a+4),过A作AE⊥BC,垂足为E,则AE的解析式为:y=x+,则直线BC与直线AE的交点E(1.4,1.2),设Q(﹣x,0)(x>0),∵AE∥QM,∴△ABE∽△QBM,∴①,由勾股定理得:x2+42=2×[a2+(﹣2a+4﹣4)2]②,由①②得:a1=4(舍),a2=,当a=时,x=,∴Q(﹣,0).【同步练】(2016·浙江省湖州市)如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).类型二:抛物线与四边形的综合问题【例题2】2016·青海西宁·12分)如图,在平面直角坐标系中,四边形ABCD是以AB为直径的⊙M的内接四边形,点A,B在x轴上,△MBC是边长为2的等边三角形,过点M作直线l与x轴垂直,交⊙M于点E,垂足为点M,且点D平分.(1)求过A,B,E三点的抛物线的解析式;(2)求证:四边形AMCD是菱形;(3)请问在抛物线上是否存在一点P,使得△ABP的面积等于定值5?若存在,请求出所有的点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据题意首先求出抛物线顶点E的坐标,再利用顶点式求出函数解析式;(2)利用等边三角形的性质结合圆的有关性质得出∠AMD=∠CMD=∠AMC=60°,进而得出DC=CM=MA=AD,即可得出答案;(3)首先表示出△ABP的面积进而求出n的值,再代入函数关系式求出P点坐标.【解答】(1)解:由题意可知,△MBC为等边三角形,点A,B,C,E均在⊙M上,则MA=MB=MC=ME=2,又∵CO⊥MB,∴MO=BO=1,∴A(﹣3,0),B(1,0),E(﹣1,﹣2),抛物线顶点E的坐标为(﹣1,﹣2),设函数解析式为y=a(x+1)2﹣2(a≠0)把点B(1,0)代入y=a(x+1)2﹣2,解得:a=,故二次函数解析式为:y=(x+1)2﹣2;(2)证明:连接DM,∵△MBC为等边三角形,∴∠CMB=60°,∴∠AMC=120°,∵点D平分弧AC,∴∠AMD=∠CMD=∠AMC=60°,∵MD=MC=MA,∴△MCD,△MDA是等边三角形,∴DC=CM=MA=AD,∴四边形AMCD为菱形(四条边都相等的四边形是菱形);(3)解:存在.理由如下:设点P的坐标为(m,n)∵S△ABP=AB|n|,AB=4∴×4×|n|=5,即2|n|=5,解得:n=±,当时,(m+1)2﹣2=,解此方程得:m1=2,m2=﹣4即点P的坐标为(2,),(﹣4,),当n=﹣时,(m+1)2﹣2=﹣,此方程无解,故所求点P坐标为(2,),(﹣4,).【同步练】(2016·四川眉山)已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,(1)求经过A、B、C三点的抛物线的解析式;(2)在平面直角坐标系xOy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.类型三:抛物线与图形变换的综合问题【例题3】(2016·陕西)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.【考点】二次函数综合题.【分析】(1)把M、N两点的坐标代入抛物线解析式可求得a、b的值,可求得抛物线解析式,再根据一元二次方程根的判别式,可判断抛物线与x轴的交点情况;(2)利用A点坐标和等腰三角形的性质可求得B点坐标,设出平移后的抛物线的解析式,把A、B的坐标代入可求得平移后的抛物线的解析式,比较平移前后抛物线的顶点的变化即可得到平移的过程.【解答】解:(1)由抛物线过M、N两点,把M、N坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣3x+5,令y=0可得x2﹣3x+5=0,该方程的判别式为△=(﹣3)2﹣4×1×5=9﹣20=﹣11<0,∴抛物线与x轴没有交点;(2)∵△AOB是等腰直角三角形,A(﹣2,0),点B在y轴上,∴B点坐标为(0,2)或(0,﹣2),可设平移后的抛物线解析式为y=x2+mx+n,①当抛物线过点A(﹣2,0),B(0,2)时,代入可得,解得,∴平移后的抛物线为y=x2+3x+2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移3个单位,再向下平移3个单位即可获得符合条件的抛物线;②当抛物线过A(﹣2,0),B(0,﹣2)时,代入可得,解得,∴平移后的抛物线为y=x2+x﹣2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移2个单位,再向下平移5个单位即可获得符合条件的抛物线.【同步练】(2016·重庆市A卷·12分)如图1,在平面直角坐标系中,抛物线y=﹣x2+x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点E.(1)判断△ABC的形状,并说明理由;(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD的面积最大时,Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止.当点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长;(3)如图2,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E′,点A的对应点为点A′,将△AOC绕点O顺时针旋转至△A1OC1的位置,点A,C的对应点分别为点A1,C1,且点A1恰好落在AC上,连接C1A′,C1E′,△A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.类型四:抛物线下的动态最值问题【例题4】(2016·贵州安顺·14分)如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.【分析】(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(﹣1,0),B(5,0),C(0,)三点代入求出a、b、c的值即可;(2)因为点A关于对称轴对称的点B的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;(3)分点N在x轴下方或上方两种情况进行讨论.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2﹣2x﹣;(2)∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,∵B(5,0),C(0,﹣),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣),∴N1(4,﹣);②当点N在x轴上方时,如图,过点N2作N2D⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2﹣2x﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,).综上所述,符合条件的点N的坐标为(4,﹣),(2+,)或(2﹣,).【点评】本题考查的是二次函数综合题,涉及到用待定系数法求一次函数与二次函数的解析式、平行四边的判定与性质、全等三角形等知识,在解答(3)时要注意进行分类讨论.【同步练】(烟台市 2015 中考 -24)如图,在平面直角坐标系中,抛物线y=ax 2+bx+c 与⊙M 相交于A 、B 、C 、D 四点,其中A 、B 两点的坐标分别为(﹣1,0),(0,﹣2),点D 在x 轴上且AD 为⊙M 的直径.