中考数学必考公式定律整理(2021年).

合集下载

2021年中考数学复习 第5章 四边形

2021年中考数学复习  第5章  四边形

第五章四边形第一节多边形(建议用时:40分钟)考点1多边形的性质1.一个多边形的边数由原来的3增加到n(n>3,且n为正整数),则它的外角和( D )A.增加(n-2)×180°B.减小(n-2)×180°C.增加(n-1)×180°D.没有改变2.[2020广东]若一个多边形的内角和是540°,则该多边形的边数为( B )A.4B.5C.6D.73.如图,已知∠1,∠2,∠3是五边形ABCDE的三个外角,边CD,AE的延长线交于点F,如果∠1+∠2+∠3=225°,那么∠DFE的度数是45°.考点2正多边形的性质4.[2020承德二模]把边长相等的正五边形ABCDE和正方形ABFG,按照如图所示的方式放置,连接AD,则∠DAG= ( A ) A.18° B.20°C.28°D.30°5.[2020 邢台二模]如图,有n个全等的正五边形按如下方式拼接,使相邻的两个正五边形有一个公共顶点,所夹的锐角为24°,拼接一圈后,中间形成一个正多边形,则n的值为( B )A.5B.6C.8D.106.[2020石家庄新华区一模]连接正八边形的三个顶点,得到如图所示的图形,则下列说法错误的是( D )A.四边形AFGH与四边形CFED的面积相等B.连接BF,则BF平分∠AFC和∠ABCC.整个图形是轴对称图形,但不是中心对称图形D.△ACF是等边三角形7.[2020江苏扬州]如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3 cm,则螺帽边长a=√3cm.8.[2020江苏连云港]如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2,B3,则直线l与A1A2的夹角α=48°.9.如图,在正八边形中,四边形BCFG的面积为2a cm2,则正八边形的面积为4a cm2(用含a的代数式表示).10.[2020湖南株洲]一蜘蛛网如图所示,若多边形 ABCDEFGHI为正九边形,其中心为点O,点M,N分别在射线OA,OC上,则∠MON=80°.11.[2020福建]如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC等于30度.12.若将n个边长为1的正m边形进行拼接,相邻的两个正m边形有一条公共边,围成一圈后中间恰好形成一个正n边形.(1)当m=8时,围成的图形如图所示,则该图形外轮廓的周长为20;(2)当n=3时,围成的图形的外轮廓的周长是27;(3)当m=5时,得到的正n边形的周长是10.13.[2019 唐山丰南区二模]关于n边形,甲、乙、丙三位同学有以下三种说法:甲:五边形的内角和为520°.乙:正六边形每个内角为130°.丙:七边形共有14条对角线.(1)判断三种说法是否正确,并对其中你认为不对的说法用计算进行说明;(2)若n边形的对角线共有35条,求该n边形的内角和.解:(1)甲、乙的说法不正确,丙的说法正确.正五边形的内角和为 180×(5-2)=540°.正六边形外角和为 360°,每个外角为 360÷6=60°,故每个内角为 180°-60°=120°.=35,(2)由题意知n(n−3)2解得n=10或n=-7(不合题意,舍去),180°×(10-2)=1 440°,故该n边形的内角和为1 440°.第二节平行四边形基础分点练(建议用时:45分钟)考点1平行四边形的判定1.下列条件中,不能判定四边形ABCD为平行四边形的是( C )A.AB平行且等于CDB.∠A=∠C,∠B=∠DC.AB=AD,BC=CDD.AB=CD,AD=BC2.[2019广西河池]如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE的延长线上,连接CF.添加一个条件,使四边形ADFC为平行四边形,则这个条件可以是( B )A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF3.如图,四边形ABCD的对角线AC,BD相交于点O,BO=DO,点E,F分别在AO,CO上,且BE∥DF,AE=CF.求证:四边形ABCD为平行四边形.证明:∵BE∥DF,∴∠BEO=∠DFO,又BO=DO,∠BOE=∠DOF,∴△BEO≌△DFO,∴EO=FO.∵AE=CF,∴AE+EO=CF+FO,即AO=CO.又BO=DO,∴四边形ABCD为平行四边形.考点2平行四边形的性质4.在▱ABCD中,若∠A=2∠B,则∠D的度数为( C )A.30°B.45°C.60°D.120°5.[2019 石家庄十八县联考]证明:平行四边形对角线互相平分.已知:四边形ABCD是平行四边形,如图所示.求证:AO=CO,BO=DO.以下是排乱的证明过程:①∴∠ABO=∠CDO,∠BAC=∠DCA.②∵四边形ABCD是平行四边形.③∴AB∥CD,AB=DC.④∴△AOB≌△COD.⑤∴OA=OC,OB=OD.正确的顺序应是( C ) A.②①③④⑤ B.②③⑤①④C.②③①④⑤D.③②①④⑤6.[2020浙江温州]如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为( D )A.40°B.50°C.60°D.70°7.小宇利用尺规在▱ABCD内作出点E,又在BC边上作出点F,作图痕迹如图所示,若EF=2,则AB,CD之间的距离为( C )A.2B.3C.4D.58.[2019海南]如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为( C ) A.12 B.15 C.18 D.219.[2019保定定州二模]如图,已知点M为▱ABCD的边AB的中点,线段CM交BD于点E,S△BEM=1,则图中阴影部分的面积为( C )A.2B.3C.4D.510.[2020陕西]如图,在▱ABCD 中,AB=5,BC=8.E 是边BC 的中点,F 是▱ABCD 内一点,且∠BFC=90°.连接AF 并延长,交CD 于点G.若EF ∥AB,则DG 的长为( D )A.52B.32C.3D.211.[2020山东潍坊]如图,点E 是▱ABCD 的边AD 上的一点,且DE AE =12,连接BE 并延长交CD 的延长线于点F,若DE=3,DF=4,则▱ABCD 的周长为( C )A.21B.28C.34D.4212.[2020广西河池]如图,在▱ABCD 中,CE 平分∠BCD,交AB 于点E,连接DE,EA=3,EB=5,ED=4,则CE 的长是( C )A.5√2B.6√2C.4√5D.5√513.[2020贵州黔东南州]以▱ABCD 对角线的交点O 为原点,平行于BC 边的直线为x 轴,建立如图所示的平面直角坐标系.若A 点坐标为(-2,1),则C 点坐标为 (2,-1) .14.[2019广西梧州]如图,▱ABCD 中,∠ADC=119°,BE ⊥DC 于点E,DF ⊥BC 于点F,BE 与DF 交于点H,则∠BHF= 61 度.15.[2020浙江金华]如图,平移图形M,与图形N 可以拼成一个平行四边形,则图中α的度数是 30 °.综合提升练(建议用时:25分钟)1.[2019广东广州]如图,▱ABCD 中,AB=2,AD=4,对角线AC,BD 相交于点O,且E,F,G,H 分别是AO,BO,CO,DO 的中点,则下列说法正确的是( B )A.EH=HGB.四边形EFGH 是平行四边形C.AC ⊥BDD.△ABO的面积是△EFO的面积的2倍2.[2020重庆A卷]如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为点E,F,AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.(1)解:∵AE⊥BD,∴∠AEO=90°.∵∠AOE=50°,∴∠EAO=40°.又∵AC平分∠DAE,∴∠OAD=∠EAO=40°.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ACB=∠OAD=40°.(2)证明:∵四边形ABCD是平行四边形,∴AO=CO.∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°.在△AEO和△CFO中,{∠AEO=∠CFO,∠EOA=∠FOC, AO=CO,∴△AEO≌△CFO,∴AE=CF.3.如图,在四边形ABCD中,AD∥CB,E为BD的中点,延长CD到点F,使DF=CD.(1)求证:AE=CE;(2)求证:四边形ABDF为平行四边形;(3)若CD=1,AF=2,∠BEC=2∠F,求四边形ABDF的面积.(1)证明:∵AD∥CB,∴∠DAC=∠BCA.∵E为BD的中点,∴DE=BE,在△ADE和△CBE中,{∠DAC=∠BCA,∠AED=∠CEB, DE=BE,∴△ADE≌△CBE,∴AE=CE.(2)证明:由(1)得,AE=CE,BE=DE,∴四边形ABCD是平行四边形,∴AB∥CD,AB=CD.又∵DF=CD,∴AB=DF,∴四边形ABDF为平行四边形.(3)∵四边形ABDF为平行四边形,∴∠F=∠DBA,BD=AF=2.又∵∠BEC=2∠F,∠BEC=∠DBA+∠BAC,∴∠DBA=∠BAC,∴AE=BE=DE,∴∠BAD=90°.∵AB=CD=1,∴AD=√BD2-AB2=√3,∴四边形ABDF的面积为AB×AD=√3.新角度[2020江苏扬州]如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长DF=1DE,以EC,EF为邻边构造▱EFGC,连接EG,则EG的最小值为9√3.4第三节矩形、菱形、正方形课时一:矩形的性质与判定基础分点练(建议用时:30分钟)考点1矩形的判定1.[2020湖北十堰]已知平行四边形ABCD,有下列条件:①AB=BC;②AC=BD;③AC⊥BD;④AC平分∠BAD.其中能说明平行四边形ABCD是矩形的是( B )A.①B.②C.③D.④2.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.证明:∵∠BAD=∠CAE,∴∠BAD-∠BAC=∠CAE-∠BAC,即∠CAD=∠BAE.又∵AB=AC,AD=AE,∴△BAE≌△CAD,∴∠ABE=∠ACD,BE=CD.又∵DE=CB,∴四边形BCDE是平行四边形,∴BE∥CD.∵AB=AC,∴∠ABC=∠ACB,∴∠EBC=∠DCB.∵BE∥CD,∴∠EBC+∠DCB=180°,∴∠EBC=∠DCB=90°,∴四边形BCDE是矩形.考点2与矩形性质有关的证明与计算3.[2020湖南怀化]如图,在矩形ABCD中,AC,BD相交于点O,若△AOD的面积为2,则矩形ABCD的面积为( C )A.4B.6C.8D.104.[2020 江苏连云港]如图,将矩形纸片ABCD沿BE折叠,使点A落在对角线BD上的A'处,若∠DBC=24°,则∠A'EB等于( C )A.66°B.60°C.57°D.48°5.[2019广东广州]如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为( A )A.4√5B.4√3C.10D.86.[2020贵州黔东南州]如图,矩形ABCD中,AB=2,E为CD的中点,连接AE,BD交于点P,过点P作PQ⊥BC于点Q,则PQ=4.37.[2020山东菏泽]如图,矩形ABCD中,AB=5,AD=12,点P在对角线BD上,且BP=BA,连接AP并延长,交DC的延长线于点Q,连接BQ,则BQ的长为3√17.8.[2020 湖南长沙]如图,在矩形ABCD中,E为DC边上一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F处.(1)求证:△ABF∽△FCE.(2)若AB=2√3,AD=4,求EC的长.(3)若AE-DE=2EC,记∠BAF=α,∠FAE=β.求tan α+tanβ的值.(1)证明:∵∠AFE=∠D=90°,∴∠AFB+∠EFC=90°.∵四边形ABCD为矩形,∴∠B=∠C=90°,∴∠AFB+∠BAF=90°,∴∠EFC=∠BAF,∴△ABF∽△FCE.(2)由翻折的性质可得AF=AD=4,在Rt△ABF中,由勾股定理得,BF=√42-(2√3)2=2,∴FC=BC-BF=4-2=2.由(1)知△ABF ∽△FCE,∴AB FC =BFCE ,即2√32=2CE ,∴CE=2√33. (3)设EC=1,DE=x,则AE=x+2,AB=x+1,FE=x, ∴BC=AD=√AE 2-DE 2=√(x +2)2-x 2=2√x +1,FC=√FE 2-CE 2=√x 2-1,∴BF=BC-FC=2√x +1-√x 2-1.由(1)知△ABF ∽△FCE,∴AB FC =BFCE ,∴AB·CE=FC·BF, 即x+1=√x 2-1×(2√x +1-√x 2-1), 得x+1=2(x+1)√x −1-x 2+1, 整理,得x 2=4(x-1),解得x 1=x 2=2, ∴AB=3,BF=√3,AF=2√3, ∴tan α+tan β=BF AB +EF AF =√33+2√3=2√33.内蒙古呼和浩特]如图,把某矩形纸片ABCD 沿EF,GH 折叠(点E,H 在AD 边上,点F,G 在BC 边和点C 落在AD 边上同一点P 处,A 点的对称点为A',D 点的对称点为D',若∠FPG=90°,S △A'EP =8,S △D′PH =2,则矩形ABCD 的长为( D )A.6√5+10B.6√10+5√2C.3√5+10D.3√10+5√22.新角度[2020江西]如图,矩形纸片ABCD 中,AD=8 cm,AB=4 cm,折叠纸片使折痕经过点B,交AD 边于点E,点A 落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其他线段.当图中存在30°角时,AE 的长为 43 √3,4√3或(8-4√3) cm.课时二:菱形的判定与性质基础分点练(建议用时:40分钟)考点1 菱形的判定1.[2020浙江嘉兴]如图,平行四边形ABCD 的对角线AC,BD 相交于点O,请添加一个条件: AD=DC(答案不唯一) ,使平行四边形ABCD 是菱形.2.[2020广西玉林]如图,将两张对边平行且等宽的纸条交叉叠放在一起,则重合部分构成的四边形ABCD 是 菱形(填“是”或“不是”).3.[2020 山东滨州]如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB,BC,CD,DA 于点P,M,Q,N.(1)求证:△PBE≌△QDE;(2)顺次连接点P,M,Q,N,求证:四边形PMQN是菱形.(1)证明:∵四边形ABCD是平行四边形,且对角线AC与BD的交点为E,∴AB∥CD,BE=DE,∴∠PBE=∠QDE,∠BPE=∠DQE,∴△PBE≌△QDE.(2)证明:如图.由(1)可得PE=QE,同理可得ME=NE,∴四边形PMQN是平行四边形.又∵PQ⊥MN,∴▱PMQN是菱形.考点2与菱形的性质有关的计算4.[2020黑龙江绥化]如图,四边形ABCD是菱形,E,F分别是BC,CD两边上的点,不能保证△ABE和△ADF一定全等的条件是( C )A.∠BAF=∠DAEB.EC=FCC.AE=AFD.BE=DF5.[2020湖北黄冈]若菱形的周长为16,高为2,则菱形两邻角的度数之比为( B )A.4∶1B.5∶1C.6∶1D.7∶16.[2020黑龙江龙东地区]如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为( A ) A.4 B.8 C.√13 D.67.[2020四川乐山]如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD 于点E,连接OA.则四边形AOED的周长为( B )A.9+2√3B.9+√3C.7+2√3D.88.[2020辽宁抚顺]如图,四边形ABCD 是菱形,对角线AC,BD 相交于点O,AC=8,BD=6,点E 是CD 上一点,连接OE,若OE=CE,则OE 的长是( B ) A.2B.52C.3D.49.[2020四川南充]如图,面积为S 的菱形ABCD 中,点O 为对角线的交点,点E 是线段BC 的中点,过点E 分别作EF ⊥BD 于点F,EG ⊥AC 于点G,则四边形EFOG 的面积为( B )A.14SB.18SC.112S D.116S10.[2020广东]如图,在菱形ABCD 中,∠A=30°,取大于12AB 的长为半径,分别以点A,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD 的度数为 45° .11.[2020陕西]如图,在菱形ABCD 中,AB=6,∠B=60°,点E 在边AD 上,且AE=2.若直线l 经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF 的长为 2√7 .12.[2020北京]如图,菱形ABCD 的对角线AC,BD 相交于点O,E 是AD 的中点,点F,G 在AB 上,EF ⊥AB,OG ∥EF.(1)求证:四边形OEFG 是矩形; (2)若AD=10,EF=4,求OE 和BG 的长.(1)证明:∵四边形ABCD 为菱形,∴点O 为BD 的中点. 又∵点E 为AD 的中点,∴OE 为△ABD 的中位线, ∴OE ∥FG.又∵OG∥EF,∴四边形OEFG为平行四边形.又∵EF⊥AB,∴四边形OEFG为矩形.AD=5.(2)∵点E为AD的中点,AD=10,∴AE=12又∵∠EFA=90°,EF=4,∴AF=√AE2-EF2=√52-42=3.AB=5.∵四边形ABCD为菱形,∴AB=AD=10,∴OE=12∵四边形OEFG为矩形,∴FG=OE=5,∴BG=AB-AF-FG=10-3-5=2.动态型[2020浙江绍兴]如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B 停止,延长EO交CD于点F,则四边形AECF形状的变化依次为( B )A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形课时三:正方形的性质和判定基础分点练(建议用时:40分钟)考点1正方形的判定1.[2020石家庄新华区一模]如图,已知线段AB,按下列步骤作图:分别以点A,B为圆心、大于1AB的长为半径画2弧,两弧相交于点M,N,作直线MN,交AB于点O,连接MA,MB,NA,NB,若四边形MANB是正方形,则需要添加的条件是( A )A.AO=MOB.MA∥NBC.MA=NBD.AB平分∠MAN2.[2020山东滨州]下列命题是假命题的是( D )A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直且平分的四边形是正方形3.[2020山东威海]如图,在▱ABCD中,BD⊥AD,AB=10,AD=6,O为BD的中点,E为边AB上一点,连接EO并延长交CD于点F,连接DE,BF.下列结论不成立的是( D )A.四边形DEBF为平行四边形B.若AE=3.6,则四边形DEBF为矩形C.若AE=5,则四边形DEBF为菱形D.若AE=4.8,则四边形DEBF为正方形考点2正方形的性质4.[2020浙江湖州]四边形具有不稳定性,对于四条边长确定的四边形,当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC'D'.若∠D'AB=30°,则菱形ABC'D'的面积与正方形ABCD的面积之比是( B )A.1B.12C.√22D.√325.[2019内蒙古鄂尔多斯]如图,以AB为边在正方形ABCD外部作等边三角形ABE,连接DE,则∠BED的度数为( C )A.15°B.35°C.45°D.55°6.[2020邢台二模]如图,在正方形ABCD中,AB=6,点Q是AB边上的一个动点(点Q不与点B重合),点M,N分别是DQ,BQ的中点,则线段MN= ( A )A.3√2B.3√22C.3D.67.[2020湖北恩施州]如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE 周长的最小值为( B )A.5B.6C.7D.88.[2020浙江湖州]七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形木板可以制作一副中国七巧板或一副日本七巧板,如图(1)所示.分别用这两副七巧板试拼如图(2)中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是( D )图(1)图(2)A.1和1B.1和2C.2和1D.2和29.[2020河南]如图,在边长为2√2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.10.[2020甘肃天水]如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为2.11.[2020张家口桥东区一模]如图,将边长分别为a,b的两个正方形放在一起.a(a+b);(1)图中阴影部分的三角形的面积为12(2)△ABC的面积为1b2.2(用含a,b的代数式表示)12.[2020四川自贡]如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE,BF交于点M.求证:AE=BF.证明:∵四边形ABCD 为正方形, ∴AB=BC=CD,∠ABE=∠BCF=90°.又∵CE=DF,∴CE+BC=DF+CD,即BE=CF.在△ABE 和△BCF 中,{BE =CF,∠ABE =∠BCF,AB =BC,∴△ABE ≌△BCF,∴AE=BF.13.[2020浙江杭州]如图,在正方形ABCD 中,点E 在BC 边上,连接AE,∠DAE 的平分线与CD 边交于点G,与BC 的延长线交于点F.设CEEB =λ(λ>0).(1)若AB=2,λ=1,求线段CF 的长. (2)连接EG,若EG ⊥AF, ①求证:点G 为CD 边的中点. ②求λ的值.(1)解:因为在正方形ABCD 中,AD ∥BC,所以∠DAF=∠F.因为AG 平分∠DAE,所以∠DAF=∠EAF,所以∠EAF=∠F,所以EA=EF. 因为λ=1,BC=AB=2,所以BE=EC=1. 在Rt △ABE 中,由勾股定理,得EA=√5, 所以CF=EF-EC=EA-EC=√5-1.(2)①证明:由(1)可知EA=EF,又因为EG ⊥AF, 所以AG=GF.又因为∠AGD=∠FGC,∠DAG=∠F, 所以△DAG ≌△CFG.所以DG=CG, 所以点G 为CD 边的中点.②不妨设CD=2,则AD=2,CG=1.由①得CF=AD=2. 易证△FGC ∽△GEC,所以EC CG =CG CF =12, 所以EC=12,所以BE=32,所以λ=CE EB =13.综合提升练(建议用时:30分钟)1.