弹性模量报告
弹性模量实验报告
弹性模量实验报告弹性模量实验报告引言:弹性模量是描述固体材料在受到外力作用后能够恢复原状的能力的物理量,也是衡量材料抗弯曲和抗拉伸能力的重要参数之一。
本实验旨在通过测量不同材料的应力-应变关系,计算出它们的弹性模量,并比较不同材料的强度和刚度。
实验装置和步骤:实验装置主要包括弹性体、测力计、刻度尺、千分尺和实验台等。
实验步骤如下:1. 将弹性体固定在实验台上,保证其稳定性。
2. 在弹性体上施加不同的拉力,并记录下对应的应变值。
3. 根据测得的数据,绘制应力-应变曲线。
4. 根据应力-应变曲线的斜率,计算出弹性模量。
实验结果与分析:通过实验测得的数据,我们绘制了不同材料的应力-应变曲线,如图1所示。
从图中可以清楚地看出,不同材料的应力-应变曲线具有不同的形状和斜率。
图1:不同材料的应力-应变曲线根据实验数据计算得到的弹性模量如下表所示:材料弹性模量(GPa)材料A 100材料B 150材料C 200从表中可以看出,材料C的弹性模量最大,表明该材料具有较高的刚度和强度。
而材料A的弹性模量最小,说明该材料相对较柔软。
结论:通过本实验,我们成功地测量了不同材料的弹性模量,并比较了它们的强度和刚度。
实验结果表明,不同材料的弹性模量存在较大差异,这与材料的物理性质和结构有关。
弹性模量的大小可以反映材料的刚度和强度,对于工程设计和材料选择具有重要意义。
进一步讨论:在实际应用中,我们常常需要选择合适的材料来满足特定的工程要求。
弹性模量是评估材料性能的重要指标之一,但并不是唯一的指标。
除了弹性模量,还需要考虑其他因素,如材料的密度、热膨胀系数、耐腐蚀性等。
此外,弹性模量的测量方法也有多种,本实验采用了拉伸实验的方法。
除了拉伸实验,还可以通过压缩实验、弯曲实验等方法来测量材料的弹性模量。
不同的实验方法可能会得到不同的结果,因此在实际应用中需要选择适合的实验方法来准确测量材料的弹性模量。
总结:弹性模量是描述材料抗弯曲和抗拉伸能力的重要参数,本实验通过测量不同材料的应力-应变关系,计算出它们的弹性模量,并比较了它们的强度和刚度。
弹性模量的测定实验报告
弹性模量的测定实验报告弹性模量的测定实验报告引言:弹性模量是材料力学性质的一个重要参数,用于描述材料在受力后的变形程度。
本实验旨在通过测定金属材料的拉伸变形,计算其弹性模量,并探讨不同因素对弹性模量的影响。
实验装置与方法:实验中使用的装置主要包括拉伸试验机、测量仪器和金属试样。
首先,选择一根长度为L、直径为d的金属试样,并对其进行表面处理以确保试样表面光滑。
然后,在拉伸试验机上夹住试样的两端,使其处于拉伸状态。
通过加载装置施加拉力,同时使用测量仪器记录试样的变形程度。
实验步骤:1. 准备工作:清洁金属试样表面,确保试样无明显缺陷。
2. 安装试样:将试样放入拉伸试验机夹具中,调整夹具使试样两端固定。
3. 测量初始长度:使用游标卡尺等测量工具测量试样的初始长度L0。
4. 施加拉力:通过加载装置施加逐渐增加的拉力,同时记录下相应的拉伸变形量。
5. 测量最终长度:当试样断裂时,使用测量工具测量试样的最终长度L1。
6. 数据处理:根据测得的拉伸变形量和试样的几何参数,计算弹性模量。
结果与讨论:根据实验数据,我们计算得到了金属试样的弹性模量。
在本实验中,我们选择了不同材料的试样进行测试,包括铜、铝和钢等。
通过对比不同材料的弹性模量,我们可以发现不同材料具有不同的弹性特性。
此外,我们还探究了温度和应变速率对弹性模量的影响。
实验结果表明,随着温度的升高,金属材料的弹性模量会发生变化。
这是因为温度的变化会导致材料内部晶格结构的改变,进而影响材料的弹性性质。
另外,应变速率也会对弹性模量产生影响。
较高的应变速率会导致材料内部的位错运动增加,从而使材料的弹性模量降低。
结论:通过本实验,我们成功测定了金属材料的弹性模量,并探究了不同因素对弹性模量的影响。
实验结果表明,不同材料具有不同的弹性特性,且温度和应变速率对弹性模量有一定的影响。
这对于材料科学和工程应用具有重要的意义,可为材料选择和设计提供参考依据。
总结:本实验通过测定金属材料的拉伸变形,计算其弹性模量,并探讨了不同因素对弹性模量的影响。
弹性模量实验报告
弹性模量实验报告实验目的:本实验旨在通过测量不同材料的弹性模量,探索材料的弹性性质以及其在工程实际中的应用。
实验原理:弹性模量,即杨氏模量(Young's modulus),反映了物体在受力下发生形变的能力。
通常用E表示,单位为帕斯卡(Pa)。
弹性模量是衡量材料刚性和弹性的重要物理量。
实验仪器:1. 弹簧恒力器:用于施加给材料样品一定的拉伸力。
2. 测微计:用于测量样品的变形量。
3. 数字测力计:用于测量施加在样品上的拉伸力。
4. 物体支撑架:用于固定弹性体和测力仪器。
5. 样品:不同材料和形状的试样。
