几何光学101:近轴光线追迹计算
[工学]第2章:近轴光学
线的计算可以一面一面的逐次计算。因为从第一面开始可以将 前一面计算出的像点作为下一面的物点,利用式(2-9)或式(2-21) 循环计算,直至最后一个折射面。其间要解决好两个问题,一 是随着前一面计算结束向后一面过渡时应将坐标原点同时从从 前一面的顶点移到后一面的顶点,即坐标原点一定是当前计算 面的顶点;二是要建立前一面计算结果与后一面起算数椐之间 的联系。
+ a4h4 + a6h6 + a8h8 + a10h10...
(1-47) (1-51) (1-52)
(h2 = x2 + y2 )
近轴范围
y
x
O
z
图2-2 透镜曲面方程所采用的坐标系
在光学系统的近轴范围内,其折射面或反射面的面形可以由
下式表示
z = 1 ch2 2
(2-1)
近轴范围
现以球面为例看看这个近轴球面定义的实质,由球面方程 式(1-44)考查比较直接。在式(1-44)中如果h与r 相比很小,允许
因为有 [PDGEP′] = [PD] + [DG]) + [GE ] + [EP′] 和 [POKP′] = [PO] + [OK ] + [KP′] 将上述这些结果代入式(2-2),有
[OK ] = [DG] + [GE ]
(2-2) (2-3)
2.2单个近轴球面的性质
又因为是在近轴范围内讨论问题,所以椐式(2-1)有
− y′ = l′ − r y −l+r
即
y′ = l′ − r y l−r
前六章工程光学习题及解答
第一章几何光学基本原理1. 作图分析下列光学元件对波前的作用:(1) 图1.1中(a )、(b )中所示,各向均匀同性介质中的点光源P 发出球面波,P '为其共轭理想像点.假设在相同时间间隔内形成的球面波前间距为d .求该波前入射到折射率大于周围介质的双凸透镜或凹透镜上,波前在透镜内和经透镜折射后的波前传播情况.(2) 图1.1中(c )所示,各向均匀同性介质中的无限远点光源发出平面波,求该波前入射到折射率大于周围介质的棱镜上,波前在棱镜内和经棱镜折射后的波前传播情况.Pd图1.1(b)图1.1(c)P '图1.1(a)解:(1)P d dd 'd 'P 'd(2)2. 当入射角很小时,折射定律可以近似表示为ni=n′i′,求下述条件的结果:(1) 当n =1,n′=1.5时,入射角的变化范围从0~65º.表格列出入射角每增加5º,分别由实际与近似公式得到的折射角,并求出近似折射角的百分比误差.请用表格的形式列出结果.(2) 入射角在什么范围时,近似公式得出的折射角i′的误差分别大于0.1%,1%和10%. 解:(1) 当1n =,1.5n '=时,由折射定律:sin sin n I n I ''=,得:11sin sin sin sin 1.5n I I I n --⎛⎫⎛⎫'==⎪ ⎪'⎝⎭⎝⎭由折射定律近似公式:ni n i ='',得: 1.5ni ii n '==' 入射角在0~65º范围内变化时,折射角和折射角近似值以及近似折射角的百分比误差如下表所示:(2) ()/=0.1%i I I '''-时,=5.7I ︒;()/=1%i I I '''-时,=18.2I ︒=53.3I ︒.3.由一玻璃立方体切下一角制成的棱镜称为三面直角棱镜或立方角锥棱镜,如图1.2所示.用矢量形式的反射定律试证明:从斜面以任意方向入射的光线经其它三面反射后,出射光线总与入射光线平行反向.同时,说明这种棱镜的用途.解:(法一)如下图所示,设光线沿ST 方向入射经T 、Q 、R 点反射后,由RS '方向出射,设1A 、2A 、3A 、4A 分别为ST 、TQ 、QR 和RS 的单位矢量,射向反射面AOB 的入射光线1A 的单位矢量可表示为1=A li mj nk ---,式中l 、m 、n 为光线1A 在x 、y 、z 轴上的方向数,2221l m n ++=,光线1A 经AOB 面反射后,射向反射面BOC ,反射面AOB 的法线单位矢量为1n k =-,则反射光线2A 单位矢量可由矢量反射定律决定,即2112()2[()]A A A k k li mj nk li mj nk k k li mj nk =-=-------=--+反射面BOC 的法线方向单位矢量为2n i =-,光线2A 射向BOC 后的反射光线3A 的单位矢量为3222()2[()]A A A i i li mj nk li mj nk i i li mj nk =-=-------=-+反射面COA 的法线方向单位矢量为3n j =-,光线3A 射向COA 反射后的光线经4A 的单位矢量为4332()2[()]+A A A j j li mj nk li mj nk j j li mj nk =-=-------=+对光线1A 和4A 作点积,得22214()()()1A A li mj nk li mj nk l m n =-++++=-++=-说明入射光线1A 和出射光线4A 在空间上是平行的,而且方向相反,即有180︒夹角.(法二)如下图所示,入射光线从斜面进入棱镜后的折射光线方向为1A ,且1=(,,)A l m n ,然后经过AOB 面的反射后的折射方向为2A ,再依次经过BOC 反射面、COA 反射面后的方向分别为3A 、4A .其中,反射面AOB 、BOC 、COA 的法线单位矢量分别为1=N (0,0,1),2=N (1,0,0),3=N (0,1,0).这样由矢量形式的反射定律,有图 1-21A R)a 3A 4A 2A S '第一次AOB 面反射式,21111=-2()(,,)A A N N A l m n ⋅=- 第二次BOC 面反射式,32222=-2()(,,)A A N N A l m n ⋅=-- 第三次COA 面反射式,433133=-2()(,,)A A N N A l m n A ⋅=---=-说明入射光线1A 和出射光线4A 在空间上是平行的,而且方向相反,即有180︒夹角. 4.已知入射光线cos cos cos A i j k αβγ=++,反射光线cos cos cos A i j k αβγ''''''''++=,求此时平面反射镜法线的方向. 解:反射定律为=-2()''A A N N A ,在上式两边对A 做标积,有212()''=-A A A N , 由此可得12''=-A A A N ,将上式代入反射定律得cos =α=''A N A A) ()5. 发光物点位于一个透明球的后表面,从前表面出射到空气中的光束恰好为平行光如图1.3所示,求此透明材料的折射率的表达式.当出射光线为近轴光线时,求得的折射率是多少? 解:设空气折射率为0n ,透明球的折射率为1n ,则由折射定律01sin sin n i n i '=,得此透明球的折射率表达式为:10sin =sin i n n i'由三角关系有2i i '=,那么上式可以写作10=2cos n n i .近轴成像时,sin sin i i '、分别被i i '、代替,从而可得1022n n == 6.设光纤纤芯折射率1 1.75n =,包层折射率2 1.50n =,试求光纤端面上入射角在何值范围内变化时,可保证光线发生全反射通过光纤.若光纤直径40μm D =,长度为100m ,求光线在光纤内路程的长度和发生全反射的次数. 解:图1.3011sin 0.901464.34n I I ====光线在光纤内路程长度116.7m L '===发生全反射次数21502313()N ==次7.如图1.4所示,一激光管所发出的光束扩散角为7',经等腰直角反射棱镜(=1.5163n ')转折,是否需要在斜面上再镀增加反射率的金属膜? 解:由折射定律得:11sin sin 3.5sin 0.0006714421.5163n i i n ''==='解之得10.03847i '= 而1=90=89.96153i β'- 根据平面几何关系有2==89.9615345=134.961539044.96153i αβγα++=-=而第二面临界角11211sin sin 41.261751.5163m I i n --===<' 所以,不需要镀膜.8.一厚度为200mm 的平行平板玻璃 1.5n =,下面放一直径为1mm 的金属片,如图1.5所示.若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,求纸片的最小直径?解:要使圆形纸片之外都看不到金属片,只有在这些方向上发生全反射.