半导体激光器基础原理ppt课件
合集下载
半导体激光器的主要参数ppt课件
增益饱和
在低的光子密度时,载流子的空间和能量分布不受干扰, 这时为不饱和增益。在高光子密度时是饱和增益。一个被 鼓励的半导体激光器,辐射遭到放大时,它的能量关系为:
谐振控内的辐射强度不能无限止添加 ,由于在高光子密度时, 导带和价带中的载流子浓度要显著降低。这又呵斥费米能级 漂移,使△EF减小,同样也使满足粒子数反转的形状数减小。
增益谱计算
式中,常数a0(E21)表示绝对零度时的吸收。温度和鼓励程度的 影响包含在(fc—fv)中。假设fc>fv,那么a0(E21)为负,吸收 介量变为增益介质,以受激发射为主。假设fc<fv ,那么 a0(E21)为正,主要发生受激吸收.利用增益的定义义可以写出:
随着鼓励程度添加,能带中载 流子数添加,增益曲线的最大值向 更高的光子能量处挪动 gmax(E) 也添加。同时开场出现增益所对应 的光子能量向高能方向挪动。这是 由于电子是从导带底向上填充 的.注入电子浓度愈大,填充得就 愈高,因此发光的峰值能量添加.
Je和Jh分别是流过异质结势垒的电子和空穴的漏电流 J2为有源区电流密度;ηi为内量子效率; Q2为谐振腔质量要素;
大功率半导体激光器典型构造 --单元器件
大功率半导体激光器典型构造 --阵列器件
大功率半导体激光器典型构造 --阵列器件
大功率半导体激光器典型构造 --阵列器件
The end
空间烧孔和光谱烧孔效应
半导体激光的温漂特性
半导体资料带隙随温度变化; 半导体激光器腔长随温度变化。
Intensity (A.U.)
1.0
0.8
15A
55A
0.6
55A (after 30')
0.4
0.2
0.0
半导体激光器ppt课件
Ⅱ、与同质结激光器相比,异质结激光器具有以下优点: 1)阈值电流低,同时阈值电流随温度的变化小; 2)由于界面处的折射率差异,光子被限制在作用区内; 3)能实现室温下的连续振荡。
应用:
半导体激光器应用十分广泛,主要分布在军事、生产和医疗方面:
军事:Ⅰ)激光引信。半导体激光器是唯一能够用于弹上引信的激光器。 Ⅱ)激光制导。它使导弹在激光射束中飞行直至摧毁目标。 Ⅲ)激光测距。主要用于反坦克武器以及航空、航天等领域。 Ⅳ)激光雷达。高功率半导体激光器已用于激光雷达系统
目录
CONTENTS
1 基本介绍及发展 2 基本原理及构成
3 主要特性
4 分类、应用及发展前景
基本介绍及发展
高能态电子束>低能态电子束
高能态
低能
态
同频同相
的光发射
同频同相光 谐振腔内多次往返
放大
激光
激光:通过一定的激励方 式,实现非平衡载流子的 粒子数反转,使得高能态 电子束大于低能态电子束, 当处于粒子数反转状态的 大量电子与空穴复合时, 便产生激光。
激光具有很好的方向性和 单色性。用途十分广泛
高功率半导体激光器
① 、1962年9月16日,通用电气公司的罗伯特·霍尔 (Robert Hall) 带领的研究小组展示了砷化镓(GaAs)半导体的红外发射, 首个半 导体激光器的诞生。 ②、70年代,美国贝尔实验室研制出异质结半导体激光器,通过对光 场和载流限制,从而研制出可在室温下连续运转且寿命较长的激光器。 ③、80年代,随着技术提升,出现了量子陷和超晶格等新型半导体激 光器结构; 1983年,波长800nm的单个输出功率已超过100mW,到 了1989年,0.1mm条宽的则达到3.7W的连续输出,转换效率达39%。 ④、90年代在泵浦固体激光器技术推动下,高功率半导体激光器出现 突破进展。。1992年,美国人又把指标提高到一个新水平:1cm线阵 连续波输出功率达121W,转换效率为45%。
应用:
半导体激光器应用十分广泛,主要分布在军事、生产和医疗方面:
军事:Ⅰ)激光引信。半导体激光器是唯一能够用于弹上引信的激光器。 Ⅱ)激光制导。它使导弹在激光射束中飞行直至摧毁目标。 Ⅲ)激光测距。主要用于反坦克武器以及航空、航天等领域。 Ⅳ)激光雷达。高功率半导体激光器已用于激光雷达系统
目录
CONTENTS
1 基本介绍及发展 2 基本原理及构成
3 主要特性
4 分类、应用及发展前景
基本介绍及发展
高能态电子束>低能态电子束
高能态
低能
态
同频同相
的光发射
同频同相光 谐振腔内多次往返
放大
激光
激光:通过一定的激励方 式,实现非平衡载流子的 粒子数反转,使得高能态 电子束大于低能态电子束, 当处于粒子数反转状态的 大量电子与空穴复合时, 便产生激光。
激光具有很好的方向性和 单色性。用途十分广泛
高功率半导体激光器