点E 是⊙M 与y 轴的另一个交点,过劣弧上的点F 作FH⊥AD 于点H ,且FH=1.5(1)求点D 的坐标及该抛物线的表达式;(2)若点P 是x 轴上的一个动点,试求出△PEF 的周长最小时点P 的坐标;(3)在抛物线的对称轴上是否存在点Q ,使△QCM 是等腰三角形?如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.类型五:抛物线下的动态存在问题【例题5】(枣庄市 2015 中考 -25)如图,直线y=x+2与抛物线26y ax bx =++(a≠0)相交于A (12,52)和B (4,m ),点P 是线段AB 上异于A 、B 的动点,过点P 作PC⊥x 轴于点D ,交抛物线于点C .(1)求抛物线的解析式;(2)是否存在这样的P 点,使线段PC 的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC 为直角三角形时点P 的坐标.思路分析:此题主要考查了二次函数解析式的确定、二次函数最值的应用以及直角三角形的判定、函数图象交点坐标的求法等知识解题时注意联系,对于题(1)已知B (4,m )在直线y=x+2上,很容易求得m 的值,又因为已知抛物线图象上的A 、B 两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(2)要弄清PC 的长,实际是直线AB 与抛物线函数值的差.可设出P 点横坐标,根据直线AB 和抛物线的解析式表示出P 、C 的纵坐标,进而得到关于PC 与P 点横坐标的函数关系式,根据函数的性质即可求出PC 的最大值.对于题(3)当△PAC 为直角三角形时,根据直角顶点的不同,需要结合图形从三种情况进行分类讨论,分别求解.解题过程:解:(1)∵B(4,m )在直线y=x+2上,∴m=4+2=6,∴B(4,6), ∵A(12,52)、B (4,6)在抛物线26y ax bx =++上, ∴2511()622261646a b a b ⎧=++⎪⎨⎪=++⎩,解得28a b =⎧⎨=-⎩, ∴抛物线的解析式为2286y x x =-+.(2)设动点P 的坐标为(n ,n+2),则C 点的坐标为(n ,2286n n -+),∴PC=(n +2)﹣(2286n n -+),=2294n n -+-, =29492()48n --+, ∵PC>0,∴当n=94时,线段PC 最大且为498. (3)∵△PAC 为直角三角形,i )若点P 为直角顶点,则∠APC=90°.由题意易知,PC∥y 轴,∠APC=45°,因此这种情形不存在;ii )若点A 为直角顶点,则∠PAC=90°.如答图3﹣1,过点A (12,52)作AN⊥x 轴于点N ,则ON=12,AN=52. 过点A 作AM⊥直线AB ,交x 轴于点M ,则由题意易知,△AMN 为等腰直角三角形, ∴MN=AN=52,∴OM=ON+MN=12+52=3, ∴M(3,0).设直线AM 的解析式为:y=kx+b , 则:152230k b k b ⎧+=⎪⎨⎪+=⎩,解得13k b =-⎧⎨=⎩, ∴直线AM 的解析式为:y=﹣x+3 ①又抛物线的解析式为:y=2x 2﹣8x+6 ②联立①②式,解得:x=3或x=12(与点A 重合,舍去) ∴C(3,0),即点C 、M 点重合.当x=3时,y=x+2=5,∴P 1(3,5);iii)若点C为直角顶点,则∠ACP=90°.∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴抛物线的对称轴为直线x=2.如答图3﹣2,作点A(12,52)关于对称轴x=2的对称点C,则点C在抛物线上,且C(72,52).当x=72时,y=x+2=112.∴P2(72,112).∵点P1(3,5)、P2(72,112)均在线段AB上,∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(72,112).规律总结:熟练把握关于二次函数解析式的确定、二次函数最值的应用以及直角三角形的判定、函数图象交点坐标的求法等知识是解此类综合性强的问题的关键.【同步练】(2016·内蒙古包头)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;(3)一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.类型六:抛物线与相似的综合问题【例题6】(烟台市 2014 中考 -26)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.【解析】(1)把点B的坐标代入抛物线的表达式即可求得.(2)通过△AOC∽△CFB求得OC的值,通过△OCD≌△FCB得出DC=CB,∠OCD=∠FCB,然后得出结论.(3)设直线AB的表达式为y=kx+b,求得与抛物线的交点E的坐标,然后通过解三角函数求得结果.【解答】解:(1)把点B的坐标代入抛物线的表达式,得=a×22﹣2a﹣a,解得a=,∴抛物线的表达式为y=x2﹣x﹣.(2)连接CD,过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90°∵∠ACB=90°,∴∠ACO+∠BCF=90°,∴∠ACO=∠CBF,∵∠AOC=∠CFB=90°,∴△AOC∽△CFB,∴=,设OC=m,则CF=2﹣m,则有=,解得m1=m2=1,∴OC=CF=1,当x=0时,y=﹣,∴OD=,∵∠DOC=∠BFC=90°,∴△OCD≌△FCB,∴DC=CB,∠OCD=∠FCB,∴点B、C、D在同一直线上,∴点B与点D关于直线AC对称,∴点B关于直线AC的对称点在抛物线上.(3)过点E作EG⊥y轴于点G,设直线AB的表达式为y=kx+b,则,解得k=﹣,∴y=﹣x+,代入抛物线的表达式﹣x+=x2﹣x﹣.解得x=2或x=﹣2,当x=﹣2时y=﹣x+=﹣×(﹣2)+=,∴点E的坐标为(﹣2,),∵tan∠EDG===,∴∠EDG=30°∵tan∠OAC===,∴∠OAC=30°,∴∠OAC=∠EDG,∴ED∥AC.【点评】本题考查了待定系数法求解析式,三角形相似的判定及性质,以及对称轴的性质和解三角函数等知识的理解和掌握.(2016·湖北荆门·14分)如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.1. (2016·湖北黄石·8分)科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2. (2016·广西百色·12分)正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O、P、A三点坐标;②求抛物线L的解析式;(2)求△OAE与△OCE面积之和的最大值.3. (2016·广西桂林·12分)如图1,已知开口向下的抛物线y1=ax2﹣2ax+1过点A(m,1),与y轴交于点C,顶点为B,将抛物线y1绕点C旋转180°后得到抛物线y2,点A,B的对应点分别为点D,E.(1)直接写出点A,C,D的坐标;(2)当四边形ABCD是矩形时,求a的值及抛物线y2的解析式;(3)在(2)的条件下,连接DC,线段DC上的动点P从点D出发,以每秒1个单位长度的速度运动到点C停止,在点P运动的过程中,过点P作直线l⊥x轴,将矩形ABDE沿直线l折叠,设矩形折叠后相互重合部分面积为S平方单位,点P的运动时间为t秒,求S 与t的函数关系.4. (2016·黑龙江齐齐哈尔·8分)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x 轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)5. (枣庄市 2014 中考 -25)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.6. (郴州市 2014 中考 -26)已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(2,0)、C (0,2)三点.