由几何关系可得纸片最小直径1tan 2+=a L d由于发生了全反射,所以有sin 1/1/1.52/3a n ===,tan =sin 2a a =得367.7709mm d =9.折射率为1 1.5n =,12 1.6n n '==,21n '=的三种介质,被两平行分界面分开,试求当光图1.5线在第二种介质中发生全反射时,光线在第一种界面上的入射角1I .解:由折射定律sin sin n I n I ''=,光线从光密进入光疏介质时发生全反射90I '=由题意知221sin /cos m I n n I ''==又知1111sin sin n I n I n ''===11.5sin I =解得156.374I=10.如图1.6所示,有一半径为R 厚度为b 的圆板,由折射率n ,沿径向变化的材料构成,中心处的折射率为n 0,边缘处的折射率为n R ..用物点理想成像的等光程条件推导出圆板的折射率n r 以何种规律变化时,在近轴条件下,平行于主光轴的光线将聚焦?此时的焦距f′又为多少?解:如图1.6所示,离轴r 的光程为r n b A +=即r n b f A +=其中A 为常数,与轴上光线的光程比较,得2201122r R r Rr R n b f A n b f n b f f f='''++=−−−→++=+''故202()R R f n n b '=-或202()r rf n n b'=-220002()2'R r r n n r n n n bf R-=-=- 11.试用费马原理推导光的折射定律解:设任一折射路径的光程为OPL11OPL n OP n PL n '=+=由费马原理1111sin sin 0dOPL OPL n n n i n i dx δ''==-=-= 故1111sin sin n i n i ''= 12. 已知空气中一无限远点光源产生的平行光从左入射到形状未知的凹面镜上,该光束经会图1.6聚后在凹面镜顶点的左方成一理想像点,试用等光程原理确定该凹面镜的形状. 解:如右图所示,以凹面镜的顶点为原点建立(,)z y 坐标系.由等光程原理知,光线①与光线②的光程相等,则22()2 4 4f z f y y fz z f++=⇒=-=-或13. 举例说明正文中图1.4.2中所示四种成像情况的实际光学系统.解:(a )实物成实像:照相机、显微镜的物镜、望远镜的物镜、投影仪、幻灯机 (b )虚物成实像:对着镜子自拍、拍摄水中的鱼(c )实物成虚像:平面镜、眼镜、放大镜、显微镜的目镜、倒车镜(d )虚物成虚像:出现在海市蜃楼(虚像)中的水面上的倒影(虚物)、潜望镜的第二个反射镜对第一个反射镜中的像成像、多光学元件系统.14.如何区分实物空间、虚物空间以及实像空间和虚像空间?是否可按照空间位置来划分物空间和像空间?解:光学系统前面的空间为实物空间.光学系后面的空间为实像空间.光学系统后面的空间为实像空间.光学系统前面的空间为虚像空间.物空间和像空间在空间都是可以无限扩展的,不能只按照空间位置划分.15.假设用如图1.7所示的反射圆锥腔使光束的能量集中到极小的面积上.因为出口可以做到任意小,从而射出的光束能流密度可以任意大.验证这种假设的正确性.解:如图所示,圆锥的截面两母线是不平行的,从入口进入的光线,在逐次反射过程中入射角逐渐减小,必然会在某一点处光线从法线右侧入射,从而使光线返回入口.显然,仅从光的反射定律来分析,欲用反射圆锥腔来聚焦光束能流的设想是不现实的.第二章球面成像系统1. 用近轴光学公式计算的像具有什么实际意义?解:近轴光学是通过光线追迹确定光学系统一阶成像特性和成像系统基本性质的光学.近轴光学公式表示理想光学系统所成像的位置和大小,也作为衡量实际光学系统成像质量的标准.2.有一光学元件,其结构参数如下: (mm)r (mm)t n 1003001.5 ∞(1) 当l =∞时,求像距l '.(2) 在第二个面上刻十字线,其共轭像在何处?(3) 当入射高度10mm y =时,实际光线和光轴的交点在何处?在高斯像面上的高度是多少?该值说明什么问题?解:(1)由近轴折射公式(2.1.8)1100 1.5 300mm 1.51n n n n rn l l l r n n '''-⨯'-=⇒===''-- 2123003000l l t l ''=-=-==(2)由光路可逆,共轭像在无限远处.(3)当10mm y =时:由式(2.1.5),10sin 0.1100y I r ===光线入射角: 5.739170I =︒由式(2.1.2),s i n 10.1si n 0.06671.5n I I n ⨯'==='折射角: 3.822554I '=︒由式(2.1.3),像方孔径角:0 5.739170 3.822554 1.916616U U I I ''=-+=︒-︒+︒=-︒由式(2.1.4),像方截距:sin sin 3.82255411001299.332(mm)sin sin( 1.916616I L r U '⎛⎫︒⎛⎫'=-=-= ⎪ ⎪'-︒)⎝⎭⎝⎭在高斯面上的高度:()299.332300tan(| 1.9166167|)0.022(mm)y '=-⨯-=-,该值说明点物的像是一个弥散斑.3.一个直径为200mm 的玻璃球,折射率为1.53,球内有两个小气泡,看上去一个恰好在球心,另一个从最近的方向看去,好像在表面和球心的中间,求两气泡的实际位置. 解:如右图:A 的像A '在球心,则A 仍在球心. B '在球面和球心中间,/250mm Bl r '==-,则 1 1.531 1.53 60.474mm 50100B B B B n n n n l l l r l ''---=⇒-=⇒=-'--B 离球心39.526mm.4.在一张报纸上放一平凸透镜,眼睛通过透镜看报纸.当平面朝着眼睛时,报纸的虚像在平面下13.3mm 处;当凸面朝着眼睛时,报纸的虚像在凸面下14.6mm 处.若透镜中央厚度为20mm ,求透镜材料的折射率和凸球面的曲率半径.解:如右图(a)(b):对第一面10l =,10l '=.故仅需计算第二面.第一种情况:,20mm,13.3mm,1r l l n ''=∞=-=-=第二种情况:20mm,14.6mm,1l l n ''=-=-=故有:1111 13.32014.620n n n nr---=-=--∞-- 联立求解得:75.282mm 1.504r n =-=所以,透镜材料的折射率为1.504,凸球面的曲率半径为75.282mm.5.一个等曲率的双凸透镜,放在水面上,两球面的曲率半径均为50mm ,中心厚度为70mm ,玻璃的折射率为1.5,透镜下100mm 处有一个物点Q ,如图2.1所示,试计算最后在空气中成的像.解:由光线近轴计算基本公式n n n nl l r''--=' 对于面1,11.5 1.33 1.5 1.3310050l --=-' 解得1151.515mm l '=-对于面2,21 1.51 1.5151.5157050l --='---解得2309.746mml '=,所以最后在空气中成的像在第二面顶点后309.746mm 的位置。
近轴光线计算
§1.3 光路计算与近轴光学系统一、基本概念与符号规则设在空间存在如下一个折射球面:r:折射球面曲率半径 o:顶点 L:物方截距 L':像方截距 u:物方孔径角 u':像方孔径角符号规则: 光线方向自左向右•(1)沿轴线段:以顶点O为原点,光线到光轴交点或球心,顺光线为正,逆光线为负。
•(2)垂轴线端:光轴以上为正,光轴以下为负•(3)光线与光轴夹角:由光轴转向光线锐角,顺时针为正,逆时针为负。
•(4)光线与折射面法线的夹角:由光线经锐角转向法线,顺时针为正,逆时针为负。
•(5)光轴与光线的夹角:有光轴经锐角转向法线,顺时针为正逆时针为负。
•(6)折射面间隔:d有前一面顶点到后一面顶点方向,顺光线方向为正,逆光线方向为负。
二、实际光线的光路计算已知:折射球面曲率半径r,介质折射率为n和n',及物方坐标L和U求:像方L'和U'解:△AEC中,由折射定律:又说明:以上即为子午面内实际光线的光路计算公式,给出U、L,可算出U’、L’,以A为顶点,2U为顶角的圆锥面光线均汇聚于A’点。
由上面推导可知:L’= f(L,U)、U’= g(L,U),当L不变,只U变化时,L’也变。
说明“球差”的存在。
三、近轴光线的光路计算概念:近轴区、近轴光线公式:(5)式说明:在近轴区l’只是l的函数,它不随孔径u的变化而变化,轴上物点在近轴区成完善像,这个像点称高斯像点。