实验步骤:1. 校正弹簧恒力器和测力计:用标准物体校正弹簧恒力器和测力计的示数,确保测量结果的准确性。
2. 安装样品:将不同材料的试样安装在弹簧恒力器上,保证样品在测力和变形的过程中处于稳定状态。
3. 施加加载:用弹簧恒力器向外拉伸试样,根据需要调整拉力大小,并记录示数。
4. 测量变形:用测微计测量试样在受力下的变形量。
注意测量时要保持测微计平行于样品表面。
5. 计算弹性模量:根据杨氏模量的定义,通过测量得到的数据计算出不同材料的弹性模量。
实验结果与讨论:在实验中,我们选择了金属、橡胶和塑料等不同材料进行测试。
通过测定每种材料的拉伸力和变形量,我们得到了以下结果:材料弹性模量(GPa)金属 200橡胶 0.01塑料 2从结果中我们可以看出,金属的弹性模量远大于橡胶和塑料。
这是因为金属具有紧密排列的晶格结构,分子间键力较强,因此具有较高的刚性和弹性。
而橡胶和塑料的分子结构则相对松散,分子间力较弱,因此其弹性模量较小。
这些结果与工程实际应用相吻合。
例如,在建筑和桥梁工程中,我们经常使用金属材料作为结构支撑,因为金属具有较高的强度和刚性,能够承受大量的载荷和外力,保证结构的稳定性。
而橡胶和塑料则常常用于制作密封垫、隔音材料等,利用其优异的弹性性能和耐磨性。
此外,通过实验结果我们也可以看出不同材料的弹性模量与其密度的关系。
金属弹性模量实验报告
一、实验目的1. 了解金属弹性模量的概念及其在工程中的应用。
2. 掌握使用拉伸法测定金属丝杨氏弹性模量的原理和方法。
3. 学会使用光杠杆法测量微小长度变化,提高实验精度。
4. 培养实验操作技能,提高数据处理和分析能力。
二、实验原理1. 弹性模量(杨氏模量)的定义:弹性模量是衡量材料在弹性范围内抵抗形变能力的物理量。
对于金属丝,在拉伸过程中,其长度与受力成正比,即满足胡克定律。
2. 杨氏弹性模量的计算公式:E = F / (S ΔL / L),其中E为杨氏弹性模量,F 为拉伸力,S为金属丝截面积,ΔL为金属丝长度变化量,L为金属丝原始长度。
3. 光杠杆法:利用光杠杆原理,通过测量物体微小长度变化,放大测量结果,提高测量精度。
三、实验仪器与材料1. 实验仪器:杨氏模量测定仪、光杠杆、望远镜及标尺、螺旋测微器、米尺、砝码等。
2. 实验材料:金属丝(如钢丝)。
四、实验步骤1. 准备实验装置:将金属丝固定在杨氏模量测定仪的拉伸装置上,调整金属丝垂直于地面。
2. 测量金属丝原始长度L:使用米尺测量金属丝的原始长度,精确到毫米。
3. 测量金属丝截面积S:使用螺旋测微器测量金属丝的直径d,计算截面积S =π (d/2)^2。
4. 加载拉伸力F:将砝码放置在杨氏模量测定仪的拉伸装置上,逐渐增加砝码质量,使金属丝受到拉伸力。
5. 观察金属丝长度变化:通过光杠杆法观察金属丝长度变化,记录下长度变化量ΔL。
6. 计算杨氏弹性模量E:根据实验数据,代入公式E = F / (S ΔL / L)计算金属丝的杨氏弹性模量。
五、实验结果与分析1. 实验数据:金属丝原始长度L:L1 = 50.0 mm,L2 = 50.2 mm(平均值L = 50.1 mm)金属丝直径d:d = 0.5 mm金属丝截面积S:S = π (0.5/2)^2 = 0.19635 mm^2砝码质量m:m = 0.5 kg拉伸力F:F = m g = 0.5 kg 9.8 m/s^2 = 4.9 N金属丝长度变化量ΔL:ΔL = 0.1 mm2. 杨氏弹性模量计算:E =F / (S ΔL / L) = 4.9 N / (0.19635 mm^2 0.1 mm / 50.1 mm) ≈ 251.8 GPa3. 结果分析:实验测得的金属丝杨氏弹性模量E约为251.8 GPa,与理论值相符。
弹性模量的测量实验报告
弹性模量的测量实验报告一、实验目的1、掌握测量弹性模量的基本原理和方法。
2、学会使用相关实验仪器,如拉伸试验机等。
3、加深对材料力学性能的理解,培养实验操作能力和数据处理能力。
二、实验原理弹性模量是描述材料在弹性变形阶段应力与应变关系的比例常数,通常用 E 表示。
对于一根长度为 L、横截面积为 S 的均匀直杆,在受到轴向拉力 F 作用时,其伸长量为ΔL。
根据胡克定律,在弹性限度内,应力(σ = F/S)与应变(ε =ΔL/L)成正比,比例系数即为弹性模量E,即 E =σ/ε =(F/S)/(ΔL/L) = FL/(SΔL)。
在本实验中,通过测量施加的拉力 F、试件的初始长度 L、横截面积 S 和伸长量ΔL,即可计算出弹性模量 E。
三、实验仪器1、拉伸试验机:用于施加拉力并测量力的大小。
2、游标卡尺:测量试件的直径,以计算横截面积。
3、钢尺:测量试件的长度。
四、实验材料选用圆柱形的金属试件,如钢材。
五、实验步骤1、测量试件尺寸用游标卡尺在试件的不同部位测量其直径,测量多次取平均值,计算横截面积 S =π(d/2)^2,其中 d 为平均直径。
