北师大版高中数学必修五《数列的概念》教案-新版

合集下载

高中数学 第1章 数列 1.1 数列的概念讲义教案 北师大版必修5

高中数学 第1章 数列 1.1 数列的概念讲义教案 北师大版必修5

学习资料数列§1数列1.1数列的概念学习目标核心素养1.了解数列通项公式的概念.2.能根据通项公式确定数列的某一项.(重点) 3.能根据数列的前几项写出数列的一个通项公式.(重点、难点)1.通过数列基本概念的学习培养数学抽象素养.2.通过数列通项公式的应用培养逻辑推理及数学运算素养.1.数列的基本概念阅读教材P3~P4,完成下列问题.(1)数列的有关概念数列按一定次序排列的一列数叫作数列项数列中的每一个数叫作这个数列的项首项数列的第1项常称为首项通项数列中的第n项a n叫数列的通项(2)数列的表示①一般形式:a1,a2,a3,…,a n,…;②字母表示:上面数列也可记为{a n}.③数列的分类分类标准名称含义举例按项的个数有穷数列项数有限的数列1,2,3,4,…,n 无穷数列项数无限的数列1,4,9,…,n2,…思考:(1)[提示]数列1,2,3,4,5和数列5,4,3,2,1不是同一个数列,因为二者的项的排列次序不同.(2)数列的项和项数有何区别?[提示]数列的项是指数列中的某一个确定的数,而项数是指这个数在数列中的位置序号,如数列1,2,3,4,5中第1项为a1=1,其项数是1.2.通项公式阅读教材P5“抽象概括”以下至“例1"以上的内容,完成下列问题.(1)如果数列{a n}的第n项a n与n之间的函数关系可以用一个式子表示成a n=f(n),那么这个式子就叫作这个数列的通项公式.(2)数列可以看作是定义域为正整数集N+(或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列.思考:(1)若a n=2n-1,则a2+a3的值是什么?[提示]因为a n=2n-1,所以a2=2×2-1=3,a3=2×3-1=5,则a2+a3=3+5=8.(2)数列的通项公式a n=f(n)与函数解析式y=f(x)有什么异同?[提示]数列可以看成以正整数集N+(或它的有限子集{1,2,3,…,n})为定义域的函数a n=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.不同之处是定义域:数列中的n必须是从1开始且连续的正整数,函数的定义域可以是任意非空数集.1.已知数列{a n}的通项公式是a n=n2+1,则122是该数列的()A.第9项B.第10项C.第11项D.第12项C[由n2+1=122得n2=121,∴n=11.故选C.]2.数列3,4,5,6,…的一个通项公式为()A.a n=n B.a n=n+1C.a n=n+2 D.a n=2nC[经检验可知,它的一个通项公式为a n=n+2.]3.若数列{a n}的通项公式为a n=sin 错误!,则a2=________.0[a2=sin 错误!=sin π=0.]4.已知数列{a n}的通项公式为a n=(-1)n,n∈N+,则它的第8项是________,第9项是________.1-1[当n=8时,a8=(-1)8=1.当n=9时,a9=(-1)9=-1.]数列的概念【例1】(1A.数列0,1,2,3,…的首项是0B.数列{a n}中,若a1=3,则从第2项起,各项都不等于3C.数列中的每一项都是数D.如果已知数列的通项公式,那么可以写出该数列的任意一项(2)下列各组元素能构成数列吗?如果能,构成的数列是有穷数列,还是无穷数列?并说明理由.①8,8,8,8;②-3,-1,1,x,5,7,y,11;③当n取1,2,3,4,…时,(-1)n的值排成的一列数.(1)B[同一个数可以在一个数列中重复出现,故B错误.](2)[解]①能构成数列,且构成的是有穷数列.②当x,y代表数时是数列,此时构成的是有穷数列;当x,y中有一个不代表数时,便不能构成数列,这是因为数列必须是由一列数按一定的顺序排列组成的.③能构成数列,且构成的是无穷数列.所构成的数列是-1,1,-1,1,….数列及其分类的判定方法(1)判断所给的对象是否为数列,关键看它们是不是按一定次序排列的数.(2)判断所给的数列是有穷数列还是无穷数列,只需观察数列含有限项还是无限项,若数列含有限项,则是有穷数列,否则是无穷数列.错误!1.下列说法正确的是()A.1,2,3,4,…,n是无穷数列B.数列3,5,7与数列7,5,3是相同数列C.同一个数在数列中不能重复出现D.数列{2n+1}的第6项是13D[A错误,数列1,2,…,n,共n项,是有穷数列.B错误,数列是有次序的.C错误,数列中的数可以重复出现.D正确,当n=6时,2×6+1=13.]根据数列的前n项写出数列的通项公式(1)错误!,错误!,错误!,错误!,…;(2)错误!,2,错误!,8,错误!,…;(3)-1,2,-3,4,…;(4)2,22,222,2 222,….[解](1)分子均为偶数,分母分别为1×3,3×5,5×7,7×9,…是两个相邻奇数的乘积.故a n=错误!.(2)将分母统一成2,则数列变为错误!,错误!,错误!,错误!,错误!,…,其各项的分子为n2.∴a n=错误!.(3)该数列的前4项的绝对值与序号相同,且奇数项为负,偶数项为正,故a n=(-1)n·n.(4)通过观察分析可知所求通项公式为a n=错误!(10n-1).由数列的前几项求通项公式的思路(1)通过观察、分析、联想、比较,去发现项与序号之间的关系.(2)如果关系不明显,可将各项同时加上或减去一个数,或分解、还原等,将规律呈现,便于找通项公式.(3)要借助一些基本数列的通项,如正整数数列、正整数的平方数列、奇数列、偶数列等.