高斯像面:通过高斯像点且垂直于光轴的平面称为高斯像面共轭点:像上面提到的一对构成物象关系的点称为共轭点在近轴区有:由公式(1)(2)(3)(4)(5)(6)可推出:(7)式中Q称为阿贝不变量,对于单个折射球面物空间与像空间的Q相等;(8)式表明了物、像孔径角的关系(9)式表明了物、像位置关系限制了光线与光轴的夹角,光线在折射面上的入射角,折射角等都很小.所有角度小于5°正切,正弦都可用该角度的弧度值代替.。
几何光学的近轴理论
p2 s2 4r(s r) sin2
2
2
p p n(s r) n(s r)
p2 s2 4r(s r) sin2
2 p2 s2 4r(s r) sin2
2
s 2 4r(s r) sin 2 s2 4r(s r) sin 2
4. 物像之间的等光程性
物点Q与像点Q‘之间的光程总是平稳 的,即不管光线经何路径,凡是由Q通过 同样的光学系统到达Q’的光线,都是等 光程的。
五.几何光学定律成立的条件
1. 光学系统的尺度远大于光波的波长。 2. 介质是均匀和各向同性的。 3. 光强不是很大。
§1.2 近轴光在单球面上的成像
n2 (s r)2 2
2 n2 (s r)2
s2
n2 (s r)2
s2 n2 (s r)2
4r sin2
Hale Waihona Puke 2[n
2
(
s2 s
r)2
s2 ] n2 (s r)2
Φ不同,s’不同,即从Q点发出的同心光束不能保持同心性
欲使折射光线保持同心性,必须满足近
/cui/ 课程成绩构成: 考试:60 作业:30(迟交超过1周者,拒收!) 论文:10(自选题目,内容不限,但要符合
科技论文的格式)
Lagrange-Helmhotz恒等式
V y ns y ns
对光线的角放大率为
n
p
u
r
i
p
u
Q
Od r
C1
Q
s
s
1.轴上物点成像
从Q点发出的光线QM折射后变为MQ’
光学系统计算及分
计算并绘制物镜的畸变曲线
相对畸变
Y’z是主光线与高斯像面的交点 的高度,为实际像高, Y’是理想像高 (由第二近轴光线算出)
相对畸变0.040311
0.028895
0.019862 0.0098613 0.0024516
计算并绘制物镜的0.5,0.3视场像差特性 曲线
蓝色曲线为0.5视场。 红色曲线为0.3视场
0.5,0.3视场下子午慧差曲线
蓝色曲线为0.5视场。红色曲线为0.3视场 0.5视场的子午彗差:-0.015284 -0.0058213 -0.0026748 -0.00090358 0.3视场的子午彗差:-0.010041 -0.0037226 -0.0016831 -0.00056187
0 0
第一近轴光线和第二近轴光线
第一近轴光线: 无限远处物点:L1=-∞,u1=0.
有限远轴上点:
利用以上公式及过渡公式得出第一近轴光线位置
第二近轴光线:仍用近轴光线光路计算公式,角标为z 由第一问可得入瞳位置,已知入瞳到第一表面距离lz
光线追迹l:57.48991 61.29579 28.67187 23.07388 113.8191 109.3191 -23.0423 -178.6746 -80.83875 38.76828. 光线追迹u:0.080772 0.071803 0.15325 0.15503 0.029931 0.029931 -0.13426 -0.018276 -0.040417 0.088698. 光线追迹L:18.4117 10.6213 12.2865 6.87667 4.49999 -1.52588e-005 -6.84548 -6.79193 -10.1562 -14.7672. 光线追迹U:-0.29166 -0.4232 -0.3624 -0.36661 0.47062 -0.47062 -0.40974 -0.49019 -0.33264 0.32429. 系统焦距52.3526.
光线追迹与光学仪器实验手册
分析观测数据
对观测到的数据进行分析处理,提取有用信息。
望远镜类型及选择依据
折射式望远镜
利用透镜折射原理成像 ,适合观测月球、行星
等近处天体。
反射式望远镜
利用反射镜反射原理成 像,口径较大,适合观
测深空天体。
折反式望远镜
结合折射和反射原理, 兼具两者优点,适合多
数据处理:根据实验数据,计算放大率和成像方式,并将结 果填入数据记录表格中。同时,可以根据实验数据绘制物距像距曲线图,进一步分析透镜成像规律。
结果分析和讨论
根据实验数据,可以得出透镜成像的基本规律,即物距、像距和焦距之 间的关系,以及放大率与物距和像距之间的关系。这些规律可以用透镜 成像公式和放大率公式进行描述。
到观测目标。
观测记录
在观测过程中及时记录目标星 体的位置、亮度等变化信息,
为后续分析提供依据。
数据记录和处理
数据记录
详细记录观测时间、地点、天气条件、望远镜参数以及观测到的目标星体信息(如位置、亮度等)。
数据处理
对观测数据进行整理、分类和统计分析,提取有用信息并得出结论。例如,可以根据观测到的星体位 置和亮度变化研究天体的运动规律和性质。
04 光线追迹实验二:反射镜 成像特性研究
实验目的和要求
01
掌握反射镜成像的基本原理和特性
02
学会使用光线追迹方法分析反射镜成像
通过实验验证反射镜成像规律,加深对光学成像的理解
03
实验器材和步骤
器材:平行光源、反射镜、屏幕、测量尺等
01
02
步骤
搭建实验装置,将平行光源、反射镜和屏 幕依次放置在同一直线上
光学系统
第一节 理想光学系统与共线成像理论
理想光学系统理论在1841年由高斯提出,1893年阿 贝发展了理想光学系统理论。 理想光学系统理论——高斯光学 对于实际使用的共轴光学系统,由于系统的对称 性,共轴理想光学系统所成的像还有以下性质: (1)位于光轴上的物点对应的共轭像点也必然位 于光轴上;位于过光轴的某一个截面内的物点对应 的共轭像点必位于该平面的共轭像面内;过光轴的 任意截面成像性质都是一样的。因此可以用过光轴 的截面代表一个共轴系统。
共轴理想光学系统所成像的性质
(2)垂直与光轴的平面物所成的共轭平面像的几何 形状完全与物相似,也就是说在整个物平面上无论 哪一部分,物和像的大小比例等于常数。像和物的 大小之比称为“放大率”,对于共轴理想光学系统 来说,垂直于光轴的同一平面上的各个部分具有相 同的放大率。 (3)一个光学系统,如果已知两对共轭面的位置和 放大率;一对共轭面的位置和放大率以及轴上的两 对共轭点的位置,则其它一切物点的像点都可以根 据这些已知的共轭面和共轭点来表示。
第一节 理想光学系统与共线成像理论
理想光学系统——像与物是完全相似的
这种“共线成像”理论的初始几何定义可归纳为:
第一节 理想光学系统与共线成像理论
理想光学系统——像与物是完全相似的 物空间 像空间 点 共轭点 直线 共轭直线 直线上的点 共轭直线上的共轭点 任一平面 一共轭平面
同样:物空间中每一同心光束在像空间中均有一共轭 同心光束与之对应。 简单的说:物空间的任一点、线、面都有与之相共轭 的点、线、面存在,且是唯一的。
第二节 理想光学系统的基点与基面
这些已知的共轭面和共轭点为共轴光学系统的 “基面”和“基点”。 基点就是一些特殊的点,基面就是一些特殊的面。 正是这些特殊的点与面的存在,从而使理想光学系 统的特性有了充分体现,只有掌握了这些基点基面 的特性,才能够分析计算理想光学系统。 基点:物方焦点,像方焦点;物方主点,像方主 点;物方节点,像方节点。 基面:物方主面,像方主面;物方焦面,像方焦 面。
光学设计基本理论
几何光学基本定理
光从一点传播到另一点,其间无论经过多少次 折射或反射,其光程为极值。 光线束在各向同性的均匀介质中传播时,始终 保持着与播面的正交性,且入射波面与出射波 面对应点之间均为定值。 折、反射定律、费马原理和马吕斯定律,三者 中任意一个可视为几何光学三个基本定律之一, 而另两个则为其推论。
球差(Spherical aberration) 彗差(Coma) 像散(Astigmatism) 场曲(Field Curvature) 畸变(Distortion) 色差(Chromatic aberration) ◦ 轴向色差(Axial) ◦ 垂轴色差(Lateral)
像差多项式
用波像差的幂级数展开式表示的像差:
初级(赛德尔)像差
球差
球差的校正
•
球差是轴上像差 • 一般情况与孔径成立放关 系(例如:一个特定的透 镜其像斑大小为0.01英寸, 如果口径缩小到1/2,像 斑大小为0.00123英寸。 通过改变透镜的弯曲度校正
•
•
通过增加透镜或正佳光角度 得到矫正
球差形成的像差曲线
F/2透镜的球差 F/2透镜的球差
推荐参考图书:
1.