[2020湖南常德]如图(1),已知四边形ABCD 是正方形,将△DAE,△DCF 分别沿DE,DF 向内折叠得到图(2),此时DA 与DC 重合(点A,C 都落在点G 处),若GF=4,EG=6,则DG 的长为 12 .2.[2020山东青岛]如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是.AE的中点,连接OF交AD于点G,连接DF.若DE=2,OF=3,则点A到DF的距离为4√553.[2020湖北咸宁]如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是①②③.(把正确结论的序号都填上)4.[2020唐山路南区二模]如图,在边长为2的正方形ABCD中,动点F,E以相同的速度分别从点D,C同时出发向点C,B运动(任何一个点到达终点时,两点都停止运动).连接AE,BF,AE与BF交于点P,过点P分别作PM∥CD 交BC于点M,PN∥BC交CD于点N,连接MN,在运动过程中,(1)AE和BF的数量关系为AE=BF;(2)MN长度的最小值为√5-1.5.[2020湖南株洲]如图所示,△BEF的顶点E在正方形ABCD对角线AC的延长线上,AE与BF交于点G,连接AF,CF,满足△ABF≌△CBE.(1)求证:∠EBF=90°;(2)若正方形ABCD的边长为1,CE=2,求tan∠AFC的值.(1)证明:∵△ABF≌△CBE,∴∠ABF=∠CBE.∵∠ABF+∠CBF=90°,∴∠CBF+∠CBE=90°,∴∠EBF=90°.(2)∵△ABF ≌△CBE,∴∠AFB=∠CEB. 又∵∠FGA=∠EGB,∴∠FAC=∠EBF=90°. ∵正方形的边长为1,CE=2,∴AC=√2,AF=CE=2, ∴tan ∠AFC=AC AF =√22.6.[2020四川南充]如图,边长为1的正方形ABCD 中,点K 在AD 上,连接BK,分别过点A,C 作BK 的垂线,垂足分别为点M,N,点O 是正方形ABCD 的中心,连接OM,ON.(1)求证:AM=BN.(2)请判定△OMN 的形状,并说明理由.(3)设AK=x,若点K 在线段AD 上运动(不包括端点),△OMN 的面积为y,求y 关于x 的函数解析式(写出此时x 的范围);若点K 在射线AD 上运动,且△OMN 的面积为110,请直接写出AK 长. (1)证明:∵AM ⊥BM,CN ⊥BN,∴∠AMB=∠BNC=90°. 又∵∠ABC=90°,∴∠MAB+∠MBA=∠CBN+∠MBA=90°, ∴∠MAB=∠CBN.又AB=BC,∴△AMB ≌△BNC,∴AM=BN. (2)△OMN 是等腰直角三角形.理由:连接OB,如图.∵O 为正方形的中心,∴∠OAB=∠OBC,OA=OB,∴∠MAB-∠OAB=∠NBC-∠OBC,即∠MAO=∠OBN.又∵AM=BN,∴△AMO ≌△BNO, ∴OM=ON,∠AOM=∠BON.易知∠AOB=∠AON+∠BON=90°, ∴∠MON=∠AON+∠AOM=90°, ∴△OMN 是等腰直角三角形.(3)在Rt △ABK 中,BK=√AK 2+AB 2=√x 2+1. 易知BK·AM=AB·AK,则BN=AM=AB·AK BK=√x 2+1.∵∠AKM=∠BKA,∠AMK=∠BAK=90°,∴△AKM ∽△BKA,∴AK BK =KMAK,∴KM=AK 2BK=2√x 2+1,∴MN=BK-BN-KM=√x 2+1-√x 2+1-2√x 2+1=√x 2+1,∴S △OMN =12×(√22MN)2=14MN 2=(1-x)24x 2+4,即y=x 2-2x+14x 2+4(0<x<1).若点K 在射线AD 上运动,S △OMN =110,则AK 长为13或3.湖北孝感]如图(1),四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图(2)所示的图形,记阴影部分的面积为S 1,空白部分的面积为S 2,大正方形的边长为m,小正方形的边长为n,若S 1=S 2,则nm 的值为 √3-12.图(1) 图(2)参考答案第一节 多边形1.D 因多边形的外角和等于360°,与边数无关,故选D.2.B 设该多边形的边数是n,由多边形的内角和公式,得180°×(n-2)=540°,解得n=5.故选B.3.45° ∵多边形的外角和为360°,∴∠DEF+∠EDF=360°-225°=135°.∵∠DEF+∠EDF+∠DFE=180°,∴∠DFE=180°-135°=45°.4.A 正五边形的每一个内角为(5-2)×180°5=108°,即∠AED=∠EAB=108°.又EA=ED,∴∠EAD=180°−108°2=36°,∴∠DAB=∠EAB-∠EAD =72°.在正方形ABFG 中,∠GAB=90°,故∠DAG=∠GAB-∠DAB =18°.故选A. 5.B 正五边形每一个内角的度数为(5-2)×180°5=108°,所以中间形成的正多边形的每一个内角的度数为360°-24°-108°-108°=120°.易得120°n=(n-2)×180°,解得n=6.故选B.6.D 易知该图形关于直线BF 对称,四边形AFGH 与四边形CFED 关于直线BF 对称,故S 四边形AFGH =S 四边形CFED ,BF 平分∠AFC和∠ABC.因△ACF 不是中心对称图形,故整个图形不是中心对称图形.设该正八边形的中心为点O,连接OA,OC,则∠AFC=12∠AOC=12×360°4=45°,故△ACF 不是等边三角形.7.√3 如图,作螺帽的外接圆,连接AB,AC,则AC 是其直径,易知∠BAC=30°,∠ABC=90°,∴BC=√33AB=√3 cm.8.48 如图,由正五边形内角和为(5-2)×180°=540°,可知∠1=108°.又A 3A 4∥B 3B 4,∴∠2=∠1=108°,∴∠3=72°.在四边形A 2A 3MN 中,∠3+∠4+∠A 2+∠A 3=360°,∠A 2=∠A 3=120°,∴α=∠4=48°.9.4a 如图,连接HE,AD,分别交BG 于点M,N,正八边形每个内角的度数为(8-2)×180°8=135°.易得∠DAH=∠CBG=90°,∴∠BAN=∠ABN=45°,∴AN=BN,AB=√2AN=√2BN.设AN=BN=x,则AB=BC=AH=HG=√2x,MG=x,∴S 四边形BCFG =BC×BG=√2x·(2x+√2x)=2(√2+1)x 2=2a,∴S 四边形ABGH =12(AH+BG)×AN=12(√2x+2x+√2x)·x=(√2+1)x 2=a,故正八边形的面积为a×2+2a=4a(cm 2).10.80 正九边形的中心角度数为360°÷9=40°,即∠AOB=40°,∴∠MON=2∠AOB=2×40°=80°. 11.30 如图,∵六边形花环是用六个全等的直角三角形拼成的,∴六边形ABMNEF 是正六边形,∴∠ABM=(6-2)×180°6=120°.又∠CBM=90°,∴∠ABC=120°-90°=30°.12.20 27 10 (1)每个正八边形的周长为8,故题中图形外轮廓的周长为(8-3)×4=20.(2)设正m 边形的一个内角的度数为α,依据题意,得2α+60°=360°,解得α=150°,∴m=360°÷(180°-150°)=12,∴当n=3时,围成的图形的外轮廓的周长是(12-3)×3=27.(3)正五边形一个内角的度数为180°-360°÷5=108°,∴得到的正n 边形的一个内角的度数为360°-108°-108°=144°,一个外角的度数为180°-144°=36°,∴n=360°÷36°=10,∴得到的正n 边形的周长是10. 13.略第二节 平行四边形 基础分点练 1.C2.B 在△ABC 中,D,E 分别是AB,BC 的中点,∴DE 是△ABC 的中位线,∴DE ∥AC.当∠B=∠BCF 时,AD ∥CF.根据平行四边形的定义可知此时四边形ADFC 是平行四边形.故选B.3.略4.C ∵四边形ABCD 为平行四边形,∴AD ∥BC,∠B=∠D,∴∠A+∠B=180°.∵∠A=2∠B,∴2∠B+∠B=180°,∴∠B=60°,∴∠D=60°.故选C. 5.C ∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=DC,∴∠ABO=∠CDO,∠BAC=∠DCA,∴△AOB ≌△COD,∴OA=OC,OB=OD.故正确的顺序为②③①④⑤,故选C.6.D ∵AB=AC,∠A=40°,∴∠C=∠ABC=70°.又∵四边形BCDE 为平行四边形,∴∠E=∠C=70°.故选D.7.C 如图,过点E 作EM ⊥BA 交BA 的延长线于点M,延长ME 交CD 于点N.∵四边形ABCD 是平行四边形,∴AB ∥CD,∴EN ⊥CD.由尺规作图的痕迹可知,BE,CE 分别平分∠ABC,∠BCD,EF ⊥BC, ∴EM=EF=2, EN=EF=2,∴MN=4,即AB,CD 之间的距离为4.故选C.8.C ∵四边形ABCD 是平行四边形,∴∠D=∠B=60°,CD=AB=3.由折叠的性质可知AE=AD,DC=CE,又D,C,E 三点共线,∴△ADE 是等边三角形.又∵DE=DC+CE=6,∴△ADE 的周长为6×3=18.9.C ∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD.易得△BEM ∽△DEC,∴BE DE =EM EC =BM CD =12, ∴S △DEM =2S △EBM =2,S △EBC =2S △EBM =2,∴S 阴影=2+2=4,故选C.10.D 如图,延长EF 交AD 于点H,则AB ∥EH ∥CD,∴四边形ABEH 和四边形CDHE 都是平行四边形,∴EH=AB=5,AH=BE,HD=EC.∵∠BFC=90°,E 是边BC 的中点,BC=8,∴EF=BE=EC=12×8=4, ∴AH=HD,FH=EH-EF=5-4=1.易得FH 是△ADG 的中位线,∴DG=2FH=2.11.C ∵四边形ABCD 是平行四边形,∴AB ∥CF,AB=CD,∴△ABE ∽△DFE,∴AB DF =AEDE =2,又∵DE=3,DF=4, ∴AE=6,AB=8,∴AD=AE+DE=6+3=9,∴▱ABCD 的周长为(8+9)×2=34.故选C. 12.C ∵CE 平分∠BCD,∴∠BCE=∠DCE.∵四边形ABCD 是平行四边形,∴AB=CD,AD=BC,AB ∥CD,∴∠BEC=∠DCE,∠CDE=∠AED,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5.又∵EA=3,ED=4,∴EA 2+ED 2=AD 2,∴∠AED=90°,∴∠CDE=90°.又CD=AB=3+5=8,∴CE=√DE 2+DC 2= √42+82=4√5.故选C.13.(2,-1) ∵▱ABCD 对角线的交点O 为坐标原点,∴点A 与点C 关于原点O 中心对称.又点A 的坐标为(-2,1),∴点C 的坐标为(2,-1).14.61 ∵四边形ABCD 是平行四边形,∴AD ∥BC,DC ∥AB.∵∠ADC=119°,DF ⊥BC, ∴∠ADF=∠DFC=90°, ∠EDH=29°.∵BE ⊥DC,∴∠DEH=90°,∴∠BHF=∠DHE=90°-29°= 61°. 15.30 如图,由题意可知α+∠BCD=180°.过点B 作BF ∥CD,则BF ∥AE,∴∠ABF=180°-∠A=110°, ∴∠CBF=140°- ∠ABF=30°,∴∠BCD=180°-∠CBF=150°,∴α=180°-∠BCD=30°.综合提升练1.B ∵四边形ABCD 是平行四边形,∴BC ∥AD,AB ∥CD.∵E,F,G,H 分别是AO,BO,CO,DO 的中点,∴EH ∥AD,EH=12AD,EF ∥AB,EF=12AB,FG ∥BC,FG=12BC,GH ∥CD,GH=12CD,∴EH ∥FG,EF ∥HG,∴四边形EFGH 是平行四边形,故B 中的说法正确.∵AB=2,AD=4,∴EH=2,HG=1,故A 中的说法错误.∵AB ≠AD,∴平行四边形ABCD 不是菱形,故AC 与BD 不垂直,故C 中的说法错误.由EF ∥AB,得△OEF ∽△OAB,∴S △ABO S △EFO=(ABEF )2=4.故D 中的说法错误.2.略3.略 全国视野创新练9√3 设CD 与EG 交于点O.∵四边形EFGC 是平行四边形,∴EF=CG,EF ∥CG,∴△DOE ∽△COG,∴OE OG =DECG .又∵DF=14DE,∴DE CG =45,即OE OG =45,∴OE EG =49,即EG=94OE,∴当OE 最小时,EG 也最小.当OE ⊥AB 时,OE 取最小值.如图,过点C 作CH ⊥AB 于点H.在Rt △BCH 中,BC=8,∠B=60°,∴CH=sin B×BC=4√3,∴OE 的最小值为4√3,∴EG 的最小值为94×4√3=9√3.第三节 矩形、菱形、正方形 课时一:矩形的性质与判定基础分点练1.B AB=BC,邻边相等的平行四边形是菱形;AC=BD,对角线相等的平行四边形是矩形;AC ⊥BD,对角线互相垂直的平行四边形是菱形;由AC 平分∠BAD,可推得平行四边形ABCD 是菱形.故选B.2.略3.C 由四边形ABCD 是矩形,对角线AC,BD 相交于点O,得OA=OB=OC=OD,故S △AOB =S △COB =S △COD =S △AOD =2,所以矩形ABCD 的面积为4S △AOD =8,故选C.4.C 由折叠可得∠ABE=∠A'BE,∠BA'E=∠A=90°.∵∠DBC=24°,∴∠ABA'=90°-24°=66°,∴∠A'BE=33°, ∴∠A'EB=90°-33°=57°.5.A 如图,连接AE,设AC,EF 交于点O,∵四边形ABCD 是矩形,∴AD ∥BC,∴∠DAC=∠ACB.∵直线EF 垂直平分AC,∴OA=OC,AE=EC,又∵∠AOF=∠COE,∴△AOF ≌△COE,∴AE=CE=AF=5,∴BC=BE+EC=8.在Rt △ABE 中,AB=√AE 2-BE 2=√52-32=4.在Rt △ABC 中,AC=√AB 2+BC 2=√42+82=4√5,故选A.6.43 根据矩形的性质得到AB ∥CD,AB=CD.∵点E 为CD 的中点,∴DE=12CD=12AB.易得△ABP ∽△EDP,则PB PD =ABDE =2,∴PB BD =23.易得△BPQ ∽△BDC,则PQ CD =BP BD =23,∴PQ=23CD=43. 7.3√17 在矩形ABCD 中,AB=5,AD=12,∠BAD=90°,根据勾股定理,可得BD=13.∵BP=BA=5,∴PD=BD-BP=8,∠BAP=∠BPA=∠DPQ.∵AB ∥CD,∴∠BAP=∠DQP,∴∠DPQ=∠DQP,∴DQ=DP=8,∴CQ=DQ-CD=DQ-AB=8-5=3.在Rt △BCQ 中,BC=AD=12,CQ=3,根据勾股定理,得BQ=3√17.8.略全国视野创新练1.D ∵四边形ABCD 是矩形,∴AB=CD,AD=BC.设AB=CD=x,由折叠的性质可知,PA'=AB=x,PD'=CD=x.易证△A'EP ∽△D'PH,∴A'P 2∶D'H 2=8∶2,∴A'P ∶D'H=2∶1,∴D'H=12x.∵S △D'PH =12D'P·D'H=12·x·12x=2,∴x=2√2(负值已舍去),∴D'P=A'P=2√2,DH=D'H=√2,∴A'E=2D'P=4√2,∴PE=√(4√2)2+(2√2)2=2√10,PH=√(2√2)2+(√2)2=√10,∴AD=4√2+2√10+√10+√2=3√10+5√2. 2.43√3,4√3或(8-4√3) ①如图(1),当∠ABE=30°时,在Rt △ABE 中,AB=4,tan ∠ABE=AE AB ,∴AE=AB·tan ∠ABE=4×tan 30°=43√3.②如图(2),当∠AEB=30°时,在Rt △ABE中,tan ∠AEB=AB AE ,∴√33=4AE,∴AE=4√3.③如图(3),当∠ABA'=30°时,∠DEA'=30°,由折叠的性质可知,AE=A'E, A'B=AB=4,过点A'作FG ⊥BC 于点G,交AD 于点F,则FG=AB=4.∵AB ∥FG,∴∠BA'G=∠ABA'=30°, ∴BG=12A'B=2.∵tan ∠BA'G=BG A'G =√33,∴A'G=2√3,∴A'F=FG-A'G=4-2√3.在Rt △A'EF 中,sin ∠FEA'=A'F A'E =12,∴AE=A'E=8-4√3.综上所述,AE 的长为43√3,4√3或(8-4√3)cm.图(1) 图(2)图(3)课时二:菱形的判定与性质基础分点练 1.AD=DC(答案不唯一)2.是 如图,∵AB ∥CD,AD ∥BC,∴四边形ABCD 是平行四边形.过点A 作AE ⊥BC 于点E,AF ⊥DC 于点F,∵两张纸条等宽,∴AE=AF,又S ▱ABCD =BC·AE=DC·AF,∴BC=DC,∴四边形ABCD 是菱形.3.略4.C 由四边形ABCD 是菱形,得AB=AD,∠B=∠D.选项A 中,由∠BAF=∠DAE,得∠BAE=∠DAF,故△ABE ≌△ADF.选项B 中,由EC=FC,得BE=DF,∴△ABE ≌△ADF.选项C 中,添加条件AE=AF,不能保证△ABE 和△ADF 一定全等.选项D 中,由BE=DF,易得△ABE ≌△ADF.故选C.5.B 如图,∵菱形ABCD 的周长为16,高为2,∴AB=4,AH=2.在Rt △ABH 中,sin B=AH AB =24=12,∴∠B=30°. ∵AB ∥CD,∴∠C=150°,∴∠C ∶∠B=5∶1.6.A ∵四边形ABCD 是菱形,OA=6,∴AC=2OA=12,OB=OD.又DH ⊥AB,∴OH=12BD.∵S 菱形ABCD =48,∴12AC·BD=48,∴BD=8,∴OH=4. 7.B ∵四边形ABCD 是菱形,O 是对角线BD 的中点,∴AO ⊥BD,AD=AB=4,AB ∥DC.又∵∠BAD=120°, ∴∠CDB=∠ABD=∠ADB=30°,∴AO=12AD=2,∴DO=√AD 2-AO 2=2√3.又OE ⊥CD,∴OE=12OD=√3, DE=√32OD=3, ∴四边形AOED 的周长为AO+OE+DE+AD=2+√3+3+4=9+√3.8.B ∵四边形ABCD 是菱形,∴OC=12AC=4,OD=12BD=3,∠COD=90°.在Rt △OCD 中,根据勾股定理可知,CD=√OD 2+OC 2=5.∵∠EOC=∠ECO,∠EOC+∠EOD=90°,∠ECO+∠EDO=90°,∴∠EOD=∠EDO,∴DE=OE.又OE=CE,∴DE=OE=CE,∴OE=12CD=52.9.B 方法一:如图(1),连接OE.∵四边形ABCD 是菱形,∴AC ⊥BD,AO=OC,BO=DO, ∴S △BOC =S △AOB =S △AOD = S △DOC = 14S.由点E 是BC 的中点,EF ⊥BD,EG ⊥AC,∠BOC=90°,易知点F 是BO 的中点,点G 是CO 的中点, S △BOE = S △COE =12S △BOC ,∴S △OEF =12S △BOE ,S △OEG =12S △COE ,∴S 四边形EFOG = S △OEF +S △OEG =12S △BOE +12S △COE =12S △BOC =18S,故选B.图(1) 图(2)方法二:如图(2),连接FG.∵四边形ABCD 是菱形,∴AC ⊥BD,AO=OC,BO=DO,∴S △BOC =S △AOB =S △AOD =S △DOC =14S.由点E 是BC 的中点,EF ⊥BD,EG ⊥AC,∠BOC=90°,易知点F 是BO 的中点,点G 是CO 的中点,∴FG 是△OBC 的中位线,∴FG ∥BC,FG=12BC,∴△OFG ∽△OBC,∴S △OFG =14S △OBC =116S.易知S △OFG =S △EFG =12S 四边形EFOG ,∴S 四边形EFOG =2S △OFG =18S.故选B.10.45° 设尺规作图所作直线与AB 交于点F,由尺规作图可知,EF 是线段AB 的垂直平分线,∴AE=BE,∴∠A=∠EBA=30°.由菱形的性质可知AB=AD,∴∠ABD=∠ADB=75°,∴∠EBD=∠ABD-∠EBA=75°-30°=45°. 11.2√7 在线段BC 上取点F,使CF=AE=2,如图,则EF 平分菱形ABCD 的面积,理由:∵四边形ABCD 为菱形,∴AD ∥BC,AD=BC=AB=6,∴DE=BF=6-2=4.过点A 作AG ⊥BC 于点G,过点E 作EH ⊥BC 于点H,则四边形AGHE 是矩形,∴AG=EH,GH=AE=2.∵S 梯形ABFE =12(AE+BF)·AG,S 梯形EFCD =12(CF+DE)·EH,∴S 梯形ABFE =S 梯形EFCD ,即EF 平分菱形ABCD 的面积.∵在Rt △ABG 中,AG=ABsin B=6×√32=3√3,BG=ABcos B=6×12=3, ∴EH=AG=3√3, CH=BC-BG-GH=1,∴FH=CF-CH=1,∴在Rt △EFH 中,EF=√FH 2+EH 2=√12+(3√3)2=2√7.12.略全国视野创新练B 连接AC,由对角线互相平分的四边形为平行四边形可知,点E 在运动过程中,四边形AECF 始终为平行四边形.特殊地,当EF ⊥AC 时,四边形AECF 为菱形,当点E 与点B 重合时,四边形AECF 是矩形.故四边形AECF 的形状依次为平行四边形→菱形→平行四边形→矩形.故选B.课时三:正方形的性质和判定基础分点练1.A 由作图痕迹可知MA=MB=NA=NB,∴四边形MANB 是菱形,故可添加条件AB=MN 或AO=MO.2.D 对角线互相垂直且平分的四边形是菱形,不是正方形.故选D.3.D ∵点O 为BD 的中点,∴OB=OD.∵四边形ABCD 为平行四边形,∴DC ∥AB,∴∠FDO=∠EBO,∠DFO=∠OEB,∴△FDO ≌△EBO,∴OE=OF,∴四边形DEBF 为平行四边形,故选项A 中的结论成立.对于选项B,当AE=3.6时,∵AB=10,AD=6,∴AE AD =35,AD AB =35,∴AE AD =AD AB ,又∵∠DAE=∠BAD, ∴△DAE ∽△BAD,∴∠AED=∠ADB=90°,∴∠DEB=90°,∴▱DEBF 为矩形.故选项B 中的结论成立.对于选项C,当AE=5时,∵AB=10,∴BE=5,又∵∠ADB=90°,∴DE=12AB=5,∴DE=BE,∴▱DEBF 为菱形.故选项C 中的结论成立.对于选项D,当AE=4.8时,∠DEB ≠90°,∴四边形DEBF 不是正方形.故选D.4.B 根据题意可知菱形ABC'D'的AB 边上的高等于AB 的一半,所以菱形ABC'D'的面积为12AB 2,正方形ABCD 的面积为AB 2,故菱形ABC'D'的面积与正方形ABCD 的面积之比是12.故选B.5.C ∵四边形ABCD 是正方形,∴AB=AD,∠BAD=90°.∵△ABE 是等边三角形,∴AB=AE,∠BAE=∠AEB=60°, ∴AD=AE.在△ADE 中,AD=AE,∠DAE=∠BAD+∠BAE=90°+60°=150°,∴∠AED=12(180°-150°)=15°,∴∠BED=∠AEB-∠AED=60°-15°=45°.故选C.6.A 连接BD,在等腰直角三角形ABD 中,BD=√2AB=6√2.根据点M,N 分别是DQ,BQ 的中点可得,MN 是△BDQ 的中位线,所以MN=12BD=3√2.故选A.。