① 、1962年9月16日,通用电气公司的罗伯特·霍尔 (Robert Hall) 带领的研究小组展示了砷化镓(GaAs)半导体的红外发射, 首个半 导体激光器的诞生。 ②、70年代,美国贝尔实验室研制出异质结半导体激光器,通过对光 场和载流限制,从而研制出可在室温下连续运转且寿命较长的激光器。 ③、80年代,随着技术提升,出现了量子陷和超晶格等新型半导体激 光器结构; 1983年,波长800nm的单个输出功率已超过100mW,到 了1989年,0.1mm条宽的则达到3.7W的连续输出,转换效率达39%。 ④、90年代在泵浦固体激光器技术推动下,高功率半导体激光器出现 突破进展。。1992年,美国人又把指标提高到一个新水平:1cm线阵 连续波输出功率达121W,转换效率为45%。
半导体激光器的原理及其应用PPT
可靠性
高功率半导体激光器的可靠性是关键问题之一,需要解决长 时间运行下的热效应、光束质量变化和器件失效等问题。研 究和发展高效散热技术、光束控制技术和寿命预测技术是提 高可靠性的重要途径。
多波长与调谐技术
多波长
多波长半导体激光器在通信、光谱分析和传感等领域具有重要应用。实现多波长输出的关键在于利用 增益耦合或波导耦合等技术,将不同波长的光场限制在相同的谐振腔内,以实现波长的稳定和可控。
跃迁过程
在半导体中,电子从价带跃迁到导带是通过吸收或释放光子的方 式实现的。当电子从导带回到价带时,会释放出能量,这个能量 以光子的形式辐射出来。
载流子输运与动态过程
载流子输运
在半导体中,电子和空穴的输运受到 散射和扩散机制的影响。散射机制包 括声学散射和光学散射等,扩散机制 则是由浓度梯度引起的。
80%
表面处理
利用半导体激光器的热效应,对 金属、塑料等材料表面进行硬化 、熔融、刻蚀等处理,提高材料 性能和外观质量。
生物医疗与科学仪器
医学诊断
半导体激光器在光谱分析、荧 光检测等领域有广泛应用,可 用于医学诊断和药物分析。
生物成像
利用半导体激光器的相干性和 单色性,实现光学成像和干涉 测量,在生物学、医学、物理 学等领域有广泛应用。
详细描述
在光纤通信中,半导体激光器 作为信号源,通过调制产生的 光信号在光纤中传输,实现信 息的快速、远距离传输。
应用优势
半导体激光器具有体积小、功 耗低、调制速度快、可靠性高 等优点,适用于大规模、高容 量的光纤通信系统。
发展趋势
随着5G、物联网等技术的发展 ,光纤通信的需求不断增加, 半导体激光器的性能和可靠性 也在不断提升。
光谱分析
半导体激光器作为光源,可用 于光谱分析技术,检测物质成 分和结构,广泛应用于环境监 测、化学分析等领域。
高功率半导体激光器的可靠性是关键问题之一,需要解决长 时间运行下的热效应、光束质量变化和器件失效等问题。研 究和发展高效散热技术、光束控制技术和寿命预测技术是提 高可靠性的重要途径。
多波长与调谐技术
多波长
多波长半导体激光器在通信、光谱分析和传感等领域具有重要应用。实现多波长输出的关键在于利用 增益耦合或波导耦合等技术,将不同波长的光场限制在相同的谐振腔内,以实现波长的稳定和可控。
跃迁过程
在半导体中,电子从价带跃迁到导带是通过吸收或释放光子的方 式实现的。当电子从导带回到价带时,会释放出能量,这个能量 以光子的形式辐射出来。
载流子输运与动态过程
载流子输运
在半导体中,电子和空穴的输运受到 散射和扩散机制的影响。散射机制包 括声学散射和光学散射等,扩散机制 则是由浓度梯度引起的。
80%
表面处理
利用半导体激光器的热效应,对 金属、塑料等材料表面进行硬化 、熔融、刻蚀等处理,提高材料 性能和外观质量。
生物医疗与科学仪器
医学诊断
半导体激光器在光谱分析、荧 光检测等领域有广泛应用,可 用于医学诊断和药物分析。
生物成像
利用半导体激光器的相干性和 单色性,实现光学成像和干涉 测量,在生物学、医学、物理 学等领域有广泛应用。
详细描述
在光纤通信中,半导体激光器 作为信号源,通过调制产生的 光信号在光纤中传输,实现信 息的快速、远距离传输。
应用优势
半导体激光器具有体积小、功 耗低、调制速度快、可靠性高 等优点,适用于大规模、高容 量的光纤通信系统。
发展趋势
随着5G、物联网等技术的发展 ,光纤通信的需求不断增加, 半导体激光器的性能和可靠性 也在不断提升。
光谱分析
半导体激光器作为光源,可用 于光谱分析技术,检测物质成 分和结构,广泛应用于环境监 测、化学分析等领域。
半导体激光器的原理演示幻灯片37页PPT
半导体激光器的原理演示幻灯片
•
46、寓形宇内复几时,曷不委心任去 留。
•
47、采菊东篱下,悠然见南山。
•
48、啸傲东轩下,聊复得此生。
•