M. Laikin, Lens Design, 2006, CRC Press, Fourth Edition
光学设计步骤
基点基面
基点基面
近轴光线追迹
近轴光线追迹
基本公式
基本公式
基本公式
拉氏不变量
拉氏不变量
拉氏不变量的应用
拉氏不变量的应用
从费马原理得出拉氏不变量
从费马原理得出拉氏不变量
正弦条件和赫歇尔条件
正弦条件和赫歇尔条件
正弦条件和赫歇尔条件
第7章:光线追迹与成像质量
(1)li ur =−点之间曲线上的无限小弧长。
设任意界面的面形方程为其上任意点P(ζ, ω,l )处的相位函数为APB 的光程:费马原理:界面面形方程为点处法向量的方向余弦7-1离轴全息透镜的光线追迹空间光线(meridional):物点(或主光线,即通过孔径中心的光线)所在并包含光轴的平面。
对于轴对称系统的轴上物点,它有无限多个子午面。
对A−yt ′BMC Os ′rnn ′-t=-s (BM )B t ′B s ′子午焦线垂直于子午面;弧矢光束形成的弧矢焦线垂直于弧矢面。
B 为实际物体时,t =s ,以M 和光线行进方向一致为正,反之为负。
I B s ′在辅轴BC 上。
A−y iBM iO i −t it i ′t i+1D i M i +1O i +1−U zi −U ′zix i−x i +1d it h i h i +1i s入射光线方向余弦(L,M,N),折射光线方向余弦偏折系数T:入射光线与曲面交点的法线:孔径角越大,球差值越大(单透镜)。
246⎛⎞⎛⎞⎛⎞U U U246123max max max U U U L'a a a ......U U U ⎛⎞⎛⎞⎛⎞=+++⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠球差影响成像质量,降低清晰度。
轴上点和近轴点具有相同的成像缺陷,称为等晕成像。
正弦差描述对等晕条件的偏离:场曲的形成桶形畸变枕形畸变异称为色差。
位置色差和倍率色差。
成像的细微结构分辨能力的大小来判断像质的优劣的。
ISO 12233分辨率测试标板不同的像差)。
第二章第三节光路计算与近轴光学系统
(2)若β > 0,即 l 与 l’ 同 号,表示物象在折射球面 同侧,物像虚实相反。反 之 l 与 l’ 异号,物像虚实 相同。
l l’
可归结为:
β>0,成正立像且物像虚实相反。 β<0,成倒立像且物像虚实相同。
(3)若 |β| > 1,则 |y’| > |y|,成放大像,反 之 |y’| < |y|,成缩小像
B
n
E
n’
y -u
A
-l
h
C u’
A’
O
r
-y’
l’
B’
(一)垂轴放大率
垂直于光轴,大小为 y 的物体经折射球面后成的像大小为 y’,则
y'
y
β 称为垂轴放大率’
y -u
A
-l
h
C u’
A’
O
r
-y’
l’
B’
△ABC ∽ △A’B’C 有:
y' l' r y l r
与大 L 公式计算的结果比较:L’ = 150.7065mm.(1°)
近轴光学的基本公式的推导
对于近轴光而言,AO = -l,OA’ = l’,tgu = u,tgu’ = u’
ni
E
n’
有:lu = l’u’ = h
-u A
h i’
φC
u’
A’
O
r
-l
l’
如将 i l r u 和 l' r(1 i' )
符号规则是人为规定的, 一经定下,就要严格遵 守,只有这样才能导出 正确结果
二、实际光线的光路计算
n
I
E
光路计算与近轴成像
四、单个折射球面成像的放大率
三者之间关系
4、拉格朗日-赫姆霍兹不变量
J nuy nuy
表征了光学系统的性能,是光学系统的重要指标。 与阿贝不变式不同,它不仅适用于单个折射面,以后将 会看到,它适用于整个光学系统。
四、单个折射球面成像的放大率
三者之间关系
4、拉格朗日-赫姆霍兹不变量
J nuy nuy
2. 转面(A1’---A2)
u2 = u1 ˊ n2=n1’ l2 = l1’-d
3. 由A2,再用L公式,求像点A2’。 l2 , u2 l2ˊ , u2 ˊ
第四节 球面光学成像系统
Section 4 Spherical Optical Imaging system 推广到 k 个折射球面的转折公式:
5R ' 5R
3, /2
r3 R
2.5R
,n
1.5,n3
'
1
最终光束会聚于距玻璃球前表面右侧的2.5R处,虚像。
1. 作业将在课后发到公共信箱。 2. 请提前预习“2.1 、2.2节” 。 3. 完成随堂测试后,提交老师方可下课、离开教室。
共轴球面系统的解:
1. 重复使用单个折射球面的公式(已有); 2. 面与面之间的转接(过渡公式)。
第四节 球面光学成像系统
Section 4 Spherical Optical Imaging system
以两个折射球面组成的透镜为例:
-U1 A1
-l1
U1’=U2
O1
O2 U2’
A2’
l2’
d
第一次成像同前,得 l1' 3R
第二次被反射面成像,l2 ,R r2 R
1
代入公式:l2 '
第一章 第三四节光路计算与近轴光学系统
4
I
A -U -L 4. 符号规则的意义: O
E h I' φ
n'>n C L' U' A'
r
通过各个物理量的正、负,体现光线传播和成像中的物理 意义和物理图象,给出更多、更细和更准确的描述; 执行一套统一的符号规则,便于在应用中表达统一含义, 避免误解和歧意。 5. 特别注意: 各量在图中以字母表示时,应冠以相应的“+、-”号,以保 证 几何量无正负之分。 以数子表示时,不加“+、-”号。
2
特别注意:
截距:物方截距——顶点到物方光线与光轴的交点的距离L 像方截距——顶点到像方光线与光轴的交点的距离L' 该截距指的是物(像)方光线的截距! 与中学的“物距、像距”有区别,在特殊情况下,其数值 又是相同的。
I A -U -L O E h I' φ n'>n C L' U' A'
r
3
二、符号规则:人为
作业
• P23: 4,5,6
• P23:8,9
= - l l
= - 2
= -1
J = uy = -uy
球面镜的拉赫不变量
结论
<0,物体沿光轴移动时,像总是以相反方向移动。 通过球心的光线沿原光路反射。 反射球面镜的焦距等于球面半径的1/2。
第三节、共轴球面系统
B1 n1
-u1
y1 A1
O1 C1
n1'=n2
(为计算方便,根据不同情况可使用不同公式)
利用
lu = h = l ' u ' = h / r = u + i = u '+i' ni = n' i'
工程光学第6章
(1)li ur =−(meridional):物点(或主光线,即通过孔径中心的光线)所在并包含光轴的平面。
对于轴对称系统的轴上物点,它有无限多个子午面。
对空间光线A−yt ′BMC Os ′rnn ′-t=-s (BM )B t ′B s ′子午焦线垂直于子午面;弧矢光束形成的弧矢焦线垂直于弧矢面。
B 为实际物体时,t =s ,以M 和光线行进方向一致为正,反之为负。
I B s ′在辅轴BC 上。
A−y iBM iO i −t it i ′t i+1D i M i +1O i +1−U zi −U ′zix i−x i +1d it h i h i +1i s入射光线方向余弦(L,M,N),折射光线方向余弦偏折系数T:入射光线与曲面交点的法线:孔径角越大,球差值越大(单透镜)。
246⎛⎞⎛⎞⎛⎞U U U246123max max max U U U L'a a a ......U U U ⎛⎞⎛⎞⎛⎞=+++⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠齐明透镜的作用提高孔径角成一彗星形光斑,这种光学系统成像缺陷称为彗差。
轴上点和近轴点具有相同的成像缺陷,称为等晕成像。
正弦差描述对等晕条件的偏离:场曲的形成桶形畸变枕形畸变异称为色差。
位置色差和倍率色差。
成像的细微结构分辨能力的大小来判断像质的优劣的。
不同的像差)。
ISO 12233分辨率测试标板。
三级像差理论与计算
6 Third-Order Aberration Theory and Calculation•初级像差、高级像差•两条近轴光线•轴上点近轴光线(第一近轴光线)•近轴主光线(第二近轴光线)一、光线追迹公式•初始数据确定•折射•转面(过渡)•终结公式•傍轴光线、子午光线•空间光线(球面、非球面)•细光束(科丁顿方程)傍轴光线•初始数据确定•给定y和u,或•折射•转面(过渡)•终结公式•非球面•二次圆锥曲面二、像差计算公式/l•已知:入瞳(尺寸、位置)Array球差••彗差•正弦差(OSC)•在光轴附近的区域•正弦差——小视场宽光束的不对称性(彗差)的量度•畸变•位置色差•d光(0.5876μm)•C光(0.6563μm)F光(0.4861μm)•二级光谱•色球差•Rayleigh criterion•An image will be “sensibly”perfect if there exists not more than one-quarter wavelength difference in optical path over the wave front with reference to a sphere centered at the selected image point.•波面和参考球面之最大差别不超过λ/4时,此波面可看作是无缺陷的。
三、三级像差——面分布•轴上点近轴光线(第一近轴光线)•近轴主光线(第二近轴光线)•对每一个面:•横向像差与轴向像差的转换•赛得(Seidel)系数•三级像差的面分布•非球面的三级像差•等效曲率•等效四阶变形系数•等效球面的贡献(C)e•等效四阶变形系数的贡献(K)四、三级像差分布——薄透镜、光阑移动•光阑移动方程(y≠0)p•光阑与薄透镜重合(y=0 )p•轴向像差•三级像差表达式。
光线的光路计算
Kη = 1,0.85,0.707,0.5,0.3
2. 物面有限距 ①轴上点A
η
A -y B
− L1
− U1
3. 遇反射面时 y’
n' = − n
5. 校对:PA校对法
⎧ L1 = l1 (物距) ⎨ ⎩sin U1 = Kη sin U max
Kη = 1,0.85,0.707,0.5,0.3
②轴外点B
边光 0.707带光
L p1
hmax
− 0.707Wmax − Wmax
0.707带视场 全视场全孔径 与0.707孔径 上、下、主光 线
KW 取点系数为1,0.85,0.707,0.5,0.3
H1 = η = Kη • hmax = Kη • a (0 < Kη ≤ 1为取点系数)
一般取
L p1
Kη 取点系数为 ± 1,±0.85,±0.707,±0.5,±0.3,0
− l1
− l p1
二、初始参数
1. 第一近轴光线——轴上点A发出经入瞳边缘的“近轴”光线 ①物有限距
三、计算时的一些处理方法
1. 遇平面时,半径为无穷大(可以用1.0E15等很大的实数代入计算)
l1 = L1 , u1 = sin U1
A
− U1
②物无穷远 l = −∞, u = 0, h = a, i = h1 y1 1 1 1 1 r1
P
4. 计算器上的处理方法:M+内放U L sin U L' sin U ' = PA = 1 1 cos ( I − U ) cos ( I '−U ' ) 2 2
− L1
L p1
Lk '
第十章 光线的光路计算
h l tgU
BE
2
L
2
P h H y P h H y
2 x x
2
y
y
10.5 空间光线经非共轴面时的光路计算 偏心:指曲率中心偏离于光轴,但改表明的光轴与整个系统的主光 轴扔属平行 倾斜:指表面的光轴与整个系统的主光轴平行 偏心将引起光轴的平移,倾斜将导致光轴的转动
tgU a
y 主光线 tgU z Lz L y 下光线 tgU b Lz L
tgU b
入瞳半径可由下式确定
( Lz L)tgU
各光线与高斯面的高度为
' Ya' ( L'a L' )tgUa ' ' ' ' Yz ( Lz L )tgU z ' Yb' ( L'b L' )tgUb
3.表面同时存在偏心和倾斜:应按照光轴是先平移后旋转还是先旋 转后平移来确定先应用平移公式还是旋转公式。
入射角I: cos I cosi cos j cosk N 再由折射定律求得 I 折射光线矢量 A A PN
A ncosi cos j cosk
F x
2
F F y z
Lz L1 K max L1 Lz Lz tgU1 tgU 1 Lz L1
y max 是边缘视场半径。K w 为视场 式中,y是物面纵坐标,表示线视场, 取点系数。
轴外物点发出的主光线及上、下光线的初始数据为
上光线 tgU a y Lz L La L z Lz Lb L z
几何光学101:近轴光线追迹计算