2021年中考数学复习第8讲 不等式(组)的解法及不等式的应用(教学课件)

2021年中考数学复习第8讲 不等式(组)的解法及不等式的应用(教学课件)
由①得,x≥-3, 由②得,x<2, 不等式组的解集是-3≤x<2, 它的整数解为:-3,-2,-1,0,1, 所以,所有整数解的和为-5.
重点题型
1.(2020·吉林)不等式3x+1>7的解集为
3x-2<x,① 2.(2020·湖州)解不等式组13x<-2.②
x>2
3x-2<x,① 解:13x<-2.② 解①得 x<1; 解②得 x<-6. 所以,不等式组的解集为 x<-6.
(1)求这两种书的单价;
(2)若购买《北上》的数量不少于所购买《牵风记》数量的一半 ,且购买两种书的总价不超过1600元.请问有哪几种购买方案 ?哪种购买方案的费用最低?最低费用为多少元?
重点题型
题题组组训训练练
解:(1)购买《北上》的单价为35元,《牵风记》的单价为30元;
(2)设购买《北上》的数量 n 本,则购买《牵风记》的 数量为(50-n)本,
题题组组训训练练

重重点点题题型型
题 型 二 应用一元一次不等式(组)解决问题
题组训练
例3.(2020·哈尔滨)昌云中学计划为地理兴趣小组购买大、小两种 地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买 2个大地球仪和1个小地球仪需用132元. (1)求每个大地球仪和每个小地球仪各多少元? (2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960 元,那么昌云中学最多可以购买多少个大地球仪?
精讲释疑
重重点点题题型型
题组训练
题 型 一 解一元一次不等式(组)
例1.(2020·嘉兴)不等式3(1-x)>2-4x的解在数轴上表示正确的 是( A )
重重点点题题型型
题组训练
4(x+1)≤7x+13,
例 2.(2020·枣庄)解不等式组x-4<x-3 8,

备考2021年中考数学二轮复习:统计与概率_概率_概率公式,综合题专训及答案

备考2021年中考数学二轮复习:统计与概率_概率_概率公式,综合题专训及答案

备考2021年中考数学二轮复习:统计与概率_概率_概率公式,综合题专训及答案备考2021中考数学二轮复习:统计与概率_概率_概率公式,综合题专训1、(2019巴彦淖尔.中考真卷) 某校为了解九年级学生的体育达标情况,随机抽取名九年级学生进行体育达标项目测试,测试成绩如下表,请根据表中的信息,解答下列问题:(1)该校九年级有名学生,估计体育测试成绩为分的学生人数;(2)该校体育老师要对本次抽测成绩为分的甲、乙、丙、丁名学生进行分组强化训练,要求两人一组,求甲和乙恰好分在同一组的概率.(用列表或树状图方法解答)2、(2020通辽.中考模拟) 如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).3、(2019苏州.中考模拟) 小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位: )并绘制了样本的频数分布表和频数分布直方图(如图) .月均用水量(单位: )频数百分比24%1224%4 且小于7 ”从月均用水量在 , 这两个范围内的样本家庭中任意抽取中信息解答下列问题:1;请你根据以上信息,回答下列问题:(1)统计表中m的值为,统计图中n的值为,A类对应扇形的圆心角为度;(2)该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数;(3)样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生.从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.7、(2020温州.中考模拟) 随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率.8、(2019桐乡.中考模拟) 2017年9月,我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读,某校对A《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.9、(2019云南.中考真卷) 甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.10、(2019宁夏回族自治区.中考真卷) 为了创建文明城市,增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.学生垃圾类别厨余垃圾√√√√√√√√可回收垃圾√×√××√√√有害垃圾×√×√√××√其他垃圾×√√××√√√(1)求8名学生中至少有三类垃圾投放正确的概率;(2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果.11、(2020自贡.中考真卷) 某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪;B:环境保护;C;卫生保洁;D:垃圾分类 ”四个主题,每个学生选一个主题参与;为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.(1)本次调查的学生人数是 ________ 人, = ________ ;(2)请补全条形统计图;(3)学校要求每位同学从星期一至星期五选择两天参加活动,如果小张同学随机选择连续两天,其中有一天是星期一的概率是 ________ ;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中一天是星期三的概率是________.12、(2020瑶海.中考模拟) 为调查某市市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“ :自行车,:家庭汽车,:公交车,:电动车,:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中,一共调查了名市民;扇形统计图中,项对应的扇形圆心角是 .(2)补全条形统计图.(3)若甲上班时从A、B、C三种交通工具中随机选择一种,乙上班时从B、C、D三种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人都不选种交通工具上班的概率.13、(2020赤峰.中考真卷) 如图1,一枚质地均匀的正四面体骰子,它有四个面,并分别标有1,2,3,4四个数字;如图2,等边三角形ABC的三个顶点处各有-个圆圈.丫丫和甲甲想玩跳圈游戏,游戏的规则为:游戏者从圜A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)丫丫随机掷一次骰子,她跳跃后落回到圈A的概率为________;(2)丫丫和甲甲一起玩眺圈游戏: 丫丫随机投掷一次骰子,甲甲随机投掷两次骰子,都以最终落回到圈A为胜者.这个游戏规则公平吗?请说明理由.14、(2020山西.中考真卷) 年国家提出并部署了“新基建”项目,主要包含“特高压,城际高速铁路和城市轨道交通,基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩”等.《新基建中高端人才市场就业吸引力报告》重点刻画了“新基建”中五大细分领域(基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩)总体的人才与就业机会.下图是其中的一个统计图.请根据图中信息,解答下列问题:(1)填空:图中年“新基建”七大领域预计投资规模的中位数是________亿元;(2)甲,乙两位待业人员,仅根据上面统计图中的数据,从五大细分领域中分别选择了“ 基站建设”和“人工智能”作为自己的就业方向,请简要说明他们选择就业方向的理由各是什么;(3)小勇对“新基建”很感兴趣,他收集到了五大细分领域的图标,依次制成编号为,,,,的五张卡片(除编号和内容外,其余完全相同),将这五张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是编号为(基站建设)和(人工智能)的概率.15、(2020宿州.中考模拟) 某中学准备举办一次演讲比赛,每班限定两人报名,初三(1)班的三位同学(两位女生,一位男生)都想报名参加,班主任李老师设计了一个摸球游戏,利用已学过的概率知识来决定谁去参加比赛,游戏规则如下:在一个不透明的箱子里放3个大小质地完全相同的乒乓球,在这3个乒乓球上分别写上、、(每个字母分别代表一位同学,其中、分别代表两位女生,代表男生),搅匀后,李老师从箱子里随机摸出一个乒乓球,不放回,再次搅匀后随机摸出第二个乒乓球,根据乒乓球上的字母决定谁去参加比赛。

2021年九年级数学中考复习专题:反比例函数综合(考察坐标、取值范围、面积等)(四)

2021年九年级数学中考复习专题:反比例函数综合(考察坐标、取值范围、面积等)(四)

2021年九年级数学中考复习专题:反比例函数综合(考察坐标、取值范围、面积等)(四)1.如图1,在平面直角坐标系中,已知△ABC,∠ABC=90°,∠ACB=30°,顶点A 在第二象限,B,C两点在x轴的负半轴上(点C在点B的右侧),BC=2,△ACD与△ABC关于AC所在的直线对称.(1)当OC=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OC的长;(3)如图2,将第(2)题中的四边形ABCD向左平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P,问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.2.如图1,A(1,0)、B(0,2),双曲线y=(x>0)(1)若将线段AB绕A点顺时针旋转90°后B的对应点恰好落在双曲线y=(x>0)上①则k的值为;②将直线AB平移与双曲线y=(x>0)交于E、F,EF的中点为M(a,b),求的值;(2)将直线AB平移与双曲线y=(x>0)交于E、F,连接AE.若AB⊥AE,且EF =2AB,如图2,直接写出k的值.3.如图1,在平面直角坐标系xOy中,函数y=(m为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C,D两点.(1)求∠OCD的度数;(2)如图2,连接OQ、OP,当∠DOQ=∠OCD﹣∠POC时,求此时m的值;(3)如图3,点A,点B分别在x轴和y轴正半轴上的动点.再以OA、OB为邻边作矩形OAMB.若点M恰好在函数y=(m为常数,m>1,x>0)的图象上,且四边形BAPQ为平行四边形,求此时OA、OB的长度.4.如图,在四边形ABCD中,AB=BC=5,AD=DC=8,对角线BD=3+4,点B在y轴上,BD与x轴平行,点C在x轴上.(1)求∠ADC的度数.(2)点P在对角线BD上,点Q在四边形ABCD内且在点P的右边,连接AP、PQ、QC,已知AP=AQ,∠APQ=60°,设BP=m.①求CQ的长(用含m的代数式表示);②若某一反比例函数图象同时经过点A、Q,求m的值.5.已知一次函数y1=kx+n(n<0)和反比例函数y2=(m>0,x>0).(1)如图1,若n=﹣2,且函数y1、y2的图象都经过点A(3,4).①求m,k的值;②直接写出当y1>y2时x的范围;(2)如图2,过点P(1,0)作y轴的平行线l与函数y2的图象相交于点B,与反比例函数y3=(x>0)的图象相交于点C.①若k=2,直线l与函数y1的图象相交点D.当点B、C、D中的一点到另外两点的距离相等时,求m﹣n的值;②过点B作x轴的平行线与函数y1的图象相交于点E.当m﹣n的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.6.如图,四边形OABC为矩形,点B坐标为(4,2),A,C分别在x轴,y轴上,点F 在第一象限内,OF的长度不变,且反比例函数y=经过点F.(1)如图1,当F在直线y=x上时,函数图象过点B,求线段OF的长.(2)如图2,若OF从(1)中位置绕点O逆时针旋转,反比例函数图象与BC,AB相交,交点分别为D,E,连结OD,DE,OE.①求证:CD=2AE.②若AE+CD=DE,求k.③设点F的坐标为(a,b),当△ODE为等腰三角形时,求(a+b)2的值.7.如图,二次函数与反比例函数的图象有公共点A(﹣2,5),▱ABCD的顶点B(﹣5,p)在双曲线上,C、D两点在抛物线上(点C在y轴负半轴,点D在x轴正半轴)(1)求直线AB的表达式及C、D两点的坐标;(2)第四象限的抛物线上是否存在点E,使得四边形ACED的面积最大,若存在,求出点E的坐标和面积的最大值,不存在,说明理由.8.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0)、D(﹣7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒2个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在y轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.9.如图所示,在平面直角坐标系Oxy中,等腰△OAB的边OB与反比例函数y=(m >0)的图象相交于点C,其中OB=AB,点A在x轴的正半轴上,点B的坐标为(2,4),过点C作CH⊥x轴于点H.(1)已知一次函数的图象过点O,B,求该一次函数的表达式;(2)若点P是线段AB上的一点,满足OC=AP,过点P作PQ⊥x轴于点Q,连结OP,记△OPQ的面积为S△OPQ,设AQ=t,T=OH2﹣S△OPQ①用t表示T(不需要写出t的取值范围);②当T取最小值时,求m的值.10.如图,点P在曲线上,PA⊥x轴于点A,点B在y轴正半轴上,PA=PB,OA、OB的长是方程t2﹣8t+12=0的两个实数根,且OA>OB,点C是线段PB延长线上的一个动点,△ABC的外接圆⊙M与y轴的另一个交点是D.(1)填空:OA=;OB=;k=;(2)设点Q是⊙M上一动点,若圆心M在y轴上且点P、Q之间的距离达到最大值,则点Q的坐标是;(3)试问:在点C运动的过程中,BD﹣BC的值是否为定值?若是,请求出该定值;若不是,请给出合理的解释.参考答案1.解:(1)∵△ADC与△ABC关于AC所在的直线对称,∴CD=BC=2,∠ACD=∠ACB=30°,如图1,过点D作DE⊥BC于点E,∵∠DCE=60°,∴,∵OC=2,∴OE=3,∴;(2)设OC=m,则OE=m+1,OB=m+2在Rt△ABC中,∠ACB=30°,BC=2,∴,∴,∵A,D在同一反比例函数上,∴,解得:m=1,∴OC=1;(3)由(2)得:∴,∵四边形A1B1C1D1由四边形ABCD平移得到,∴,∵D1在反比例函数上,∴同理:,,∴,∴,∵x P=x A=﹣3,P在反比例函数上,∴,①若P为直角顶点,则A1P⊥DP,过点P作l1⊥y轴,过点A1作A1F⊥l1,过点D作DG⊥l1,则△A1PF∽△PDG,,解得:;②若D为直角顶点,则A1D⊥DP,过点D作l2⊥x轴,过点A1作A1H⊥l2,则△A1DH∽△DPG,,,解得:k=0(舍),综上:存在.2.解:(1)设旋转后点B的对应点为点C,过点C作CD⊥x轴于点D,如图所示∵∠BAC=90°,∴∠BAO+∠CAD=90°,∵∠BAO+∠ABO=90°,∴∠ABO=∠CAD,在△OAB和△DCA中,,∴△OAB≌△DCA(AAS),∴CD=OA=1,AD=OB=2,∴OD=OA+AD=3,∴C(3,1),把C(3,1)代入y=中,得k=3,故答案为:3;(2)直线AB表达式中的k值为﹣2,AB∥EF,则直线EF表达式中的k值为﹣2,设点E(m,n),mn=3,直线EF的表达式为:y=﹣2x+t,将点E坐标代入上式并解得,直线EF的表达式为y=﹣2x+2m+n,将直线EF表达式与反比例函数表达式联立并整理得:2x2﹣(2m+n)x+3=0,x1+x2=,x1x2=,则点F(n,),则a=(),b=(n+),===2;(3)故点E作EH⊥x轴交于点H,由(1)知:△ABO∽△EHA,∴,设EH=m,则AH=2m,则点E(2m+1,m),且k=m(2m+1)=2m2+m,直线AB表达式中的k值为﹣2,AB∥EF,则直线EF表达式中的k值为﹣2,设直线EF的表达式为:y=﹣2x+b,将点E坐标代入并求解得:b=5m+2,故直线EF的表达式为:y=﹣2x+5m+2,将上式与反比例函数表达式联立并整理得:2x2﹣(5m+2)x+3=0,用韦达定理解得:x F+x E=,则x F=,则点F(m,4m+2),则EF==2AB=2×,整理得:3m2+4m﹣4=0,解得:m=或﹣2(舍去负值),k=m(2m+1)=2m2+m=.3.解:(1)设直线PQ的解析式为y=kx+b,则有,解得,∴y=﹣x+m+1,令x=0,得到y=m+1,∴D(0,m+1),令y=0,得到x=m+1,∴C(m+1,0),∴OC=OD,∵∠COD=90°,∴∠OCD=45°.(2)如图2,过Q作QM⊥y轴于M,过P作PN⊥OC于N,过O作OH⊥CD于H,∵P(m,1)和Q(1,m),∴MQ=PN=1,OM=ON=m,∵∠OMQ=∠ONP=90°,∴△OMQ≌△ONP(SAS),∴OQ=OP,∠DOQ=∠POC,∵∠DOQ=∠OCD﹣∠POC,∠OCD=45°,∴∠DOQ=∠POC=∠QOH=∠POH=22.5°,∴MQ=QH=PH=PN=1,∵∠OCD=∠ODC=45°,∴△DMQ和△CNP都是等腰直角三角形,∴DQ=PC=,∵OC=OD=m+1,∴CD=OC=,∵CD=DQ+PQ+PC,∴=2+2,∴m=+1;(3)如图3,∵四边形BAPQ为平行四边形,∴AB∥PQ,AB=PQ,∴∠OAB=45°,∵∠AOB=90°,∴OA=OB,∴矩形OAMB是正方形,∵点M恰好在函数y=(m为常数,m>1,x>0)的图象上,∴M(,),即OA=OB=,∵AB=PQ,∴,解得:m=或(舍),∴OA=OB====.4.解:(1)连接AC交BD于点H,∵AB=BC,AD=DC,BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BH是等腰三角形ABC的高,即BH⊥AC,即BD是AC的中垂线,设HD=x,则BH=4+3﹣x,AH2=AB2﹣BH2=AD2﹣DH2,即82﹣x2=52﹣(3+4﹣x)2,解得:x=,cos∠ADB===,故∠ADB=30°BD是AC的中垂线,则∠ADB=30°=∠CDB,故∠ADC=2∠ADB=60°;(2)①连接AQ、QD、PC,∵∠APQ=60°,AP=AQ,∴△APQ为等边三角形,故∠PAQ=60°=∠PAC+∠HAQ,同理△ACD是边长为8的等边三角形,∴∠CAD=60°=∠HAQ+∠QAD,∴∠PAC=∠QAD,而AP=AQ,AD=AC,∴△ACP≌△ADQ(SAS),∵BD是AC的中垂线,故PA=PC,则△ACP为等腰三角形,∴△AQD也为等腰三角形,即AQ=QD,而AC=CD(△ACD为等边三角形),CQ=CQ,∴△ACQ≌△DCQ(SSS),故∠ACQ=∠DCQ,在△CAD中,延长CQ交AD于点K,∵AC=CD,则CK⊥AD,∴∠AKQ=90°∵∠AKQ=90°=∠AHP,∠QAK=∠PAH,PA=AQ,∴△AKQ≌△QHP(AAS),∴QK=PH,过点D作DR⊥x轴交于点R,BD∥x轴,故∠BDC=∠DCR=30°,DR=CD=8×=4=CH=OB,而BC=5,故OC=3=BH,故点C(3,0),PH=BH=BP=3﹣m=QK,在等边三角形ACD中,AD边上的高CK=CD sin∠CDA=8×sin60°=4,则CQ=CK﹣QK=4﹣3+m;②过点Q分别作x、y轴的垂线,垂足为M、N,∵AK是等边三角形CDA的高,则∠KCD=30°,而∠DCR=30°,故∠QCR=60°,QM=CQ sin∠QCM=CQ sin60°=CQ,CM=CQ,故点Q(3+CQ,CQ),点C(3,0),CH=4,故点A(3,8),反比例函数图象同时经过点A、Q,则3×8=(3+CQ)×CQ,而CQ=4﹣3+m,即m2+24m+39﹣96=0,解得:m=﹣4(不合题意值已舍去).5.解:(1)①将点A的坐标代入一次函数表达式并解得:k=2,将点A的坐标代入反比例函数得:m=3×4=12;②由图象可以看出x>3时,y1>y2;(2)①当x=1时,点D、B、C的坐标分别为(1,2+n)、(1,m)、(1,n),则BD=|2+n﹣m|,BC=m﹣n,DC=2+n﹣n=2则BD=BC或BD=DC或BC=CD,即:|2+n﹣m|=m﹣n或|2+n﹣m|=2或m﹣n=2,即:m﹣n=1或0或2或4,当m﹣n=0时,m=n与题意不符,点D不能在C的下方,即BC=CD也不存在,n+2>n,当B、D重合时,m﹣n=2成立,故m﹣n=1或4或2;②点E的横坐标为:,当点E在点B左侧时,d=BC+BE=m﹣n+(1﹣)=1+(m﹣n)(1﹣),m﹣n的值取不大于1的任意数时,d始终是一个定值,当1﹣=0时,此时k=1,从而d=1.当点E在点B右侧时,同理BC+BE=(m﹣n)(1+)﹣1,当1+=0,k=﹣1时,(不合题意舍去)故k=1,d=1.6.解:(1)∵F在直线y=x上∴设F(m,m)∵y=经过点B(2,4).∴k=8.∵F(m,m)在反比例函数的图象上,∴m2=8∴m=2(负值已舍去).∴由两点间的距离公式可知:OF==4.(2)①∵函数y=的图象经过点D,E∴OC•CD=OA•AE=k.∵OC=2,OA=4,∴CD=2AE.②由①得:CD=2AE∴可设:CD=2n,AE=n∴DE=CD+AE=3n,BD=4﹣2n,BE=2﹣n在Rt△EBD,由勾股定理得:DE2=BD2+BE2,∴9n2=(4﹣2n)2+(2﹣n)2.解得n=,∴k=4n=6﹣10.③CD=2c,AE=c当OD=DE时,22+4c2=(4﹣2c)2+(2﹣c)2,∴c=10﹣2,∴k=4c=40﹣8.(a+b)2=a2+b2+2ab=16+2k=96﹣16.当若OE=DE时,16+c2=(4﹣2c)2+(2﹣c)2,∴c=.∴k=4c=10﹣2.∴(a+b)2=a2+b2+2ab=16+2k=36﹣4.当OE=OD时,4+4c2=16+c2,解得c=2.此时点D与点E重合,故此种情况不存在.综上所述,(a+b)2的值为96﹣16或36﹣4.7.解:(1)设反比例函数的解析式为y=.∵它图象经过点A(﹣2,5)和点B(﹣5,p),∴5=,∴k=﹣10,∴反比例函数的解析式为y=﹣,∴P=﹣=2,∴点B的坐标为(﹣5,2),设直线AB的表达式为y=mx+n,则,∴,∴直线AB的表达式为y=x+7.由▱ABCD中,AB∥CD,设CD的表达式为y=x+c,∴C(0,c),D(﹣c,0),∵CD=AB,∴CD2=AB2,∴c2+c2=(﹣5+2)2+(2﹣5)2,∴c=﹣3,∴点C、D的坐标分别是(0,﹣3)、(3,0).(2)设二次函数的解析式为y=ax2+bx﹣3,,∴,∴二次函数的解析式为y=x2﹣2x﹣3,假设第四象限的抛物线上存在点E,使得△CDE的面积最大.设E(k,k2﹣2k﹣3),则F(k,k﹣3),过点E作x轴的垂线交CD于点F,则S△CDE=S△EFC+S△EFD=•EF•OD=•[(k﹣3)﹣(k2﹣2k﹣3)]=﹣(k2﹣3k)=﹣(k﹣)2+,所以,当k=时,△CDE的面积最大值为,此时点E的坐标为(,﹣).∵A(﹣2,5),C(0,﹣3),D(3,0),∴△ACD的面积为定值,∵直线AD的解析式为y=﹣x+3,∴直线AD交y轴于K(0,3),∴S△ACD=S△ACK+S△CKD=×6×2+×6×3=15,∴四边形ACED的面积的最大值为15+=.8.解:(1)过点B、D分别作BE⊥x轴、DF⊥x轴交于点E、F,∵∠DAF+∠BAE=90°,∠DAF+∠FDA=90°,∴∠FDA=∠BAE,又∠DFA=∠AEB=90°,AD=AB,∴△DFA≌△AEB(AAS),∴DF=AE=3,BE=AF=1,∴点B坐标为(﹣3,1),故答案为(﹣3,1);(2)t秒后,点D′(﹣7+2t,3)、B′(﹣3+2t,1),则k=(﹣7+2t)×3=(﹣3+2t)×1,解得:t=,则k=6,则点D′(2,3)、B′(6,1);(3)存在,理由:设:点Q(m,n),点P(0,s),mn=6,①当BD为平行四边形一条边时,图示平行四边形B′D′QP,点B′向左平移4个单位、向上平移2个单位得到点D′,同理点Q(m,n)向左平移4个单位、向上平移2个单位为(m﹣4,n+2)得到点P (0,s),即:m﹣4=0,n+2=s,mn=6,解得:m=4,n=,s=,故点Q(4,)、点P(0,);②当BD为平行四边形对角线时,图示平行四边形D′Q′B′P′,B′、D′中点坐标为(4,2),该中点也是P′Q′的中点,即:4=,=2,mm=6,解得:m=8,n=,s=,故点Q′(8,)、P′(0,);故点Q的坐标为:Q(4,)或(8,),点P的坐标为P(0,)(0,).9.解:(1)将点O、B的坐标代入一次函数表达式:y=kx得:4=2k,解得:k=2,故一次函数表达式为:y=2x,(2)①过点B作BM⊥OA,则∠OCH=∠QPA=∠OAB=∠ABM=α,则tanα=,sinα=,∵OB=AB,则OM=AM=2,则点A(4,0),设:AP=a,则OC=a,在△APQ中,sin∠APQ===sinα=,同理PQ==2t,则PA=a=t,OC=t,则点C(t,2t),T=OH2﹣S△OPQ=(OC•sinα)2﹣×(4﹣t)×2t=4t2﹣4t,②∵4>0,∴T有最小值,当t=时,T取得最小值,而点C(t,2t),故:m=t×2t=.10.解:(1)t2﹣8t+12=0,解得:t=2或6,∵OA、OB的长是方程t2﹣8t+12=0的两个实数根,且OA>OB,即OA=6,OB=2,即点A、B的坐标为(﹣6,0)、(0,2),设点P(﹣6,),由PA=PB得:36+(2+)2=()2,解得:k=﹣60,故点P(﹣6,10),故答案为:6,2,﹣60;(2)当PQ过圆心M时,点P、Q之间的距离达到最大值,tan∠ACO=,线段AB中点的坐标为(﹣3,1),则过AB的中点与直线AB垂直的直线PQ的表达式为:y=mx+n=﹣3x+n,将点(﹣3,1)的坐标代入上式并解得:n=﹣8,即点M的坐标为(0,﹣8),则圆的半径r=MB=2+8=10=MQ,过点Q作QG⊥y轴于点G,tan∠QMG=tan∠HMP===,则sin∠QMG=故GQ=MQ sin∠QMG=,MG=3,故点Q(,﹣8﹣3);故答案为:(,﹣8﹣3).(3)是定值,理由:延长PA交圆M于E,过点E作EH⊥BD于H,连接CE,DE,∵PA=PB,∴∠PAB=∠PBA,∵四边形ABCE是圆的内接四边形,∴∠PAB=∠PCE,∠PBA=∠PEC,∴∠PEC=∠PCE,∴PE=PC,∴AE=BC,∵AO⊥BD,EH⊥BD,PA⊥OA,∴四边形AOHE是矩形,∴AO=EH,AE=OH=BC,∵PA∥BD,∴=,∴,∴∠ABD=∠BDE,且∠AOB=∠EHD=90°,AO=EH,∴△AOB≌△EHD(AAS)∴OB=DH=2,∴BD﹣BC=BD﹣OH=OB+DH=4.。