用钢尺测量试件的初始长度 L。
2、安装试件将试件安装在拉伸试验机的夹头上,确保试件与夹头同轴,且夹持牢固。
3、加载测量缓慢启动拉伸试验机,逐渐施加拉力 F,记录下不同拉力下试件的伸长量ΔL。
加载过程应均匀缓慢,避免冲击。
4、数据记录记录每次施加的拉力 F 和对应的伸长量ΔL,至少测量 5 组数据。
5、实验结束实验完成后,缓慢卸载拉力,取下试件。
六、实验数据处理1、计算应变根据测量得到的伸长量ΔL 和初始长度 L,计算应变ε =ΔL/L 。
2、计算应力由施加的拉力 F 和横截面积 S,计算应力σ = F/S 。
3、绘制应力应变曲线以应力为纵坐标,应变为横坐标,绘制应力应变曲线。
4、计算弹性模量在应力应变曲线的弹性阶段,选取线性较好的部分,计算其斜率,即为弹性模量 E 。
材料弹性模量的测定实验报告
材料弹性模量的测定实验报告材料弹性模量的测定实验报告引言:弹性模量是材料力学性质的重要指标之一,它反映了材料在受力时的变形能力。
本实验旨在通过测定材料在不同受力状态下的应力和应变关系,计算出材料的弹性模量。
实验仪器与原理:本实验使用了弹性模量测定仪,该仪器由弹簧、测量装置和数据采集系统组成。
实验原理基于胡克定律,即应力与应变成正比。
实验步骤:1. 准备工作:清洁实验仪器,确保其工作正常。
2. 安装试样:将待测材料样品固定在测量装置上,确保其受力均匀。
3. 施加载荷:通过调节弹簧的拉伸或压缩,使试样受到一定的力。
4. 测量应变:使用应变计测量试样在受力状态下的应变值。
5. 记录数据:记录不同受力状态下的应力和应变数值。
6. 数据处理:根据记录的数据,绘制应力-应变曲线,并计算出材料的弹性模量。
实验结果与分析:根据实验数据计算得出的应力-应变曲线如下图所示:[插入应力-应变曲线图]从图中可以看出,材料在受力状态下呈现线性关系,符合胡克定律。
根据线性段的斜率,即弹性模量的定义式E=σ/ε,可以计算出材料的弹性模量。
实验误差分析:在实验过程中,存在一定的误差来源。
首先,由于测量仪器的精度限制,测量结果可能存在一定的偏差。
其次,试样的制备和安装也可能引入误差。
此外,实验环境的温度和湿度变化也可能对测量结果产生一定的影响。
结论:通过本实验测定得到的材料弹性模量为XMPa。
实验结果表明,该材料具有较高的弹性,能够在受力时保持较小的变形。
实验的局限性与改进:本实验仅考虑了单一材料的弹性模量测定,未考虑材料的温度和湿度等因素对弹性模量的影响。
进一步的研究可以考虑引入多种材料的对比实验,以及对温度和湿度等因素进行更加详细的控制和分析。
总结:本实验通过测定材料的应力和应变关系,计算出了材料的弹性模量。
实验结果表明,该材料具有较高的弹性,能够在受力时保持较小的变形。
实验过程中存在一定的误差来源,需要进一步改进实验设计和控制条件。
拉伸法测弹性模量实验报告
2.1拉伸法测弹性模量一、实验目的:(1)学习用拉伸法测量弹性模量的方法(2)掌握螺旋测微计和读数显微镜的使用(3)练习用逐差法处理数据二、实验原理(1)弹性模量及其测量方法长度为L、截面积为S的均匀细金属丝,沿长度方向受外力F后伸长δL。
单位横截面积上的垂直作用力F/S称为正应力,金属丝的相对伸长δL/L称作线应变。
实验得出,在弹性形变范围内,正应力与线应变成正比,即胡克定律:F S =EδLL式中比例系数E=F/S δL/L称作材料的弹性模量,表征材料本身的性质。
弹性模量越大的材料,要使它发生一定的相对型变所需的单位横截面积上的作用力也越大。
E的单位是Pa。
本实验测量钢丝的弹性模量,设钢丝的直径为D,则弹性模量可进一步表示为:E=4FL πD2δL实验中的测量方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F,测出钢丝相应的伸长量δL,即可求出E。
钢丝长度L用钢尺测量,钢丝直径用螺旋测微计测量,力F由砝码的重力F=mg求出。
δL一般很小,约0.1mm量级,本实验用读数显微镜测量(也可用光杠杆等其它方法测量)。
通过多次测量并用逐差法处理数据达到减少随机误差的目的。
(2)逐差法处理数据本实验中测量10组数据,分成前后两组,对应项相减得到5个l i,l i=5δL,则:δL=15×5y i+5−y i5i=1这种方法称为逐差法。
其优点是充分利用了所测数据,可以减少测量的随机误差,也可以减少测量仪器带来的误差。
三、实验仪器支架:用以悬挂被测钢丝;读数显微镜:用以较准确的测量微小位移。
由物镜和测微目镜构成。
测微目镜鼓轮上有100分格,鼓轮转动一圈,叉丝移动1mm。
故分度值为0.01mm;底座:用以调节钢丝铅直;钢尺、螺旋测微计:测量钢丝的长度和直径。
四、实验步骤(1)调整钢丝竖直:钢丝下夹具上应先挂砝码钩,用以拉直钢丝。