Geometrical Optics 101: Paraxial Ray Tracing CalculationsRay tracing is the primary method used by optical engineers to determine optical system performance. Ray tracing is the act of manually tracing a ray of light through a system by calculating the angle ofrefraction/reflection at each surface. This method is extremely useful in systems with many surfaces, where Gaussian and Newtonian imaging equations are unsuitable given the degree of complexity.Today, ray tracing software such as ZEMAX? or CODE V? enableoptical engineers to quickly simulate the performance of very complicated systems. Paraxial ray tracing involves small ray angles and heights. To understand the basic principles of paraxial ray tracing, consider the necessary calculations and ray tracing tables employed in manually tracing rays of light through a system. This will in turn highlight the usefulness of modern computing software.PARAXIAL RAY TRACING STEPS: CALCULATING BFL OF A PCX LENSParaxial ray tracing by hand is typically done with the aid of a ray tracing sheet (Figure 1). The number of optical lens surfaces is indicated horizontally and the key lens parameters vertically. There are also sections to differentiate the marginal and chief ray. Table 1 explains the key optical lens parameters.To illustrate the steps in paraxial ray tracing by hand, consider a plano-convex (PCX) lens. For this example, #49-849 25.4mm Diameter x 50.8mm FL lens is used for simplicity. This particular calculation is used to calculate the back focal length (BFL) of the PCX lens, but it should be noted that ray tracing can be used to calculate a wide variety of system parameters ranging from cardinal points to pupil size and location.Figure 1: Sample Ray Tracing SheetTable 1: Optical Lens Parameters for Ray TracingVariable DescriptionC Curvaturet Thicknessn Index of RefractionΦSurface Powery Ray Heightu Ray AngleStep 1: Enter Known ValuesTo begin, enter the known dimensional values of #49-849 into the ray tracing sheet (Figure 2). Surface 0 is the object plane, Surface 1 is the convex surface of the lens, Surface 2 is the plano surface of the lens, and Surface 3 is the image plane (Figure 3).Remember that the curvature (C) is equivalent to 1 divided by the radius of curvature (R). The first thickness value (t) (25mm in this example) is the distance from the object to the first surface of the lens. This value is arbitrary for incident collimated light (i.e. light parallel to the optical axis of the optical lens). The index of refraction (n) can be approximated as 1 in air and as 1.517 for the N-BK7 substrate of the lens.In Figure 2, the red box is the value to be calculated because itis the distance from the second surface to the point of focus (BFL). The power (Φ) of t he individual surfaces is given by the fourth line and is calculated using Equation 1. Note: A negative sign is added to this line to make further calculations easier. In this example, Surface 1 is the only surface with power as it is the only curved surface in the system.(1)Figure 2: Entering Known Lens Parameter Values into Ray Tracing SheetFigure 3: Surfaces of a Plano-Convex (PCX) LensStep 2: Add a Marginal Ray to the SystemThe next step is to add a marginal ray to the system. Since the PCX lens is spherical with a constant radius of curvature and a collimated input beam is used, the ray height (y) is arbitrary. To simplify calculations, use a height of 1mm.A collimated beam also means the initial ray angle (u) is 0 degrees. In the ray tracing sheet, nu is simply the angle of the ray multipliedby the refractive index of that medium. Both variables are included to make subsequent calculations simpler (Figure 4).Figure 4: Adding a Marginal Ray to the Ray Tracing SheetStep 3: Calculate BFL with Equations and the Ray Tracing Sheet Ray tracing involves two primary equations in addition to the one for calculating power. Equations 2 – 3 are necessary for any ray tracing calculations.(2)(3)where an apostrophe denotes the subsequent surface, angle, thickness, etc. In this example, to find the ray height at Surface 2 (y'), take the ray height at Surface 1 (y) and add it to -0.0197 multiplied by 3.296:(2.1)Performing this for ray angle yields the following value. The entire process is repeated until the ray trace is complete (Figure 5).(3.1)Figure 5: Propagating the Ray through the SystemNow, solve for the BFL by either adjusting the thickness value until the final ray height is 0 (Figure 6) or by backwards calculating the BFL for a ray height of 0. For #49-849, the final BFL value is 47.48mm. This is very close to the 47.50mm listed in the lens' specifications. The difference is attributed to the rounding error of using an index of refraction of 1.517 instead of a slightly more accurate value that was used when the lens was initially designed.Figure 6: Calculating Back Focal Length of a Plano-Convex (PCX) Lens using a Ray Tracing SheetDECIPHERING A TWO LENS RAY TRACING SHEETTo completely understand a ray tracing sheet, consider a two lens system consisting of a double-concave (DCV) lens, an iris, and a double-convex (DCX) lens (Figures 7 - 8). To learn more about DCV and DCX lenses, please read Understanding Optical Lens Geometries.Figure 7: Double-Concave (DCV) and Double-Convex (DCX) Lens SystemFigure 8: Sample Double-Concave (DCV) and Double-Convex (DCX) Ray Tracing SystemThe aperture stop is the limiting aperture and defines how muchlight is allowed through the system. The aperture stop can be an optical lens surface or an iris, but it is always a physical surface. The entrance pupil is the image of the aperture stop when it is imaged through the preceding lens elements into object space. The exit pupil is the image of the aperture stop when it is imaged through the following lens elements into image space.In an optical system, the aperture stop and the pupils are used to define two very important rays. The chief ray is one that begins at the edge of the object and goes through the center of the entrance pupil,exit pupil, and the stop (in other words, it has a height (?) of 0 at those locations). The chief ray, therefore, defines