(1)求这条抛物线的解析式;(2)如图一,点P是第一象限内此抛物线上的一个动点,当点P运动到什么位置时,四边形ABPC的面积最大?求出此时点P的坐标;(3)如图二,设线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,那么在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.7. (2016·湖北荆州·14分)阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?8. (2016·福建龙岩·14分)已知抛物线c bx x y ++-=21与y 轴交于点C ,与x 轴的两个交点分别为A (﹣4,0),B (1,0).(1)求抛物线的解析式;(2)已知点P 在抛物线上,连接PC ,PB ,若△PBC 是以BC 为直角边的直角三角形,求点P 的坐标;(4)已知点E 在x 轴上,点F 在抛物线上,是否存在以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,请直接写出点E 的坐标;若不存在,请说明理由.【参考答案】类型一:抛物线与三角形的综合问题【同步练】(2016·浙江省湖州市)如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).【考点】二次函数综合题.【分析】(1)将点A、点C的坐标代入函数解析式,即可求出b、c的值,通过配方法得到点M的坐标;(2)点M是沿着对称轴直线x=1向下平移的,可先求出直线AC的解析式,将x=1代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围;(3)由题意分析可得∠MCP=90°,则若△PCM与△BCD相似,则要进行分类讨论,分成△PCM∽△BDC或△PCM∽△CDB两种,然后利用边的对应比值求出点坐标.【解答】解:(1)把点A(3,1),点C(0,4)代入二次函数y=﹣x2+bx+c得,解得∴二次函数解析式为y=﹣x2+2x+4,配方得y=﹣(x﹣1)2+5,∴点M的坐标为(1,5);(2)设直线AC解析式为y=kx+b,把点A(3,1),C(0,4)代入得,解得∴直线AC的解析式为y=﹣x+4,如图所示,对称轴直线x=1与△ABC两边分别交于点E、点F把x=1代入直线AC解析式y=﹣x+4解得y=3,则点E坐标为(1,3),点F坐标为(1,1)∴1<5﹣m<3,解得2<m<4;(3)连接MC,作MG⊥y轴并延长交AC于点N,则点G坐标为(0,5)∵MG=1,GC=5﹣4=1∴MC==,把y=5代入y=﹣x+4解得x=﹣1,则点N坐标为(﹣1,5),∵NG=GC,GM=GC,∴∠NCG=∠GCM=45°,∴∠NCM=90°,由此可知,若点P在AC上,则∠MCP=90°,则点D与点C必为相似三角形对应点①若有△PCM∽△BDC,则有∵BD=1,CD=3,∴CP===,∵CD=DA=3,∴∠DCA=45°,若点P在y轴右侧,作PH⊥y轴,∵∠PCH=45°,CP=∴PH==把x=代入y=﹣x+4,解得y=,∴P1();同理可得,若点P在y轴左侧,则把x=﹣代入y=﹣x+4,解得y=∴P2();②若有△PCM∽△CDB,则有∴CP==3∴PH=3÷=3,若点P在y轴右侧,把x=3代入y=﹣x+4,解得y=1;若点P在y轴左侧,把x=﹣3代入y=﹣x+4,解得y=7∴P3(3,1);P4(﹣3,7).∴所有符合题意得点P坐标有4个,分别为P1(),P2(),P3(3,1),P4(﹣3,7).类型二:抛物线与四边形的综合问题【同步练】(2016·四川眉山)已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,(1)求经过A、B、C三点的抛物线的解析式;形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.【分析】(1)设抛物线的解析式为y=ax2+bx+c,把A,B,C三点坐标代入求出a,b,c 的值,即可确定出所求抛物线解析式;(2)在平面直角坐标系xOy中存在一点P,使得以点A、B、C、P为顶点的四边形为菱形,理由为:根据OA,OB,OC的长,利用勾股定理求出BC与AC的长相等,只有当BP与AC平行且相等时,四边形ACBP为菱形,可得出BP的长,由OB的长确定出P的纵坐标,确定出P坐标,当点P在第二、三象限时,以点A、B、C、P为顶点的四边形只能是平行四边形,不是菱形;(3)利用待定系数法确定出直线PA解析式,当点M与点P、A不在同一直线上时,根据三角形的三边关系|PM﹣AM|<PA,当点M与点P、A在同一直线上时,|PM﹣AM|=PA,当点M与点P、A在同一直线上时,|PM﹣AM|的值最大,即点M为直线PA与抛物线的交点,联立直线AP与抛物线解析式,求出当|PM﹣AM|的最大值时M坐标,确定出|PM﹣AM|的最大值即可.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,∵A(1,0)、B(0,3)、C(﹣4,0),∴,解得:a=﹣,b=﹣,c=3,∴经过A、B、C三点的抛物线的解析式为y=﹣x2﹣x+3;形,理由为:∵OB=3,OC=4,OA=1,∴BC=AC=5,当BP平行且等于AC时,四边形ACBP为菱形,∴BP=AC=5,且点P到x轴的距离等于OB,∴点P的坐标为(5,3),当点P在第二、三象限时,以点A、B、C、P为顶点的四边形只能是平行四边形,不是菱形,则当点P的坐标为(5,3)时,以点A、B、C、P为顶点的四边形为菱形;(3)设直线PA的解析式为y=kx+b(k≠0),∵A(1,0),P(5,3),∴,解得:k=,b=﹣,∴直线PA的解析式为y=x﹣,当点M与点P、A不在同一直线上时,根据三角形的三边关系|PM﹣AM|<PA,当点M与点P、A在同一直线上时,|PM﹣AM|=PA,∴当点M与点P、A在同一直线上时,|PM﹣AM|的值最大,即点M为直线PA与抛物线的交点,解方程组,得或,∴点M的坐标为(1,0)或(﹣5,﹣)时,|PM﹣AM|的值最大,此时|PM﹣AM|的最大值为5.【点评】此题属于二次函数综合题,涉及的知识有:二次函数的性质,待定系数法确定抛物线解析式、一次函数解析式,菱形的判定,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键..类型三:抛物线与图形变换的综合问题【同步练】(2016·重庆市A卷·12分)如图1,在平面直角坐标系中,抛物线y=﹣x2+x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点E.(1)判断△ABC的形状,并说明理由;(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD的面积最大时,Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止.当点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长;(3)如图2,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E′,点A的对应点为点A′,将△AOC绕点O顺时针旋转至△A1OC1的位置,点A,C的对应点分别为点A1,C1,且点A1恰好落在AC上,连接C1A′,C1E′,△A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.