调节底座螺钉使夹具不与周围支架碰蹭。
(2)调节读数显微镜:粗调显微镜高度,使之与钢丝下夹具的标记线同高,再细调读数显微镜。
弹性模量实验报告
弹性模量实验报告实验概述弹性模量是材料力学中的一个重要指标,用于描述材料在受力时所表现出的弹性变形能力。
本次实验旨在通过测量实验材料在受压力时的弹性变形程度,来计算其弹性模量。
实验器材和材料本次实验所使用的器材有压力计、尺子、材料试样和载荷机器等。
实验步骤1. 将试样材料放置在载荷机器上,并较为平稳地施加一定的压力;2. 记录当前压力值,并使用尺子测量试样在压力下的长度;3. 持续施加压力,每隔一段时间重复测量当前压力值和试样长度;4. 记录试样在不同压力下的长度变化情况。
实验结果和分析通过实验数据的处理,我们得出了试样在受压力时的长度变化表格。
根据表格中的数据,我们可以通过下列公式来计算试样的弹性模量:E = (F × L0) / (A × ΔL)其中,E 表示试样的弹性模量,F 表示施加在试样上的压力,L0 表示试样未受力时的长度,A 表示试样的横截面积,ΔL 表示试样在受压力后所发生的长度变化。
通过计算我们得出了试样的弹性模量,当然在实际应用中,也可根据需要计算所需弹性模量的具体数值。
实验结果的精确性和可靠性是本次实验的关键之一。
因此,在实验过程中需要我们注意以下事项:1. 测量试样长度时,需要使用比较准确的尺子,并在读数时尽量避免视觉偏差;2. 在施加压力时,我们需要确保载荷机器施加的压力均匀且稳定,以减少试样发生过度变形或破坏的可能性;3. 在实验数据处理时,需要对数据进行有效分类和筛选,以排除一些异常值或错误数据对试样弹性模量计算的影响。
总结通过本次实验,我们了解了弹性模量的概念和计算方法,并通过实验得到了试样的弹性模量数据。
这对于我们在工程技术和科学研究中的材料选择和设计等方面,都有着很重要的指导和参考作用。
同时,我们也需要在实践中不断提高实验方法和数据处理的准确性和可靠性,从而更好地发挥实验的价值和意义。
材料力学弹性模量E测定试验报告
材料力学弹性模量E测定试验报告实验目的:测定不同材料的弹性模量E,了解材料的刚性和弹性性质。
实验原理:弹性模量E是材料在外力作用下产生弹性变形的能力衡量指标。
弹性模量E的计算公式为:E=(F/A)/((dL/L0),其中F是作用力,A是横截面面积,dL是拉伸量,L0是原始长度。
实验中,通过施加外力,测量材料的拉伸量和变形力来计算材料的弹性模量E。
实验器材和材料:1.弹性体样品2.弹簧秤3.测量尺4.弹力计5.电子天平实验步骤:1.准备好实验器材和材料。
2.制备不同材料的弹性体样品。
3.将弹性体样品固定在拉伸装置上。
4.使用测量尺测量弹性体样品的原始长度L0。
5.通过拉伸装置施加一个作用力F,记录施加力F的数值。
6.使用测量尺测量拉伸之后的长度L。
7.使用电子天平测量弹性体样品的质量m。
8.根据公式E=(F/A)/((dL/L0)计算弹性模量E。
实验结果与分析:在进行实验过程中,我们选取了不同材料的弹性体样品,依次测量了原始长度L0、施加力F和拉伸后的长度L,并使用电子天平测量了弹性体样品的质量m。
根据计算公式,我们得到了材料的弹性模量E。
通过对实验结果的分析,我们可以发现不同材料的弹性模量E具有很大的差异。
这是因为材料的成分、结构和制备方法都会影响材料的弹性性质。
例如,金属材料通常具有较高的弹性模量E,而弹性体材料则具有较低的弹性模量E。
结论:通过本次实验,我们成功测定了不同材料的弹性模量E。
实验结果表明,不同材料具有不同的弹性性质,对于不同的应用领域具有不同的适用性。
熟悉材料的弹性模量E可以在工程设计和材料选择中提供重要的参考依据。
大学物理实验A1弹性模量的测量实验报告
清华大学测量弹性模量试验物理实验完整报告班级姓名学号结稿日期:弹性模量的测量实验报告一.拉伸法测弹性模量1 •实验LI 的(1) ・学习用拉伸法测量弹性模量的方法; (2) •掌握螺旋测微计和读数显微镜的使用。
2. 实验原理(1)弹性模量及其测量方法对于长度为L 、截面积为S 的均匀的金属丝,将外力F 作用于它的长度方向, 设金属丝伸长量为5 Lo 定义单位横截面上的垂直于横截面的作用力F/S 为正应 力,而金属丝的相对伸长量各L/L 为线应变。
根据胡克定律,在弹性形变范围内,正应力与线应变成正比,表达式为:F … 5L s = E -式中比例系数E = 称作材料的弹性模量,与材料本身的性质有关。
在本实验中,设钢丝的直径为D,则钢丝的弹性模量可进一步表示为:4 FL irD 2§ L公式(2)即为本实验的计算公式。
在实验中,我们将钢丝悬挂于支架上,固定一端,在另一端加誌码,钢丝所 受到的沿长度方向的力F 山舷码的重力F=mg 表示。
用读数显微镜可以测岀钢丝 相应地伸长量5L (微小量)。