49、勤学如春起之苗,不见其增,日 有所长 。
•
50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。—
•
46、寓形宇内复几时,曷不委心任去 留。
•
47、采菊东篱下,悠然见南山。
•
48、啸傲东轩下,聊复得此生。
•
49、勤学如春起之苗,不见其增,日 有所长 。
•
50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。—
半导体激光器和发光二极管
半导体光源:
半导体激光器(LD)和半导体发光二极管(LED)
半导体光源的优点:
❖ 体积小、重量轻、耗电少、易于光纤耦合 ❖ 发射波长适合在光纤中低损耗传输 ❖ 可以直接进行强度调制 ❖ 可靠性高
光 纤 通 信 系统
1
第2讲
一. 激光原理的基础知识
1、光的吸收和放大 1)能级和能带
2)能级的光跃迁 3)光的吸收和放大
(1) 边发射结构
这是一种沿着有源区的结平面方向提取光的结构,上 面介绍的条形半导体激光器一般都采用这种结构提取光 。
(2) 面发射结构
这是由表面发射光的结构,它的发射结构又分成水平 腔和垂直腔结构。
光 纤 通 信 系统
29
第2讲
结构特点: 1) 发射方向垂直于或倾斜于PN结平面 2) 形成面发射的机理有多种情况,包括垂直腔型、水平腔型和 向上弯腔型激光器。其中,垂直腔面发射激光器(VCSEL)是 面发射激光器中最有前途的一种激光器 .
光 纤 通 信 系统
该能级被电子占据概率等于50%
该能级被电子占据概率大于50% 该能级被电子占据概率小于50%
11
第2讲
各种半导体中电子的统计分布
本征半导体 P型半导体 N型半导体
兼并型P型半导体 兼并型N型半导体 双兼并型半导体
光 纤 通 信 系统
12
第2讲
导带
禁带
Ef
价带
(a) 本征半导体
要APC • 高工作速率(达3Gb/s以上) ,高张弛振荡频率 • 易集成,低价格,高产量
光 纤 通 信 系统
32
第2讲
2、量子阱激光器
结构特点:有源区非常薄 量子阱(QW,Quantum Well) 半导体激光器是一种窄
半导体激光器(LD)和半导体发光二极管(LED)
半导体光源的优点:
❖ 体积小、重量轻、耗电少、易于光纤耦合 ❖ 发射波长适合在光纤中低损耗传输 ❖ 可以直接进行强度调制 ❖ 可靠性高
光 纤 通 信 系统
1
第2讲
一. 激光原理的基础知识
1、光的吸收和放大 1)能级和能带
2)能级的光跃迁 3)光的吸收和放大
(1) 边发射结构
这是一种沿着有源区的结平面方向提取光的结构,上 面介绍的条形半导体激光器一般都采用这种结构提取光 。
(2) 面发射结构
这是由表面发射光的结构,它的发射结构又分成水平 腔和垂直腔结构。
光 纤 通 信 系统
29
第2讲
结构特点: 1) 发射方向垂直于或倾斜于PN结平面 2) 形成面发射的机理有多种情况,包括垂直腔型、水平腔型和 向上弯腔型激光器。其中,垂直腔面发射激光器(VCSEL)是 面发射激光器中最有前途的一种激光器 .
光 纤 通 信 系统
该能级被电子占据概率等于50%
该能级被电子占据概率大于50% 该能级被电子占据概率小于50%
11
第2讲
各种半导体中电子的统计分布
本征半导体 P型半导体 N型半导体
兼并型P型半导体 兼并型N型半导体 双兼并型半导体
光 纤 通 信 系统
12
第2讲
导带
禁带
Ef
价带
(a) 本征半导体
要APC • 高工作速率(达3Gb/s以上) ,高张弛振荡频率 • 易集成,低价格,高产量
光 纤 通 信 系统
32
第2讲
2、量子阱激光器
结构特点:有源区非常薄 量子阱(QW,Quantum Well) 半导体激光器是一种窄
半导体激光器基础原理ppt课件
• 1.强折射率 导引的掩埋 异质结激光 器(BH-LD)
整理版课件
21
横模(侧横模)
折射率导引激光器(Index guide LD)
2.弱折射率导引激光器: 脊波导型激光器 (RWG-LD)
整理版课件
22
横模(侧横模)
增益导引激光器(Gain guide LD)
条形激光器
整理版课件
23
几种典型的折射率导引激光器
整理版课件
27
整理版课件
28
DFB激光器
整理版课件
29
DFB-LD与DBR-LD
整理版课件
30
F-P-LD与DFB-LD的纵模间隔
整理版课件
31
DFB-LD的增益与损耗
整理版课件
32
工作特性
1.阈值电流 Ith
影响阈值电流的因素: 1. 有源区的体积:腔长、条宽、厚度 2. 材料生长:掺杂、缺陷、均匀性 3. 解理面、镀膜 4. 电场和光场的限制水平 5. 随温度增加,损耗系数增加,漏电流增加,内量子