【分析】(1)先求出抛物线与x轴和y轴的交点坐标,再用勾股定理的逆定理判断出△ABC是直角三角形;(2)先求出S△PCD最大时,点P(,),然后判断出所走的路径最短,即最短路径的长为PM+MN+NA的长,计算即可;(3)△A′C1E′是等腰三角形,分三种情况分别建立方程计算即可.【解答】解:(1)△ABC为直角三角形,当y=0时,即﹣x2+x+3=0,∴x1=﹣,x2=3∴A(﹣,0),B(3,0),∴OA=,OB=3,当x=0时,y=3,∴C(0,3),∴OC=3,根据勾股定理得,AC2=OB2+OC2=12,BC2=OB2+OC2=36,∴AC2+BC2=48,∵AB2=[3﹣(﹣)]2=48,∴AC2+BC2=AB2,∴△ABC是直角三角形,(2)如图,∵B(3,0),C(0,3),∴直线BC解析式为y=﹣x+3,过点P作∥y轴,设P(a,﹣ a2+a+3),∴G(a,﹣ a+3),∴PG=﹣a2+a,设点D的横坐标为x D,C点的横坐标为x C,S△PCD=×(x D﹣x C)×PG=﹣(a﹣)2+,∵0<a<3,∴当a=时,S△PCD最大,此时点P(,),将点P向左平移个单位至P′,连接AP′,交y轴于点N,过点N作MN⊥抛物线对称轴于点M,连接PM,点Q沿P→M→N→A,运动,所走的路径最短,即最短路径的长为PM+MN+NA 的长,∴P(,)∴P′(,),∵点A(﹣,0),∴直线AP′的解析式为y=x+,当x=0时,y=,∴N(0,),过点P′作P′H⊥x轴于点H,∴AH=,P′H=,AP′=,∴点Q运动得最短路径长为PM+MN+AN=+=;(3)在Rt△AOC中,∵tan∠OAC==,∴∠OAC=60°,∵OA=OA1,∴△OAA1为等边三角形,∴∠AOA1=60°,∴∠BOC1=30°,∵OC1=OC=3,。
2018年中考数学压轴题100题精选
2018年中考数学压轴题100题精选【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t = 2时,AP = ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t(4)当DE经过点C 时,请直接..写出t图16【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考数学压轴题函数汇编2018年全国各地中考数学压轴题汇编(四川专版)函数参考答案与试题解析1.(2018•成都)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(﹣2,0),与反比例函数y=(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.解:(1)∵一次函数y=x+b的图象经过点A(﹣2,0),∴0=﹣2+b,得b=2,∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数y=(x>0)的图象交于B(a,4),∴4=a+2,得a=2,∴4=,得k=8,即反比例函数解析式为:y=(x>0);(2)∵点A(﹣2,0),∴OA=2,设点M(m﹣2,m),点N(,m),当MN∥AO且MN=AO时,四边形AOMN是平行四边形,||=2,解得,m=2或m=+2,∴点M的坐标为(﹣2,)或(,2+2).2.(2018•自贡)如图,抛物线y=ax2+bx﹣3过A(1,0)、B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.(1)求直线AD及抛物线的解析式;(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P、Q、D、R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.解:(1)把(1,0),(﹣3,0)代入函数解析式,得,解得,抛物线的解析式为y=x2+2x﹣3;当x=﹣2时,y=(﹣2)2+2×(﹣2)﹣3,解得y=﹣3,即D(﹣2,﹣3).设AD的解析式为y=kx+b,将A(1,0),D(﹣2,﹣3)代入,得,解得,直线AD的解析式为y=x﹣1;(2)设P点坐标为(m,m﹣1),Q(m,m2+2m﹣3),l=(m﹣1)﹣(m2+2m﹣3)化简,得l=﹣m2﹣m+2配方,得l=﹣(m+)2+,当m=﹣时,l最大=;(3)由(2)可知,0<PQ≤.当PQ为边时,DR∥PQ且DR=PQ.∵R是整点,D(﹣2,﹣3),∴PQ是正整数,∴PQ=1,或PQ=2.当PQ=1时,DR=1,此时点R的横坐标为﹣2,纵坐标为﹣3+1=﹣2或﹣3﹣1=﹣4,∴R(﹣2,﹣2)或R(﹣2,﹣4);当PQ=2时,DR=2,此时点R的横坐标为﹣2,纵坐标为﹣3+2=﹣1或﹣3﹣2=﹣5,即R(﹣2,﹣1)或R(﹣2,﹣5).设点R的坐标为(n,n+m2+m﹣3),Q(m,m2+2m﹣3),则QR2=2(m﹣n)2.又∵P(m,m﹣1)、D(﹣2,﹣3),∴PD2=2(m+2)2,∴(m+2)2=(m﹣n)2,解得n=﹣2(不合题意,舍去)或n=2m+2.∴点R的坐标为(2m+2,m2+3m﹣1).∵R是整点,﹣2<m<1,∴当m=﹣1时,点R的坐标为(0,﹣3);当m=0时,点R的坐标为(2,﹣1).综上所述,存在满足R的点,它的坐标为(﹣2,﹣2)或(﹣2,﹣4)或(﹣2,﹣1)或(﹣2,﹣5)或(0,﹣3)或(2,﹣1).3.(2018•攀枝花)如图,在平面直角坐标系中,A点的坐标为(a,6),AB ⊥x轴于点B,cos∠OAB═,反比例函数y=的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.(1)求反比例函数的解析式;(2)求直线EB的解析式;.(3)求S△OEB解:(1)∵A点的坐标为(a,6),AB⊥x轴,∴AB=6,∵cos∠OAB═=,∴,∴OA=10,由勾股定理得:OB=8,∴A(8,6),∴D(8,),∵点D在反比例函数的图象上,∴k=8×=12,∴反比例函数的解析式为:y=;(2)设直线OA的解析式为:y=bx,∵A(8,6),∴8b=6,b=,∴直线OA的解析式为:y=x,则,x=±4,∴E(﹣4,﹣3),设直线BE的解式为:y=mx+n,把B(8,0),E(﹣4,﹣3)代入得:,解得:,∴直线BE的解式为:y=x﹣2;=OB•|y E|=×8×3=12.(3)S△OEB4.(2018•成都)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?解:(1)y=(2)设甲种花卉种植为 a m2,则乙种花卉种植(1200﹣a)m2.∴,∴200≤a≤800当200≤a<300时,W1=130a+100(1200﹣a)=30a+120000.当a=200 时.W min=126000 元当300≤a≤800时,W2=80a+15000+100(1200﹣a)=135000﹣20a.当a=800时,W min=119000 元∵119000<126000∴当a=800时,总费用最少,最少总费用为119000元.此时乙种花卉种植面积为1200﹣800=400m2.答:应该分配甲、乙两种花卉的种植面积分别是800m2和400m2,才能使种植总费用最少,最少总费用为119000元.5.(2018•攀枝花)如图,对称轴为直线x=1的抛物线y=x2﹣bx+c与x轴交于A (x1,0)、B(x2,0)(x1<x2)两点,与y轴交于C点,且+=﹣.(1)求抛物线的解析式;(2)抛物线顶点为D,直线BD交y轴于E点;①设点P为线段BD上一点(点P不与B、D两点重合),过点P作x轴的垂线与抛物线交于点F,求△BDF面积的最大值;②在线段BD上是否存在点Q,使得∠BDC=∠QCE?