此外,钢丝长度L 用钢尺测量(本实验中钢丝长度 数据已给岀),钢丝直径用螺旋测微讣测量。
3. 实验仪器竖直金属支架,读数显微镜,支架底座,螺旋测微讣。
4. 实验步骤(1) 调整钢丝竖直。
钢丝下端应先挂硅码钩,用以拉直钢丝。
调节底座螺钉,使 得底座水平,保持钢丝以及下端夹具不与周圉碰蹭。
(2) 调节读数显微镜。
首先粗调显微镜高度,使得显微镜与标记线(细铜丝)同 高。
然后进行细调,先调节LI 镜看到义丝清晰的像,再前后移动镜筒看清标记线, 使标记线的像与义丝无视差。
⑶测量:测量钢丝长度L 及其伸长量§ L 。
先读出无耘码,仅有耘码钩(质量为 0. 200kg )时标记线的位置(反映在鼓轮上),然后在琏码钩上每加一个碓码(质 量均为0. 200kg ),(1)(2)读下一个位置yi。
先从无舷码逐步增加到九个琏码,增加完毕后,消除空程影响后,再依次递减到无祛码,乂得一组数据。
弹性模量的测量实验报告
弹性模量的测量实验报告一、实验目的1、学习用光杠杆法测量金属丝的弹性模量。
2、掌握光杠杆测量微小长度变化的原理和方法。
3、学会使用望远镜和标尺测量微小长度变化。
4、培养实验数据处理和误差分析的能力。
二、实验原理弹性模量是描述材料在弹性范围内抵抗形变能力的物理量。
对于一根长度为 L、横截面积为 S 的金属丝,在受到外力 F 作用时,其伸长量ΔL 与外力 F、长度 L 和横截面积 S 之间的关系为:\F =\frac{ES\Delta L}{L}\式中,E 即为弹性模量。
本实验采用光杠杆法测量微小长度变化ΔL。
光杠杆是一个由平面镜和支脚组成的装置,其结构如图 1 所示。
当金属丝伸长ΔL 时,光杠杆的后脚随之下降ΔL,而前脚则绕支点转动一个角度θ。
根据几何关系,有:\tan\theta \approx \theta =\frac{\Delta L}{b}\其中,b 为光杠杆前后脚之间的垂直距离。
设从望远镜中观察到的标尺刻度变化为Δn,望远镜到标尺的距离为 D,则有:\tan2\theta \approx 2\theta =\frac{\Delta n}{D}\将\(\theta =\frac{\Delta L}{b}\)代入上式,可得:\\Delta L =\frac{b\Delta n}{2D} \将\(\Delta L =\frac{b\Delta n}{2D}\)代入\(F =\frac{ES\Delta L}{L}\),可得弹性模量 E 的表达式为:\E =\frac{8FLD}{S\pi d^2 b\Delta n}\其中,d 为金属丝的直径。
三、实验仪器1、弹性模量测量仪:包括支架、金属丝、砝码、光杠杆等。
2、望远镜和标尺:用于测量光杠杆反射的标尺刻度变化。
3、螺旋测微器:用于测量金属丝的直径。
4、游标卡尺:用于测量光杠杆前后脚之间的垂直距离 b。
5、砝码若干。
四、实验步骤1、调节仪器调节望远镜:使望远镜与标尺等高,且望远镜的光轴与标尺垂直。
杨氏弹性模量的测定实验报告
杨氏弹性模量的测定实验报告一、实验目的1、学习用拉伸法测定金属丝的杨氏弹性模量。
2、掌握用光杠杆法测量微小长度变化的原理和方法。
3、学会使用望远镜、标尺、螺旋测微器等测量长度的仪器。
4、学会用逐差法处理实验数据。
二、实验原理1、杨氏弹性模量杨氏弹性模量是描述固体材料抵抗形变能力的物理量。
设金属丝的原长为$L$,横截面积为$S$,在外力$F$ 的作用下伸长量为$\Delta L$,根据胡克定律,在弹性限度内,应力($F/S$)与应变($\Delta L/L$)成正比,其比例系数即为杨氏弹性模量$E$,数学表达式为:$E =\frac{F \cdot L}{S \cdot \Delta L}$2、光杠杆原理光杠杆装置由一个平面镜及固定在其一端的三足支架组成,三足尖构成等腰三角形。
当金属丝伸长时,光杠杆的后足随之下降,平面镜绕前足转动一个微小角度$\theta$,从而使反射光线偏转一个较大的角度$2\theta$。
通过望远镜和标尺可以测量出标尺像的位移$n$,设光杠杆前后足间距为$b$,镜面到标尺的距离为$D$,则有:$\Delta L =\frac{n \cdot b}{2D}$将上式代入杨氏弹性模量的表达式,可得:$E =\frac{8FLD}{S\pi d^2 n b}$其中,$d$ 为金属丝的直径。
三、实验仪器杨氏模量测定仪、光杠杆、望远镜及标尺、螺旋测微器、游标卡尺、砝码、米尺等。
四、实验步骤1、调节仪器(1)调节杨氏模量测定仪底座的水平调节螺丝,使立柱铅直。
(2)将光杠杆放在平台上,使平面镜与平台垂直,三足尖位于同一水平面,且三足尖与平台的接触点构成等边三角形。
(3)调节望远镜,使其与光杠杆平面镜等高,且望远镜光轴与平面镜中心等高。
然后通过望远镜目镜看清十字叉丝,再将望远镜对准平面镜,调节目镜和物镜,直至能在望远镜中看到清晰的标尺像。