(4)符号用(-1)n或(-1)n+1来调整.(5)分式的分子、分母分别找通项,还要充分借助分子、分母的关系.[跟进训练]2.(1)数列1,错误!,错误!,错误!,错误!,…的一个通项公式a n=()A.错误!B.错误!C.错误!D.错误!(2)根据以下数列的前4项写出数列的一个通项公式.①错误!,错误!,错误!,错误!,…;②-3,7,-15,31,…;③2,6,2,6,….(1)B[由已知得,数列可写成错误!,错误!,错误!,错误!,错误!,…,故通项公式为n2n-1.](2)[解]①均是分式且分子均为1,分母均是两因数的积,第一个因数是项数加上1,第二个因数比第一个因数大2,所以a n=1(n+1)(n+3).②正负相间,且负号在奇数项,故可用(-1)n来表示符号,各项的绝对值恰是2的整数(项数加1)次幂减1,所以a n=(-1)n(2n+1-1).③此数列为摆动数列,一般求两数的平均数错误!=4,而2=4-2,6=4+2,中间符号用(-1)n 来表示.所以a n =4+(-1)n ·2或a n =错误!通项公式的应用[探究问题]1.已知数列{a n }的通项公式,如何求数列的某一项?[提示] 把n 的值代入通项公式进行计算即可,相当于函数中,已知函数的解析式和自变量的值求函数值关于n 的方程.2.已知数列{a n }的通项公式,如何判断某一个数是否为该数列中的项?[提示] 假定这个数是数列中的第n 项,由通项公式可得关于n 的方程,解方程求得n ,若n 是正整数,则该数是数列中的项;若方程无解或n 不是正整数,则该数不是数列中的项.【例3】 数列{a n }的通项公式是a n =n 2-21n 2(n ∈N +).(1)0和1是不是数列{a n }中的项?如果是,那么是第几项?(2)数列{a n }中是否存在连续且相等的两项?若存在,分别是第几项? 思路探究:(1)错误!⇒错误!⇒错误!(2)假设存在连续且相等的两项⇒错误!⇒错误!⇒错误! [解] (1)若0是{a n }中的第n 项,则错误!=0, 因为n ∈N +,所以n =21.所以0是{a n }中的第21项. 若1是{a n }中的第n 项,则错误!=1, 所以n 2-21n =2, 即n 2-21n -2=0.因为方程n 2-21n -2=0不存在正整数解, 所以1不是{a n }中的项.(2)假设{a n }中存在第m 项与第m +1项相等,即a m =a m +1,解得m =10. 所以数列{a n }中存在连续的两项,即第10项与第11项相等.1.(变条件)在例3中,把“a n =错误!”改为“a n =n 2-3n ”,解答(1)(2)两题. [解] (1)若0是{a n }中的第n 项,则n 2-3n =0,因为n ∈N +,所以n =3,故0是{a n }中的第3项.若1是{a n }中的第n 项,则n 2-3n =1,即n 2-3n -1=0,因为方程n 2-3n -1=0不存在正整数解,所以1不是{a n }中的项.(2)假设{a n }中存在第m 项与第m +1项相等,即a m =a m +1,所以m 2-3m =(m +1)2-3(m +1),解得m =1.所以数列{a n }中存在连续的两项,第1项与第2项相等.2.(变结论)例3的条件不变,求a 3+a 4的值和a 2n .[解] a 3+a 4=32-21×32+错误!=-61,a 2n =错误!=2n 2-21n .1.由通项公式写出数列的指定项,主要是对n 进行取值,然后代入通项公式,相当于函数中,已知函数解析式和自变量的值求函数值.2.判断一个数是否为该数列中的项,其方法是可由通项公式等于这个数求方程的根,根据方程有无正整数根便可确定这个数是否为数列中的项.1.观察法写通项公式的注意事项据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征.并对此进行联想、转化、归纳.2.并非每一个数列均有通项公式,例如由错误!的不足近似值构成的数列1,1.4,1.41,1.414,…,便无通项公式.1.判断正误(正确的打“√”,错误的打“×”) (1)数列中的项不能相等.( ) (2)数列1,2,3,4,…,n -1,只有n -1项. ( ) (3)数列1,2,3,4,…,n 2是无穷数列. ( )[答案] (1)× (2)√ (3)×[提示] 数列中的项可以相等,故(1)错;数列1,2,3,4,…,n 2共n 2项,是有穷数列,故(3)错.2.在数列-1,0,19,错误!,…,错误!,…中0.08是它的( )A .第100项B .第12项C .第10项D .第8项C [由题意知,a n =错误!. 令a n =0.08,即错误!=错误!, 所以n =10,n =52(舍去),故选C .]3.若数列{a n }的通项公式是a n =3-2n ,则a 2n =________,错误!=________.3-4n错误![根据通项公式我们可以求出这个数列的任意一项.因为a n=3-2n,所以a2n=3-22n=3-4n,错误!=错误!=错误!.]4.已知数列{a n}的通项公式为a n=错误!.(1)写出数列的前三项;(2)错误!和错误!是不是数列{a n}中的项?如果是,是第几项? [解](1)数列的前三项:a1=错误!=1,a2=错误!=错误!=错误!,a3=错误!=错误!=错误!.(2)令错误!=错误!,则n2+3n-40=0,解得n=5或n=-8,注意到n∈N+,故n=-8舍去.所以错误!是数列{a n}的第5项.令错误!=错误!,则4n2+12n-27=0,解得n=错误!或n=-错误!,注意到n∈N+,所以错误!不是数列{a n}中的项.。