• 半导体激光器通常是单横 模(基模)工作。
• 当高温工作,或电流加大 到一定程度,会激发高阶 模,导致P-I曲线出现扭折 (Kink),增加了躁声。
• 垂直横模
• 侧横模
• 垂直横模:由异质结各层 的厚度和各层之间的折射 率差决定。
整理版课件
20
横模(侧横模)
折射率导引激光器(Index guide LD)
1-能在所需的 波长发光
2-晶格常数与 衬底匹配
整理版课件
16
半导体激光器的工作原理
基本条件:
1有源区载流子反转分布 2谐振腔:使受激辐射多
次反馈,形成振荡 3满足阈值条件,使增益
整理版课件
21
横模(侧横模)
折射率导引激光器(Index guide LD)
2.弱折射率导引激光器: 脊波导型激光器 (RWG-LD)
整理版课件
22
横模(侧横模)
增益导引激光器(Gain guide LD)
条形激光器
整理版课件
23
几种典型的折射率导引激光器
整理版课件
27
整理版课件
28
DFB激光器
整理版课件
29
DFB-LD与DBR-LD
整理版课件
30
F-P-LD与DFB-LD的纵模间隔
整理版课件
31
DFB-LD的增益与损耗
整理版课件
32
工作特性
1.阈值电流 Ith
影响阈值电流的因素: 1. 有源区的体积:腔长、条宽、厚度 2. 材料生长:掺杂、缺陷、均匀性 3. 解理面、镀膜 4. 电场和光场的限制水平 5. 随温度增加,损耗系数增加,漏电流增加,内量子
• 半导体激光器通常是单横 模(基模)工作。
• 当高温工作,或电流加大 到一定程度,会激发高阶 模,导致P-I曲线出现扭折 (Kink),增加了躁声。
• 垂直横模
• 侧横模
• 垂直横模:由异质结各层 的厚度和各层之间的折射 率差决定。
整理版课件
20
横模(侧横模)
折射率导引激光器(Index guide LD)
1-能在所需的 波长发光
2-晶格常数与 衬底匹配
整理版课件
16
半导体激光器的工作原理
基本条件:
1有源区载流子反转分布 2谐振腔:使受激辐射多
次反馈,形成振荡 3满足阈值条件,使增益
半导体激光器 ppt课件
布
1
p(E)1expE( Ef )
(3.3)
kT
式中,k为波兹曼常数,T为热力学温度。Ef 称为费米能 级,用来描述半导体中各能级被电子占据的状态。
在费米能级,被电子占据和空穴占据的概率相同。
一般状态下,本征半导体的电子和空穴是成对出现的,用Ef 位于禁带中央来表示,见图3.2(a)。
在本征半导体中掺入施主杂质,称为N型半导体,见图3.2(b)。
半导体激光器(Laser Diode 即LD)
6.3.1 半导体激光器工作原理和基本结构 一、半导体激光器的工作原理
受激辐射和粒子数反转分布 PN结的能带和电子分布 激光振荡和光学谐振腔 二、半导体激光器基本结构 6.3.2 半导体激光器的主要特性 一、发射波长和光谱特性 二、激光束的空间分布 三、转换效率和输出光功率特性 四、 频率特性 五、 6.3.3 分布反馈激光器 一、 工作原理 二、DFB激光器的优点
能量 Eg
导带
Ec Eg/2
Ef
Eg
Eg/2
Ev
价带
Ec
Ec
Ef Eg Ef
Ev
Ev
(a)
(b)
(c)
图 3.2
(a) 本征半导体; (b) N型半导体; (c) P型半导体
能量 Eg
导带
Ec Eg/2
Ef
Eg
Eg/2
Ev
价带
Ec
Ec
Ef Eg Ef
Ev
Ev
在热平衡状态下(a,) 能量为E的能级(b)被电子占据的概(c率) 为费米分
如果N1>N2,即受激吸收大于受激辐射。当光通过这种物 质时,光强按指数衰减, 这种物质称为吸收物质。
《半导体激光治疗》课件
1980年代
出现了异质结半导体激光器, 提高了器件的效率和可靠性。
1990年代至今
随着材料和工艺的不断改进, 半导体激光器在性能和可靠性 方面得到显著提升,应用领域
不断扩大。
半导体激光技术的特点
高效率
半导体激光器的效率较高,一般可达 到30%以上,使得它在许多领域中具 有竞争优势。
波长可调谐
通过改变半导体激光器的温度或注入 电流等参数,可以实现波长的调谐, 满足不同应用需求。
激光治疗的基本原理是利用激光 的生物刺激作用,调整机体组织 的功能,促进病变组织的修复和
再生。
半导体激光治疗的理论基础
半导体激光器具有波长可调、 输出功率高、体积小、寿命长 等优点。
半导体激光的波长与组织吸收 峰相匹配,可被组织充分吸收 并转化为热能,对病变组织产 生热效应。
半导体激光治疗的理论基础是 利用激光的热效应,对病变组 织进行照射,从而达到治疗目 的。