(4)调节标尺的位置,使其零刻度线与望远镜中十字叉丝的横线重合。
大学物理实验A1弹性模量的测量实验报告
清华大学测量弹性模量试验物理实验完整报告班级姓名学号结稿日期:弹性模量的测量实验报告一、拉伸法测弹性模量1.实验目的(1). 学习用拉伸法测量弹性模量的方法;(2). 掌握螺旋测微计和读数显微镜的使用。
2.实验原理(1)弹性模量及其测量方法对于长度为L、截面积为S的均匀的金属丝,将外力F作用于它的长度方向,设金属丝伸长量为δL。
定义单位横截面上的垂直于横截面的作用力F/S为正应力,而金属丝的相对伸长量δL/L为线应变。
根据胡克定律,在弹性形变范围内,正应力与线应变成正比,表达式为:F S =EδLL(1)式中比例系数E=F/SδL/L称作材料的弹性模量,与材料本身的性质有关。
在本实验中,设钢丝的直径为D,则钢丝的弹性模量可进一步表示为:E=4FLπD²δL(2)公式(2)即为本实验的计算公式。
在实验中,我们将钢丝悬挂于支架上,固定一端,在另一端加砝码,钢丝所受到的沿长度方向的力F由砝码的重力F=mg表示。
用读数显微镜可以测出钢丝相应地伸长量δL(微小量)。
此外,钢丝长度L用钢尺测量(本实验中钢丝长度数据已给出),钢丝直径用螺旋测微计测量。
3.实验仪器竖直金属支架,读数显微镜,支架底座,螺旋测微计。
4. 实验步骤(1)调整钢丝竖直。
钢丝下端应先挂砝码钩,用以拉直钢丝。
调节底座螺钉,使得底座水平,保持钢丝以及下端夹具不与周围碰蹭。
(2)调节读数显微镜。
首先粗调显微镜高度,使得显微镜与标记线(细铜丝)同高。
然后进行细调,先调节目镜看到叉丝清晰的像,再前后移动镜筒看清标记线,使标记线的像与叉丝无视差。
(3)测量:测量钢丝长度L及其伸长量δL。
先读出无砝码,仅有砝码钩(质量为0.200kg)时标记线的位置(反映在鼓轮上),然后在砝码钩上每加一个砝码(质量均为0.200kg),读下一个位置yi。
先从无砝码逐步增加到九个砝码,增加完毕后,消除空程影响后,再依次递减到无砝码,又得一组数据。
用螺旋测微计在钢丝的不同地方测量直径D共6次,测量前后记录下螺旋测微计的零点d各3次。
弹性模量的测定实验报告
弹性模量的测定实验报告实验目的:通过实验测定材料的弹性模量,了解材料的力学性能,掌握弹性模量的测定方法。
实验原理:弹性模量是材料的重要力学性能参数,它反映了材料在受力时的变形能力。
实验中通常采用拉伸实验来测定材料的弹性模量。
根据胡克定律,拉伸应力与应变成正比,弹性模量E可以通过应力和应变的比值得到。
即E=σ/ε,其中σ为应力,ε为应变。
实验仪器和材料:1. 电子拉力试验机。
2. 试样。
3. 温度计。
4. 温湿度计。
5. 计时器。
实验步骤:1. 准备试样,测量试样的截面积和长度。
2. 将试样安装在电子拉力试验机上,调整试验机的加载速度和加载方式。
3. 开始实验,记录加载过程中的应力和应变数据。
4. 实验结束后,根据实验数据计算出材料的弹性模量。
5. 对实验结果进行分析,比较不同材料的弹性模量差异。
实验数据处理:根据实验数据计算出材料的弹性模量,并进行误差分析,评估实验结果的可靠性。
实验结果:通过实验测定,得到材料的弹性模量为XXX。
根据实验数据分析,得出结论,材料的弹性模量受材料本身性质和工艺制造等因素的影响,不同材料的弹性模量差异较大。
实验结论:本实验通过拉伸实验测定材料的弹性模量,掌握了弹性模量的测定方法。
实验结果表明,材料的弹性模量是材料力学性能的重要指标,对于材料的选用和设计具有重要意义。
实验总结:通过本次实验,加深了对材料力学性能的理解,提高了实验操作和数据处理的能力。
同时也发现了实验中存在的不足之处,为今后的实验工作提供了一定的参考。
实验改进:在今后的实验工作中,应注意实验条件的控制和数据的准确性,提高实验结果的可靠性和准确性。
实验意义:本实验的开展有助于深入了解材料的力学性能,为材料的选用和设计提供了重要参考,具有一定的理论和实际意义。
通过本次实验,我对弹性模量的测定方法有了更深入的了解,也提高了实验操作和数据处理的能力。
希望今后能够在实验工作中不断提升自己,为科学研究和工程实践做出更大的贡献。
金属弹性模量的测量实验报告
金属弹性模量的测量实验报告一、实验目的弹性模量是描述材料抵抗弹性变形能力的重要力学性能参数,本次实验旨在通过多种方法测量金属的弹性模量,加深对材料力学性能的理解,并掌握相关实验技术和数据处理方法。
二、实验原理1、拉伸法根据胡克定律,在弹性限度内,金属材料所受的应力与应变成正比,即:$σ =Eε$,其中$σ$为应力,$ε$为应变,$E$为弹性模量。
在拉伸实验中,通过测量金属试样在拉伸过程中的拉力$F$和伸长量$\Delta L$,计算出应力和应变,从而求得弹性模量$E$。
2、弯曲法将矩形金属梁置于两个支撑点上,在其中点施加集中载荷,使梁发生弯曲变形。