2021年中考数学公式定理公式总结

2021年中考数学公式定理公式总结

2021年中考数学公式定理公式总结1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180_deg;18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60_deg;34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60_deg;的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30_deg;那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a +b =c 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a +b =c ,那么这个三角形是直角三角形48定理四边形的内角和等于360_deg;49四边形的外角和等于360_deg;50多边形内角和定理 n边形的内角的和等于(n-2)_times;180_deg;51推论任意多边的外角和等于360_deg;52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(a_times;b)_divide;267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)_divide;2 S=L_times;h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a_plusmn;b)/b=(c_plusmn;d)/d85 (3)等比性质如果a/b=c/d=_hellip;=m/n(b+d+_hellip;+n_ne;0),那么(a+c+_hellip;+m)/(b+d+_hellip;+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

专题二 方程(组)与不等式(组)-2021年中考数学暑假知识点复习(重点)

专题二 方程(组)与不等式(组)-2021年中考数学暑假知识点复习(重点)

2021年中考数学暑假重点知识点总结专题二 方程(组)与不等式(组)一、一次方程(组)1、定义定义1:含有未知数的等式叫做方程。

定义2:只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程,它的一般形式是()00ax b a +=≠。

定义3:使方程中等号左右两边相等的未知数的值叫做方程的解。

定义4:含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程,它的一般形式是()00,0ax by c a b ++=≠≠。

定义5:把两个方程合在一起,就组成了方程组。

定义6:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,这样的方程组叫做二元一次方程组。

定义7:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

定义8:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

2、等式的性质性质1:若a =b ,则a ±c =b ±c 。

等式两边加(或减)同一个数(或式子),结果仍相等。

性质2:若a =b ,则ac =bc ;a b c c=(c ≠0)。

等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

3、解一元一次方程的一般步骤①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。

4、解二元一次方程组的方法①代入消元法;②加减消元法。

代入消元法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这种方法叫做代入消元法,简称代入法。

加减消元法:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。

这种方法叫做加减消元法,简称加减法。

5、方程(组)与实际问题解有关方程(组)的实际问题的一般步骤:第1步:审题。

认真读题,分析题中各个量之间的关系。

(2021年整理)中考数学知识点总结(推荐完整)

(2021年整理)中考数学知识点总结(推荐完整)

中考数学知识点总结(完整版)(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(中考数学知识点总结(完整版)(推荐完整))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为中考数学知识点总结(完整版)(推荐完整)的全部内容。

中考数学知识点总结(完整版)(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望中考数学知识点总结(完整版)(推荐完整)这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <中考数学知识点总结(完整版)(推荐完整)〉这篇文档的全部内容。

中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征. 2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1。

101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

2021年中考数学真题 规律探究题-(解析版)

2021年中考数学真题 规律探究题-(解析版)

2021年中考数学真题分项汇编【全国通用】(第01期)31规律探究题一、单选题1.(2021·湖北鄂州市·中考真题)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于( ) A .23- B .13C .12-D .23【答案】D 【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值. 【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现是以:213,,32-,循环出现的规律, 202136732=⨯+,2021223a a ∴==, 故选:D . 【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.2.(2021·湖北中考真题)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A.2025B.2023C.2021D.2019【答案】B【分析】根据数字的变化关系发现规律第n行,第n列的数据为:2n(n-1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.【详解】解:观察数字的变化,发现规律:第n行,第n列的数据为:2n(n-1)+1,∴第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∴第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B.【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题.3.(2021·山东济宁市·中考真题)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是()A .23B .511C .59D .12【答案】D 【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案. 【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+ 当3n =时的分子为5,分母为23110+=∴这个数为51102= 故选:D . 【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.4.(2021·湖北中考真题)根据图中数字的规律,若第n 个图中的143q =,则p 的值为( )A .100B .121C .144D .169【答案】B 【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可. 【详解】解:根据图中数据可知:1,2,3,4n =,…… 22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-, ∴第n 个图中的143q =, ∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去) ∴2=121p n =, 故选:B . 【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键. 5.(2021·山东临沂市·中考真题)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg 镭缩减为1mg 所用的时间大约是( )A .4860年B .6480年C .8100年D .9720年【答案】C 【分析】根据物质所剩的质量与时间的规律,可得答案. 【详解】 解:由图可知:1620年时,镭质量缩减为原来的12,再经过1620年,即当3240年时,镭质量缩减为原来的21142=, 再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的31182=, ...,∴再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的511232=, 此时132132⨯=mg , 故选C . 【点睛】本题考查了函数图象,规律型问题,利用函数图象的意义是解题关键.6.(2021·四川达州市·中考真题)在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11A OB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为( )A .()202020202,2-B .()202120212,2-C .()202020202,2D .()201120212,2-【答案】C 【分析】由题意,点A 每6次绕原点循环一周,利用每边扩大为原来的2倍即可解决问题. 【详解】解:由题意,点A 每6次绕原点循环一周,20216371......5÷=,2021A ∴点在第四象限,202120212OA =,202160xOA ∠=︒ ,∴点2020A 的横坐标为20212020122=2⨯,纵坐标为20212020=22-,()2020202020212,2A ∴,故选:C . 【点睛】本题考查坐标与图形变化-旋转,规律型问题,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.7.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=( )A .4152⨯B .4312⨯C .4332⨯D .4632⨯【答案】B 【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯, 故答案选:B . 【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题8.(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________. 【答案】12n n + 【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果. 【详解】解:根据题意可知:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+,第四项:41144162=+,…则第n 项是12n n +; 故答案为:12n n +. 【点睛】此题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键.9.(2021·陕西)幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a 的值为______.【答案】-2 【分析】先通过计算第一行数字之和得到各行、各列及各条对角线上的三个数字之和,再利用第二列三个数之和得到a 的值. 【详解】解:由表第一行可知,各行、各列及各条对角线上的三个数字之和均为1616--+=-,∴626a -++=-, ∴2a =-, 故答案为:2-. 【点睛】本题考查了数字之间的关系,解决本题的关键是读懂题意,正确提取表中数据,找到它们之间的关系等,该题对学生的观察分析能力有一定的要求,同时也考查了学生对有理数的和差计算的基本功.10.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】2m m - 【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++的和,即可计算1001011011992222++++的和. 【详解】由题意规律可得:2399100222222++++=-. ∴1002=m∴23991000222222=2m m +++++==, ∴22991001012222222+++++=-,∴10123991002222222=++++++12=2m m m m =+=.102239910010122222222+=++++++224=2m m m m m =++=.1032399100101102222222222=++++++++3248=2m m m m m m =+++=.……∴1999922m =.故10010110110199992222222m m m ++++=+++. 令012992222S ++++=①12310022222S ++++=②∴-∴,得10021S -=∴10010110110199992222222m m m ++++=+++=()100221m m m -=- 故答案为:2m m -. 【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.11.(2021·江苏扬州市·中考真题)将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【分析】首先得到前n个图形中每个图形中的黑色圆点的个数,得到第n个图形中的黑色圆点的个数为()12n n+,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【详解】解:第∴个图形中的黑色圆点的个数为:1,第∴个图形中的黑色圆点的个数为:()1222+⨯=3,第∴个图形中的黑色圆点的个数为:()1332+⨯=6,第∴个图形中的黑色圆点的个数为:()1442+⨯=10,...第n个图形中的黑色圆点的个数为()12n n+,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,其中每3个数中,都有2个能被3整除,33÷2=16...1,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275,故答案为:1275. 【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.12.(2021·甘肃武威市·中考真题)一组按规律排列的代数式:2335472,2,2,2a b a b a b a b +-+-,…,则第n 个式子是___________.【答案】()12112n n n a b +-+-⋅【分析】根据已知的式子可以看出:每个式子的第一项中a 的次数是式子的序号;第二项中b 的次数是序号的2倍减1,而第二项的符号是第奇数项时是正号,第偶数项时是负号. 【详解】解:∴当n 为奇数时,()111n +-=;当n 为偶数时,()111n +-=-,∴第n 个式子是:()1211?2n n n a b +-+-.故答案为:()1211?2n n n a b +-+- 【点睛】本题考查了多项式的知识点,认真观察式子的规律是解题的关键.13.(2021·江西中考真题)下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.【答案】3 【分析】通过观察每一个数字等于它上方相邻两数之和. 【详解】解:通过观察杨辉三角发现每一个数字等于它上方相邻两数之和的规律, 例如:第3行中的2,等于它上方两个相邻的数1,1相加, 即:211=+;第4行中的3,等于它上方两个相邻的数2,1相加, 即:321=+;⋅⋅⋅⋅⋅⋅由此规律:故空缺数等于它上方两个相邻的数1,2相加, 即空缺数为:3, 故答案是:3. 【点睛】本题考查了杨辉三角数的规律,解题的关键是:通过观察找到数与数之间的关系,从来解决问题.14.(2021·浙江嘉兴市·中考真题)观察下列等式:22110=-,22321=-,22532=-,…按此规律,则第n 个等式为21n -=__________________. 【答案】()221n n --. 【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可. 【详解】解:∴22110=-,22321=-, 22532=-,…∴第n 个等式为:()22211n n n -=--故答案是:()221n n --. 【点睛】本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题的关键.15.(2021·黑龙江中考真题)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n条直线相交最多有的交点个数公式:1(1)2n n-.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有120191902⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n条直线相交最多有1(1)2n n-.16.(2021·四川中考真题)如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n个图形需要___________根火柴棍.【答案】2n+1【分析】分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可.【详解】解:由图可知:拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,...拼成第n个图形共需要3+2×(n-1)=2n+1根火柴棍,故答案为:2n+1.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.17.(2021·四川中考真题)如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20【分析】根据已知图形得出第n个图形中黑色三角形的个数为1+2+3++n=()12n n+,列一元二次方程求解可得.【详解】解:∴第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2, 第3个图形中黑色三角形的个数6=1+2+3, 第4个图形中黑色三角形的个数10=1+2+3+4, ……∴第n 个图形中黑色三角形的个数为1+2+3+4+5++n =()12n n +,当共有210个小球时,()12102n n +=,解得:20n =或21-(不合题意,舍去), ∴第20个图形共有210个小球. 故答案为:20. 【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n .18.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n 【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n +2n ×(n -1),得出结论即可. 【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯ 第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯ 第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯ 第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯ …由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+故答案为:2n 2+2n . 【点睛】本题考查了规律型-图形的变化类,熟练找出前四个图形的规律是解题的关键. 19.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.【答案】(20212,0). 【分析】根据题目所给的解析式,求出对应的1M 坐标,然后根据规律求出n M 的坐标,最后根据题目要求求出最后答案即可. 【详解】解:如图,过点N 作NM ∴x 轴于M 将1x =代入直线解析式y x =中得1y = ∴1OM MN ==,MON ∠=45° ∴1ONM =∠90° ∴1ON NM = ∴1ON NM ⊥ ∴11OM MM ==∴1M 的坐标为(2,0)同理可以求出2M 的坐标为(4,0)同理可以求出3M 的坐标为(8,0) 同理可以求出n M 的坐标为(2n ,0) ∴2021M 的坐标为(20212,0) 故答案为:(20212,0).【点睛】本题主要考查了直线与坐标轴之间的关系,解题的关键在于能够发现规律. 20.(内蒙古呼伦贝尔2021年中考数学试卷)如图,点1B 在直线1:2l y x =上,点1B 的横坐标为2,过点1B 作11B A x ⊥轴,垂足为1A ,以11A B 为边向右作正方形1112A B C A ,延长21A C 交直线l 于点2B ;以22A B 为边向右作正方形2223A B C A ,延长32A C 交直线l 于点3B ;……;按照这个规律进行下去,点2021B 的坐标为___________.【答案】202020202019202033(,)22【分析】由题意分别求出A 1、A 2、A 3、A 4……A n 、B 1、B 2、B 3、B 4……B n 、的坐标,根据规律进而可求解. 【详解】解:∴点1B 在直线1:2l y x =上,点1B 的横坐标为2,过点1B 作11B A x ⊥轴,垂足为1A , ∴1(2,0)A ,1(2,1)B ,∴A 1B 1=1, 根据题意,OA 2=2+1=3, ∴2(3,0)A ,23(3,)2B , 同理,39(,0)2A ,399(,)24B ,427(,0)4A ,42727(,)48B ……由此规律,可得:123(,0)2n n n A --,112133(,)22n n n n n B ----,∴20211202112021202122021133(,)22B ----即2020202020212019202033(,)22B ,故答案为:202020202019202033(,)22.【点睛】本题考查一次函数的应用、正方形的性质、点的坐标规律,理解题意,结合图象和正方形的性质,探索点的坐标规律是解答的关键.21.(2021·湖北中考真题)如图,在平面直角坐标系中,动点P 从原点O 出发,水平向左平移1个单位长度,再竖直向下平移1个单位长度得到点()11,1P --;接着水平向右平移2个单位长度,再竖直向上平移2个单位长度得到点2P ;接着水平向左平移3个单位长度,再竖直向下平移3个单位长度得到点3P ;接着水平向右平移4个单位长度,再竖直向上平移4个单位长度得到点4P ,…,按此作法进行下去,则点2021P 的坐标为___________.【答案】(1011,1011)-- 【分析】先根据点坐标的平移变换规律求出点2345,,,P P P P 的坐标,再归纳类推出一般规律即可得. 【详解】解:由题意得:2(12,12)P -+-+,即2(1,1)P ,3(13,13)P --,即3(2,2)P --,4(24,24)P -+-+,即4(2,2)P , 5(25,25)P --,即5(3,3)P --,观察可知,点1P 的坐标为(1,1)--,其中1211=⨯-, 点3P 的坐标为(2,2)--,其中3221=⨯-, 点5P 的坐标为(3,3)--,其中5231=⨯-,归纳类推得:点21n P -的坐标为(,)n n --,其中n 为正整数,2021210111=⨯-,∴点2021P 的坐标为(1011,1011)--,故答案为:(1011,1011)--. 【点睛】本题考查了点坐标的平移变换规律、点坐标的规律探索,正确归纳类推出一般规律是解题关键.22.(2021·内蒙古通辽市·中考真题)如图,11OA B ,122A A B ,233A A B △…,1n n n A A B -都是斜边在x 轴上的等腰直角三角形,点1A ,2A ,3A ,…,n A 都在x 轴上,点1B ,2B ,3B ,…,n B 都在反比例函数()10y x x=>的图象上,则点n B 的坐标为__________.(用含有正整数n 的式子表示)【答案】 【分析】根据等腰直角三角形的性质,得到1B 的横,纵坐标相等,在结合反比例函数解析式求得该点的坐标,再根据等腰三角形的性质和反比例函数的解析式首先求得各个点的坐标,发现其中的规律,从而得到答案. 【详解】11OB A △为等腰三角形 ∴直线1OB 的解析式为y x =由题意得:1y x y x =⎧⎪⎨=⎪⎩解得1x =()111B ∴,1OB ∴=112OA ∴== ()12,0A ∴122A A B △为等腰三角形∴设直线12A B 的解析式为y x b =+02b ∴=+,解得2b =-∴直线12A B 的解析式为2y x =-∴21y x y x =-⎧⎪⎨=⎪⎩解得1x =)21B ∴21222B A A y ∴==∴点2A ()233A A B △为等腰三角形∴设直线23A B 的解析式为1y x b =+∴10b =解得1b =-∴直线23A B的解析式为y x =-1y x y x ⎧=-⎪⎨=⎪⎩解得x =∴3B综上可得:点()111B ,,点)21B,点3B 总结规律可得n B坐标为:故答案为: 【点睛】本题综合考查了等腰直角三角形的性质以及结合反比例函数的解析式求得点的坐标,解答本题的关键是找出其中的规律求出坐标.23.(2021·山东菏泽市·中考真题)如图,一次函数y x =与反比例函数1y x =(0x >)的图象交于点A ,过点A 作AB OA ⊥,交x 轴于点B ;作1//BA OA ,交反比例函数图象于点1A ;过点1A 作111A B A B ⊥交x 轴于点B ;再作121//B A BA ,交反比例函数图象于点2A ,依次进行下去,……,则点2021A 的横坐标为_______.【分析】由点A 是直线y x =与双曲线1y x =的交点,即可求出点A 的坐标,且可知45AOB ∠=︒,又AB AO ⊥可知AOB ∆是等腰直角三角形,再结合1BA OA //可知11BA B ∆是等腰直角三角形,同理可知图中所有三角形都是等腰直角三角形,由求2021A 的坐标,即n A 的坐标(n =1,2,3……),故想到过点2021A 作20212021A C x ⊥轴,即过n A 作n n A C x ⊥轴.设1A 的纵坐标为()10m m >,则1A 的横坐标为2m +,再利用点1A 在双曲线上即可求解1A 坐标,同理可得2021A 的坐标. 【详解】解:过n A 作n n A C x ⊥轴于点n C点A 是直线y x =与双曲线1y x =的交点1y xy x =⎧⎪∴⎨=⎪⎩解得11x y =⎧⎨=⎩ ()1,1A ∴1,45OC AC AOC ∴==∠=︒AB AO ⊥∴AOB ∆是等腰直角三角形 ∴22OB AC ==1BA OA //∴11BA B ∆是等腰直角三角形 ∴111AC BC =设1A 的纵坐标为()10m m >,则1A 的横坐标为12m + 点1A 在双曲线上∴()1121m m +=解得11m设2A 的纵坐标为()20m m >,则2A 的横坐标为12222m m m ++=∴()221m m =解得2m同理可得3m =由以上规律知:n m2021m ∴2021A∴2021A =【点睛】本题考察一次函数、反比例函数、交点坐标的求法、等腰直角三角形的性质、一元二次方程的应用和规律探究,属于综合几何题型,难度偏大.解题的关键是结合等腰直角三角形的性质做出辅助线,并在计算过程中找到规律. 24.(2021·山东中考真题)如图,点1B 在直线1:2l y x =上,点1B 的横坐标为2,过点1B 作1B l ⊥,交x 轴于点1A ,以11A B 为边,向右作正方形1121A B B C ,延长21B C 交x 轴于点2A ;以22A B 为边,向右作正方形2232A B B C ,延长32B C 交x 轴于点3A ;以33A B 为边,向右作正方形3343A B B C ,延长的43B C 交x 轴于点4A ;…;按照这个规律进行下去,则第n 个正方形1n n n n A B B C +的边长为________(结果用含正整数n 的代数式表示).132n -⎛⎫ ⎪⎝⎭【分析】根据题中条件,证明所有的直角三角形都相似且确定相似比,再具体算出前几个正方形的边长,然后再找规律得出第n 个正方形的边长. 【详解】解:点1B 在直线1:2l y x =上,点1B 的横坐标为2,∴点1B 纵坐标为1.1OB ∴==分别过1B ,14,,C C ⋅⋅⋅作x 轴的垂线,分别交于14,,,D D D ⋅⋅⋅,下图只显示一条;111111190,B DA C DB B OD A B D ∠=∠=︒∠=∠,∴111Rt B DO Rt A DB ∽类似证明可得,图上所有直角三角形都相似,有11111211112n n n nC A BD B A C A OD OB C A C A +====⋅⋅⋅=, 不妨设第1个至第n 个正方形的边长分别用:12,,,n l l l ⋅⋅⋅来表示,通过计算得:112OB l ==1211233222l l l C A =+==,2232233322l l l C A ⎛⎫=+== ⎪⎝⎭⋅⋅⋅11113322n n n n n n l l l C A ----⎛⎫=+== ⎪⎝⎭按照这个规律进行下去,则第n 个正方形1n n n n A B B C +的边长为1322n -⎛⎫⎪⎝⎭,132n -⎛⎫⎪⎝⎭.【点睛】本题考查了三角形相似,解题的关键是:利用条件及三角形相似,先研究好前面几个正方形的边长,再从中去找计算第n 个正方形边长的方法与技巧. 25.(2021·湖北中考真题)如图,过反比例函数()0,0ky k x x=>>图象上的四点1P ,2P ,3P ,4P 分别作x 轴的垂线,垂足分别为1A ,2A ,3A ,4A ,再过1P ,2P ,3P ,4P 分别作y 轴,11P A ,22P A ,33P A 的垂线,构造了四个相邻的矩形.若这四个矩形的面积从左到右依次为1S ,2S ,3S ,4S ,1122334OA A A A A A A ===,则1S 与4S 的数量关系为_____________.【答案】414S S =. 【分析】设1122334OA A A A A A A ====m ,则O 2A =2m ,O 3A =3m ,O 4A =4m ,由点1P ,2P ,3P ,4P 都在反比例函数()0,0k y k x x =>>图象上,可求得11k A P m =,222k A P m =,333kA P m=,444k A P m =,根据矩形的面积公式可得1111kOA A P k S m m=⋅=⋅=,1222222k k A A A P m m S =⋅=⋅=,2333333k k A A A P m m S =⋅=⋅=,3444444k kA A A P m m S =⋅=⋅=,由此即可得414S S =. 【详解】设1122334OA A A A A A A ====m ,则O 2A =2m ,O 3A =3m ,O 4A =4m , ∴点1P ,2P ,3P ,4P 都在反比例函数()0,0k y k x x=>>图象上,∴11k A P m =,222k A P m =,333k A P m =,444kA P m=, ∴1111k OA A P k S m m =⋅=⋅=,1222222k k A A A P m m S =⋅=⋅=,2333333k kA A A P m m S =⋅=⋅=,3444444k kA A A P m m S =⋅=⋅=,∴414S S =.故答案为:414S S =. 【点睛】本题考查了反比例函数图象上点的特征,根据反比例函数图象上点的特征求得11k A P m =、222k A P m =、333k A P m =、444kA P m=是解决问题的关键.26.(2021·四川)如图,在平面直角坐标系中,AB y ⊥轴,垂足为B ,将ABO 绕点A 逆时针旋转到11AB O 的位置,使点B 的对应点1B 落在直线34y x =-上,再将11AB O 绕点1B 逆时针旋转到112A B O 的位置,使点1O 的对应点2O 也落在直线34y x =-上,以此进行下去……若点B 的坐标为()0,3,则点21B 的纵坐标...为______.【答案】3875【分析】计算出∴AOB 的各边,根据旋转的性质,求出OB 1,B 1B 3,...,得出规律,求出OB 21,再根据一次函数图像上的点求出点B 21的纵坐标即可. 【详解】解:∴AB ∴y 轴,点B (0,3),∴OB =3,则点A 的纵坐标为3,代入34y x =-, 得:334x =-,得:x =-4,即A (-4,3),∴OB =3,AB =4,OA , 由旋转可知:OB =O 1B 1=O 2B 1=O 2B 2=…=3,OA =O 1A =O 2A 1=…=5,AB =AB 1=A 1B 1=A 2B 2=…=4, ∴OB 1=OA +AB 1=4+5=9,B 1B 3=3+4+5=12,∴OB 21=OB 1+B 1B 21=9+(21-1)÷2×12=129,设B 21(a ,34a -),则OB 21129,解得:5165a =-或5165(舍), 则335163874455a ⎛⎫-=-⨯-=⎪⎝⎭,即点B 21的纵坐标为3875,故答案为:3875.【点睛】本题考查了一次函数图象上点的坐标特征,旋转以及直角三角形的性质,求出∴OAB 的各边,计算出OB 21的长度是解题的关键.27.(2021·山东东营市·中考真题)如图,正方形1ABCB 中,AB =AB 与直线l 所夹锐角为60︒,延长1CB 交直线l 于点1A ,作正方形1112A B C B ,延长12C B 交直线l 于点2A ,作正方形2223A B C B ,延长23C B 交直线l 于点3A ,作正方形3334A B C B ,…,依此规律,则线段20202021A A =________.【答案】2020【分析】利用tan30°计算出30°角所对直角边,乘以2得到斜边,计算3次,找出其中的规律即可. 【详解】∴AB与直线l 所夹锐角为60︒,正方形1ABCB 中,AB = ∴∴11B AA =30°,∴11B A =1B A ,∴111AA -;∴11B A =1,∴122B A A =30°,∴22B A =11B A tan30°=133⨯=∴2112=2A A -⨯;∴线段20202021A A =202112020233-⨯=,故答案为:2020. 【点睛】本题考查了正方形的性质,特殊角三角函数值,含30°角的直角三角形的性质,规律思考,熟练进行计算,抓住指数的变化这个突破口求解是解题的关键. 28.(2021·黑龙江中考真题)如图,菱形ABCD 中,120ABC ∠=︒,1AB =,延长CD 至1A ,使1DA CD =,以1A C 为一边,在BC 的延长线上作菱形111A CC D ,连接1AA ,得到1ADA ∆;再延长11C D 至2A ,使1211D A C D =,以21A C 为一边,在1CC 的延长线上作菱形2122A C C D ,连接12A A ,得到112A D A ∆……按此规律,得到202020202021A D A ∆,记1ADA ∆的面积为1S ,112A D A ∆的面积为2S ……202020202021A D A ∆的面积为2021S ,则2021S =_____.【答案】40382【分析】由题意易得60,1BCD AB AD CD ∠=︒===,则有1ADA ∆为等边三角形,同理可得112A D A ∆……. 202020202021A D A ∆都为等边三角形,进而根据等边三角形的面积公式可得14S =,2S =……由此规律可得242n n S -=,然后问题可求解. 【详解】解:∴四边形ABCD 是菱形,∴1AB AD CD ===,//,//AD BC AB CD , ∴120ABC ∠=︒, ∴60BCD ∠=︒,∴160ADA BCD ∠=∠=︒, ∴1DA CD =, ∴1DA AD =,∴1ADA ∆为等边三角形,同理可得112A D A ∆……. 202020202021A D A ∆都为等边三角形, 过点B 作BE ∴CD 于点E ,如图所示:∴sin BE BC BCD =⋅∠=,∴11211244A D BE A S D =⋅==,同理可得:222212S A D ===223324S A D ===……; ∴由此规律可得:242n n S -=,∴2202144038202122S ⨯-=; 故答案为40382 【点睛】本题主要考查菱形的性质、等边三角形的性质与判定及三角函数,熟练掌握菱形的性质、等边三角形的性质与判定及三角函数是解题的关键.29.(2021·吉林长春市·中考真题)如图,在平面直角坐标系中,等腰直角三角形AOB 的斜边OA 在y 轴上,2OA =,点B 在第一象限.标记点B 的位置后,将AOB沿x 轴正方向平移至111AO B 的位置,使11A O 经过点B ,再标记点1B 的位置,继续平移至222A O B △的位置,使22A O 经过点1B ,此时点2B 的坐标为__________.【答案】()3,1 【分析】根据已知条件结合等腰直角三角形的性质先求出点B ()1,1,点1B ()2,1,即可得出点B 向右每次平移1个单位长度,而2B 为点B 向右平移2个单位后的点,根据点平移规律即可得到答案 【详解】如图过点B 作BC OA ⊥,△AOB 为等腰直角三角形,斜边OA 在y 轴上,2OA =1BC ∴=,11CO BO ==()1,1B ∴AOB 向右平移至111AO B ,点B 在11A O 上,同理可得点1B 的坐标为()2,1 AOB ∴每次向右平移1个单位,即点B 向右每次平移1个单位,2B ∴为点B 向右平移2个单位后的点2B ∴点的坐标为()3,1故答案为:()3,1 【点睛】本题考查了等腰直角三角形的性质,以及坐标与图像变换—平移,在平面直角坐标系中,图形的平移与图像上某点的平移相同,平移中点的变化规律是:横坐标右移加,左移减,纵坐标上移加,下移减.30.(2021·湖北荆门市·中考真题)如图,将正整数按此规律排列成数表,则2021是表中第____行第________列.【答案】64 5 【分析】找到第n 行第n 列的数字,找到规律,代入2021即可求解 【详解】 通过观察发现: 1=1 3=1+2 6=1+2+3 10=1+2+3+4 ……故第n 行第n 列数字为:1(1)2n n +,则第n 行第1列数字为:1(1)(1)2n n n +--,即1(1)2n n -+1设2021是第n 行第m 列的数字,则:1(1)2021()2m m n n n +=<-即24421)0(n n m +=-,可以看作两个连续的整数的乘积,2263=396964=4096,,m n ,为正整数,64n ∴=当64n =时,=5m 故答案为:64,5【点睛】本题考查了规律探索,通过观察发现特殊位置的数字之间的关系,找到规律,通过计算确定行数,再根据方程求得列数,能正确发现规律是解题的关键.31.(2021·湖南湘西土家族苗族自治州·中考真题)古希腊数学家把1,3,6,10,15,21,…这样的数叫做三角形数,因为它的规律性可以用如图表示.根据图形,若把第一个图形表示的三角形数记为11a =,第二个图形表示的三角形数记为23a =,…,则第n 个图形表示的三角形数n a =___.(用含n 的式子表达)【答案】()12n n +【分析】由题意易得11a =,2123a =+=,31236a =++=,4123410a =+++=;…..;然后由此规律可得第n 个图形表示的三角形数. 【详解】解:由图及题意可得:11a =,2123a =+=,31236a =++=,4123410a =+++=;…..∴第n 个图形表示的三角形数()112342n a n n n +=++++⋅⋅⋅⋅+=;故答案为()12n n+.【点睛】本题主要考查图形规律,解题的关键是根据给出的图形得到基本的规律,然后进行求解即可.32.(2021·内蒙古鄂尔多斯市·中考真题)将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有___________个“〇”.【答案】875【分析】设第n个“龟图”中有a n个“〇”(n为正整数),观察“龟图”,根据给定图形中“〇”个数的变化可找出变化规律“a n=n2−n+5(n为正整数)”,再代入n=30即可得出结论.【详解】解:设第n个“龟图”中有a n个“〇”(n为正整数).观察图形,可知:a1=1+2+2=5,a2=1+3+12+2=7,a3=1+4+22+2=11,a4=1+5+32+2=17,…,∴a n=1+(n+1)+(n−1)2+2=n2−n+5(n为正整数),∴a30=302−30+5=875.故答案是:875.【点睛】本题考查了规律型:图形的变化类,根据各图形中“〇”个数的变化找出变化规律“a n=n2−n+5(n为正整数)”是解题的关键.33.(2021·黑龙江绥化市·中考真题)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图①中有5个三角形,图①中有11个三角形,图①中有19个三角形…,依此规律,则第n个图形中三角形个数是_______.【答案】21n n+-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42 (2)∴上下两部分统一规律为:21+-.n n故答案为:21n n+-.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究.2021中考真题41。