口腔溃疡治疗
激光照射能够促进口腔黏 膜的再生和修复,加速口 腔溃疡的愈合。
牙齿美白
通过激光照射,能够减少 牙齿表面的色素沉积,使 牙齿变得更加洁白亮丽。
眼科疾病的治疗
眼底病变治疗
青光眼治疗
半导体激光能够通过光凝等手段,治 疗糖尿病视网膜病变、视网膜静脉阻 塞等眼底病变,防止视力进一步恶化 。
激光虹膜成形术和激光小梁成形术等 半导体激光手术可以开放房角、解除 瞳孔阻滞和降低眼压等作用,治疗青 光眼等眼疾。
半导体激光治疗新技术的应用
总结词
随着技术的不断发展,半导体激光治疗新技术不断涌现,为 患者提供了更加安全、有效的治疗方案。
详细描述
目前,半导体激光治疗新技术包括光动力疗法、光热疗法和 光化学疗法等。这些新技术在肿瘤治疗、皮肤疾病、眼科疾 病等领域展现出巨大的潜力,为患者带来了更好的治疗效果 。
单异质结半导体激光器.课件
交叉学科应用的前景
1 2
生物医学领域应用
利用单异质结半导体激光器的特性,开发用于生 物成像、光动力治疗和光热治疗等应用的激光器 。
光子集成与光通信
结合光子集成技术,实现单异质结半导体激光器 的片上集成和高速光通信系统中的应用。
3
量子信息技术
探索单异质结半导体激光器在量子信息处理、量 子密钥分发和量子纠缠光源等领域的潜在应用。
生物医学成像
单异质结半导体激光器在生物医学成像中发挥着重要 作用,可用于荧光显微镜、光谱仪等设备。
在生物医学成像中,单异质结半导体激光器作为激发 光源,能够提供高亮度、高纯度的单色光,用于激发 荧光标记物或特定组织中的荧光物质。通过荧光显微 镜或光谱仪等设备,可以观察和分析生物样本中的分 子结构和功能信息,为医学研究和临床诊断提供重要 依据。此外,单异质结半导体激光器还可应用于眼科 、皮肤科等领域,为患者提供高效、安全的治疗方法 。
应用研究进展
光通信
单异质结半导体激光器在光通信领域 具有广泛的应用前景,其研究主要集 中在提高器件的稳定性、降低阈值电 流密度以及实现可调谐波长等方面。
光互联
单异质结半导体激光器在光互联领域 也具有广泛的应用前景,其研究主要 集中在提高器件的光束质量、实现可 调谐波长以及降低成本等方面。
06
单异质结半导体激光器的挑战与 展望
宽禁带半导体材料
具有高热导率和抗击穿特性,如SiC、 GaN等。
异质结的结构设计
单异质结
由不同带隙的半导体材料 构成,形成能级差,用于 限制电子和空穴的流动。
双异质结
由两种不同带隙和折射率 的材料构成,形成波导结 构,用于控制光子的流动 。
多层异质结
通过多层的不同材料堆叠 ,实现能级结构和波导结 构的复合,提高激光器的 性能。
半导体激光器ppt课件
半导体激光器
目录
半导体激光器简介
半导体激光器工作原理
半导体激光器的分类
半导体激光器的应用
• 半导激光器简介:
• 半导体激光器是以一 定的半导体材料做工 作物质而产生激光的 器件。.
• 半导体激光(Semiconductor laser)在1962年被 成功激发,在1970年实现室温下连续输出。后来 经过改良,开发出双异质接合型激光及条纹型构 造的激光二极管(Laser diode)等,广泛使用于 光纤通信、光盘、激光打印机、激光扫描器、激 光指示器(激光笔),是目前生产量最大的激光 器。
• (7)动态单模激光器
• (9)量子阱激光器
(8)分布反馈激光器
(10)表面发射激光器
• (11)微腔激光器
半导体激光器的应用
•军事领域
•如激光制导跟踪、激光雷 达、激光引信、激光测距、 激光通信电源、激光模拟 武器、激光瞄准告警、激 光通信和激光陀螺等。目 前世界上的发达国家都非 常重视大功率半导体激光 器的研制及其在军事上的 应用。
•印刷业和医学领域
•如CD播放器,DVD系统和高密度光存储器可见光面发射激光器在光 盘、打印机、显示器中都有着很重要的应用,特别是红光、绿光和蓝 光面发射激光器的应用更广泛蓝绿光半导体激光器用于水下通信、激 光打印、高密度信息读写、深水探测及应用于大屏幕彩色显示和高清 晰度彩色电视机中。
供应平板刻绘机
The end,thank you!
半导体激光雷达 半 导 体 激 光 武 器 模 拟
半导体激光瞄准和告警
半导体激光测距
半导体激光引信
半导体激光制导跟踪
军用光纤陀螺
•光纤通信系统
半导体激光器可以作为光纤通信的光源和指示器以及通过大规模集成电 路平面工艺组成光电子系统。
目录
半导体激光器简介
半导体激光器工作原理
半导体激光器的分类
半导体激光器的应用
• 半导激光器简介:
• 半导体激光器是以一 定的半导体材料做工 作物质而产生激光的 器件。.