若存在,求出点Q的坐标;若不存在,请说明理由.解:(1)∵抛物线对称轴为直线x=1∴﹣∴b=2由一元二次方程根与系数关系:x1+x2=﹣,x1x2=∴+==﹣∴﹣则c=﹣3∴抛物线解析式为:y=x2﹣2x﹣3(2)由(1)点D坐标为(1,﹣4)当y=0时,x2﹣2x﹣3=0解得x1=﹣1,x2=3∴点B坐标为(3,0)①设点F坐标为(a,b)∴△BDF的面积S=×(4﹣b)(a﹣1)+(﹣b)(3﹣a)﹣×2×4整理的S=2a﹣b﹣6∵b=a2﹣2a﹣3∴S=2a﹣(a2﹣2a﹣3)﹣6=﹣a2+4a﹣3∵a=﹣1<04+8﹣3=1∴当a=2时,S最大=﹣②存在由已知点D坐标为(1,﹣4),点B坐标为(3,0)∴直线BD解析式为:y=2x﹣6则点E坐标为(0,﹣6)连BC、CD,则由勾股定理CB2=(3﹣0)2+(﹣3﹣0)2=18CD2=12+(﹣4+3)2=2BD2=(﹣4)2+(3﹣1)2=20∴CB2+CD2=BD2∴∠BDC=90°∵∠BDC=∠QCE∴∠QCE=90°∴点Q纵坐标为﹣3代入﹣3=2x﹣6∴x=∴存在点Q坐标为(,﹣3)6.(2018•泸州)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.解:(1)把点A(﹣2,12),B(8,﹣3)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣(2)分别过点C、D做CA⊥y轴于点A,DB⊥y轴于点B设点C坐标为(a,b),由已知ab=m由(1)点E坐标为(0,9),则AE=9﹣b∵AC∥BD,CD=CE∴BD=2a,EB=2(9﹣b)∴OB=9﹣2(9﹣b)=2b﹣9∴点D坐标为(2a,2b﹣9)∴2a•(2b﹣9)=m整理得m=6a∵ab=m∴b=6则点D坐标化为(2a,3)∵点D在y=﹣图象上∴a=2∴m=ab=127.(2018•成都)如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C (0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.解:(1)由题意可得,解得a=1,b=﹣5,c=5;∴二次函数的解析式为:y=x2﹣5x+5,(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,则,∵MQ=,∴NQ=2,B(,);∴,解得,∴,D(0,),同理可求,,=S△BCG,∵S△BCD∴①DG∥BC(G在BC下方),,∴=x2﹣5x+5,解得,,x2=3,∵x>,∴x=3,∴G(3,﹣1).②G在BC上方时,直线G2G3与DG1关于BC对称,∴=,∴=x2﹣5x+5,解得,,∵x>,∴x=,∴G(,),综上所述点G的坐标为G(3,﹣1),G(,).(3)由题意可知:k+m=1,∴m=1﹣k,∴y l=kx+1﹣k,∴kx+1﹣k=x2﹣5x+5,解得,x1=1,x2=k+4,∴B(k+4,k2+3k+1),设AB中点为O′,∵P点有且只有一个,∴以AB为直径的圆与x轴只有一个交点,且P为切点,∴O′P⊥x轴,∴P为MN的中点,∴P(,0),∵△AMP∽△PNB,∴,∴AM•BN=PN•PM,∴1×(k2+3k+1)=(k+4﹣)(),∵k>0,∴k==﹣1+.8.(2018•绵阳)如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为1.(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.解:(1)∵反比例函数y=(k>0)的图象过点A,过A点作x轴的垂线,垂足为M,△AOM面积为1,∴|k|=1,∵k>0,∴k=2,故反比例函数的解析式为:y=;(2)作点A关于y轴的对称点A′,连接A′B,交y轴于点P,则PA+PB最小.由,解得,或,∴A(1,2),B(4,),∴A′(﹣1,2),最小值A′B==.设直线A′B的解析式为y=mx+n,则,解得,∴直线A′B的解析式为y=﹣x+,∴x=0时,y=,∴P点坐标为(0,).9.(2018•泸州)如图,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x 轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.解:(1)把点A(4,0)代入,得0=a•42﹣(2a﹣)×4+3解得a=﹣∴函数解析式为:y=设直线AB解析式为y=kx+b把A(4,0),B(0,3)代入解得∴直线AB解析式为:y=﹣(2)由已知,点D坐标为(m,﹣)点E坐标为(m,﹣)∴AC=4﹣mDE=(﹣)﹣(﹣)=﹣∵BC∥y轴∴∴AE=∵∠DFA=∠DCA=90°,∠FBD=∠CEA∴△DEF∽△AEC∵S1=4S2∴AE=2DE∴解得m1=,m2=4(舍去)故m值为(3)如图,过点G做GM⊥DC于点M由(2)DE=﹣同理HG=﹣∵四边形DEGH是平行四边形∴﹣=﹣整理得:(n﹣m)[]=0∵m≠n∴m+n=4,即n=4﹣m∴MG=n﹣m=4﹣2m由已知△EMG∽△BOA∴∴EG=∴▱DEGH周长L=2[﹣+]=﹣∵a=﹣<0∴m=﹣时,L最大.∴n=4﹣=∴G点坐标为(,),此时点E坐标为(,)当点G、E位置对调时,依然满足条件∴点G坐标为(,)或(,)10.(2018•绵阳)如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(﹣3,0).动点M,N同时从A点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C时,另一个动点也随之停止移动,移动的时间记为t秒.连接MN.(1)求直线BC的解析式;(2)移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t值及点D的坐标;(3)当点M,N移动时,记△ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式.解:(1)设直线BC的解析式为y=kx+b,则,解得,∴直线BC的解析式为y=x+4.(2)如图1中,连接AD交MN于点O′.由题意:四边形AMDN是菱形,M(3﹣t,0),N(3﹣t,t),∴O′(3﹣t,t),D(3﹣t,t),∵点D在BC上,∴t=×(3﹣t)+4,解得t=.∴t=3s时,点A恰好落在BC边上点D处,此时D(﹣,).(3)如图2中,当0<t≤5时,△ABC在直线MN右侧部分是△AMN,S=•t•t=t2.如图3中,当5<t≤6时,△ABC在直线MN右侧部分是四边形ABNM.S=×6×4﹣×(6﹣t)•[4﹣(t﹣5)]=﹣t2+t﹣12.11.(2018•遂宁)如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD ⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函效的解析式;(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E 点坐标.解:(1)∵一次函数y=kx+b与反比例函数y=图象交于A与B,且AD⊥x轴,∴∠ADO=90°,在Rt△ADO中,AD=4,sin∠AOD=,∴=,即AO=5,根据勾股定理得:DO==3,∴A(﹣3,4),代入反比例解析式得:m=﹣12,即y=﹣,把B坐标代入得:n=6,即B(6,﹣2),代入一次函数解析式得:,解得:,即y=﹣x+2;(2)当OE3=OE2=AO=5,即E2(0,﹣5),E3(0,5);当OA=AE1=5时,得到OE1=2AD=8,即E1(0,8);当AE4=OE4时,由A(﹣3,4),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1.5,2),∴AO垂直平分线方程为y﹣2=(x+),令x=0,得到y=,即E4(0,),综上,当点E(0,8)或(0,5)或(0,﹣5)或(0,)时,△AOE是等腰三角形.12.