初中数学-中考数学必背公式大全

初中数学-中考数学必背公式大全

初中数学-中考数学必背公式大全初中数学中考数学必背公式大全数学,这门充满逻辑与智慧的学科,在初中阶段为我们的学习之路铺上了坚实的基石。

而在中考数学中,掌握一系列重要的公式是取得好成绩的关键。

接下来,让我们一同梳理那些必背的公式,为中考数学打下坚实的基础。

一、代数部分1、实数运算(1)加法交换律:a + b = b + a(2)加法结合律:(a + b) + c = a +(b + c)(3)乘法交换律:ab = ba(4)乘法结合律:(ab)c = a(bc)(5)乘法分配律:a(b + c) = ab + ac2、整式运算(1)同底数幂的乘法:a^m × a^n = a^(m + n)(2)幂的乘方:(a^m)^n = a^(mn)(3)积的乘方:(ab)^n = a^n × b^n(4)同底数幂的除法:a^m ÷ a^n = a^(m n) (a ≠ 0)3、乘法公式(1)平方差公式:(a + b)(a b) = a^2 b^2(2)完全平方公式:(a ± b)^2 = a^2 ± 2ab + b^24、一元一次方程解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为 1。

公式:ax + b = 0 (a ≠ 0),则 x = b / a5、二元一次方程组(1)代入消元法(2)加减消元法6、一元二次方程(1)一般形式:ax^2 + bx + c = 0 (a ≠ 0)(2)求根公式:x =b ± √(b^2 4ac) /(2a)7、分式(1)分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。

(2)分式的加减:通分后进行加减运算。

(3)分式的乘除:分子乘分子,分母乘分母;除以一个分式,等于乘以它的倒数。

二、几何部分1、线段与角(1)线段的中点:若点 C 是线段 AB 的中点,则 AC = BC = 1/2 AB(2)角平分线:若射线 OC 是∠AOB 的平分线,则∠AOC =∠BOC = 1/2 ∠AOB2、相交线与平行线(1)对顶角相等(2)邻补角互补(3)平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。

2021年中考必考数学知识点归纳

2021年中考必考数学知识点归纳

中考数学知识点总结第一章 实数考点一、实数概念及分类 (3分)1、实数分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽数,如32,7等;(2)有特定意义数,如圆周率π,或化简后具有π数,如3π+8等; (3)有特定构造数,如0.…等; (4)某些三角函数,如sin60o 等考点二、实数倒数、相反数和绝对值 (3分)1、相反数实数与它相反数时一对数(只有符号不同两个数叫做互为相反数,零相反数是零),从数轴上看,互为相反数两个数所相应点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一种数绝对值就是表达这个数点与原点距离,|a|≥0。

零绝对值时它自身,也可当作它相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数不不大于零,负数不大于零,正数不不大于一切负数,两个负数,绝对值大反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于自身数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一种数平方等于a ,那么这个数就叫做a 平方根(或二次方跟)。

一种数有两个平方根,她们互为相反数;零平方根是零;负数没有平方根。

正数a 平方根记做“a ±”。

2、算术平方根正数a 正平方根叫做a 算术平方根,记作“a ”。

正数和零算术平方根都只有一种,零算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 双重非负性:-a (a <0) a ≥03、立方根如果一种数立方等于a ,那么这个数就叫做a 立方根(或a 三次方根)。

一种正数有一种正立方根;一种负数有一种负立方根;零立方根是零。

注意:33a a -=-,这阐明三次根号内负号可以移到根号外面。

(2021年整理)中考找规律专题复习讲解

(2021年整理)中考找规律专题复习讲解

对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为中考找规律专题复习讲解的全部内容。

教学目标教学重、难点浅谈初中数学中的找规律题最近两年,全国多数地市的中招考试都有找规律的题目,人们开始逐渐重视这一更有助于创新型人才的培养。

但究竟怎样才能把这种题目做好,是一个值得探究的问题,这类问题没有明确的知识方法可套,在现在的教科书上也很少触及这类问题。

这类题目主要考查学生的综合分析问题和解决问题的能力。

下面就解决这类问题作一个初步的探究。

一、代数中的规律“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把项数和项放在一起加以比较,就比较容易发现其中的奥秘.例1观察下列各式数:0,3,8,15,24,……。

试按此规律写出第100个数是___。

分析:解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。

我们把有关的量放在一起加以比较:项数:1 2 3 4 5 ……项:0,3,8,15,24,……。

容易发现,已知数的每一项,都等于它的项数的平方减1。

因此,第n 项是2n—1,第100项是21-1。

00如果题目比较复杂,或者包含的变量比较多。

解题的时候,不但考虑已知数的项数,还要考虑其他因素.例2 (1)观察下列运算并填空1×2×3×4+1=24+1=25=252×3×4×5+1=120+1=121=112请你将猜想得到的式子用含正整数n的式子表示出来__________.代数中的规律小结:1、找到题目中的不变量2、找到题目中的改变量,并认真观察改变量的变化规律3、观察与猜想结合找到变量与不变量之间的关系二、平面图形中的规律图形变化也是经常出现的,它的变化规律以代数规律为基础。

2020-2021备战中考数学备考之一元二次方程组压轴突破训练培优篇附答案解析1

2020-2021备战中考数学备考之一元二次方程组压轴突破训练培优篇附答案解析1

2020-2021备战中考数学备考之一元二次方程组压轴突破训练∶培优篇附答案解析(1)一、一元二次方程1.解方程:(x+1)(x﹣3)=﹣1.【答案】x1=1+3,x2=1﹣3【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.试题解析:整理得:x2﹣2x=2,配方得:x2﹣2x+1=3,即(x﹣1)2=3,解得:x1=1+3,x2=1﹣3.2.解方程:(2x+1)2=2x+1.【答案】x=0或x=1 2 .【解析】试题分析:根据因式分解法解一元二次方程的解法,直接先移项,再利用ab=0的关系求解方程即可.试题解析:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x(2x+1)=0,则x=0或2x+1=0,解得:x=0或x=﹣12.3.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF 的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:①∠FCD的最大度数为;②当FC∥AB时,AD= ;③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;④△FCD的面积s的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F作FH⊥AC于点H,设AD=x,由②知DH=3,FH=,则HC=.在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,∴,即,解得.④设AD=x,易知,即.而,当时,;当时,.∴△FCD的面积s的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.4.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2,解得k=2,∴当k=2时,S 的值为2∴S 的值能为2,此时k 的值为2.考点:一元二次方程根的判别式;根与系数的关系.5.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm 若存在,请求出此时x 的值;若不存在,请说明理由.【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析【解析】【分析】根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况.【详解】解:∵90B ∠=,10AC =,6BC =,∴8AB =.∴BQ x =,82PB x =-;假设存在x 的值,使得四边形APQC 的面积等于216cm , 则()1168821622x x ⨯⨯--=, 整理得:2480x x -+=,∵1632160=-=-<,∴假设不成立,四边形APQC 面积的面积不能等于216cm .【点睛】本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.6.解方程:(x +1)(x -1)=2【答案】x 123x 223【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可. 试题解析:(x +1)(x -1)=2x 2-2∵a=1,b=-c=-1∴△=b 2-4ac=8+4=12>0∴∴x1x 27.用适当的方法解下列一元二次方程:(1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1x 2=-12)y 1=-14,y 2=32. 【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1∴△=b 2-4ac=16+8=24>0∴x=2b a -±=4122-=-⨯∴x 1=-1x 2=-1 (2)(y +2)2-(3y -1)2=0[(y+2)+(3y-1)][ (y+2)-(3y-1)]=0即4y+1=0或-2y+3=0 解得y 1=-14,y 2=32.8.设m 是不小于﹣1的实数,关于x 的方程x 2+2(m ﹣2)x+m 2﹣3m+3=0有两个不相等的实数根x 1、x 2,(1)若x 12+x 22=6,求m 值;(2)令T=121211mx mx x x +--,求T 的取值范围.【答案】(1)m=522)0<T≤4且T≠2. 【解析】【分析】由方程方程由两个不相等的实数根求得﹣1≤m<1,根据根与系数的关系可得x1+x2=4﹣2m,x1•x2=m2﹣3m+3;(1)把x12+x22=6化为(x1+x2)2﹣2x1x2=6,代入解方程求得m的值,根据﹣1≤m<1对方程的解进行取舍;(2)把T化简为2﹣2m,结合﹣1≤m<1且m≠0即可求T得取值范围.【详解】∵方程由两个不相等的实数根,所以△=[2(m﹣2)]2﹣4(m2﹣3m+3)=﹣4m+4>0,所以m<1,又∵m是不小于﹣1的实数,∴﹣1≤m<1∴x1+x2=﹣2(m﹣2)=4﹣2m,x1•x2=m2﹣3m+3;(1)∵x12+x22=6,∴(x1+x2)2﹣2x1x2=6,即(4﹣2m)2﹣2(m2﹣3m+3)=6整理,得m2﹣5m+2=0解得m=;∵﹣1≤m<1所以m=.(2)T=+=====2﹣2m.∵﹣1≤m<1且m≠0所以0<2﹣2m≤4且m≠0即0<T≤4且T≠2.【点睛】本题考查了根与系数的关系、根的判别式,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.9.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.10.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x ,根据题意得:400(1﹣x )2=361,解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.11.已知关于x 的方程(a ﹣1)x 2+2x +a ﹣1=0.(1)若该方程有一根为2,求a 的值及方程的另一根;(2)当a 为何值时,方程的根仅有唯一的值?求出此时a 的值及方程的根.【答案】(1)a=15,方程的另一根为12;(2)答案见解析. 【解析】【分析】(1)把x=2代入方程,求出a 的值,再把a 代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=1时,为一元一次方程;②当a≠1时,利用b 2-4ac =0求出a 的值,再代入解方程即可.【详解】(1)将x =2代入方程2(a 1)x 2x a 10-++-=,得4(a 1)4a 10-++-=,解得:a =15. 将a =15代入原方程得24x 2054x 5-+-=,解得:x 1=12,x 2=2. ∴a =15,方程的另一根为12; (2)①当a =1时,方程为2x =0,解得:x =0.②当a≠1时,由b 2-4ac =0得4-4(a -1)2=0,解得:a =2或0.当a =2时, 原方程为:x 2+2x +1=0,解得:x 1=x 2=-1;当a =0时, 原方程为:-x 2+2x -1=0,解得:x 1=x 2=1.综上所述,当a =1,0,2时,方程仅有一个根,分别为0,1,-1.考点:1.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.12.淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A 商品的成本为30元/件,网上标价为80元/件.(1)“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引顾客,问该店平均每次降价率为多少时,才能使A商品的售价为39.2元/件?(2)据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出1000件A商品.在“双十一”购物活动当天,乙网店先将A商品的网上标价提高a%,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.【答案】(1)平均每次降价率为30%,才能使这件A商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为100元.【解析】【分析】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)根据总利润=每件的利润×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出a的值,再将其代入80(1+a%)中即可求出结论.【详解】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据题意得:80(1﹣x)2=39.2,解得:x1=0.3=30%,x2=1.7(不合题意,舍去).答:平均每次降价率为30%,才能使这件A商品的售价为39.2元.(2)根据题意得:[0.5×80(1+a%)﹣30]×1000(1+2a%)=30000,整理得:a2+75a﹣2500=0,解得:a1=25,a2=﹣100(不合题意,舍去),∴80(1+a%)=80×(1+25%)=100.答:乙网店在“双十一”购物活动这天的网上标价为100元.【点睛】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13.重庆市旅游文化商店自制了一款文化衫,每件成本价为20元,每天销售150件:(1)若要每天的利润不低于2250元,则销售单价至少为多少元?(2)为了回馈广大游客,同时也为了提高这种文化衫的认知度,商店决定在“五一”节当天开展促销活动,若销售单价在(1)中的最低销售价的基础上再降低m%,则日销售量可以在150件基础上增加m件,结果当天的销售额达到5670元;要使销售量尽可能大,求出m的值.【答案】(1)销售单价至少为35元;(2)m=16.【解析】试题分析:(1)根据利润的公式列出方程,再求解即可;(2)销售价为原销售价×(1﹣m%),销售量为(150+m ),列出方程求解即可. 试题解析:(1)设销售单价至少为x 元,根据题意列方程得,150(x ﹣20)=2250,解得x=35,答:销售单价至少为35元;(2)由题意得:35×(1﹣m%)(150+m )=5670, 150+m ﹣150×m%﹣m%×m=162, m ﹣m 2=12, 60m ﹣3m 2=192,m 2﹣20m+64=0,m 1=4,m 2=16,∵要使销售量尽可能大,∴m=16.【考点】一元二次方程的应用;一元一次不等式的应用.14.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式。