北师大版高中数学高二必修5教案2数列的概念

北师大版高中数学高二必修5教案2数列的概念
§1数 列
第1课时 数列的概念
知能目标解读
1.通过日常生活中的实例,了解数列的概念.
2.掌握并理解数列、数列通项公式、递推公式的概念,能区分项和项数,并能根据数列的前几项写出它的一个通项公式,能根据数列的递推公式写出数列的前几项.
3.了解数列的分类.
4.了解数列的表示方法:列表法、图像法、通项公式法、递推公式法.
∴此数列前5项分别为:1,2, , , .
本例显示,递推公式和通项公式是反映数列构成规律的两个不同形式.递推公式反映的是相邻两项或几项之间的关系,它虽然揭示了一些数列的性质,但要了解数列的全貌,还需要进行计算,它的计算并不方便.而通项公式更注重整体性和统一性,利用通项公式可求出数列中的任意一项.
知能自主梳理
3.数列的分类
判断一个数列是有穷数列还是无穷数列,应明确数列元素的构成以及影响构成元素的要素是有限还是无限的.
4.通项公式
(1)由于数列可看做是定义域为正整数集N+(或它的有限子集)的函数,数列中的各项为当自变量从小到大依次取值时,该函数所对应的一列函数值,所以数列的通项公式就是相应的函数解析式,项数n是相应的自变量.
(2)数列中的项的表示通常用英文字母加右下角标来表示,如an.其中的右下角标n表示项的位置序号.
(3){an}与an是不同的概念,{an}表示数列a1,a2,a3,…,an,…,而an仅表示数列的第n项.
2.数列的项与项数
数列的项与它的项数是两个不同的概念,数列的项是指出现在这个数列中的某一个确定的数an,由于数列{an}的每一项的序号n与这一项an的对应关系可以看成序号集合到项的集合的函数,故数列中的项是一个函数值,即f(n).而项数是指这个数在数列中的位置序号,它是这个函数值f(n)对应的自变量的值,即n的集合是自然数集(或其子集).