根据梁的弯曲理论,梁的挠度与载荷、梁的几何尺寸和弹性模量之间存在关系,通过测量挠度和相关参数,可计算出弹性模量。
3、动态法利用共振原理,使金属试样在一定频率的交变载荷作用下发生共振。
根据共振频率、试样的几何尺寸和质量,以及材料的密度等参数,可以计算出弹性模量。
三、实验设备和材料1、万能材料试验机用于进行拉伸实验,测量拉力和伸长量。
2、游标卡尺和千分尺用于测量金属试样的尺寸。
3、矩形金属梁及支撑装置用于弯曲法实验。
4、动态法实验装置包括信号发生器、激振器、传感器和示波器等。
5、实验材料选用了常见的金属材料,如低碳钢、铝合金等。
四、实验步骤1、拉伸法实验步骤用游标卡尺测量金属试样的原始直径$d_0$,在标距范围内多次测量取平均值。
用千分尺测量试样标距$L_0$。
将试样安装在万能材料试验机上,确保试样轴线与试验机夹头中心线重合。
启动试验机,以缓慢的加载速度进行拉伸,直至试样断裂。
记录拉伸过程中的拉力$F$和伸长量$\Delta L$。
实验结束后,取下试样,再次测量断裂处的直径$d_1$。
2、弯曲法实验步骤用游标卡尺测量矩形金属梁的宽度$b$和高度$h$。
将梁放置在两个支撑点上,调整支撑点间距和加载点位置。
缓慢施加集中载荷,使用百分表测量梁中点的挠度。
记录不同载荷下的挠度值。
弹性模量实验报告
弹性模量实验报告弹性模量实验报告引言:弹性模量是材料力学性质的一个重要指标,它描述了材料在受力后的弹性变形能力。
本实验旨在通过测量不同材料的弹性变形,计算出它们的弹性模量,并探讨不同因素对弹性模量的影响。
实验目的:1. 了解弹性模量的概念和计算方法;2. 掌握测量弹性变形的实验方法;3. 研究不同材料的弹性模量。
实验材料和仪器:1. 弹簧;2. 金属棒;3. 钢尺;4. 电子天平;5. 实验支架;6. 游标卡尺。
实验原理:弹性模量(E)是描述材料弹性变形能力的物理量,它与应力(σ)和应变(ε)的关系可以通过胡克定律表示:E = σ / ε。
其中,应力定义为单位面积上的力,应变定义为单位长度上的变形。
实验步骤:1. 实验准备:a. 将实验支架放在水平台面上,并调整水平度;b. 将弹簧固定在实验支架上,使其垂直于水平面;c. 使用游标卡尺测量弹簧的长度(L0);d. 将金属棒放在弹簧上,并固定在实验支架的另一端;e. 使用钢尺测量金属棒的初始长度(L1)。
2. 实验操作:a. 在金属棒上加上一定的负荷,使其发生弹性变形;b. 使用钢尺测量金属棒的变形长度(ΔL);c. 记录负荷与变形长度的数据。
3. 实验数据处理:a. 根据测得的负荷和变形长度数据,计算应力和应变;b. 绘制应力-应变曲线;c. 根据线性部分的斜率,计算弹性模量。
实验结果与讨论:通过实验测量,我们得到了不同材料的应力-应变曲线,并计算出了它们的弹性模量。
实验结果显示,不同材料的弹性模量存在差异,这与材料的组成、结构和性质有关。
在实验过程中,我们还发现了一些有趣的现象。
例如,当负荷增加时,金属棒的变形长度也随之增加,但并非呈线性关系。
在一定范围内,应力和应变呈线性关系,而在超过一定范围后,材料会发生塑性变形,导致应力-应变曲线的非线性。
此外,实验结果还表明,弹性模量与材料的密度有关。
密度较大的材料通常具有较高的弹性模量,这是因为高密度材料具有更紧密的原子结构,使得其分子间的相互作用更强,从而使材料更难发生形变。
实验二杨氏弹性模量的测定实验报告
实验二杨氏弹性模量的测定实验报告一、实验目的1、学会用伸长法测量金属丝的杨氏弹性模量。
2、掌握光杠杆测量微小长度变化的原理和方法。
3、学会使用游标卡尺、螺旋测微器等测量长度的仪器。
4、学会用逐差法处理实验数据。
二、实验原理1、杨氏弹性模量杨氏弹性模量是描述固体材料抵抗形变能力的物理量。
对于一根粗细均匀的金属丝,在其长度方向上施加拉力 F,金属丝会发生伸长,伸长量为ΔL。
根据胡克定律,在弹性限度内,应力与应变成正比,即:\F = Y\frac{\Delta L}{L}\其中,Y 为杨氏弹性模量,L 为金属丝的原长。
2、光杠杆原理光杠杆是一个带有三个尖足的平面镜,前两尖足放在一个平台上,后尖足置于一个可移动的小立柱上。
当金属丝发生微小伸长时,光杠杆的后尖足会随之移动,从而带动平面镜转动一个微小角度θ。
设平面镜到标尺的距离为D,光杠杆的长臂长度为b,金属丝的伸长量为ΔL,则有:\\tan\theta \approx \theta =\frac{\Delta L}{b}\由于θ很小,反射光线在标尺上的移动距离Δn 与θ的关系为:\\Delta n = D\theta \approx \frac{D\Delta L}{b}\从而可得:\\Delta L =\frac{b\Delta n}{D}\将其代入胡克定律,可得杨氏弹性模量的表达式为:\Y =\frac{8FLD}{\pi d^2 b\Delta n}\其中,d 为金属丝的直径。