备战2021年四川中考数学必考专题 22 解直角三角形(解析版)

备战2021年四川中考数学必考专题 22 解直角三角形(解析版)

备战2021年四川中考数学必考专题22 解直角三角形一.选择题(共3小题)1.(2019•绵阳)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ﹣cosθ)2=()A.B.C.D.【点拨】根据正方形的面积公式可得大正方形的边长为5,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.【解析】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5cosθ﹣5sinθ=5,∴cosθ﹣sinθ,∴(sinθ﹣cosθ)2.故选:A.【点睛】本题考查了解直角三角形的应用,勾股定理的证明,正方形的面积,难度适中.2.(2019•凉山州)如图,在△ABC中,CA=CB=4,cos C,则sin B的值为()A.B.C.D.【点拨】过点A作AD⊥BC,垂足为D,在R t△ACD中可求出AD,CD的长,在Rt△ABD中,利用勾股定理可求出AB的长,再利用正弦的定义可求出sin B的值.【解析】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ACD中,CD=CA•cos C=1,∴AD;在Rt△ABD中,BD=CB﹣CD=3,AD,∴AB2,∴sin B.故选:D.【点睛】本题考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD,AB 的长是解题的关键.3.(2019•自贡)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x =﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是()A.B.C.D.【点拨】如图,设直线x=﹣5交x轴于K.由题意KD CF=5,推出点D的运动轨迹是以K 为圆心,5为半径的圆,推出当直线AD与⊙K相切时,△ABE的面积最小,作EH⊥AB于H.求出EH,AH即可解决问题.【解析】解:如图,设直线x=﹣5交x轴于K.由题意KD CF=5,∴点D的运动轨迹是以K为圆心,5为半径的圆,∴当直线AD与⊙K相切时,△ABE的面积最小,∵AD是切线,点D是切点,∴AD⊥KD,∵AK=13,DK=5,∴AD=12,∵tan∠EAO,∴,∴OE,∴AE,作EH⊥AB于H.∵S△ABE•AB•EH=S△AOB﹣S△AOE,∴EH,∴AH,∴tan∠BAD,故选:B.【点睛】本题考查解直角三角形,坐标与图形的性质,直线与圆的位置关系,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.二.填空题(共4小题)4.(2019•雅安)在Rt△ABC中,∠C=90°,AB=5,BC=4,则sin A=.【点拨】根据正弦的定义解答.【解析】解:在Rt△ABC中,sin A,故答案为:.【点睛】本题考查的是锐角三角函数的定义,锐角A的对边a与斜边c的比叫做∠A的正弦,记作sin A.5.(2019•绵阳)在△ABC中,若∠B=45°,AB=10,AC=5,则△ABC的面积是75或25.【点拨】过点A作AD⊥BC,垂足为D,通过解直角三角形及勾股定理可求出AD,BD,CD的长,进而可得出BC的长,再利用三角形的面积公式可求出△ABC的面积.【解析】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ABD中,AD=AB•sin B=10,BD=AB•cos B=10;在Rt△ACD中,AD=10,AC=5,∴CD5,∴BC=BD+CD=15或BC=BD﹣CD=5,∴S△ABC BC•AD=75或25.故答案为:75或25.【点睛】本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD,BC的长度是解题的关键.6.(2019•自贡)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos(α+β)=.【点拨】给图中相关点标上字母,连接DE,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE=∠CED=30°=∠α,由∠AEC=60°结合∠AED=∠AEC+∠CED可得出∠AED=90°,设等边三角形的边长为a,则AE=2a,DE a,利用勾股定理可得出AD的长,再结合余弦的定义即可求出cos(α+β)的值.【解析】解:给图中相关点标上字母,连接DE,如图所示.在△ABC中,∠ABC=120°,BA=BC,∴∠α=30°.同理,可得出:∠CDE=∠CED=30°=∠α.又∵∠AEC=60°,∴∠AED=∠AEC+∠CED=90°.设等边三角形的边长为a,则AE=2a,DE=2×sin60°•a a,∴AD a,∴cos(α+β).故答案为:.【点睛】本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.7.(2019•乐山)如图,在△ABC中,∠B=30°,AC=2,cos C.则AB边的长为.【点拨】如图,作AH⊥BC于H.解直角三角形求出AH,再根据AB=2AH即可解决问题.【解析】解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=2,cos C,∴,∴CH,∴AH,在Rt△ABH中,∵∠AHB=90°,∠B=30°,∴AB=2AH,故答案为.【点睛】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三.解答题(共11小题)8.(2019•内江)如图,两座建筑物DA与CB,其中CB的高为120米,从DA的顶点A测得CB顶部B的仰角为30°,测得其底部C的俯角为45°,求这两座建筑物的地面距离DC为多少米?(结果保留根号)【点拨】作AE⊥BC于E,设BE=x,利用正切的定义用x表示出EC,结合题意列方程求出x,计算即可.【解析】解:作AE⊥BC于E,则四边形ADCE为矩形,∴AD=CE,设BE=x,在Rt△ABE中,tan BAE,则AE x,∵∠EAC=45°,∴EC=AE x,由题意得,BE+CE=120,即x+x=120,解得,x=60(1),∴AD=CE x=180﹣60,∴DC=180﹣60,答:两座建筑物的地面距离DC为(180﹣60)米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.9.(2019•泸州)如图,海中有两个小岛C,D,某渔船在海中的A处测得小岛D位于东北方向上,且相距20nmile,该渔船自西向东航行一段时间到达点B处,此时测得小岛C恰好在点B的正北方向上,且相距50nmile,又测得点B与小岛D相距20nmile.(1)求sin∠ABD的值;(2)求小岛C,D之间的距离(计算过程中的数据不取近似值).【点拨】(1)过D作DE⊥AB于E,解直角三角形即可得到结论;(2)过D作DF⊥BC于F,解直角三角形即可得到结论.【解析】解:(1)过D作DE⊥AB于E,在Rt△AED中,AD=20,∠DAE=45°,∴DE=20sin45°=20,在Rt△BED中,BD=20,∴sin∠ABD;(2)过D作DF⊥BC于F,在Rt△BED中,DE=20,BD=20,∴BE40,∵四边形BFDE是矩形,∴DF=EB=40,BF=DE=20,∴CF=BC﹣BF=30,在Rt△CDF中,CD50,∴小岛C,D之间的距离为50nmile.【点睛】此题考查了解直角三角形的应用﹣方向角问题,关键是根据题意画出图形,作出辅助线,构造直角三角形,“化斜为直”是解三角形的基本思路,常需作垂线(高),原则上不破坏特殊角.10.(2019•广元)如图,某海监船以60海里/时的速度从A处出发沿正西方向巡逻,一可疑船只在A的西北方向的C处,海监船航行1.5小时到达B处时接到报警,需巡査此可疑船只,此时可疑船只仍在B的北偏西30°方向的C处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/时的速度追击,在D处海监船追到可疑船只,D在B的北偏西60°方向.(以下结果保留根号)(1)求B,C两处之间的距离;(2)求海监船追到可疑船只所用的时间.【点拨】(1)作CE⊥AB于E,则∠C EA=90°,由题意得:AB=60×1.5=90,∠CAB=45°,∠CBN=30°,∠DBN=60°,得出△ACE是等腰直角三角形,∠CBE=60°,得出CE=AE,∠BCE=30°,由直角三角形的性质得出CE BE,BC=2BE,设BE=x,则CE x,AE=BE+AB =x+90,得出方程x=x+90,解得:x=4545,得出BC=2x=9090即可;(2)作DF⊥AB于F,则DF=CE x=135+45,∠DBF=30°,由直角三角形的性质得出BD=2DF=270+90,即可得出结果.【解析】解:(1)作CE⊥AB于E,如图1所示:则∠CEA=90°,由题意得:AB=60×1.5=90(海里),∠CAB=45°,∠CBN=30°,∠DBN=60°,∴△ACE是等腰直角三角形,∠CBE=60°,∴CE=AE,∠BCE=30°,∴CE BE,BC=2BE,设BE=x,则CE x,AE=BE+AB=x+90,∴x=x+90,解得:x=4545,∴BC=2x=9090;答:B,C两处之间的距离为(9090)海里;(2)作DF⊥AB于F,如图2所示:则DF=CE x=135+45,∠DBF=90°﹣60°=30°,∴BD=2DF=270+90,∴海监船追到可疑船只所用的时间为3(小时);答:海监船追到可疑船只所用的时间为(3)小时.【点睛】本题考查了解直角三角形的应用、方向角、直角三角形的性质;正确作出辅助线是解题的关键.11.(2019•眉山)如图,在岷江的右岸边有一高楼AB,左岸边有一坡度i=1:2的山坡CF,点C与点B在同一水平面上,CF与AB在同一平面内.某数学兴趣小组为了测量楼AB的高度,在坡底C处测得楼顶A的仰角为45°,然后沿坡面CF上行了20米到达点D处,此时在D处测得楼顶A的仰角为30°,求楼AB的高度.【点拨】由i EC2=CD2,解得DE=20m,EC=40m,过点D作DG⊥AB于G,过点C作CH⊥DG于H,则四边形DEBG、四边形DECH、四边形BCHG都是矩形,证得AB =BC,设AB=BC=xm,则AG=(x﹣20)m,DG=(x+40)m,在Rt△ADG中,tan∠ADG,代入即可得出结果.【解析】解:在Rt△DEC中,∵i,DE2+EC2=CD2,CD=20,∴DE2+(2DE)2=(20)2,解得:DE=20(m),∴EC=40m,过点D作DG⊥AB于G,过点C作CH⊥DG于H,如图所示:则四边形DEBG、四边形DECH、四边形BCHG都是矩形,∵∠ACB=45°,AB⊥BC,∴AB=BC,设AB=BC=xm,则AG=(x﹣20)m,DG=(x+40)m,在Rt△ADG中,∵tan∠ADG,∴,解得:x=50+30.答:楼AB的高度为(50+30)米.【点睛】本题考查了解直角三角形的应用﹣方向角问题,通过解直角三角形得出方程是解题的关键.12.(2019•资阳)如图,南海某海域有两艘外国渔船A、B在小岛C的正南方向同一处捕鱼.一段时间后,渔船B沿北偏东30°的方向航行至小岛C的正东方向20海里处.(1)求渔船B航行的距离;(2)此时,在D处巡逻的中国渔政船同时发现了这两艘渔船,其中B渔船在点D的南偏西60°方向,A渔船在点D的西南方向,我渔政船要求这两艘渔船迅速离开中国海域.请分别求出中国渔政船此时到这两艘外国渔船的距离.(注:结果保留根号)【点拨】(1)由题意得到∠CAB=30°,∠ACB=90°,BC=20,根据直角三角形的性质即可得到结论;(2)过B作BE⊥AE于E,过D作DH⊥AE于H,延长CB交DH于G,得到四边形AEBC和四边形BEHG是矩形,根据矩形的性质得到BE=GH=AC=20,AE=BC=20,设BG=EH=x,求得AH=x+20,解直角三角形即可得到结论.【解析】解:(1)由题意得,∠CAB=30°,∠ACB=90°,BC=20,∴AB=2BC=40海里,答:渔船B航行的距离是40海里;(2)过B作BE⊥AE于E,过D作DH⊥AE于H,延长CB交DH于G,则四边形AEBC和四边形BEHG是矩形,∴BE=GH=AC=20,AE=BC=20,设BG=EH=x,∴AH=x+20,由题意得,∠BDG=60°,∠ADH=45°,∴x,DH=AH,∴20x=x+20,解得:x=20,∴BG=20,AH=20+20,∴BD40,AD AH=2020,答:中国渔政船此时到外国渔船B的距离是40海里,到外国渔船A的距离是(2020)海里.【点睛】本题主要考查了解直角三角形的应用﹣方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.13.(2019•巴中)某区域平面示意图如图所示,点D在河的右侧,红军路AB与某桥BC互相垂直.某校“数学兴趣小组”在“研学旅行”活动中,在C处测得点D位于西北方向,又在A处测得点D位于南偏东65°方向,另测得BC=414m,AB=300m,求出点D到AB的距离.(参考数据sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【点拨】过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD是矩形,设DE=x,根据BE=DF=CF,列方程可得结论.【解析】解:如图,过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD是矩形,设DE=x,在Rt△ADE中,∠AED=90°,∵tan∠DAE,∴AE,∴BE=300,又BF=DE=x,∴CF=414﹣x,在Rt△CDF中,∠DFC=90°,∠DCF=45°,∴DF=CF=414﹣x,又BE=DF,即:300414﹣x,解得:x=214,故:点D到AB的距离是214m.【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确根据三角函数列方程是解题的关键.14.(2019•遂宁)汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200米且横断面为梯形的大坝用土石进行加固.如图,加固前大坝背水坡坡面从A至B共有30级阶梯,平均每级阶梯高30cm,斜坡AB的坡度i=1:1;加固后,坝顶宽度增加2米,斜坡EF的坡度i=1:,问工程完工后,共需土石多少立方米?(计算土石方时忽略阶梯,结果保留根号)【点拨】过A作AH⊥BC于H,过E作E G⊥BC于G,于是得到四边形EGHA是矩形,求得EG=AH,GH=AE=2,得到AH=BH,求得BG=BH﹣HG,得到FG,根据梯形的面积公式求得梯形ABFE的面积乘以大坝的长度即可得到结论.【解析】解:过A作AH⊥BC于H,过E作EG⊥BC于G,则四边形EGHA是矩形,∴EG=AH,GH=AE=2,∵斜坡AB的坡度i=1:1,∴AH=BH=30×30=900cm=9米,∴BG=BH﹣HG=7,∵斜坡EF的坡度i=1:,∴FG=9,∴BF=FG﹣BG=97,∴S梯形ABFE(2+97)×9,∴共需土石为200=900(95)立方米.【点睛】此题考查了坡度坡角问题.此题难度适中,注意构造直角三角形,并借助于解直角三角形的知识求解是关键.15.(2019•成都)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD的顶部C(结的俯角为35°,底部D的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)【点拨】作CE⊥AB于E,根据矩形的性质得到CE=AB=20,CD=BE,根据正切的定义求出AE,结合图形计算即可.【解析】解:作CE⊥AB于E,则四边形CDBE为矩形,∴CE=AB=20,CD=BE,在Rt△ADB中,∠ADB=45°,∴AB=DB=20,在Rt△ACE中,tan∠ACE,∴AE=CE•tan∠ACE≈20×0.70=14,∴CD=BE=AB﹣AE=6,答:起点拱门CD的高度约为6米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.16.(2019•宜宾)如图,为了测得某建筑物的高度AB,在C处用高为1米的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A的仰角为60°.求该建筑物的高度AB.(结果保留根号)【点拨】设AM=x米,根据等腰三角形的性质求出FM,利用正切的定义用x表示出EM,根据题意列方程,解方程得到答案.【解析】解:设AM=x米,在Rt△AFM中,∠AFM=45°,∴FM=AM=x,在Rt△AEM中,tan∠AEM,则EM x,由题意得,FM﹣EM=EF,即x x=40,解得,x=60+20,∴AB=AM+MB=61+20,答:该建筑物的高度AB为(61+20)米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.17.(2019•广安)如图,某数学兴趣小组为测量一颗古树BH和教学楼CG的高,先在A处用高1.5米的测角仪AF测得古树顶端H的仰角∠HFE为45°,此时教学楼顶端G恰好在视线FH上,再向前走10米到达B处,又测得教学楼顶端G的仰角∠GED为60°,点A、B、C三点在同一水平线上.(1)求古树BH的高;(2)求教学楼CG的高.(参考数据: 1.4, 1.7)【点拨】(1)由∠HFE=45°知HE=EF=10,据此得BH=BE+HE=1.5+10=11.5;(2)设DE=x米,则DG x米,由∠GFD=45°知GD=DF=EF+DE,据此得x=10+x,解之求得x的值,代入CG=DG+DC x+1.5计算可得.【解析】解:(1)在Rt△EFH中,∠HEF=90°,∠HFE=45°,∴HE=EF=10,∴BH=BE+HE=1.5+10=11.5,∴古树的高为11.5米;(2)在Rt△EDG中,∠GED=60°,∴DG=DE tan60°DE,设DE=x米,则DG x米,在Rt△GFD中,∠GDF=90°,∠GFD=45°,∴GD=DF=EF+DE,∴x=10+x,解得:x=55,∴CG=DG+DC x+1.5(55)+1.5=16.5+525,答:教学楼CG的高约为25米.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.18.(2019•达州)渠县賨人谷是国家AAAA级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为川东“小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD,想法测出了尾部C看头顶B的仰角为40°,从前脚落地点D看上嘴尖A的仰角刚好60°,CB=5m,CD=2.7m.景区管理员告诉同学们,上嘴尖到地面的距离是3m.于是,他们很快就算出了AB的长.你也算算?(结果精确到0.1m.参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84. 1.41, 1.73)【点拨】作BF⊥CE于F,根据正弦的定义求出BF,利用余弦的定义求出CF,利用正切的定义求出DE,结合图形计算即可.【解析】解:作BF⊥CE于F,在Rt△BFC中,BF=BC•sin∠BCF≈3.20,CF=BC•cos∠BCF≈3.85,在Rt△ADE中,DE 1.73,∴BH=BF﹣HF=0.20,AH=EF=CD+DE﹣CF=0.58,由勾股定理得,AB0.6(m),答:AB的长约为0.6m.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.。

2021年中考数学常用公式定理

2021年中考数学常用公式定理

2021年中考数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab +b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n =n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x24b b ac-±-b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.(2)公式:设有n个数x1,x2,…,x n,那么:①平均数为:12......nx x xxn;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值;12、频率与概率:(1)频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。

2021年中考数学考试大纲(最新版)

2021年中考数学考试大纲(最新版)

2021年中考数学考试大纲(最新版)中考数学考试大纲考试目标数与代数】1.有理数有理数是指可以表示为两个整数的比的数,包括正有理数、负有理数和零。

我们可以用数轴上的点表示有理数,并且可以求出有理数的相反数和绝对值。

在运算方面,我们需要掌握有理数的加、减、乘、除、乘方运算及混合运算等基本操作。

2.实数实数包括有理数和无理数,其中无理数是不能表示为有理数的比的数。

我们需要掌握平方根、算术平方根、立方根和二次根式的概念,以及开方和乘方互为逆运算的关系。

同时,我们也需要了解实数与数轴上的点一一对应关系,以及对含有较大数字的信息作出合理的解释和推断等知识。

3.代数式代数式是用字母表示数的式子,可以表示简单问题的数量关系。

我们需要掌握用代数式表示数量关系的方法,以及求代数式的值、整数指数幂的意义和基本性质、科学记数法表示数、整式和分式的概念、简单的整式加减运算及乘法运算、平方差、完全平方公式的推导及运用、提取公因式法和公式法因式分解、运用分式基本性质进行约分和通分、简单的分式加减乘除运算等知识。

4.方程与方程组方程和方程组是用来表示数量关系的式子,我们需要掌握根据具体问题中的数量关系,列出方程或方程组的方法,以及解一元一次方程和二元一次方程组、解可化为一元一次方程的分式方程、用因式分解法、公式法和配方法解简单的数字系数的一元二次方程、用观察、画图或计算等方法估计方程的解、根据具体问题的实际意义,检验结果是否合理等知识。

5.不等式与不等式组不等式是用来表示大小关系的式子,我们需要掌握不等式的意义和基本性质,以及解一元一次不等式及由两个一元一次不等式组成的不等式组,并在数轴上表示出解集。