《数列的概念》示范公开课教案【高中数学北师大】

《数列的概念》示范公开课教案【高中数学北师大】

第一章 数列1.1 数列的概念1.理解数列的概念,了解数列通项公式的意义与分类;2.能由通项公式求出数列的各项,反之能根据数列的前几项发现规律,写出数列的通项公式;3.通过学习,培养学生观察抽象的能力,认识数列是刻画自然规律的数学模型.教学重点:理解数列的概念,认识数列是刻画自然规律的数学模型. 教学难点:根据数列的前几项发现规律,写出数列的通项公式.一、情境导入在现实生活和数学学习中,我们经常需要根据问题的意义,通过对一些数据按特定顺序排列的方法来刻画研究对象.例如:1、从2000年到2022年我国共参加了6次奥运会,各次参赛获得的金牌总数依次为:28,32,52,38,26,38.2、拉面师傅在拉面过程中,随着拉的次数增多,面条根数依次增多:1,2,4,8,16,... 3.人们在1740年发现了一颗彗星,并且每隔83年出现一次.从发现那次算起,这颗彗星近五次出现的年份依次为:1740,1823,1906,1989,2072.4.庄子曰:“一尺之棰,日取其半,万世不竭”.意思为:一尺长的木棒,每日取其一半,永远也取不完.如果将“一尺之棰”视为一份,那么每日剩下的部分依次为:问题1:这几列数的共同特点是什么? 答:①规律都用一列数表示 ②都有一定顺序设计意图:从生活实例引入课题,让学生认识数学是刻画自然规律的数学模型.二、新知探究定义概念1.数列:一般地,按一定次序排列的一列数叫做数列,数列中的每一个数叫作这个数列的项.数数列的一般形式: 123,,,,,n a a a a ⋯⋯ , 简记为数列 {}n a .其中数列第一项 1a ,也叫首项,n a 是数列的第n 项,也叫数列的通项.11111,,,,,2481632⋯◆教学目标◆教学重难点◆教学过程想一想:将数列:1,2,3,4,5,6改成:6,5,4,3,2,1.两个数列一样吗? 答:不一样.2.数列的分类:✮以项数来分类:(1) 有穷数列:项数有限的数列; (2) 无穷数列:项数无限的数列. ✮ 以各项的大小关系来分类:(1) 递增数列:从第2项起,每一项都大于它的前一项的数列.即对任意n ∈N ∗,总有a n+1>a n (或a n+1−a n >0).(2) 递减数列:从第2项起,每一项都小于它的前一项的数列.即对任意n ∈N ∗,总有a n+1<a n (或a n+1−a n <0). (3) 常数列:各项都相等的数列;(4) 摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.问题2: 数列与数集有什么异同?答:(1)数列{}n a 中是一列数,而集合中的元素不一定是数; (2)数列{}n a 中的数是有一定次序的,而集合中的元素没有次序; (3)数列{}n a 中的数可以重复,而集合中的元素不能重复. 问题3:数列{}n a 的项与序号n 有怎样的关系?答:数列的每一项都对应一个序号,反之,数列的每一个序号都对应着一个项. 如数列:2,4,8,16,32,64,⋯这个数列的每一项的序号n 与这一项的对应关系可用如下公式表示: 这样,只要依次用序号1,2,3,4,⋯代替求出数列相应的项.总结:1.对任意数列 {}n a ,其每一项的序号与项都有对应关系:2.如果数列 {}n a 的第 n 项n a 与序号 n 之间的关系可以用一个式子表示成:(),.n a f n n N +=∈这个式子叫做数列的通项公式.a n =2n问题4: 任意一个数列都能写出通项公式吗?它是唯一的吗? 答:不是每一个数列都能写出它的通项公式;如:1248319,,,, ② 一些数列的通项公式不是唯一.如:数列 1-11-1,,,,1(1)n n a +=-1(1)n n a -=-或11,n n a n ⎧=⎨-⎩,为奇数或为偶数设计意图:从具体的一个数列出发,分析数列项与序号间的关系,培养学生从特殊到一般的思想与分析问题习惯.三、应用举例例1 根据下列数列的通项公式,写出数列的前5项.(1)1;1n a n =+(2)sin .2n n a π=解:(1)依次取 1,2,3,4,5,n = 得到数列 {}n a 前5项为11111,,,,;23456(2)依次取 1,2,3,4,5,n = 得到数列 {}n a 前5项为1,0,1,0,1.-例2 如果数列 {}n a 的通项公式为2328n a n n =-,那么 -49和 68 是不是这个数列的项? 如果是,是第几项?解:令 232849n n -=-, 解得:77().3n n ==或舍去 .∴-49是这个数列的第7项令 232868n n -=, 解得:342.3n n =-=或均不符合题意, .∴68不是这个数列的项总结:数列的通项公式给出了第n 项a n 与它的项数n 之间的关系.已知数列的通项公式,只要用项数代替通项公式中的n ,即可求出相应的项.反过来,判断某一个数是不是数列中的项,就用数列的通项公式建立以n 为变量的方程,若方程有正整数解,则该数为数列中的项,n 的值即为该数在数列中的项数;若方程没有正整数解,则该数不是数列中的项.例3 写出下列数列的一个通项公式. (1)1,4,9,16,25,(2)1,3,5,7,9,--(3)9,99,999,9999,解:(1)2n a n =;(2) ()+1(1)21n n a n =--;(3)101nn a =- ;总结:用观察归纳法写出一个数列的通项公式,体现了由特殊到一般的思维规律,可以: (1)先统一项的结构,如都化成分数、根式等;(2)分析这一结构中变化的部分与不变的部分,探索变化部分的规律与对应序号间的关系式;(3)对于符号交替出现的情况,可先观察其绝对值,再以(−1)^k 处理符号;设计意图:通过例1、例2、例3,加深对数列通项公式的理解,同时培养学生观察与归纳能力.四、课堂练习1.下列说法:①数列{}31n -的第 5 项是10 ;②数列22222,1,,,,,,345n可以记为 2n ⎧⎫⎨⎬⎩⎭;③数列 3,6,9 与数列 6,9,3 是相同的数列;④数列 1,1,2,3,5,8,13,21,是无穷数列. 其中,正确的有 .2.写出下列数列的一个通项公式:(1)1,3,7,15,(2)7,77,777,7777,(3) 1,3,1,3,1,3,参与答案: 1.② ④2.(1) 21nn a =- ;(2) 7(101)9nn a =-(3) {1,3,n n n a =为奇数,为偶数. 或 2(1)n n a =+- .3.古希腊著名科学家毕达哥拉斯把1,3,6,10,15,21,….这些数量的(石子),排成一个个如图一样的等边三角形,从第二行起每一行都比前一行多1个石子,像这样的数称为三角形数.那么把三角形数从小到大排列,第10个三角形数是_________.解:根据题意,三角形数的每一项都是数列{}n 的前n 项的和,即10123,55n a n a =++++=故答案为:55设计意图:巩固数列的概念和数列的通项公式,强调数列的有序性,加深学生对数列的概念的认识.五、课堂小结一、知识:1.数列的有关概念:定义、分类、表示;2.数列的通项公式; 二、数学素养:培养观察、分析、归纳思维能力设计意图:总结与归纳本节课所学知识,培养学生的归纳概括能力.六、布置作业教材第7页练习1、2、3、4.。