(2018•绵阳)如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;=S△AOQ?若存在,求出点Q的坐标;(3)抛物线上是否存在点Q,使得S△AOC若不存在,请说明理由.解:(1)把A(,﹣3)和点B(3,0)代入抛物线得:,解得:a=,b=﹣,则抛物线解析式为y=x2﹣x;(2)当P在直线AD上方时,设P坐标为(x,x2﹣x),则有AD=x﹣,PD=x2﹣x+3,当△OCA∽△ADP时,=,即=,整理得:3x2﹣9x+18=2x﹣6,即3x2﹣11x+24=0,解得:x=,即x=或x=(舍去)此时P(,﹣);当△OCA∽△PDA时,=,即=,整理得:x2﹣9x+6=6x﹣6,即x2﹣5x+12=0,解得:x=,即x=4或(舍去),此时P(4,6);当P在直线AD下方时,同理可得:P的坐标为(0,0)或(,﹣),综上,P的坐标为(,﹣)或(4,6)(0,0)或(,﹣);(3)在Rt△AOC中,OC=3,AC=,根据勾股定理得:OA=2,∵OC•AC=OA•h,∴h=,=S△AOQ=,∵S△AOC∴△AOQ边OA上的高为,过O作OM⊥OA,截取OM=,过M作MN∥OA,交y轴于点N,如图所示:在Rt△OMN中,ON=2OM=9,即N(0,9),过M作MH⊥x轴,在Rt△OMH中,MH=OM=,OH=OM=,即M(,),设直线MN解析式为y=kx+9,把M坐标代入得:=k+9,即k=﹣,即y=﹣x+9,联立得:,解得:或,即Q(3,0)或(﹣2,15),=S△AOQ,此时点Q的坐标为(3,0)或(﹣则抛物线上存在点Q,使得S△AOC2,15).13.(2018•遂宁)如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与x 轴相交于A,B两点(B点在A点右侧)与y轴交于C点.(1)求抛物线的解折式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.解:(1)∵抛物线y=ax2+x+4的对称轴是直线x=3,∴﹣=3,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+4.当y=0时,﹣x2+x+4=0,解得:x1=﹣2,x2=8,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).(2)当x=0时,y=﹣x2+x+4=4,∴点C的坐标为(0,4).设直线BC的解析式为y=kx+b(k≠0).将B(8,0)、C(0,4)代入y=kx+b,,解得:,∴直线BC的解析式为y=﹣x+4.假设存在,设点P的坐标为(x,﹣x2+x+4),过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图所示.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,=PD•OB=×8•(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∴S△PBC∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.∵0<x<8,∴存在点P,使△PBC的面积最大,最大面积是16.(3)设点M的坐标为(m,﹣m2+m+4),则点N的坐标为(m,﹣m+4),∴MN=|﹣m2+m+4﹣(﹣m+4)|=|﹣m2+2m|.又∵MN=3,∴|﹣m2+2m|=3.当0<m<8时,有﹣m2+2m﹣3=0,解得:m1=2,m2=6,∴点P的坐标为(2,6)或(6,4);当m<0或m>8时,有﹣m2+2m+3=0,解得:m3=4﹣2,m4=4+2,∴点P的坐标为(4﹣2,﹣1)或(4+2,﹣﹣1).综上所述:M点的坐标为(4﹣2,﹣1)、(2,6)、(6,4)或(4+2,﹣﹣1).14.(2018•乐山)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?解:(1)设线段AB解析式为y=k1x+b(k≠0)∵线段AB过点(0,10),(2,14)代入得解得∴AB解析式为:y=2x+10(0≤x<5)∵B在线段AB上当x=5时,y=20∴B坐标为(5,20)∴线段BC的解析式为:y=20(5≤x<10)设双曲线CD解析式为:y=(k2≠0)∵C(10,20)∴k2=200∴双曲线CD解析式为:y=(10≤x≤24)∴y关于x的函数解析式为:y=(2)由(1)恒温系统设定恒温为20°C(3)把y=10代入y=中,解得,x=20∴20﹣10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.15.(2018•南充)如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A (﹣,2),B(n,﹣1).(1)求直线与双曲线的解析式.=3,求点P的坐标.(2)点P在x轴上,如果S△ABP解:(1)∵双曲线y=(m≠0)经过点A(﹣,2),∴m=﹣1.∴双曲线的表达式为y=﹣.∵点B(n,﹣1)在双曲线y=﹣上,∴点B的坐标为(1,﹣1).∵直线y=kx+b经过点A(﹣,2),B(1,﹣1),∴,解得,∴直线的表达式为y=﹣2x+1;(2)当y=﹣2x+1=0时,x=,∴点C(,0).设点P的坐标为(x,0),=3,A(﹣,2),B(1,﹣1),∵S△ABP∴×3|x﹣|=3,即|x﹣|=2,解得:x1=﹣,x2=.∴点P的坐标为(﹣,0)或(,0).16.(2018•内江)如图,已知抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0)和点B(1,0),交y轴于点C,过点C作CD∥x轴,交抛物线于点D.(1)求抛物线的解析式;(2)若直线y=m(﹣3<m<0)与线段AD、BD分别交于G、H两点,过G点作EG⊥x轴于点E,过点H作HF⊥x轴于点F,求矩形GEFH的最大面积;(3)若直线y=kx+1将四边形ABCD分成左、右两个部分,面积分别为S1,S2,且S1:S2=4:5,求k的值.解:(1)∵抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0)和点B(1,0),∴,∴,∴抛物线的解析式为y=x2+2x﹣3;(2)由(1)知,抛物线的解析式为y=x2+2x﹣3,∴C(0,﹣3),∴x2+2x﹣3=﹣3,∴x=0或x=﹣2,∴D(﹣2,﹣3),∵A(﹣3,0)和点B(1,0),∴直线AD的解析式为y=﹣3x﹣9,直线BD的解析式为y=x﹣1,∵直线y=m(﹣3<m<0)与线段AD、BD分别交于G、H两点,∴G(﹣m﹣3,m),H(m+1,m),∴GH=m+1﹣(﹣m﹣3)=m+4,=﹣m(m+4)=﹣(m2+3m)=﹣(m+)2+3,∴S矩形GEFH∴m=﹣,矩形GEFH的最大面积为3.(3)∵A(﹣3,0),B(1,0),∴AB=4,∵C(0,﹣3),D(﹣2,﹣3),∴CD=2,=×3(4+2)=9,∴S四边形ABCD∵S1:S2=4:5,∴S1=4,如图,设直线y=kx+1与线段AB相交于M,与线段CD相交于N,∴M(﹣,0),N(﹣,﹣3),∴AM=﹣+3,DN=﹣+2,∴S1=(﹣+3﹣+2)×3=4,∴k=17.