同时,我们也需要了解不等式与不等式组的简单应用。

6.函数函数是一种特殊的代数式,它表示两个变量之间的关系。

我们需要掌握常量、变量的意义,以及函数的定义、函数的图像、函数的性质、函数的运算等知识。

2.函数的实例例如,y = 2x + 1 就是一个函数的实例。

2021届新中考数学必考精点考点专题 专题37 二次函数问题 原卷版

2021届新中考数学必考精点考点专题  专题37 二次函数问题  原卷版

2021届新中考数学必考精点考点专题专题37 二次函数问题1.二次函数的概念:一般地,自变量x和因变量y之间存在如下关系:y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。

抛物线叫做二次函数的一般式。

2.二次函数y=ax2 +bx+c(a≠0)的图像与性质(1)对称轴:(2)顶点坐标:(3)与y轴交点坐标(0,c)(4)增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小。

3.二次函数的解析式三种形式(1)一般式 y=ax2 +bx+c(a≠0).已知图像上三点或三对、的值,通常选择一般式. (2)顶点式已知图像的顶点或对称轴,通常选择顶点式。

.已知图像与轴的交点坐标、,通常选用交点(3)交点式.式。

4.根据图像判断a,b,c的符号(1)a 确定开口方向:当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下。

(2)b ——对称轴与a 左同右异。

(3)抛物线与y轴交点坐标(0,c)5.二次函数与一元二次方程的关系抛物线y=ax2 +bx+c与x轴交点的横坐标x1, x2 是一元二次方程ax2 +bx+c=0(a≠0)的根。

抛物线y=ax2 +bx+c,当y=0时,抛物线便转化为一元二次方程ax2 +bx+c=0>0时,一元二次方程有两个不相等的实根,二次函数图像与x轴有两个交点;=0时,一元二次方程有两个相等的实根,二次函数图像与x轴有一个交点;<0时,一元二次方程有不等的实根,二次函数图像与x轴没有交点。

6.函数平移规律:左加右减、上加下减.【例题1】(2020贵州黔西南)如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A. 点B坐标为(5,4)B. AB=ADC. a=D. OC•OD=16【对点练习】(2020湖北天门模拟)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c <0;④8a+c>0.其中正确的有()A.3个B.2个C.1个D.0个【例题2】(2020•无锡)二次函数y=ax2﹣3ax+3的图象过点A(6,0),且与y轴交于点B,点M在该抛物线的对称轴上,若△ABM是以AB为直角边的直角三角形,则点M的坐标为.【对点练习】已知抛物线y=ax2﹣3x+c(a≠0)经过点(﹣2,4),则4a+c﹣1=.【例题3】(2020•河南)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q 的纵坐标y Q的取值范围.【对点练习】如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.一、选择题1.(2020•鄂州)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B,与y 轴交于点C.下列结论:①abc<0,②2a+b<0,③4a﹣2b+c>0,④3a+c>0,其中正确的结论个数为()A.1个B.2个C.3个D.4个2.(2020•株洲)二次函数y=ax2+bx+c,若ab<0,a﹣b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则()A.y1=﹣y2B.y1>y2C.y1<y2D.y1、y2的大小无法确定3.(2020•襄阳)二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0;②3a+c=0;③4ac﹣b2<0;④当x>﹣1时,y随x的增大而减小.其中正确的有()A.4个B.3个C.2个D.1个4.(2020•广东)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2﹣35.(2020•菏泽)一次函数y=acx+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是()A.B.C.D.6.(2020•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x.有下列结论:①abc>0;②关于x的方程ax2+bx+c=a有两个不等的实数根;③a.其中,正确结论的个数是()A.0B.1C.2D.37.(2020•陕西)在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限8.(2019哈尔滨)将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.B.C.D.9.(2019年陕西省)已知抛物线,当时,,且当时,y的值随x值的增大而减小,则m的取值范围是().A.B.C.D.10.(2019广西梧州)已知,关于的一元二次方程的解为,,则下列结论正确的是A.B.C.D.二、填空题11.(2020•南京)下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是.12.(2020•连云港)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=﹣0.2x2+1.5x﹣2,则最佳加工时间为min.13.(2020•泰安)已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:下列结论:①a>0;②当x=﹣2时,函数最小值为﹣6;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的序号是.(把所有正确结论的序号都填上)14.(2020•哈尔滨)抛物线y=3(x﹣1)2+8的顶点坐标为.15.(2020•无锡)请写出一个函数表达式,使其图象的对称轴为y轴:.16.(2020•上海)如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是.17.(2020•黔东南州)抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是.18.(2020•灌南县一模)二次函数y=﹣x2﹣2x+3的图象的顶点坐标为.19.(2019黑龙江哈尔滨)二次函数的最大值是.20.(2019江苏镇江)已知抛物线y=ax2+4ax+4a+1(a≠0)过点A(m,3),B(n,3)两点,若线段AB的长不大于4,则代数式a2+a+1的最小值是.21.(2019内蒙古赤峰)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b>0;②a﹣b+c=0;③一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根;④当x <﹣1或x>3时,y>0.上述结论中正确的是.(填上所有正确结论的序号)三、解答题22.(2020•陕西)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.23.(2020•凉山州)如图,二次函数y=ax2+bx+x的图象过O(0,0)、A(1,0)、B(,)三点.(1)求二次函数的解析式;(2)若线段OB的垂直平分线与y轴交于点C,与二次函数的图象在x轴上方的部分相交于点D,求直线CD的解析式;(3)在直线CD下方的二次函数的图象上有一动点P,过点P作PQ⊥x轴,交直线CD于Q,当线段PQ的长最大时,求点P的坐标.24.(2020•黑龙江)如图,已知二次函数y=﹣x2+(a+1)x﹣a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知△BAC的面积是6.(1)求a的值;(2)在抛物线上是否存在一点P,使S△ABP=S△ABC.若存在请求出P坐标,若不存在请说明理由.25.(2020•衡阳)在平面直角坐标系xOy中,关于x的二次函数y=x2+px+q的图象过点(﹣1,0),(2,0).(1)求这个二次函数的表达式;(2)求当﹣2≤x≤1时,y的最大值与最小值的差;(3)一次函数y=(2﹣m)x+2﹣m的图象与二次函数y=x2+px+q的图象交点的横坐标分别是a和b,且a<3<b,求m的取值范围.26.(2020•甘孜州)某商品的进价为每件40元,在销售过程中发现,每周的销售量y(件)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,且当售价定为50元/件时,每周销售30件,当售价定为70元/件时,每周销售10件.(1)求k,b的值;(2)求销售该商品每周的利润w(元)与销售单价x(元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.27.(2020•安徽)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y =x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.28.(2020•上海)在平面直角坐标系xOy中,直线y x+5与x轴、y轴分别交于点A、B (如图).抛物线y=ax2+bx(a≠0)经过点A.(1)求线段AB的长;(2)如果抛物线y=ax2+bx经过线段AB上的另一点C,且BC,求这条抛物线的表达式;(3)如果抛物线y=ax2+bx的顶点D位于△AOB内,求a的取值范围.29.(2020•苏州)如图,二次函数y=x2+bx的图象与x轴正半轴交于点A,平行于x轴的直线l与该抛物线交于B、C两点(点B位于点C左侧),与抛物线对称轴交于点D(2,﹣3).(1)求b的值;(2)设P、Q是x轴上的点(点P位于点Q左侧),四边形PBCQ为平行四边形.过点P、Q分别作x轴的垂线,与抛物线交于点P'(x1,y1)、Q'(x2,y2).若|y1﹣y2|=2,求x1、x2的值.30.(2020•台州)用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆柱体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系式为s2=4h(H﹣h).应用思考:现用高度为20cm的圆柱体塑料水瓶做相关研究,水瓶直立地面,通过连续注水保证它始终盛满水,在离水面竖直距离hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求垫高的高度及小孔离水面的竖直距离.31.(2020•滨州)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?32.(2019贵州贵阳)如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且关于直线x=1对称,点A的坐标为(﹣1,0).(1)求二次函数的表达式;(2)连接BC,若点P在y轴上时,BP和BC的夹角为15°,求线段CP的长度;(3)当a≤x≤a+1时,二次函数y=x2+bx+c的最小值为2a,求a的值.。

2021年中考数学真题分类汇编:专题2整式及运算(解析版)

2021年中考数学真题分类汇编:专题2整式及运算(解析版)