北师大版高中数学必修五教学案数列的概念数列的函数特性

北师大版高中数学必修五教学案数列的概念数列的函数特性
4.数列的通项公式:如果数列 的第n项 与n之间的关系可以用来表示,那么就叫做这个数列的通项公式.
反思:
⑴所有数列都能写出其通项公式?
⑵一个数列的通项公式是唯一?
⑶数列与函数有关系吗?如果有关,是什么关系?
5.数列的分类:
1)根据数列项数的多少分数列和数列;
2)根据数列中项的大小变化情况分为数列,
数列,数列和数列.
二师生互动
例1写出下面数列的一个通项公式,使它的前4项分别是下列各数:
⑴1,- , ,- ;
⑵1,0,1,0.
(3) , , , ;
(4)1,-1,1,-1;
例2已知数列2, ,2,…的通项公式为 ,求这个数列的第四项和第五项.
变式:已知数列 , , , , ,…,则5 是它的第项.
练1.写出下面数列的一个通项公式,使它的前4项分别是下列各数:
8.数列 满足 , (n≥1),则该数列的通项 ().
A. B.
C. D.
四课后反思
五课后巩固练习
(1)写出数列 , , , 的一个通项公式为.
(2)已知数列 , , , , ,…那么3 是这个数列的第项.
3.数列 中, =0, = +(2n-1) (n∈N),写出前五项,并归纳出通项公式.
4、已知数列 满足 , ( ),则 ().
A.0 B.- C. D.
5.数列 满足 , ,写出前5项,并猜想通项公式 .
3.对于比较简单的数列,会根据其前几项写出它的个通项公式.
教学过程
一自主学习
⒈数列的定义:的一列数叫做数列.
⒉数列的项:数列中的都叫做这个数列的项.
反思:
⑴如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?

高中数学新北师大版精品教案《北师大版高中数学必修5 1.1数列的概念》88

高中数学新北师大版精品教案《北师大版高中数学必修5 1.1数列的概念》88

数列的概念及简单表示法一、教材与教学分析根据新课程的标准,“数列”这一章首先通过GDP排列、人口数量等大量的实例引入数列的概念,然后将数列作为一种特殊函数,介绍数列的几种简单表示法,等差数列和等比数列这样就把生活实际与数学有机地联系在一起,这是符合人们的认识规律,让学生体会到数学就在我们身边作为数列的起始课,为达到新课标的要求,从一开始就培养学生的研究意识、创新意识、合作意识和应用意识,打造数列教与学的良好开端教学中从日常生活中大量实际问题入手,探索并掌握它们的一些基本数量关系,感受数列模型的广泛应用如存款利息、购房贷款等与人们生活联系密切的现实问题.二、教学目标分析知识与技能:(1)理解数列的概念,了解数列是一种特殊函数,体会数列中项an与序号n之间的函数关系.(2)能区分项和项数(序号)这两个不同的概念,理解通项公式是数列第n项an与项数n之间的关系式,能根据通项公式写出数列的任意一项(3)对比较简单的数列,能根据数列前几项,用不完全归纳法写出一个通项公式过程与方法:通过对一个数列的观察归纳,写出符合条件的一个通项公式,培养学生观察、归纳、类比、联想等分析问题的能力情感态度与价值观:通过引例,体会数学来自生活,进一步体会数列、函数与生活的关系通过课外的学习延伸,激发学生学习积极性教学重点:理解数列的概念,数列的通项公式教学难点:数列的特殊特征,根据数列前几项,能写出数列的一个通项公式三、教学方法与学习方法启发式教学法:以设问和疑问层层引导,激发学生,启发学生积极思考探究教学法:引导学生去疑;鼓励学生去探;激励学生去思,培养学生的创造性思维和批判精神四、多媒体辅助教学4916 ,,,,...34592,,8,...2六、教学反思本课依照新课程标准设计,力求使学生明确(1)概念的发生、发展及背景;(2)概念中关键词及与已有知识有联系;(3)概念的应用课初,通过丰富的实例展开,让学生直观感知、观察发现、抽象概括置身于知识的发生、发展、形成过程,提醒学生大胆发现,小心求证,这有助于提高学生分析问题和解决问题的能力巩固练习时,设计通过新颖的形式展开,增强学生学习数列的兴趣,产生学习数学的积极情感,使他们感受到数列离自己很近,数列有用。

高中数学北师大版必修5 1.1 教学设计 《数列的概念》(北师大)

高中数学北师大版必修5 1.1 教学设计 《数列的概念》(北师大)

《数列的概念》本节通过6个实例,指出数列实际就是按一定次序排列的一列数,数列中的每一项和它的序号有关,并由此得出通项、首项、有穷数列等概念,进而抽象出数列可以看成是定义在正整数集或其有限子集上的函数。

实际教学时先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式。

【知识与能力目标】通过本节学习,让学生理解数列的概念,了解数列的通项公式,并会用通项公式写出数列的任意一项,对于比较简单的数列,会根据其前几项写出它的一个通项公式。

【过程与方法目标】通过探究、思考、交流、观察、分析等教学方式,充分发挥学生的主体作用,并通过日常生活中的大量实例,鼓励学生动手试验,大胆猜想,培养学生对科学的探究精神和严肃认真的科学态度。

【情感态度价值观目标】通过对本节的学习,让学生体会数学的科学价值和美学价值,加深学生对数学的理解和认识,激发学生学习数学的兴趣。

【教学重点】理解数列及其有关的概念,了解数列通项公式的意义,会根据数列的前几项写出它的一个通项公式。

【教学难点】根据数列的前几项,归纳出数列的一个通项公式。

电子课件调整、相应的教具带好、熟悉学生名单、电子白板要调试好。

一、导入部分思路1:(情境导入)引导学生阅读章前科学史上的一个真实故事,直观感受数列在科学上的应用价值,体会到小小一列数可真是不简单。

由此点明,本章主要学习有关数列的基本知识,建立等差数列和等比数列两种模型,探索它们的基本数量关系,感受它们的应用,相信你会有更大的收获。

由此进行数列概念的探究,展开新课。

思路2:(直接导入)让学生阅读章前故事后,每人随手写出5个数,教师适时指出,你写的5个数就是一个数列,由此展开新课。

二、研探新知,建构概念探究1.阅读教材P3~P4,完成下列问题。

1.数列的有关概念2.数列的表示。

北师大版高中数学必修五数列的概念教案(1)