the size of the object and image and the locations of the pupils.The marginal ray of an optical system begins on-axis at the object plane. This ray encounters the edge of the pupils and stops and crosses the axis at the object and image points. The marginal ray, therefore, defines the location of the object and image and the sizes of the pupils.Aperture Stop LocationIf the location of the aperture stop is unknown, a trial ray, known as the pseudo marginal ray, must be propagated through the system. Foran object not at infinity, this ray must begin at the axial position of the object and can have an arbitrary incident angle. For an object at infinity, the ray can begin at an arbitrary height, but must have an incident angle of 0°. Once this is accomplished, the aperture stop is simply the surface that has the smallest CA/yp value, where CA is the surface clear aperture and yp is the height of the pseudo marginal rayat that surface.After locating the aperture stop, the pseudo marginal ray can be scaled appropriately to obtain the actual marginal ray (remember the marginal ray should touch the edge of the aperture stop). Once the size and location of the aperture stop is known, the marginal ray height is equal to the radius of the stop and the chief ray height is zero at that location. Paraxial ray tracing can then be carried out in both theforward and the reverse directions from those points. When doing ray tracing in reverse, Equations 4 – 5 are useful. Note the similarities to Equations 2 – 3.(4)(5)Vignetting AnalysisOnce the location and size of the aperture stop is known, use vignetting analysis to see which surfaces will vignette, or cause rays to be blocked. Vignetting analysis is accomplished by taking the clear aperture at every surface and dividing it by two. That value is then compared to the heights of the chief and marginal rays at that surface (Equation 6). Equation 6 can be easily reordered to Equation 7. If Equation 7 is true, the surface does not vignette.(6)(7)Notice in the preceding DCV and DCX example how Surface 3 is the aperture stop where the CA/(|? |+|y|) value is the smallest among all surfaces. Also, none of the surfaces vignette because all values are greater than or equal to 2.Object/Image Size and LocationObject (Surface 0)● Size is 10mm in diameter (twice the chief ray height at Surface0)● Location is 5mm in front of the first lens (the first thickness value)Image (Surface 6)● Size is 18.2554mm in diameter (twice the final chief ray height)● Location is 115.4897mm behind the final lens surface (the last thickness value)It is important to note that the Surface 0 chief ray height is positive while the Surface 6 chief ray height is negative. This indicates that the image is inverted.。
近轴光线光路计算以求出理想像的位置和大小子午面
B Ua Uz, La Lz h / tanU z
Ub Uz, Lb Lz h / tanU z
U
KW
max
L Lz
tanU
Lz
K max
tanU
Engineering Optics Dr. F. Guo QUT Spring 2016
Chapter 6 光路计算及像差
第一近轴光线
l1 , h1 10mm, u1 0
r, mm 62.5
d, mm nD
-43.65 4.0 1.51633
-124.35 2.5 1.67270
Engineering Optics Dr. F. Guo QUT Spring 2016
Chapter 6 光路计算及像差
近轴光学系统只适用于近轴的小物体以细光束成像。对任何一个 实际光学系统而言,都需要一定的相对孔径和视场, 因此,实际的光路 计算远远超过近轴区域所限制的范围,物像的大小和位置与近轴光学 系统计算的结果不同。这种实际像与理想像之间的差异称为像差 (aberration)。
单色光成像会产生性质不同的五种像差,即球差(spherical aberration)、慧差(正弦差, comma)、像散(astigmatism)、场曲 (curvature of field)和畸变(distortion). 白光进入光学系统后,出于折 射率不同而有不同的光程,导致了不同色光成像的大小和位置也不相 同, 称为色差(chromatic aberration)。
Chapter 6 光路计算及像差
望远物镜的焦距为f’ = 100mm, D/f’=1/5, 视场角为2 = 6
1-02几何光学的近轴理论
[ P nds] 0
2
Q
几何光学定律成立的条件
1. 光学系统的尺度远大于光波的波长。 2. 介质是各向同性的。 3. 光强不是很大。
3
成像
1.同心光束 从同一点发出的或汇聚到同一点的光线 束,称为同心光束。
从光线的性质看,物上的每一点都发出同 心光束,而像点都由同心光束会聚得到。
4
(1)使同心光束保持其同心性不变, 是成像的一个必要条件
r r ] [ 2 2 4sin 2 n ( s r ) n ( s r )
φ不同,s′不同,即从Q点发出的同心光束不能保持 同心性
26
• 欲使折射光线保持同心性,必须 2 2 n n r • (1) n n 没有意义 只有 n n 这就是平面镜 • 或者(2)
39
折射球面的光学参数
物方焦平面
n
n
像方焦平面
r
F
物方焦点
O
C
F
像方焦点
f
物方焦距
f
像方焦距
40
折射球面的光学性质
F
n
n
F
F
O
C
F
根据这些光学参数,可以得到任意一条光线 的折射光线
41
光焦度与焦距的讨论
n n r
f
nr n n
f
nr n n
• 显然,上述三个物理量既可以是正值,也可以是 负值。 • 若r>0,n′<n,f,f′<0; • 若r<0,n′>n,f, f′<0。 • 平行光入射,折射光发散。反向延长后,会聚点 在物方,即f′<0表示像方焦点位于物方。
光线追迹
第五章光线追迹5.1 光线追迹概述设设和分析光学系统需要计算大量的光线,这一点我们在前面已经强调多次了。
在近轴光学中已经讨论了近轴光线追迹和子午面内的光线追迹、光线经过表面后的路径可用折射定律和反射定律求出来,然后利用转面公式,转到下一面的量,继续计算。
光学计算经历了一个较长的历史过程。
追迹光线最早是用查对数表的办法,速度很慢,不但需要一套追迹光线的公式,还要有相应的校对公式,以便核对所迫迹的光线是否正确,有时候还需要两个人同时追迹同一条光线、以便进一步核对。
这样—来,追迹一条通过一个折射表面的子午光线路要3到10分钟。
后来出现了台式手摇计算机,追迹光线的速度有所提高,但由于光线的计算量太大,特别是结构比较复杂的光学系统。
往往要花费光学设计者大量的时间来进行光学计算。
而且那时所追迹的光线基本上仅限于近轴光线和子午光线,因为空间光线计算起来实在太复杂丁。
20世纪60年代末期以来,出了计算机的发展和逐步普及,光学计算的速度加快了。
由于最初的计算机需要输入二进制的数据,这样就要用穿孔机在条带上穿出成千上万个孔而不许有任何差错,这是件十分困难的事情。
后来由于个人计算机的出现和迅速普及,才真正地把光学设计者从繁冗的、单调的光学计算中解脱出来,使光学设计者有足够的精力和时间去考虑光学总体结构和优化设计,从而为提高光学系统购整体质量和性能价格比创造了条件。
由于光学计算经历了—个由手算到自动计算的历史演变过程,因此出现了适应于不同阶段的光线追迹公式。
我们在这里提供的公式是适合于电子计算机的。
因为查阅对数表进行光学计算的时代早已成为历史,相应的适合于用对数表计算光线的公式也就基本上没有实用价值了。
光线追迹要解决的问题是:给定一个光学系统的结构参数,如半径、厚度或间隔、折射率等,再给出入射到光学系统的光线方向和空间位置(也就是目标的位置),最后求出光线通过该系统后的方向和空间位置。
光线追迹计算通常要经历下面4个步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Geometrical Optics 101: Paraxial Ray Tracing CalculationsRay tracing is the primary method used by optical engineersto determine optical system performance. Ray tracing is theact of manually tracing a ray of light through a system bycalculating the angle of refraction/reflection at eachsurface. This method is extremely useful in systems with manysurfaces, where Gaussian and Newtonian imaging equations areunsuitable given the degree of complexity.Today, ray tracing software such as ZEMAX® or CODE V®enable optical engineers to quickly simulate the performance of very complicated systems. Paraxial ray tracing involves small ray angles and heights. To understand the basic principles of paraxial ray tracing, consider the necessary calculations and ray tracing tables employed in manually tracing rays of light through a system. This will in turn highlight the