• 半导体激光(Semiconductor laser)在1962年被 成功激发,在1970年实现室温下连续输出。后来 经过改良,开发出双异质接合型激光及条纹型构 造的激光二极管(Laser diode)等,广泛使用于 光纤通信、光盘、激光打印机、激光扫描器、激 光指示器(激光笔),是目前生产量最大的激光 器。
• (7)动态单模激光器
• (9)量子阱激光器
(8)分布反馈激光器
(10)表面发射激光器
• (11)微腔激光器
半导体激光器的应用
•军事领域
•如激光制导跟踪、激光雷 达、激光引信、激光测距、 激光通信电源、激光模拟 武器、激光瞄准告警、激 光通信和激光陀螺等。目 前世界上的发达国家都非 常重视大功率半导体激光 器的研制及其在军事上的 应用。
•印刷业和医学领域
•如CD播放器,DVD系统和高密度光存储器可见光面发射激光器在光 盘、打印机、显示器中都有着很重要的应用,特别是红光、绿光和蓝 光面发射激光器的应用更广泛蓝绿光半导体激光器用于水下通信、激 光打印、高密度信息读写、深水探测及应用于大屏幕彩色显示和高清 晰度彩色电视机中。
供应平板刻绘机
The end,thank you!
半导体激光雷达 半 导 体 激 光 武 器 模 拟
半导体激光瞄准和告警
半导体激光测距
半导体激光引信
半导体激光制导跟踪
军用光纤陀螺
•光纤通信系统
半导体激光器可以作为光纤通信的光源和指示器以及通过大规模集成电 路平面工艺组成光电子系统。
半导体激光器原理及应用PPT课件
2019/11/4
.
22
半导体激光器的线宽
上面曲线给出了LD线宽与1/P之间的关系、和温度对线宽的影响
2019/11/4
.
23
半导体激光器的动态特性
半导体激光器有别于其它激光器的最重要特点之一在于它有被交变信号直接调 制的能力,这在信息技术中具有重要的意义。
与工作在直流状况的半导体激光器不同,在直接高速调制情况下会出现一些有 害的效应,成为限制半导体激光器调制带宽能力的主要因素。
.
半导体激光器等效电路
29
半导体激光器的热特性
引发机制: 在半导体激光器中,由于不可避免的存在着各种非辐射复合损耗、自由载流子吸 收等损耗机制,使外微分量子效率只能达到20%~30%,意味着相当部分注入的 电功率转换为了热量,引起激光器的升温。这会导致LD的阈值电流增大、发射波 长红移、模式不稳定、增加内部缺陷,严重影响器件的寿命。 解决办法:
(b)受激辐射:受激发射出的光子频率,相位和方向都与入射光子h 相同。
(c)受激吸收:原子接收辐射能 h 从基态能级E1越入受激能级E2。 产生激光的必要条件:受激辐射占主导地位
2019/11/4
.
3
自发辐射的特点
这种过程与外界作用无关。各原子的辐射都是独立地进行。因而所发光子的频 率、初相、偏振态、传播方向等都不同。不同光波列是不相干的。
2019/11/4
半导体激光器横模与侧模
有多侧模的半导体激光器的近场和远场
.
16
纵模谱的影响因素
2019/11/4
可见,若要选频,就要控制温度,要稳定功率输出,
也要选择恒温控制
.
17
半导体激光器的光束发散角
半导体光电子器课件
《半导体光电子器》PPT课件
内部电场产生与扩散相反方向的漂移运动,直到P区和N 区的Ef 相同,两种运动处于平衡状态为止,结果能带发生倾 斜,见图4.5(b)。
能量
p
Ec
P区
p
E
v
n
E
c
势垒
E
f
N区
n
E
v
(b) 零偏压时P - N结的能带倾斜图;
《半导体光电子器》PPT课件
PN结:
耗 尽区
扩散电子
-
+
-
+
-
+
pn结
内建电场
电势
U
Ef
n
p
1. 浓度的差别导致载流子的扩散运动 2. 内建电场的驱动导致《半载导体流光电子子做器》反PP向T课漂件 移运动
P-N结施加反向电压
VCC
当PN结两端加上反向偏置电压时,耗尽区加宽,势垒加强。
《半导体光电子器》PPT课件
(a) 反向偏压使耗尽区加宽
少数载流子漂移
特点: - 同质结两边具有相同的带隙结构和光学性能 - pn结区的完全由载流子的扩散形成
存在的问题: • 增益区太厚(1~10 mm),很难把载流子约束在相对小的区域,
无法形成较高的载流子密度 1. 无法对产生的光进行有效约束
n
p
《半导体光电子器》PPT课件
典型的GaAlAs双异质结
异质结:
为提高辐射功率,需 要对载流子和辐射光 产生有效约束
注入电子 ---
电子能量 空穴势垒
电子势垒 电子-空穴复合
++
注入空穴
1. 不连续的带隙结构 2. 折射率不连续分布
内部电场产生与扩散相反方向的漂移运动,直到P区和N 区的Ef 相同,两种运动处于平衡状态为止,结果能带发生倾 斜,见图4.5(b)。