北师大版高中数学必修五数列的概念教案(1)

数列的概念教案教学目标1.通过教学使学生理解数列的概念,了解数列的表示法,能够根据通项公式写出数列的项.2.通过数列定义的归纳概括,初步培养学生的观察、抽象概括能力;渗透函数思想.3.通过有关数列实际应用的介绍,激发学生学习研究数列的积极性.教学重点,难点教学重点是数列的定义的归纳与认识;教学难点是数列与函数的联系与区别.教学用具:电脑,课件(媒体资料),投影仪,幻灯片教学方法:讲授法为主教学过程一.揭示课题今天开始我们研究一个新课题.先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要但求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数(板书)象这样排好队的数就是我们的研究对象——数列.(板书)第三章数列(一)数列的概念二.讲解新课要研究数列先要知道何为数列,即先要给数列下定义,为帮助同学概括出数列的定义,再给出几列数:(幻灯片)①自然数排成一列数:②3个1排成一列:③无数个1排成一列:④的不足近似值,分别近似到排列起来:⑤正整数的倒数排成一列数:⑥函数当依次取时得到一列数:⑦函数当依次取时得到一列数:⑧请学生观察8列数,说明每列数就是一个数列,数列中的每个数都有自己的特定的位置,这样数列就是按一定顺序排成的一列数.(板书)1.数列的定义:按一定次序排成的一列数叫做数列.为表述方便给出几个名称:项,项数,首项(以幻灯片的形式给出).以上述八个数列为例,让学生练习指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,……,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系.(板书)2.数列与函数的关系数列可以看作特殊的函数,项数是其自变量,项是项数所对应的函数值,数列的定义域是正整数集,或是正整数集的有限子集.于是我们研究数列就可借用函数的研究方法,用函数的观点看待数列.遇到数学概念不单要下定义,还要给其数学表示,以便研究与交流,下面探讨数列的表示法.(板书)3.数列的表示法数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法.相对于列表法表示一个函数,数列有这样的表示法:用表示第一项,用表示第一项,……,用表示第项,依次写出成为(板书)(1)列举法.(如幻灯片上的例子)简记为.一个函数的直观形式是其图象,我们也可用图形表示一个数列,把它称作图示法.(板书)(2)图示法启发学生仿照函数图象的画法画数列的图形.具体方法是以项数为横坐标,相应的项为纵坐标,即以为坐标在平面直角坐标系中做出点(以前面提到的数列为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.有些函数可以用解析式来表示,解析式反映了一个函数的函数值与自变量之间的数量关系,类似地有一些数列的项能用其项数的函数式表示出来,即,这个函数式叫做数列的通项公式.(板书)(3)通项公式法如数列的通项公式为;的通项公式为;的通项公式为;数列的通项公式具有双重身份,它表示了数列的第项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.例如,数列的通项公式,则.值得注意的是,正如一个函数未必能用解析式表示一样,不是所有的数列都有通项公式,即便有通项公式,通项公式也未必唯一.除了以上三种表示法,某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.(板书)(4)递推公式法如前面所举的钢管的例子,第层钢管数与第层钢管数的关系是,再给定,便可依次求出各项.再如数列中,,这个数列就是.像这样,如果已知数列的第1项(或前几项),且任一项与它的前一项(或前几项)间的关系用一个公式来表示,这个公式叫做这个数列的递推公式.递推公式是数列所特有的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可.可由学生举例,以检验学生是否理解.三.小结1.数列的概念2.数列的四种表示四.作业略。

数列的概念教案10北师大版必修5

数列的概念教案10北师大版必修5

《数列的概念》课堂教学设计一.教学内容本节内容是人民教育出版社A版教材,必修5第二章第一节第一课时《数列的概念与简单表示方法(一)》,本节可主要讲解数列的描述性和函数性定义,数列的分类,数列的通项公式,而不涉及数列的其他表示方法。

二.学生分析本节面对具有一定分析、理解、推理能力和良好数学学习习惯的普通高中高二学生,已经对函数有了较深的理解。

一般来讲学生会感觉到数学比较枯燥,特别是概念课,这就需要教师在引入概念时一定要勾起学生的兴趣。

另外这节内容和函数知识联系比较紧密,理解数列与函数的联系是本节的一个难点,这种联系不仅能为学生深入理解数列的概念和方法提供条件,而且还能为学生从整体上认识数学、体会数学的思想和方法提供机会。

三.课程标准与教材分析课程标准对数列的叙述非常简洁,在教学中如何有效地实现“提高数学科学素养”、“面向全体学生”、“倡导探究性学习”、“注重与现实生活的联系”的基本理念,是一线教师的努力所在。

关于数列的概念,课程标准的要求层次为了解,这意味着学生要对数列有一个感性的认识,并将数列与函数联系起来,这样可以加深对数列概念的理解,而且有助于运用函数的观点去研究数列,并教学过程中使学生认识数学与现实世界和实际生活的联系,培养和发展学生的数学应用意识。