(2018•乐山)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P 运动到点A时,点Q也停止运动,设运动时间为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.解:(1)∵OA=1,OB=4∴A(1,0),B(﹣4,0)设抛物线的解析式为y=a(x+4)(x﹣1)∵点C(0,﹣)在抛物线上∴﹣解得a=∴抛物线的解析式为y=(2)存在t,使得△ADC与△PQA相似.理由:①在Rt△AOC中,OA=1,OC=则tan∠ACO=∵tan∠OAD=∴∠OAD=∠ACO∵直线l的解析式为y=∴D(0,﹣)∵点C(0,﹣)∴CD=由AC2=OC2+OA2,得AC=在△AQP中,AP=AB﹣PB=5﹣2t,AQ=t由∠PAQ=∠ACD,要使△ADC与△PQA相似只需或则有或解得t1=,t2=∵t1<2.5,t2<2.5∴存在t=或t=,使得△ADC与△PQA相似②存在t,使得△APQ与△CAQ的面积之和最大理由:作PF⊥AQ于点F,CN⊥AQ于N在△APF中,PF=AP•sin∠PAF=在△AOD中,由AD2=OD2+OA2,得AD=在△ADC中,由S△ADC=∴CN=∴S△AQP +S△AQC==﹣∴当t=时,△APQ与△CAQ的面积之和最大18.(2018•南充)如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.解:(1)设y=a(x﹣1)2+4(a≠0),把C(0,3)代入抛物线解析式得:a+4=3,即a=﹣1,则抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)由B(3,0),C(0,3),得到直线BC解析式为y=﹣x+3,∵S△PBC=S△QBC,∴PQ∥BC,①过P作PQ∥BC,交抛物线于点Q,如图1所示,∵P(1,4),∴直线PQ解析式为y=﹣x+5,联立得:,解得:或,即Q(2,3);②设G(1,2),∴PG=GH=2,过H作直线Q2Q3∥BC,交x轴于点H,则直线Q2Q3解析式为y=﹣x+1,联立得:,解得:或,∴Q2(,),Q3(,);(3)存在点M,N使四边形MNED为正方形,如图2所示,过M作MF∥y轴,过N作NF∥x轴,过N作NH∥y轴,则有△MNF与△NEH都为等腰直角三角形,设M(x1,y1),N(x2,y2),设直线MN解析式为y=﹣x+b,联立得:,消去y得:x2﹣3x+b﹣3=0,∴NF2=|x1﹣x2|2=(x1+x2)2﹣4x1x2=﹣4b,∵△MNF为等腰直角三角形,∴MN2=2NF2=42﹣8b,∵NH2=(b﹣3)2,∴NF2=(b﹣3)2,若四边形MNED为正方形,则有NE2=MN2,∴42﹣8b=(b2﹣6b+9),整理得:b2+10b﹣75=0,解得:b=﹣15或b=5,∵正方形边长为MN=,∴MN=9或.19.(2018•眉山)传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为280只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)解:(1)设李明第x天生产的粽子数量为280只,由题意可知:20x+80=280,解得x=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x<10时,p=2;当10≤x≤20时,设P=kx+b,把点(10,2),(20,3)代入得,,解得,∴p=0.1x+1,①0≤x≤6时,w=(4﹣2)×34x=68x,当x=6时,w最大=408(元);②6<x≤10时,w=(4﹣2)×(20x+80)=40x+160,∵x是整数,∴当x=10时,w最大=560(元);③10<x≤20时,w=(4﹣0.1x﹣1)×(20x+80)=﹣2x2+52x+240,∵a=﹣3<0,∴当x=﹣=13时,w最大=578(元);综上,当x=13时,w有最大值,最大值为578.20.(2018•宜宾)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.解:(1)反比例函数y=(m≠0)的图象经过点(1,4),∴,解得m=4,故反比例函数的表达式为,一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),∴,解得,∴一次函数的表达式y=﹣x﹣5;(2)由,解得或,∴点P(﹣1,﹣4),在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),S△OPQ=S△OPA﹣S△OAQ==7.5..(2018•眉山)如图①,已知抛物线y=ax2+bx+c的图象经过点A(0,3)、B (1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB 的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF 成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x﹣1)(x﹣3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2﹣4x+3;(2)如图2,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,=S△AOE+S△POE,∴S四边形AOPE=×3×3+PG•AE,=+×3×(﹣m2+5m﹣3),=﹣+,=(m﹣)2+,∵﹣<0,∴当m=时,S有最大值是;(3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=或,∴P的坐标为(,)或(,);如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:x=或;P的坐标为(,)或(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).22.(2018•宜宾)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x﹣2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=,∴抛物线的解析式为y=(x﹣2)2=x2﹣x+1.(2)联立直线AB与抛物线解析式成方程组,得:,解得:,,∴点A的坐标为(1,),点B的坐标为(4,1).作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值(如图1所示).∵点B(4,1),直线l为y=﹣1,∴点B′的坐标为(4,﹣3).设直线AB′的解析式为y=kx+b(k≠0),将A(1,)、B′(4,﹣3)代入y=kx+b,得:,解得:,∴直线AB′的解析式为y=﹣x+,当y=﹣1时,有﹣x+=﹣1,解得:x=,∴点P的坐标为(,﹣1).(3)∵点M到直线l的距离与点M到点F的距离总是相等,∴(m﹣x0)2+(n﹣y0)2=(n+1)2,∴m2﹣2x0m+x02﹣2y0n+y02=2n+1.∵M(m,n)为抛物线上一动点,∴n=m2﹣m+1,∴m2﹣2x0m+x02﹣2y0(m2﹣m+1)+y02=2(m2﹣m+1)+1,整理得:(1﹣﹣y0)m2+(2﹣2x0+2y0)m+x02+y02﹣2y0﹣3=0.∵m为任意值,∴,∴,∴定点F的坐标为(2,1).23.(2018•广安)如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k 为常数,k≠0)的图象交于A、B两点,过点A作AC⊥x轴,垂足为C,连接OA,已知OC=2,tan∠AOC=,B(m,﹣2).