能量
p
Ec
P区
p
E
v
n
E
c
势垒
E
f
N区
n
E
v
(b) 零偏压时P - N结的能带倾斜图;
《半导体光电子器》PPT课件
PN结:
耗 尽区
扩散电子
-
+
-
+
-
+
pn结
内建电场
电势
U
Ef
n
p
1. 浓度的差别导致载流子的扩散运动 2. 内建电场的驱动导致《半载导体流光电子子做器》反PP向T课漂件 移运动
P-N结施加反向电压
VCC
当PN结两端加上反向偏置电压时,耗尽区加宽,势垒加强。
《半导体光电子器》PPT课件
(a) 反向偏压使耗尽区加宽
少数载流子漂移
特点: - 同质结两边具有相同的带隙结构和光学性能 - pn结区的完全由载流子的扩散形成
存在的问题: • 增益区太厚(1~10 mm),很难把载流子约束在相对小的区域,
无法形成较高的载流子密度 1. 无法对产生的光进行有效约束
n
p
《半导体光电子器》PPT课件
典型的GaAlAs双异质结
异质结:
为提高辐射功率,需 要对载流子和辐射光 产生有效约束
注入电子 ---
电子能量 空穴势垒
电子势垒 电子-空穴复合
++
注入空穴
1. 不连续的带隙结构 2. 折射率不连续分布
半导体激光器工作原理 ppt课件
远红外长波长: InP衬底
InGaAsP/InP 1.3um 1.48um 1.55um
半导体激光器工作原理
8
半导体激光器材料和器件结构
808大功率激光器结构
半导体激光器工作原理
9
半导体激光器材料生长
• 采用MOCVD方法制备外延层,外延层包括缓冲层、限制层、有源 层、顶层、帽层。有源层包括上下波导层和量子阱。
我们的808大功率激光器属于这种结构:把p+重掺杂层 光刻成条形,限制电流从条形部分流入。但是在有源 区的侧向仍是相同的材料,折射率是一样的,对光场 的侧向渗透没有限制作用,造成远场双峰或多峰、光 斑不均匀,同时阈值高、光谱宽、多纵摸工作,有时 会出现扭折问题。
半导体激光器工作原理
折射率波导条形激光器(掩埋条形)
特点:不仅对注入电流的侧向扩展和注入载流子的侧 向扩散有限制作用,而且对光波侧向渗透也有限制作 用。
InP衬底的1310nm 、1480nm激光器属于这种结构, 需要三次外延生长。此结构的优点:条形有源区的侧 向对载流子和光场都有限制,辐射光丝稳定,能够单 膜工作,远场单峰、光斑均匀,光谱窄、阈值低、可 靠性高。
半导体激光器工作原理
7
半导体激光器的分类(材料和波长)
可见光:
GaAs衬底
InGaN/ GaAs 480~490nm 蓝绿光
InGaAlP/GaAs 630~680nm
AlGaAs/GaAs 720~760nm
近红外长波长: GaAs衬底 AlGaAs/GaAs 760~900nm InGaAs/GaAs 980nm
半导体激光器工作原理
11
条形结构类型
从对平行于结平面方向的载流子和光波限制情况可分为增益波导条形激 光器(普通条形)和折射率波导条形激光器(掩埋条形、脊形波导)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
间接带隙半导体电子跃迁时:始态和终态的 波矢不同,必须有相应的声子参与吸收和发 射以保持动量守恒,所以跃迁几率低。
13
半导体异质结
• 异质结的作用:
• 异质结对载流子的限 制作用
• 异质结对光场的限制 作用
• 异质结的高注入比
14
异质结对光场的限制作用
15
半导体激光器的材料选择
1-能在所需的 波长发光
42
3.一次光刻
• 一次光刻出 双沟图形
43
4.脊波导腐蚀
选择性腐蚀到 四元停止层
44
5.套刻
PECVD生长SiO2 自对准光刻 SiO2腐蚀
45
6.三次光刻:电极图形
46
7.欧姆接触
1. P面溅射TiPtAu 2. 减薄 3. N面 TiAu
47
端面镀膜
• 先解理成条 • 端面镀膜:高反膜\增透膜
22
横模(侧横模)
增益导引激光器(Gain guide LD)
条形激光器
23
几种典型的折射率导引激光器
24
远场特性
• θ⊥随有源区厚度及折射 率差的减小而减小。
• θ∥ 随有源区宽度的减小 而增大。
• 减小有源区的宽度,可 以使远场更趋向于圆形 光斑。
• 减小有源区宽度可以使 高阶模截止。
25
1. 一次外延生长 2. 光栅制作 3. 二次外延生长 4. 脊波导制作 5. 欧姆接触、减薄 6. 解理成条 7. 端面镀膜 8. 解理成管芯 9. TO-CAN
40
1.全息曝光 2.干法或湿 法刻蚀
1.光栅制作
41
2.二次外延生长
生长:
1.低折射率层 2.腐蚀停止层 3.包层 4.帽层:接触层
• 垂直横模 • 侧横模
