湘教版七年级数学下册第三章 因式分解练习(包含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 因式分解

一、单选题

1.下列从左边到右边的变形,属于因式分解的是( )

A .2(1)(1)1x x x +-=-

B .221(2)1x x x x -+=-+

C .224(4)(4)x y x y x y -=+-

D .26(2)(3)x x x x --=+-

2.已知正方形ABCD 边长为x ,长方形EFGH 的一边长为2,另一边的长为x ,则正方形ABCD 与长方形EFGH 的面积之和等于( )

A .边长为x +1的正方形的面积

B .一边长为2,另一边的长为x +1的长方形面积

C .一边长为x ,另一边的长为x +1的长方形面积

D .一边长为x ,另一边的长为x +2的长方形面积

3.如果多项式221

155abc ab a bc -+-的一个因式是15

ab -,那么另一个因式是( ) A .5c b ac -+ B .5c b ab +- C .15c b ab -+ D .15

c b ab +- 4.将3a b ab -进行因式分解,正确的是( )

A .()2a a b b -

B .()21ab a -

C .()()11ab a a +-

D .()

21ab a - 5.下列各式中能用完全平方公式分解因式的是( )

A .a 2+2ax+4x 2

B .﹣a 2﹣4ax+4x 2

C .x 2+4+4x

D .﹣1+4x 2

6.下列各因式分解正确的是( )

A .﹣x 2+(﹣2)2=(x +2)(x ﹣2)

B .x 2+2x ﹣1=(x ﹣1)2

C .x 3﹣4x =x (x +2)(x ﹣2)

D .(2x ﹣1)2=4x 2﹣4x +1

7.已知M =m ﹣4,N =m 2﹣3m ,则M 与N 的大小关系为( )

A .M >N

B .M =N

C .M ≤N

D .M <N

8.下列各多项式中,能运用公式法分解因式的有()

①2m 4-+①22x y --①22x y 1-①()()22

m a m a --+①222x 8y -①22x 2xy y ---①229a b 3ab 1-+

A .4个

B .5个

C .6个

D .7个

9.若 a + b = 1,则 a 2 - b 2+ 2b 的值为( )

A .4

B .3

C .1

D .0

10.(2017重庆市兼善中学八年级上学期联考)在日常生活中如取款、上网等都需要密码.有

一种用“因式分解法”产生的密码方便记忆,如:对于多项式44x y -,因式分解的结果是

()()()22x y x y x y -++,若取9x =, 9y =时,则各个因式的值为()0x y -=, ()18x y +=, ()22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多

项式32x xy -,取20x =, 10y =时,用上述方法产生的密码不可能...

是( ) A .201030

B .201010

C .301020

D .203010

二、填空题 11.多项式2224a b ab -中各项的公因式是_________.

12.因式分解:24a a -=_________.

13.因式分解:24x -=______;a 2+a+14

=______. 14.已知222246140x y z x y z ++-+-+=, 则()

2002x y z --=_______.

三、解答题 15.仔细阅读下面例题,解答问题:例题: 已知二次三项式x 2 - 4x + m 有一个因式是 ( x + 3) ,求另一个因式以及 m 的值.

解:设另一个因式为 ( x + n ) ,得x 2 - 4x + m = ( x + 3) ( x + n )

则x 2 - 4 x + m = x 2 + (n + 3) x + 3n

①343n m n +=-⎧⎨=⎩

解得: n = -7, m = -21

① 另一个因式为 ( x - 7) , m 的值为-21 .

问题:仿照以上方法解答下面问题:

(1)已知二次三项式2x 2+3x -k 有一个因式是(2x -5),求另一个因式以及k 的值. (2)已知二次三项式6x 2+4ax+2有一个因式是(2x+a ),a 是正整数,求另一个因式以及a 的值.

16.分解因式

(1)x 4-x 2y 2;

(2)2225a b -;

(3)(m+n)2-4(m+n)+4

(4)22363ax axy ay ++.

17.先阅读材料:

分解因式:2

()2()1a b a b ++++.

解:令a b M +=,

则2()2()1a b a b ++++ 2221(1)M M M =++=+

所以22()2()1(1)a b a b a b ++++=++.

材料中的解题过程用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你运用这种思想方法解答下列问题:

(1)分解因式:212()()x y x y -+++=__________;

(2)分解因式:()(4)4m n m n ++-+;

18.阅读材料:

某些代数恒等式可用一些卡片拼成的图形的面积来解释.例如,图①可以解释

2222()a ab b a b ++=+,因此,我们可以利用这种方法对某些多项式进行因式分解.

根据阅读材料回答下列问题:

(1)如图①所表示的因式分解的恒等式是________________________.

(2)现有足够多的正方形和长方形卡片(如图①),试画出一个用若干张1号卡片、2号卡

相关文档
最新文档