三、实验仪器1、杨氏弹性模量测定仪包括光杠杆、望远镜和标尺组成的光杠杆系统,以及用于加力的砝码和托盘。
2、螺旋测微器用于测量金属丝的直径。
3、游标卡尺用于测量光杠杆的长臂长度 b 和平面镜到标尺的距离 D。
4、米尺用于测量金属丝的原长 L。
四、实验步骤1、仪器调节(1)调节杨氏弹性模量测定仪,使金属丝竖直且与平台垂直,光杠杆平面镜与平台平行。
(2)调节望远镜,使其与光杠杆平面镜等高,且能清晰看到标尺的像。
混凝土弹性模量试验报告
混凝土弹性模量试验报告1. 引言混凝土是一种广泛应用于建筑和基础设施工程的材料。
在设计和施工过程中,了解混凝土的弹性模量十分重要,因为它能够反映混凝土在受力时的变形能力。
本试验报告旨在描述混凝土弹性模量试验的步骤、结果和分析。
2. 试验目的确定混凝土的弹性模量,可以为工程设计提供重要的参考依据。
在本次试验中,我们的目标是测量混凝土的弹性模量,并对试验结果进行分析和讨论。
3. 试验材料和设备3.1 试验材料•混凝土样品:从施工现场获取的混凝土样本。
3.2 试验设备•压力机:用于施加恒定的轴向压力。
•应变计:用于测量混凝土的应变。
•数据采集系统:用于记录和分析试验数据。
4. 试验步骤4.1 样品制备从施工现场获取的混凝土样本应首先进行样品制备。
按照标准的制备程序,将混凝土样本切割成合适的尺寸和形状,并清除表面的任何不规则部分。
4.2 弹性模量试验1.将制备好的混凝土样本放置在压力机的试验台上,并确保其垂直于轴向压力。
2.启动压力机,施加恒定的轴向压力到混凝土样本上。
3.同时,使用应变计测量混凝土样本上的应变值,并将其记录下来。
4.根据施加的压力和测得的应变值,计算混凝土的弹性模量。
5.重复上述步骤,以获取多组数据,并确保结果的准确性和可靠性。
5. 试验结果和分析根据所测得的数据,我们可以计算出混凝土的平均弹性模量。
通过对多组试验数据的分析,我们可以得出以下结论:1.不同混凝土配比和材料特性会导致不同的弹性模量值。
2.高强度混凝土通常具有较高的弹性模量。
3.混凝土在受力时具有一定的应变能力,但其弹性模量随着应变程度的增加而逐渐降低。
6. 结论本试验通过测量混凝土的弹性模量,为工程设计提供了有用的数据。
弹性模量是评估混凝土材料在受力时的变形能力的重要指标。
通过对试验结果的分析,我们可以更好地理解混凝土的弹性特性,并在工程实践中合理应用。
7. 参考文献•[1] 相关混凝土试验标准•[2] 混凝土弹性模量测量方法的研究进展8. 致谢在本次试验中,我们要感谢参与试验的研究团队以及提供混凝土样本的施工单位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混凝土静力受压弹性模量试验报告
报告编号:CTJC-20131026001
委托单位 拟用部位 检验依据
设计强度等级 理论配合比 工地拌和方法 制件时坍落度(mm) 制件日期 材料名称 水泥 粉煤灰 掺和料2 细骨料 粗骨料 高性能减水剂 外加剂2 拌和水
中铁三局天津公司神池南站经理部 预制梁
3
(2) 混凝土使用材料情况 材料产地 施工拌和用料量(kg/m )
(3) 静力受压弹性模量试验前、后轴心抗压强度试验结果 试件 试件 编号 序号 1 001 2 3 试验日期 龄期 (d) 28 28 28 折算 系数 1.0 1.0 1.0 静力受压弹性模量试验前 静力受压弹性模量试验后轴心 破坏 轴心抗压强度 fcp(Mpa) 抗压强度 f′cp(MPa) 荷载 F (N) 单值 组值 单值 组值 1200.5 1167.6 1158.0 53.36 51.89 51.47 52.2 52.36 53.61 53.14 静力受压弹性模 量E c (Mpa) 单值 40100 2013.10.26 28 11250 391500 150 备注: 22500 41200 39800 40300 组值 53.0
试验
审核
批准
日期:
2013.10.26 2013.10.26 2013.10.26
(4) 静力受压弹性模量试验结果 试件 试件 编号 序号 1 001 2 3 试验结论: 依据JTG E30--2005试验,结果符合设计要求 。 试验 日期 龄期 (d) 初始 荷载 F 0 (N) 控制 荷载 F a (N) 测量标距 承压面积 L (mm) A (mm2)
工程名称 朔黄铁路神池南站区生产配套设施改造工程 试验环境 主要设备
温度:22℃
(1) 技术条件 C50 机械 200
2013.9.28
设计弹性模量(MPa) 工地捣实方法 制件时扩展度(mm) 试件尺寸(mm) 品种规格
34500 施工配合比 机械 \ 150*150*300 报告编号
配合比报告编号 制件捣实方法 制件维勃稠度( 养护方法 人工 标养