(1)求一次函数和反比例函数的解析式.(2)结合图象直接写出:当y1>y2时,x的取值范围.解:(1)∵OC=2,tan∠AOC=,∴AC=3,∴A(2,3),把A(2,3)代入y2=可得,k=6,∴反比例函数的解析式为y=,把B(m,﹣2)代入反比例函数,可得m=﹣3,∴B(﹣3,﹣2),把A(2,3),B(﹣3,﹣2)代入一次函数y1=ax+b,可得,解得,∴一次函数的解析式为y=x+1.(2)由图可得,当y1>y2时,x的取值范围为﹣3<x<0或x>2.24.(2018•达州)矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x 轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF,求∠EFC的正切值;(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.解:(1)∵OA=3,OB=4,∴B(4,0),C(4,3),∵F是BC的中点,∴F(4,),∵F在反比例y=函数图象上,∴k=4×=6,∴反比例函数的解析式为y=,∵E点的坐标为3,∴E(2,3);(2)∵F点的横坐标为4,∴F(4,),∴CF=BC﹣BF=3﹣=∵E的纵坐标为3,∴E(,3),∴CE=AC﹣AE=4﹣=,在Rt△CEF中,tan∠EFC==,(3)如图,由(2)知,CF=,CE=,,过点E作EH⊥OB于H,∴EH=OA=3,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴=,∴,∴BG=,在Rt△FBG中,FG2﹣BF2=BG2,∴()2﹣()2=,∴k=,∴反比例函数解析式为y=.25.(2018•广安)如图,已知抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求此抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P,使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.解:(1)将A(0,3),C(﹣3,0)代入函数解析式,得,解得,抛物线的解析式是y=x2+x+3;(2)由抛物线的对称性可知,点D与点C关于对称轴对称,∴对l上任意一点有MD=MC,联立方程组,解得(不符合题意,舍),,∴B(﹣4,1),当点B,C,M共线时,|MB﹣MD|取最大值,即为BC的长,过点B作BE⊥x轴于点E,在Rt△BEC中,由勾股定理,得BC==,|MB﹣MD|取最大值为;(3)存在点P使得以A,P,Q为顶点的三角形与△ABC相似,在Rt△BEC中,∵BE=CE=1,∴∠BCE=45°,在Rt△ACO中,∵AO=CO=3,∴∠ACO=45°,∴∠ACB=180°﹣45°﹣45°=90°,过点P作PQ⊥y轴于Q点,∠PQA=90°,设P点坐标为(x,x2+x+3)(x>0)①当∠PAQ=∠BAC时,△PAQ∽△CAB,∵∠PGA=∠ACB=90°,∠PAQ=∠CAB,∴△PGA∽△BCA,∴=,即==,∴=,解得x1=1,x2=0(舍去),∴P点的纵坐标为×12+×1+3=6,∴P(1,6),②当∠PAQ=∠ABC时,△PAQ∽△CBA,∵∠PGA=∠ACB=90°,∠PAQ=∠ABC,∴△PGA∽△ACB,∴=,即==3,∴=3,解得x1=﹣(舍去),x2=0(舍去)∴此时无符合条件的点P,综上所述,存在点P(1,6).26.(2018•资阳)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.(1)求双曲线的解析式;(2)求点C的坐标,并直接写出y1<y2时x的取值范围.解:(1)∵点A在直线y1=2x﹣2上,∴设A(x,2x﹣2),过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=OB=OC,∴x=2x﹣2,x=2,∴A(2,2),∴k=2×2=4,∴;(2)∵,解得:,,∴C(﹣1,﹣4),由图象得:y1<y2时x的取值范围是x<﹣1或0<x<2.27.(2018•达州)如图,抛物线经过原点O(0,0),点A(1,1),点.(1)求抛物线解析式;(2)连接OA,过点A作AC⊥OA交抛物线于C,连接OC,求△AOC的面积;(3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:是否存在点M,使以点O,M,N为顶点的三角形与(2)中的△AOC相似,若存在,求出点M的坐标;若不存在,说明理由.解:(1)设抛物线解析式为y=ax(x﹣),把A(1,1)代入得a•1(1﹣)=1,解得a=﹣,∴抛物线解析式为y=﹣x(x﹣),即y=﹣x2+x;(2)延长CA交y轴于D,如图1,∵A(1,1),∴OA=,∠DOA=45°,∴△AOD为等腰直角三角形,∵OA⊥AC,∴OD=OA=2,∴D(0,2),易得直线AD的解析式为y=﹣x+2,解方程组得或,则C(5,﹣3),∴S△AOC=S△COD﹣S△AOD=×2×5﹣×2×1=4;(3)存在.如图2,作MH⊥x轴于H,AC==4,OA=,设M(x,﹣x2+x)(x>0),∵∠OHM=∠OAC,∴当=时,△OHM∽△OAC,即=,解方程﹣x2+x=4x得x1=0(舍去),x2=﹣(舍去),解方程﹣x2+x=﹣4x得x1=0(舍去),x2=,此时M点坐标为(,﹣54);当=时,△OHM∽△CAO,即=,解方程﹣x2+x=x得x1=0(舍去),x2=,此时M点的坐标为(,),解方程﹣x2+x=﹣x得x1=0(舍去),x2=﹣,此时M点坐标为(,﹣);∵MN⊥OM,∴∠OMN=90°,∴∠MON=∠HOM,∴△OMH∽△ONM,∴当M点的坐标为(,﹣54)或(,)或(,﹣)时,以点O,M,N为顶点的三角形与(2)中的△AOC相似.28.(2018•资阳)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.解:(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣,所以抛物线解析式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB解析式为y=kx+b,将点A(0,6)、B(6,0)代入,得:,解得:,则直线AB解析式为y=﹣x+6,设P(t,﹣t2+2t+6)其中0<t<6,则N(t,﹣t+6),∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,S△PAB=S△PAN+S△PBN=PN•AG+PN•BM=PN•(AG+BM)=PN•OB=×(﹣t2+3t)×6=﹣t2+9t=﹣(t﹣3)2+,∴当t=3时,△PAB的面积有最大值;(3)如图2,∵PH⊥OB于H,∴∠DHB=∠AOB=90°,∴DH∥AO,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE∥x轴、PD⊥x轴,∴∠DPE=90°,若△PDE为等腰直角三角形,则PD=PE,设点P的横坐标为a,∴PD=﹣a2+2a+6﹣(﹣a+6)=﹣a2+3a,PE=2|2﹣a|,∴﹣a2+3a=2|2﹣a|,解得:a=4或a=5﹣,所以P(4,6)或P(5﹣,3﹣5).2018年全国各地中考数学压轴题汇编(山东专版)函数参考答案与试题解析1.(2018•青岛)已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.(1)当y1﹣y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x。