(二)教材分析数列是高中数学重要内容之一,它的地位作用可以从三个方面来看:(1) 数列起着承前启后的作用.一方面,初中数学的许多内容在解决数列的某些问题中得到了充分运用,数列与前面学习的函数等知识有密切的联系;可以加深学生对函数概念的认识,使他们了解不仅可以有自变量连续变化的函数,还可以有自变量离散变化的函数。

(2) 数列是培养学生数学能力的良好题材,学习数列,要经常观察、分析、归纳、猜想、迭代的思想,还要综合运用前面的知识解决数列中的一些问题,这些都有助于学生数学能力的提高。

(3) 数列有着广泛的实际应用.如堆放物品总数的计算要用到数列的前n项和公式;又如产品规格的设计的某些问题要用到等比数列的原理;再如储蓄、分期付款的有关计算也要用数列的一些知识。

北师大版高中必修5第一章数列课程设计

北师大版高中必修5第一章数列课程设计

北师大版高中必修5第一章数列课程设计一、背景数列是数学中一种基本的概念,也是高中数学必修的一个章节。

数列的概念不仅在数学中有广泛的应用,也涉及到某些实际问题的策略和方法。

因此,数列的学习对高中数学的日常课程以及未来的学习和发展有重要的影响。

二、课程设计目标通过本课程,学生应该能够达到以下目标:•掌握数列的概念和性质;•熟练进行数列的公式推导及题目求解;•对数列的应用能够有一定的理解和掌握。

三、教学内容3.1 数列的概念1.数列概念1.等差数列的概念2.等比数列的概念3.斐波那契数列的概念2.数列的性质1.数列有界性及数列极限的概念2.数列的递推公式及通项公式3.2 数列的基本操作1.求和公式的推导及实际应用2.数列基本操作题目讲解及习题完成3.3 数列的应用1.数列在实际问题中的应用2.数列应用题目讲解及习题完成四、教学步骤4.1 第一课时4.1.1 导入数列是数学中的一个基础概念,本章的教学将介绍所涉及到的数列类型及数列的基本性质,让同学们对此有一个清晰的认识。

4.1.2 引入本节课将主要讲解等差数列的概念及性质,包括差、首项、公差等。

学生应该学会如何求出等差数列的通项公式及其与和式的关系。

4.1.3 操作1.老师首先讲解等差数列的概念及性质。

2.引导学生完成一系列简单的等差数列题目,以掌握其推导和应用方法。

3.最后让学生独立完成几道综合性的等差数列应用题目。

4.2 第二课时4.2.1 导入本节课将主要讲解等比数列的概念及性质,包括比、首项、公比等。

学生应该学会如何求出等比数列的通项公式及其与和式的关系。

4.2.2 引入本章主要讲解斐波那契数列的概念及其应用,引导学生从一个简单的问题入手,渐渐深入到一系列的高层应用。

4.2.3 操作1.老师首先讲解等比数列的概念及性质。

2.引导学生完成一系列简单的等比数列题目,以掌握其推导和应用方法。

3.最后让学生独立完成几道综合性的等比数列应用题目。

4.3 第三课时4.3.1 导入数列学习的最后一个环节是数列的应用,是这个学习过程的重点,将深入介绍数列在实际问题中的应用。

《数列的概念》示范公开课教学设计【高中数学必修5(北师大版)】精选全文完整版

《数列的概念》示范公开课教学设计【高中数学必修5(北师大版)】精选全文完整版

可编辑修改精选全文完整版《数列的概念》教学设计 【知识与能力目标】 了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项;理解数列的前n 项和与n a 的关系【过程与方法目标】经历数列知识的感受及理解运用的过程。

【情感态度价值观目标】通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。

【教学重点】 根据数列的递推公式写出数列的前几项【教学难点】理解递推公式与通项公式的关系Ⅰ.课题导入数列的概念 问题: 1.国际象棋的传说:每格棋盘上的麦粒数排成一列数;2. 古语:一尺之棰,日取其半,万世不竭.每日所取棰长排成一列数;3. 童谣:一只青蛙,一张嘴 ,两只眼睛,四条腿; 两只青蛙, 两张嘴 ,四只眼睛,八条腿; 三 只青蛙,三张嘴 ,六只眼睛, 十二条腿;◆教学目标◆教学重难点◆教学过程4.中国体育代表团参加六届奥运会获得的金牌数依次排成一列数。

教师:以上四个问题中的数蕴涵着四列数。

学生:1:1、2、22、23 (263)2一列数:3:4:15,5,16,16,28,32如上几列数的共同特点是什么?教师:引导学生思考这四列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等比数列概念。

学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定。

教师引导归纳出:⒈数列的定义:按一定次序排列的一列数叫做数列。

注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项.3. 数列的一般形式:n a a a ,,,21 ,表示法{}n a4. 数列的表示方法(1)通项公式法如果数列{an}的第n 项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。

1.1.1数列的概念 教案(北师大版必修五)

1.1.1数列的概念 教案(北师大版必修五)