• 垂直横模:由异质结各层 的厚度和各层之间的折射 率差决定。
20
横模(侧横模)
折射率导引激光器(Index guide LD)
• 1.强折射率 导引的掩埋 异质结激光 器(BH-LD)
21
横模(侧横模)
折射率导引激光器(Index guide LD)
2.弱折射率导引激光器: 脊波导型激光器 (RWG-LD)
半导体激光器原理与制造
Semiconductor laser diode Principle&Fabrication
1
主要内容
1.半导体物理基础知识 2.半导体激光器工作原理 3.工作特性及参数 4.结构及制造工艺 5.面发射激光器
2
半导体物理基础知识
1. 能带理论 2. 直接带隙和间接带隙半导体 3. 能带中电子和空穴的分布 4. 量子跃迁
• 对DFB-LD,激射波长主要由光栅周期和等效折射 率决定,温度升高时光栅周期变化很小,所以Δλb / ΔT 小于0.1nm /℃ 。
36
F-P-LD与DFB-LD的频率啁啾
37
工作特性
5.光谱宽度 6边模抑制比 7上升/下降时间 8串联电阻 9热阻
38
各特性的关系
39
DFB-LD芯片制造
4
导体 绝缘体 半导体
5
能带中电子和空穴的分布
导带中绝大多数电子分布在导带底。 Ef为费米能级,它在能带中的位置直观的标志着电子占据量子态的情况。 费米能级位置高,说明有较多能量较高的量子态上有电子。
6
能带中电子和空穴的分布
N型半导体中的电子和空穴在能级中的分布(热平衡状态)
7
能带中电子和空穴的分布
P型半导体中的电子和空穴在能级中的分布(热平衡状态)
8
量子跃迁
• 光的自发发射 (是半导体发光的基
础)
• 光的受激吸收(是半导体探测器工
作的基础)
9
量子跃迁
• 光的受激发射:光子激励导带中的电子与价带中的空穴复合,产生 一个所有特征(频率、相位、偏振)完全相同的光子。它是半导体 激光器的工作原理基础。
纵模
• F-P腔激光器: 多纵模工作
• DFB激光器 单纵模工作
26
F-P腔激光器
27
28
DFB激光器
29
DFB-LD与DBR-LD
30
F-P-LD与DFB-LD的纵模间隔
31
DFB-LD的增益与损耗
32
工作特性
1.阈值电流 Ith
影响阈值电流的因素: 1. 有源区的体积:腔长、条宽、厚度 2. 材料生长:掺杂、缺陷、均匀性 3. 解理面、镀膜 4. 电场和光场的限制水平 5. 随温度增加,损耗系数增加,漏电流增加,内量子
ηd = ΔP / ΔI
外微分量子效率并不是越大越好,如果太大,光功率输 出随注入灵敏度太高,器件容易被损坏。
35
工作特性
4. 峰值波长随温度的改变Δλb / ΔT:
• 对F-P-LD,当激光器的温度升高时,有源区的带隙 将变窄,同时波导层的有效折射率发生改变,峰值波 长将向长波长方向移动。约为0.5nm/℃ 。
2-晶格常数与 衬底匹配
16
半导体激光器的工作原理
基本条件:
1有源区载流子反转分布 2谐振腔:使受激辐射多
次反馈,形成振荡 3满足阈值条件,使增益
>损耗,有足够的注入 电流。
17
双异质结激光器
18
分别限制异质结单量子阱激光器
19
横模(两个方向)
• 半导体激光器通常是单横 模(基模)工作。
• 当高温工作,或电流加大 到一定程度,会激发高阶 模,导致P-I曲线出现扭折 (Kink),增加了躁声。
5. 半导体异质结
6. 半导体激光器的材料选择
3
能带理论:晶体中原子能级分裂
• 晶体中的电子作共有化 运动,所以电子不再属 于某一个原子,而是属 于整个晶体共有
• 晶体中原子间相互作用, 导致能级分裂,由于原 子数目巨大,所以分裂 的能级非常密集,认为 是准连续的,即形成能 带
• 电子总是先填充低能级, 0K时,价带中填满了电 子,而导带中没有电子
端面镀膜的作用: 1.增大出光功率,2.减小阈值电流 高反膜80-90%,增透膜5-10%
10
量子跃迁
非辐射跃迁: 1. 异质结界面态的复合 2. 缺陷复合:有源区都
是本征材料 3. 俄歇复合:对长波长
激光器的量子效率、 工作稳定性和可靠性 都有不利影响
11
• 特点:
量子跃迁
12
直接带隙和间接带隙半导体
直接带隙半导体跃迁几率高, 适合做有源区发光材料 (如GaAs,InP,AlGaInAs)
效率降低,这些都会使阈值电流密度增加
33
工作特性
2.特征温度To(表征激光器的温度稳定性):
测试:To = Δ T / ΔLn(Ith) 影响To的因素:限制层与有源层的带隙差Δ Eg 对InGaAsP长波长激光器,To随温度升高而减小
ΔEg
34
工作特性
3.外微分量子效率ηd (斜率效率):
可以直观的用来比较不同的激光器性能的优劣。