usefulness of modern computing software.PARAXIAL RAY TRACING STEPS: CALCULATING BFL OF A PCX LENSParaxial ray tracing by hand is typically done with the aid of a ray tracing sheet (Figure 1). The number of optical lens surfaces is indicated horizontally and the key lens parameters vertically. There are also sections to differentiate the marginal and chief ray. Table 1 explains the key optical lens parameters.To illustrate the steps in paraxial ray tracing by hand, consider a plano-convex (PCX) lens. For this example, #49-849 25.4mm Diameter x 50.8mm FL lens is used for simplicity. This particular calculation is used to calculate the back focal length (BFL) of the PCX lens, but it should be noted that ray tracing can be used to calculate a wide variety of system parameters ranging from cardinal points to pupil size and location.Figure 1: Sample Ray Tracing SheetTable 1: Optical Lens Parameters forRay TracingVariable DescriptionC Curvaturet Thicknessn Index of RefractionΦSurface Powery Ray Heightu Ray AngleStep 1: Enter Known ValuesTo begin, enter the known dimensional values of #49-849into the ray tracing sheet (Figure 2). Surface 0 is the object plane, Surface 1 is the convex surface of the lens, Surface 2 is the plano surface of the lens, and Surface 3 is the image plane (Figure 3).Remember that the curvature (C) is equivalent to 1 divided by the radius of curvature (R). The first thickness value (t) (25mm in this example) is the distance from the object to the first surface of the lens. This value is arbitrary for incident collimated light (i.e. light parallel to the optical axis of the optical lens). The index of refraction (n) can be approximated as 1 in air and as 1.517 for the N-BK7 substrate of the lens.In Figure 2, the red box is the value to be calculated because it is the distance from the second surface to the point of focus (BFL). The power (Φ) of the individual surfaces is given by the fourth line and is calculated using Equation 1. Note: A negative sign isadded to this line to make further calculations easier.In this example, Surface 1 is the only surface with power as it is the only curved surface in the system.(1) Figure 2: Entering Known Lens Parameter Values into Ray Tracing SheetFigure 3: Surfaces of a Plano-Convex (PCX) LensStep 2: Add a Marginal Ray to the SystemThe next step is to add a marginal ray to the system. Since the PCX lens is spherical with a constant radius of curvature and a collimated input beam is used, the ray height (y) is arbitrary. To simplify calculations, use a height of 1mm.A collimated beam also means the initial ray angle (u) is 0 degrees. In the ray tracing sheet, nu is simply the angle of the ray multiplied by the refractive index of that medium. Both variables are included to make subsequent calculations simpler (Figure 4).Figure 4: Adding a Marginal Ray to the Ray Tracing SheetStep 3: Calculate BFL with Equations and the Ray Tracing SheetRay tracing involves two primary equations in addition to the one for calculating power. Equations 2 – 3 are necessary for any ray tracing calculations.(2)(3)where an apostrophe denotes the subsequent surface, angle, thickness, etc. In this example, to find the ray height at Surface 2 (y'), take the ray height at Surface 1 (y) and add it to -0.0197 multiplied by 3.296:(2.1)Performing this for ray angle yields the following value. The entire process is repeated until the ray trace is complete (Figure 5).(3.1)Figure 5: Propagating the Ray through the SystemNow, solve for the BFL by either adjusting the thickness value until the final ray height is 0 (Figure 6) or by backwards calculating the BFL for a ray height of 0. For #49-849, the final BFL value is 47.48mm. This is very close to the 47.50mm listed in the lens' specifications. The difference is attributed to the rounding error of using an index of refraction of 1.517 instead of a slightly more accurate value that was used when the lens was initially designed.Figure 6: Calculating Back Focal Length of a Plano-Convex (PCX) Lens using a Ray Tracing SheetDECIPHERING A TWO LENS RAY TRACING SHEETTo completely understand a ray tracing sheet, consider a two lens system consisting of a double-concave (DCV) lens, an iris, and a double-convex (DCX) lens (Figures 7 - 8). To learn more about DCV and DCX lenses, please read Understanding Optical Lens Geometries.Figure 7: Double-Concave (DCV) and Double-Convex (DCX) Lens SystemFigure 8: Sample Double-Concave (DCV) and Double-Convex (DCX) Ray Tracing SystemThe aperture stop is the limiting aperture and defines how much light is allowed through the system. The aperture stop can be an optical lens surface or an iris, but it is always a physical surface. The entrance pupil is the image of the aperture stop when it is imaged through the preceding lens elements into object space. The exit pupil is the image of the aperture stop when it is imaged through the following lens elements into image space.In an optical system, the aperture stop and the pupils are used to define two very important rays. The chief ray is one that begins at the edge of the object and goes through the center of the entrance pupil, exit pupil, and the stop (in other words, it has a height (Ӯ) of 0 at those locations). The chief ray, therefore, defines the size of the object and image and the locations of the pupils.The marginal ray of an optical system begins on-axis at the object plane. This ray encounters the edge of the pupils and stops and crosses the axis at the object and image points. The marginal ray, therefore, defines the location of the object and image and the sizes of the pupils.Aperture Stop LocationIf the location of the aperture stop is unknown, a trial ray, known as the pseudo marginal ray, must be propagated through the system. For an object not at