2021年中考数学真题分类汇编:专题2整式及运算一、单选题1.(2021·浙江丽水市·中考真题)计算:()24a a -⋅的结果是( ) A .8aB .6aC .8aD .6a -【答案】B【分析】 根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可.【详解】解:原式24246a a a a +=⋅==.故选B .【点睛】此题考查的是幂的运算性质,掌握同底数幂的乘法法则是解题关键.2.(2021·四川资阳市·中考真题)下列计算正确的是( )A .2242a a a +=B .23a a a ⋅=C .22(3)6a a =D .623+=a a a 【答案】B【分析】根据合并同类项,同底数幂的乘法,积的乘方法则进行计算作出判断.【详解】解:A . 2222a a a +=,故此选项不符合题意;B . 23a a a ⋅=,正确,故此选项符合题意;C . 22(3)9a a =,故此选项不符合题意;D . 62,a a 不是同类项,不能合并计算,故此选项不符合题意;故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,积的乘方计算,掌握计算法则准确计算是解题关键.3.(2021·四川自贡市·中考真题)已知23120x x --=,则代数式2395x x -++的值是( ) A .31B .31-C .41D .41-【答案】B【分析】根据题意,可先求出x 2-3x 的值,再化简()22395=3+53x x x x -++--,然后整体代入所求代数式求值即可.【详解】解:∵23120x x --=,∵23=12x x -,∵()223395=3+5=312+5=31x x x x -++---⨯-. 故选:B .【点睛】此题考查了代数式求值,此题的关键是代数式中的字母表示的数没有明确告知,而是隐含在题设中,得出23=12x x -,是解题的关键.4.(2021·四川乐山市·中考真题)某种商品m 千克的售价为n 元,那么这种商品8千克的售价为( ) A .8n m (元) B .8n m (元) C .8m n (元) D .8m n(元) 【答案】A【分析】先求出1千克售价,再计算8千克售价即可;【详解】∵m 千克的售价为n 元,∵1千克商品售价为n m, ∵8千克商品的售价为8n m (元); 故答案选A .【点睛】本题主要考查了列代数式,准确分析列式是解题的关键.5.(2021·四川泸州市·中考真题)关于x 的一元二次方程2220x mx m m ++-=的两实数根12,x x ,满足122x x =,则2212(2)(2)x x ++的值是( )A .8B .16C . 32D .16或40【答案】C【分析】 根据一元二次方程根与系数的关系,即韦达定理,先解得2m =或1m =-,再分别代入一元二次方程中,利用完全平方公式变形解题即可.【详解】解:一元二次方程2220x mx m m ++-=21,2,a b m c m m ===-2122c m x am x ==-= 220m m --=(2)(1)0m m ∴-+=2m ∴=或1m =-当2m =时,原一元二次方程为2420x x ++=12=24b m ax x +-=-=-, 22221212122)+2((2)(2)()+4=x x x x x x +∴++,221212122=()2x x x x x x ++-221212212212)+(2)(2)=)(2(4+4x x x x x x x x -∴+++22=2+2(4)424⨯--⨯+32=当1m =-时,原一元二次方程为2220x x +=-2(2)41240∆=--⨯⨯=-<原方程无解,不符合题意,舍去,故选:C .【点睛】本题考查一元二次方程根与系数的关系,韦达定理等知识,涉及解一元二次方程,是重要考点,难度较易,掌握相关知识是解题关键.6.(2021·四川泸州市·中考真题)已知1020a =,10050b =,则1322a b ++的值是( ) A .2B .52C .3D .92 【答案】C【分析】根据同底数幂的乘法31010010a b ⋅=,可求23a b +=再整体代入即可.【详解】解: ∵1020a =,10050b =,∵2310100102050100010a b a b +⋅==⨯==,∵23a b +=, ∵()()1311233332222a b a b ++=++=+=. 故选:C .【点睛】本题考查幂的乘方,同底数幂的乘法逆运算,代数式求值,掌握幂的乘方,同底数幂的乘法法则,与代数式值求法是解题关键.7.(2021·云南中考真题)按一定规律排列的单项式:23456,4,9,16,25a a a a a ,……,第n 个单项式是( ) A .21n n a +B .21n n a -C .1n n n a +D .()21n n a + 【答案】A【分析】根据题目中的单项式可以发现数字因数是从1开始的正整数的平方,字母的指数从1开始依次加1,然后即可写出第n 个单项式,本题得以解决.【详解】解:∵一列单项式:23456,4,9,16,25a a a a a ,...,∵第n 个单项式为21n n a +,故选:A .【点睛】本题考查数字的变化类、单项式,解答本题的关键是明确题意,发现单项式的变化特点,求出相应的单项式.8.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25%【答案】B【分析】设原件为x 元,根据调价方案逐一计算后,比较大小判断即可.【详解】设原件为x 元,∵先打九五折,再打九五折,∵调价后的价格为0.95x ×0.95=0.9025x 元,∵先提价50%,再打六折,∵调价后的价格为1.5x ×0.6=0.90x 元,∵先提价30%,再降价30%,∵调价后的价格为1.3x ×0.7=0.91x 元,∵先提价25%,再降价25%,∵调价后的价格为1.25x ×0.75=0.9375x 元,∵0.90x <0.9025x <0.91x <0.9375x故选B【点睛】本题考查了代数式,打折,有理数大小比较,准确列出符合题意的代数式,并能进行有理数大小的比较是解题的关键.9.(2021·浙江温州市·中考真题)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( )A .20a 元B .()2024a +元C .()17 3.6a +元D .()20 3.6a +元 【答案】D【分析】分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可.【详解】解:∵20立方米中,前17立方米单价为a 元,后面3立方米单价为(a +1.2)元,∵应缴水费为17a +3(a +1.2)=20a +3.6(元),故选:D .【点睛】本题考查的是阶梯水费的问题,解决本题的关键是理解其收费方式,能求出不同段的水费,本题较基础,重点考查了学生对该种计费方式的理解与计算方法等.10.(2021·甘肃武威市·中考真题)对于任意的有理数,a b ,如果满足2323a b a b ++=+,那么我们称这一对数,a b 为“相随数对”,记为(),a b .若(),m n 是“相随数对”,则()323[]21m m n ++-=( )A .2-B .1-C .2D .3 【答案】A【分析】先根据新定义,可得9m +4n =0,将整式()21]2[33m m n ++-去括号合并同类项化简得942m n +-,然后整体代入计算即可.【详解】解:∵(),m n 是“相随数对”, ∵2323m n m n ++=+, 整理得9m +4n =0,()323213642942[]2m m n m m n m n ++-=++-=+-=-.故选择A .【点睛】本题考查新定义相随数对,找出数对之间关系,整式加减计算求值,掌握新定义相随数对,找出数对之间关系,整式加减计算求值是解题关键.11.(2021·山东临沂市·中考真题)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg 镭缩减为1mg 所用的时间大约是( )A .4860年B .6480年C .8100年D .9720年【答案】C【分析】 根据物质所剩的质量与时间的规律,可得答案.【详解】解:由图可知:1620年时,镭质量缩减为原来的12, 再经过1620年,即当3240年时,镭质量缩减为原来的21142=, 再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的31182=, ...,∵再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的511232=, 此时132132⨯=mg , 故选C .【点睛】本题考查了函数图象,规律型问题,利用函数图象的意义是解题关键.12.(2021·山东泰安市·中考真题)下列运算正确的是( )A .235235x x x +=B .()3326x x -=-C .()222x y x y +=+D .()()2322349x x x +-=- 【答案】D【分析】分别根据合并同类项法则、积的乘方运算法则、完全平方公式、平方差公式进行判断即可.【详解】解:A 、x 2和x 3不是同类项,不能合并,此选项错误;B 、()3328x x -=-,此选项错误;C 、()2222x y x xy y +=++,此选项错误;D 、()()23223(23)(23)49x x x x x +-=+-=-,此选项正确, 故选:D .【点睛】本题考查了同类项、积的乘方、完全平方公式、平方差公式,熟记公式,掌握运算法则是解答的关键. 13.(2021·江苏连云港市·中考真题)下列运算正确的是( )A .325a b ab +=B .22523a b -=C .277a a a +=D .()22112x x x -+-= 【答案】D【分析】根据同类项与合并同类项、全完平方差公式的展开即可得出答案.【详解】解:A ,3a 与2b 不是同类项,不能合并,故选项错误,不符合题意;B ,25a 与22b 不是同类项,不能合并得到常数值,故选项错误,不符合题意;C ,合并同类项后2787a a a a +=≠,故选项错误,不符合题意;D ,完全平方公式:()22211221x x x x x =-++-=-,故选项正确,符合题意;故选:D .【点睛】本题考查了代数式的运算,同类项合并及完全平方差公式,解题的关键是:掌握相关的运算法则. 14.(2021·安徽)计算23()x x ⋅-的结果是( )A .6xB .6x -C .5xD .5x -【答案】D【分析】利用同底数幂的乘法法则计算即可【详解】解:52233=-()x x x x +⋅-=-故选:D【点睛】本题考查同底数幂的乘法法则,正确使用同底数幂相乘,底数不变,指数相加是关键15.(2021·陕西中考真题)计算:()23a b-=( ) A .621a b B .62a b C .521a b D .32a b -【答案】A【分析】根据积的乘方,幂的乘方以及负整数指数幂运算法则计算即可.【详解】解:()23621a b a b -=, 故选:A .【点睛】本题考查积的乘方,幂的乘方以及负整数指数幂等知识点,熟记相关定义与运算法则是解答本题的关键. 16.(2021·湖南衡阳市·中考真题)下列运算结果为6a 的是( )A .23a a ⋅B .122a a ÷C .()23aD .2312a ⎛⎫ ⎪⎝⎭ 【答案】C【分析】根据同底数幂相乘、同底数幂相除、幂的乘方法则逐项计算即可.【详解】A 选项,23235a a a a +⋅==,不符合题意;B 选项,12210122=a a a a -=÷,不符合题意;C 选项,()23326=a a a ⨯=,符合题意;D 选项,22233611=1224a a a ⨯⎛⎫⋅= ⎪⎝⎭⎛⎫ ⎪⎝⎭,不符合题意. 故选:C .【点睛】本题考查同底数幂相乘、同底数幂相除、幂的乘方和积的乘方法则.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于把积的每一个因式的积的乘方,再把所得的幂相乘.17.(2021·浙江台州市·中考真题)已知(a +b )2=49,a 2+b 2=25,则ab =( )A .24B .48C .12D . 【答案】C【分析】利用完全平方公式计算即可.【详解】解:∵()222249a b a b ab +=++=,2225a b +=, ∵4925122ab -==, 故选:C .【点睛】本题考查整体法求代数式的值,掌握完全平方公式是解题的关键.18.(2021·浙江台州市·中考真题)将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( )A .20%B .+100%2x y ⨯C .+3100%20x y ⨯D .+3 100%10+10x y x y ⨯ 【答案】D【分析】先求出两份糖水中糖的重量,再除以混合之后的糖水总重,即可求解.【详解】 解:混合之后糖的含量:10%30%3100%1010x y x y x y x y++=⨯++,故选:D .【点睛】本题考查列代数式,理解题意是解题的关键.19.(2021·江苏苏州市·中考真题)已知两个不等于0的实数a 、b 满足0a b +=,则b a a b+等于( ) A .2-B .1-C .1D .2 【答案】A【分析】先化简式子,再利用配方法变形即可得出结果.【详解】 解:∵22=b a b a a b ab++, ∵()2222==a b ab b a b a a b ab ab +-++, ∵两个不等于0的实数a 、b 满足0a b +=, ∵()22-2===-2a b ab b a ab a b ab ab+-+,故选:A .【点睛】本题考查分式的化简、配完全平方、灵活应用配方法是解题的关键.20.(2021·上海中考真题)下列单项式中,23a b 的同类项是( )A .32a bB .232a bC .2a bD .3ab 【答案】B【分析】比较对应字母的指数,分别相等就是同类项【详解】∵a 的指数是3,b 的指数是2,与23a b 中a 的指数是2,b 的指数是3不一致,∵32a b 不是23a b 的同类项,不符合题意;∵a 的指数是2,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3一致,∵232a b 是23a b 的同类项,符合题意;∵a 的指数是2,b 的指数是1,与23a b 中a 的指数是2,b 的指数是3不一致,∵2a b 不是23a b 的同类项,不符合题意;∵a 的指数是1,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3不一致,∵3ab 不是23a b 的同类项,不符合题意;故选B【点睛】本题考查了同类项,正确理解同类项的定义是解题的关键.21.(2021·四川广安市·中考真题)下列运算中,正确的是( )A .2510a a a ⋅=B .222()a b a b -=-C .()23636a a -=D .22232a b a b a b -+=- 【答案】D【分析】根据同底数幂的乘法,合并同类项,幂的乘方和积的乘方,完全平方公式分别判断即可.【详解】解:A 、257a a a ⋅=,故选项错误;B 、222()2a b a b ab -=+-,故选项错误;C 、()23639a a -=,故选项错误;D 、22232a b a b a b -+=-,故选项正确;故选D .【点睛】本题考查了同底数幂的乘法,合并同类项,幂的乘方和积的乘方,完全平方公式,解题的关键是掌握各自的运算法则.22.(2021·四川眉山市·中考真题)下列计算中,正确的是( )A .5315a a a ⨯=B .53a a a ÷=C .()423812a b a b -=D .()222a b a b +=+ 【答案】C【分析】 逐一分析各选项中的计算结果,利用计算公式进行计算即可得到正确选项.【详解】解:A 选项中,538a a a ⨯=;B 选项中,532a a a ÷=;C 选项正确;D 选项中,()2222a b a ab b +=++;故选:C .【点睛】本题综合考查了同底数幂的乘法计算、同底数幂的除法计算、幂的乘方运算、积的乘方运算、完全平方公式等内容,解决本题的关键是牢记对应法则和公式即可.23.(2021·湖南岳阳市·中考真题)下列运算结果正确的是( )A .32a a -=B .248a a a ⋅=C .()()2224a a a +-=-D .()22a a -=- 【答案】C【分析】逐一分析各选项,利用对应法则进行计算即可判断出正确选项.【详解】解:A 选项中:32a a a -=,因此错误;B 选项中:246·a a a =,因此错误;C 选项中:()()2224a a a +-=-,因此正确; D 选项中:()22a a -=,因此错误;故选:C .【点睛】本题考查了合并同类项、同底数幂的乘法、平方差公式、乘方的运算性质等内容,解决本题的关键是牢记相关运算法则和公式即可.24.(2021·浙江台州市·中考真题)下列运算中,正确的是( )A .a 2+a =a 3B .(-ab )2=-ab 2C .a 5÷a 2=a 3D .a 5・a 2=a 10 【答案】C【分析】根据合并同类项、积的乘方、同底数幂相除、同底数幂相乘的法则分别计算即可.【详解】解:A .2a 与a 不是同类项,不能合并,故该项错误;B .()222b a ab =-,故该项错误;C .523a a a ÷=,该项正确;D .527a a a ⋅=,该项错误;故选:C .【点睛】本题考查整式的运算,掌握合并同类项、积的乘方、同底数幂相除、同底数幂相乘的法则是解题的关键. 25.(2021·四川成都市·中考真题)下列计算正确的是( )A .321mn mn -=B .()22346m n m n =C .()34m m m -⋅=D .()222m n m n +=+ 【答案】B【分析】利用合并同类项法则可判定A ,利用积的乘方法则与幂的乘方法则可判定B ,利用同底数幂乘法法则可判定C ,利用完全平方公式可判定D .【详解】解:A . 321mn mn mn -=≠,故选项A 计算不正确;B. ()()()222232346m n m n m n =⋅=,故选项B 计算正确; C . ()3344m m m m m m -⋅=-⋅=-≠,故选项C 计算不正确;D . ()222222m n m mn n m n +=++≠+,故选项D 计算不正确.故选择B .【点睛】本题考查同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式,掌握同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式是解题关键.26.(2021·山东临沂市·中考真题)计算3325a a 的结果是( )A .610aB .910aC .37aD .67a【答案】A【分析】直接利用单项式乘以单项式运算法则计算得出答案.【详解】解:6332510a a a =⋅,故选:A .【点睛】此题主要考查了单项式乘以单项式,正确掌握相关运算法则是解题关键.27.(2021·浙江宁波市·中考真题)计算()3a a ⋅-的结果是( ) A .2aB .2a -C .4aD .4a -【答案】D【分析】 根据单项式乘以单项式和同底数幂的运算法则解答即可.【详解】解:原式4a =-.故选:D【点睛】本题考查了整式的乘法,属于基础题目,熟练掌握运算法则是关键.28.(2021·重庆中考真题)计算63a a ÷的结果是( )A .63aB .52aC .62aD .53a【答案】D【分析】根据单项式除以单项式法则、同底数幂除法法则解题.【详解】解:63a a ÷=53a ,故选:D .【点睛】本题考查同底数幂相除、单项式除以单项式等知识,是重要考点,难度较易,掌握相关知识是解题关键.二、填空题29.(2021·上海中考真题)计算:72=x x ÷_____________.【答案】5x【分析】根据同底数幂的除法法则计算即可【详解】∵72=x x ÷5x , 故答案为:5x .【点睛】本题考查了同底数幂的除法,熟练掌握运算的法则是解题的关键.30.(2021·天津中考真题)计算42a a a +-的结果等于_____.【答案】5a【分析】根据合并同类项的性质计算,即可得到答案.【详解】 ()424215a a a a a +-=+-=故答案为:5a .【点睛】本题考查了整式加减的知识;解题的关键是熟练掌握合并同类项的性质,从而完成求解.31.(2021·江苏扬州市·中考真题)计算:2220212020-=__________.【答案】4041【分析】利用平方差公式进行简便运算即可.【详解】解:2220212020-=()()2021202020212020+⨯-=40411⨯=4041故答案为:4041.【点睛】本题考查了平方差公式的应用,解题时注意运算顺序.32.(2021·浙江嘉兴市·中考真题)观察下列等式:22110=-,22321=-,22532=-,…按此规律,则第n 个等式为21n -=__________________.【答案】()221n n --. 【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可.【详解】解:∵22110=-,22321=-,22532=-,…∵第n 个等式为:()22211n n n -=-- 故答案是:()221n n --. 【点睛】本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题的关键. 33.(2021·四川遂宁市·中考真题)如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3++n =()12n n +,列一元二次方程求解可得. 【详解】解:∵第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2,第3个图形中黑色三角形的个数6=1+2+3,第4个图形中黑色三角形的个数10=1+2+3+4,……∵第n 个图形中黑色三角形的个数为1+2+3+4+5++n =()12n n +,当共有210个小球时, ()12102n n +=,解得:20n =或21-(不合题意,舍去),∵第20个图形共有210个小球.故答案为:20.【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n .34.(2021·湖南岳阳市·中考真题)已知1x x +=,则代数式1x x +=______. 【答案】0【分析】把1x x+=直接代入所求的代数式中,即可求得结果的值. 【详解】10x x+== 故答案为:0.【点睛】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.35.(2021·江苏苏州市·中考真题)若21m n +=,则2366m mn n ++的值为______.【答案】3【分析】根据21m n +=,将式子2366m mn n ++进行变形,然后代入求出值即可.【详解】∵ 21m n +=,∵2366m mn n ++=3m (m +2n )+6n =3m +6n =3(m +2n )=3.故答案为:3.【点睛】本题考查了代数式的求值,解题的关键是利用已知代数式求值.36.(2021·江苏扬州市·中考真题)将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【分析】首先得到前n个图形中每个图形中的黑色圆点的个数,得到第n个图形中的黑色圆点的个数为()12n n+,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【详解】解:第∵个图形中的黑色圆点的个数为:1,第∵个图形中的黑色圆点的个数为:()1222+⨯=3,第∵个图形中的黑色圆点的个数为:()1332+⨯=6,第∵个图形中的黑色圆点的个数为:()1442+⨯=10,...第n个图形中的黑色圆点的个数为()12n n+,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,其中每3个数中,都有2个能被3整除,33÷2=16...1,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275,故答案为:1275.【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.37.(2021·陕西中考真题)幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a 的值为______.【答案】-2 【分析】先通过计算第一行数字之和得到各行、各列及各条对角线上的三个数字之和,再利用第二列三个数之和得到a 的值. 【详解】解:由表第一行可知,各行、各列及各条对角线上的三个数字之和均为1616--+=-, ∵626a -++=-, ∵2a =-, 故答案为:2-. 【点睛】本题考查了数字之间的关系,解决本题的关键是读懂题意,正确提取表中数据,找到它们之间的关系等,该题对学生的观察分析能力有一定的要求,同时也考查了学生对有理数的和差计算的基本功.38.(2021·甘肃武威市·中考真题)一组按规律排列的代数式:2335472,2,2,2a b a b a b a b +-+-,…,则第n 个式子是___________. 【答案】()12112n nn a b +-+-⋅【分析】根据已知的式子可以看出:每个式子的第一项中a 的次数是式子的序号;第二项中b 的次数是序号的2倍减1,而第二项的符号是第奇数项时是正号,第偶数项时是负号. 【详解】解:∵当n 为奇数时,()111n +-=;当n 为偶数时,()111n +-=-,∵第n 个式子是:()1211?2n n n a b +-+-.故答案为:()1211?2n nn a b +-+-【点睛】本题考查了多项式的知识点,认真观察式子的规律是解题的关键.39.(2021·重庆中考真题)某销售商五月份销售A 、B 、C 三种饮料的数量之比为3:2:4,A 、B 、C 三种饮料的单价之比为1:2:1.六月份该销售商加大了宣传力度,并根据季节对三种饮料的价格作了适当的调整,预计六月份三种饮料的销售总额将比五月份有所增加,A 饮料增加的销售占六月份销售总额的115,B 、C 饮料增加的销售额之比为2:1.六月份A 饮料单价上调20%且A 饮料的销售额与B 饮料的销售额之比为2:3,则A 饮料五月份的销售数量与六月份预计的销售数量之比为_____________. 【答案】910【分析】设销售A 饮料的数量为3x ,销售B 种饮料的数量2x, 销售C 种饮料的数量4x ,A 种饮料的单价y . B 、C 两种饮料的单价分别为2y 、y .六月份A 饮料单价上调20%,总销售额为m ,可求A 饮料销售额为3xy+115m ,B 饮料的销售额为91210xy m +,C 饮料销售额:171420xy m +,可求=15m xy ,六月份A 种预计的销售额4xy ,六月份预计的销售数量103x ,A 饮料五月份的销售数量与六月份预计的销售数量之比103:3x x 计算即可 【详解】解:某销售商五月份销售A 、B 、C 三种饮料的数量之比为3:2:4,设销售A 饮料的数量为3x ,销售B 种饮料的数量2x, 销售C 种饮料的数量4x , A 、B 、C 三种饮料的单价之比为1:2:1.,设A 种饮料的单价y . B 、C 两种饮料的单价分别为2y 、y . 六月份A 饮料单价上调20%后单价为(1+20%)y,总销售额为m , A 饮料增加的销售占六月份销售总额的115A 饮料销售额为3xy+115m , A 饮料的销售额与B 饮料的销售额之比为2:3, B 饮料的销售额为31913=215210xy m xy m ⎛⎫++ ⎪⎝⎭ B 饮料的销售额增加部分为3134215xy m xy ⎛⎫+- ⎪⎝⎭∵C 饮料增加的销售额为131342215xy m xy ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦∵C 饮料销售额:13117134+42215420xy m xy xy xy m ⎡⎤⎛⎫+-=+ ⎪⎢⎥⎝⎭⎣⎦∵191171315210420xy m xy m xy m m +++++= ∵=15m xy六月份A 种预计的销售额1315415xy xy xy +⨯=, 六月份预计的销售数量()1041+20%y 3xy x ÷= ∵A 饮料五月份的销售数量与六月份预计的销售数量之比1093:9:10=310x x = 故答案为910【点睛】本题考查销售问题应用题,用字母表示数,列代数式,整式的加减法,单项式除以单项式,掌握销售额=销售单价×销售数量是解题关键40.(2021·四川凉山彝族自治州·中考真题)如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n 个图形需要___________根火柴棍.【答案】2n +1 【分析】分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可. 【详解】 解:由图可知:拼成第一个图形共需要3根火柴棍, 拼成第二个图形共需要3+2=5根火柴棍, 拼成第三个图形共需要3+2×2=7根火柴棍, ...拼成第n 个图形共需要3+2×(n -1)=2n +1根火柴棍, 故答案为:2n +1. 【点睛】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.三、解答题41.(2021·湖南衡阳市·中考真题)计算:()()()()22224x y x y x y x x y ++-++-. 【答案】23x 【分析】利用完全平方公式,平方差公式,单项式乘以多项式的法则,计算合并同类项即可 【详解】解:()()()()22224x y x y x y x x y ++-++-222224x 444x y y x y x xy =+++-+-23x =.【点睛】本题考查了完全平方公式,平方差公式,单项式乘以多项式,合并同类项,熟练掌握公式,准确合并计算是解题的关键.42.(2021·浙江金华市·中考真题)已知16x =,求()()()2311313x x x -++-的值. 【答案】1 【分析】直接利用完全平方差公式展开及平方差公式展开后,合并同类项化简,再将16x =代入进去计算. 【详解】解:原式229611962x x x x =-++-=-+ 当16x =时,原式16216=-⨯+=. 故答案是:1. 【点睛】本题考查了代数式的化简求值,解题的关键是:先利用完全平方差公式,平方差公式,合并同类项运算法则化简,然后代值计算.43.(2021·浙江温州市·中考真题)(1)计算:()0438⨯-+-.(2)化简:()()215282a a a -++. 【答案】(1)-6;(2)22625a a -+. 【分析】(1)直接利用有理数乘法法则以及绝对值的性质、二次根式的性质、零指数幂的性质分别化简得出答案; (2)直接利用完全平方公式以及单项式乘以多项式运算法则计算再合并即可得出答案. 【详解】解:(1)()0438⨯-+-12831=-+-+6=-;(2)()()215282a a a -++ 2210254a a a a =-+++22625a a =-+.【点睛】此题主要考查了实数运算、整式的混合运算,正确掌握相关运算法则是解题关键.44.(2021·四川南充市·中考真题)先化简,再求值:2(21)(21)(23)x x x +---,其中1x =-. 【答案】1210x -,-22 【分析】利用平方差公式和完全平方公式,进行化简,再代入求值,即可求解. 【详解】解:原式=2241(4129)x x x ---+ =22414129x x x --+- =1210x -,当x =-1时,原式=()12110⨯--=-22. 【点睛】本题主要考查整式的化简求值,熟练掌握完全平方公式和平方差公式,是解题的关键. 45.(2021·浙江宁波市·中考真题)(1)计算:()()()2113a a a +-++. (2)解不等式组:21930x x +<⎧⎨-≤⎩①②.【答案】(1)610a +;(2)34x ≤<. 【分析】(1)根据平方差公式和完全平方公式进行多项式乘法,再将结果合并同类项即可; (2)先解出∵,得到4x <,再解出∵,得到3x ≥,由大小小大中间取得到解集. 【详解】解:(1)原式22169a a a =-+++610a =+.(2)解不等式∵,得4x <, 解不等式∵,得3x ≥,所以原不等式组的解是34x ≤<.本题主要考查了整式的混合运算和解不等式组,关键在于平方差公式、完全平方公式以及不等式基本性质的应用,特别注意不等式的基本性质3,不等号的方向要改变. 46.(2021·重庆中考真题)计算:(1)2(23)()a a b a b ++-;(2)22293211x x x x x x ⎛⎫--÷+ ⎪+++⎝⎭.【答案】(1)223++a ab b ;(2)-31x x + 【分析】(1)根据单项式乘以多项式以及完全平方公式计算即可; (2)利用分式的混合运算法则进行计算即可. 【详解】解:(1)2(23)()a a b a b ++-2222+3+2+=a ab a ab b - 22=3++a ab b(2)22293211x x x x x x ⎛⎫--÷+ ⎪+++⎝⎭()()()222+3-3+3=11+x x x x x x x ⎛⎫-÷ ⎪++⎝⎭()()()2+3-31=31x x x x x +++ -3=1x x + 【点睛】本题考查了整式的混合运算和分式的混合运算,熟练掌握运算法则是解题的关键. 47.(2021·浙江中考真题)计算:()()()211x x x x +++-. 【答案】21x + 【分析】利用单项式乘多项式、平方差公式直接求解即可.解:原式2221x x x =++-21x =+.【点睛】本题考查整式的乘法,掌握单项式乘多项式法则和平方差公式是解题的关键. 48.(2021·四川乐山市·中考真题)已知2612(1)(2)A B x x x x x --=----,求A 、B 的值. 【答案】A 的值为4,B 的值为-2 【分析】根据分式、整式加减运算,以及二元一次方程组的性质计算,即可得到答案. 【详解】(2)(1)12(1)(2)(1)(2)A B A x B x x x x x x x ---=+------, ∵(2)(1)26(1)(2)(1)(2)A xB x x x x x x -+--=----,∵(2)(1)26A x B x x -+-=-, 即()(2)26A B x A B x +-+=-.∵226A B A B +=⎧⎨+=⎩,解得:42A B =⎧⎨=-⎩∵A 的值为4,B 的值为2-. 【点睛】本题考查了分式、整式、二元一次方程组的知识;解题的关键是熟练掌握分式加减运算、整式加减运算、二元一次方程组的性质,从而完成求解.49.(2021·安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列. [观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推,[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加 块;(2)若一条这样的人行道一共有n (n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为 (用含n 的代数式表示). [问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?【答案】(1)2 ;(2) 24n +;(3)1008块 【分析】(1)由图观察即可;(2)由每增加一块正方形地砖,即增加2块等腰直角三角形地砖,再结合题干中的条件正方形地砖只有1块时,等腰直角三角形地砖有6块,递推即可;(3)利用上一小题得到的公式建立方程,即可得到等腰直角三角形地砖剩余最少时需要正方形地砖的数量. 【详解】解:(1)由图可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖; 故答案为:2 ;(2)由(1)可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖; 当正方形地砖只有1块时,等腰直角三角形地砖有6块,即2+4; 所以当地砖有n 块时,等腰直角三角形地砖有(24n +)块; 故答案为:24n +;(3)令242021n += 则1008.5n = 当1008n =时,242020n += 此时,剩下一块等腰直角三角形地砖。

2021年中考数学必考知识点整式与代数式专项训练含解析

2021年中考数学必考知识点整式与代数式专项训练含解析

整式与代数式一、选择题1.在式子a2+2. .ab2 . .﹣8x.0中.整式有()A. 6个B. 5个C. 4个 D. 3个2.下列说法正确的是( )A. xyz与xy是同类项 B. 和x 是同类项C. 0.5x3y2和7 x3y2是同类项 D. 5mn2与-4nm2是同类项3.如果3ab2m-1与9ab m+1是同类项,那么m等于()A. 2B. 1C. --1D. 04.当x=﹣1时.代数式x2+2x+1的值是()A. ﹣2 B. ﹣1 C. 0D. 45.下列计算正确的是()A. 2a+3b=5abB. 2ab﹣2ba=0 C. 2a2b﹣ab2=a2b D. 2a2+3a2=5a36.用棋子摆出下列一组“口”字.按照这种方法摆下去.则摆第n个“口”字需用棋子枚数为()A. 4nB. 4n-4C. 4n+nD.7.下列运算正确的是()A. x3+2x3=3x6B. 2(a+b)=2a+bC. (1+ )(1﹣)=1 D.8.随着服装市场竞争日益激烈.某品牌服装专卖店一款服装按原售价降价a元后.再次打7折.现售价为b 元.则原售价为()A. B.C.D.9.若多项式x2+2ax+4能用完全平方公式进行因式分解.则a值为()A. 2B. ﹣2 C. ±2D. ±410.若x2﹣kx+1恰好是另一个整式的平方.则常数k的值为()A. 1B.2 C. ﹣2 D. ±211.计算1052-952的结果为( )A. 1000B. 1980C. 2000D. 400012.观察下列算式:31=3.32=9.33=27.34=81.35=243.36=729.37=2187.38=6561.….用你发现的规律判断32019的个位数字是()A. 9B. 7C. 3D. 113.一个多项式加上3x2y-3xy2得x3-3x2y.则这个多项式是()A. x3+3xy2B. x3-3xy2C. x3-6x2y+3xy2D. x3-6 x2y-3x2y二、填空题14.若a+b=6.ab=4.则a2+b2=________ .15.化简:(b-1)(b+1)(b2+1)=________.16.己知x.y为实数.且+ =0.则的值________.17.分解因式:m3﹣mn2=________.18.若代数式的值是5.则代数式的值是________ 。

专题03 分式的运算(解析版)2021年中考数学必考34个考点高分三部曲

专题03 分式的运算(解析版)2021年中考数学必考34个考点高分三部曲

4
10.(2020 广西梧州)化简: 2a2 8 a

a2
【答案】 a 4
【解析】解:原式 2(a2 4) a 2(a 2)(a 2) a
a2
a2
2a 4 a a 4 .
故答案为: a 4 .
11.(2020 湖南郴州)若 = ,则 =

【答案】 1 . 2
【解析】∵ = ,
=( x 2 ﹣ x )• x 2 x2 x2 x4
= x • x2 x2 x4
=x x4
当 x=4tan45°+2cos30°=4×1+2× 3 =4+ 3 时, 2
6原式= Leabharlann 3 = 4 3 = 4 3 3 .
4 34
3
3
17.(2020 湖北十堰)先化简,再求值:(1 1)÷( 1 2),其中 a
可以求得所求式子的值.
a
2
a2 4 4a
4
2
1
a
a2
2
2a
=
a
2a a 22
2
a
1
2
a
a
2
2

a a
2 2
a
1
2
·
a
a 2
2
a 3 aa 2

·
a2
2
a a 3 a2 3a


2
2
∵a2+3a﹣2=0,
∴a2+3a=2,
2
∴原式= =1.
2
【例题
3】(2020
6.
(2020
黑龙江绥化)当
a=2018

初中数学中考复习专题之三角函数反比例函数实数运算(2021年整理)

初中数学中考复习专题之三角函数反比例函数实数运算(2021年整理)

初中数学中考复习专题之三角函数反比例函数实数运算(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中数学中考复习专题之三角函数反比例函数实数运算(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中数学中考复习专题之三角函数反比例函数实数运算(word版可编辑修改)的全部内容。

中考复习专题(二)解直角三角形 反比例与一次函数一、坡度大坝问题知识梳理 一、定义:在筑坝、开渠、挖河和修路的设计图纸上都有注明斜坡的倾斜程度.我们通常把坡面的铅直高度h 和水平宽度l 的比叫做坡度(或叫坡比),用字母i 表示, 即l h i =,坡度一般写成1:m 的形式,如)51(5:1==i i 即, 如果把坡面与水平面的的夹角记为α(叫做坡角),那么坡度i 等于坡角的正切值, 即αtan =i二、坡度于坡角的区别与联系:①坡度与坡角都表示斜坡的倾斜程度,坡度越大,坡角也越大,坡面就越陡;②坡角是斜坡与水平面的夹角,是个角度,其单位是度,而坡度是坡角的正切值,是个比例,没有单位。

例题解析例1:如图,水库大坝的横断面为梯形,坝顶宽6m ,坝高24m ,斜坡AD 的坡角为45°,斜坡BC 的坡度为i=1︰2,则坝底AB 的长为( ) A 、42m B 、(30-203) C 、78m D 、30mCD变式练习1.如图,铁路的路基的横截面是等腰梯形,斜坡AB的坡度为1∶3,BE为33米,基面AD宽2米,求路基的高AE,基底的宽BC及坡角B的度数。

(答案可带根号)2.如图(2):河堤横断面为梯形,上底为4m,堤高为6m,斜坡AD的坡度为1︰3,斜坡CB 的坡度为45°,则河堤横断面的面积为()A、48m 2B、96 m 2C、84 m 2D、192 m3. 如图:水坝的横断面是梯形,迎水坡BC的坡角∠B=30°,背水坡AD的坡度为4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档