infinity, this ray must begin at the axial position of the object and can have an arbitrary incident angle. For an object at infinity, the ray can begin at an arbitrary height, but must have an incident angle of 0°. Once this is accomplished, the aperture stop is simply the surface that has the smallest CA/y p value, where CA is the surface clear aperture and y p is the height of the pseudo marginal ray at that surface.After locating the aperture stop, the pseudo marginal ray can be scaled appropriately to obtain the actual marginal ray (remember the marginal ray should touch the edge of the aperture stop). Once the size and location of the aperture stop is known, the marginal ray height is equal to the radius of the stop and the chief ray height is zero at that location. Paraxial ray tracing can then be carried out in both the forward and the reverse directions from those points. When doing ray tracing in reverse, Equations 4 –5 are useful. Note the similarities to Equations 2 – 3.(4)(5) Vignetting AnalysisOnce the location and size of the aperture stop is known, use vignetting analysis to see which surfaces will vignette, or cause rays to be blocked. Vignetting analysis is accomplished by taking the clear aperture at every surface and dividing it by two. That value is then compared to the heights of the chief and marginal rays at that surface (Equation 6). Equation 6 can be easily reordered to Equation 7. If Equation 7 is true, the surface does not vignette.(6)(7)Notice in the preceding DCV and DCX example how Surface 3 is the aperture stop where the CA/(|Ӯ |+|y|) value is the smallest among all surfaces. Also, none of the surfaces vignette because all values are greater than or equal to 2.Object/Image Size and LocationObject (Surface 0)•Size is 10mm in diameter (twice the chief ray height at Surface 0)•Location is 5mm in front of the first lens (the first thickness value)Image (Surface 6)•Size is 18.2554mm in diameter (twice the final chief ray height)•Location is 115.4897mm behind the final lens surface (the last thickness value)It is important to note that the Surface 0 chief ray height is positive while the Surface 6 chief ray height is negative. This indicates that the image is inverted.Effective Focal LengthTo solve for the effective focal length (EFL), it is first necessary to trace a pseudo marginal ray through the system for an object at infinity (i.e. the first ray angle will be 0). In Figure 9, an arbitrary initial height of 1 is chosen to simplify calculations. Once this is accomplished, the EFL of the system is given by Equation 8.Figure 9: Pseudo Marginal RayField of View(9)where nū is the first chief ray angle.Lagrange InvariantThe optical invariant is a useful tool that allows optical designers to determine various values without having to completely ray trace a system. It is obtained by comparing two rays within a system at any axial point. The optical invariant is constant for any two rays at every point in the system. In other words, if the invariant for a set of two rays is known, ray trace one of the rays and then scale that by the invariant to find the second.The Lagrange Invariant is a version of the optical invariant that uses the chief ray and the marginal ray as the two rays of interest. It is solved using Equation 10 and is illustrated in Figure 10.(10) Figure 10: The Lagrange Invariant of Ray TracingREAL-WORLD RAY TRACING AND SOFTWARE ADVANTAGESWithin paraxial ray tracing, there are several assumptions that introduce error into the calculations. Paraxial ray tracing assumes that the tangent and sine of all angles are equal to the angles themselves (in other words, tan(u) = u and sin(u) = u). This approximation is valid for small angles, but can lead to the propagation of error as ray angles increase.Real ray tracing is a method of reducing paraxial error by eliminating the small-angle approximation and by accounting for the sag of each surface to better model the refraction of off-axis rays. As with paraxial ray tracing, real ray tracing can be done by hand with the help of a ray trace sheet. For the sake of brevity, only the paraxial method has been demonstrated. Ray tracing software such as CODE V and ZEMAX use real ray tracing to model user-inputted optical systems.Ray tracing by hand is a tedious process. Consequently, ray tracing software is usually the preferred method of analysis. Figure 11 shows the DCV-DCX system from the section on "Deciphering a Two Lens Ray Tracing Sheet". The following ZEMAX screenshot shows a focal length value of 34.699mm – confirming the paraxial calculation previously performed.Figure 11: Sample ZEMAX System DataRay tracing is an important tool for any optical designer. While the proliferation of ray tracing software has minimized the need for paraxial ray tracing by hand, it is still useful to understand conceptually how individual rays of light move through an optical system. Paraxial ray tracing and real ray tracing are great ways to approximate optical lens performance before finalizing a design and going into production. Without ray tracing, system design is much more difficult, expensive, and time-intensive.References1.Geary, Joseph M. "Chapter 4 – Paraxial World." Introduction to Lens Design: with Practical ZEMAXExamples. Richmond, Va: Willmann-Bell, 2007. Print.2.Greivenkamp, John E. "Paraxial Raytrace." Field Guide to Geometrical Optics. V ol. FG01. Bellingham, W A:SPIE, 2004. 20-32. Print. SPIE Field Guides.3.Smith, Warren J. "Chapter 3 – Paraxial Optics and Calculations." Modern Optical Engineering: the Designof Optical Systems. New York: McGraw Hill, 2008. Print.4.Dereniak, Eustace L., and Teresa D. Dereniak. "Chapter 10 - Paraxial Ray Tracing." Geometrical andTrigonometric Optics. Cambridge, UK: Cambridge UP, 2008. Print.。