⇒ ⇒ ⇒
通过例2及变式训练,使学生掌握数列的通项公式的求法 通过例3及互动探究,让学生掌握利用通项公式确定数列的项的问题 归纳整理,进行课堂小结,整体认识所学知识
⇒ 完成当堂双基达标,巩固所学知识,并进行反馈、矫正
1.了解数列、通项公式的概念. 2. 了解数列是自变量为正整数的一类函数(难 课标解读 点). 3. 能根据通项公式确定数列的某一项(重点). 4.能根据数列的前几项写出数列的一个通项 公式(重点、难点).
2.小山把上面 3 组数当成密码来试验时,都没有打开邮箱,他说: “仅仅知 道数字及个数还不能确定密码” .那么,找到密码还需要确定什么? 【提示】 数字的排列顺序.
1.数列的有关概念
数列
按一定次序排列的一列数叫作数 列 数列中的每一个数叫作这个数列 的项

首项 通项 2.数列的表示
数列的第 1 项常称为首项 数列中的第 n 项 an, 叫数列的通项
下列说法正确的是(
)
A.数列 3,5,7 与数列 7,5,3 是相同数列 B.数列 2,3,4,4 可以记为{2,3,4}
1 1 1 1 C.数列 1,2,3,„,n,„可以记为n
D.数列{2n+1}的第 5 项是 10 【解析】 数列是有序的,选项 A 错;数列与数集是两个不同的概念,选
1.如果数列{an}的第 n 项 an 与 n 之间的函数关系可以用一个式子表示成 an =f(n),那么这个式子就叫作这个数列的通项公式,数列的通项公式就是相应函 数的解析式.
2.数列可以看作定义域为正整数集 N+(或它的有限子集)的函数,当自变量 从小到大依次取值时,该函数对应的一列函数值就是这个数列.
数列的有关概念 下列说法哪些是正确的?哪些是错误的?并说明理由. (1){0,1,2,3,4}是有穷数列; (2)所有自然数能构成数列; (3)同一个数在数列中可能重复出现; (4)数列 1,2,3,4,„,2n 是无穷数列. 【思路探究】 【自主解答】 紧扣数列的有关概念,验证每一个说法是否符合条件. (1)错误.{0,1,2,3,4}是集合,不是数列.

北师大版高中数学必修五数列的概念教案(5)

北师大版高中数学必修五数列的概念教案(5)

课题: §2.1数列的概念与简单表示法●教学目标知识与技能:了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公a的关系式写出数列的前几项;理解数列的前n项和与n过程与方法:经历数列知识的感受及理解运用的过程。

情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。

●教学重点根据数列的递推公式写出数列的前几项●教学难点理解递推公式与通项公式的关系●教学过程Ⅰ.课题导入[复习引入]数列及有关定义Ⅱ.讲授新课数列的表示方法1、通项公式法如果数列{}n a的第n项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。

如数列的通项公式为;的通项公式为;的通项公式为;2、图象法启发学生仿照函数图象的画法画数列的图形.具体方法是以项数为横坐标,相应的项为纵坐标,即以为坐标在平面直角坐标系中做出点(以前面提到的数列为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.3、递推公式法知识都来源于实践,最后还要应用于生活用其来解决一些实际问题.观察钢管堆放示意图,寻其规律,建立数学模型.模型一:自上而下:第1层钢管数为4;即:1↔4=1+3第2层钢管数为5;即:2↔5=2+3第3层钢管数为6;即:3↔6=3+3第4层钢管数为7;即:4↔7=4+3第5层钢管数为8;即:5↔8=5+3第6层钢管数为9;即:6↔9=6+3第7层钢管数为10;即:7↔10=7+3若用n a 表示钢管数,n 表示层数,则可得出每一层的钢管数为一数列,且1(3+=n a n ≤n ≤7)运用每一层的钢筋数与其层数之间的对应规律建立了数列模型,运用这一关系,会很快捷地求出每一层的钢管数这会给我们的统计与计算带来很多方便。

让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律)模型二:上下层之间的关系自上而下每一层的钢管数都比上一层钢管数多1。

北师大版高中数学必修5第一章《数列》数列的概念

北师大版高中数学必修5第一章《数列》数列的概念
4、教学重难点、关键: 重点是数列概念的教学,难点是给出项求通项,关键 是多分析、比较、多训练、多实践在概念的教学中, 辅助图象、精例、比较集合函数的异同分散难点。
3
教与学矛盾的主要方面是学生的学,学是中心,会 学是目的,且要向45分钟要质量,首先是乐学,通过提 问,激发求知欲、愿意学。其次善于联想,将数列想念 与集合函数联系。再次,是学会比较分析观察。第四, 大胆参与尝试,不怕失败。第五,强化训练,迁移应用, 举一反三。第六,学会总结归纳,还应刻意去记忆一些 常见的数列。

5 3
1
38
a5
1 a4
1 5

5
20
数列练习1
练习1 根据数列 an 的通项公式,写出它的前5项。
(1)an n2 1,4,9,16,25.
(2)an 10n 10,20,30,40,50.
(3)an

5

(1)
n1

5,-5,5,-5,5.
(4)an

2n n2
(5)1, 2 ,( 3 ),2, 5 ,( 6 ), ( 7 )
24
数列练习5
练习5 根据数列 an 的通项公式,写出它的前5项。
1.a1 5,an1 an 3. 5,8,11,14,17 2.a1 2,an1 2an 2,4,8,16,32 3.a1 3,a2 6,an2 an1 an
无穷多个1排成的一列数:
1,1,1,1,1,1,…
6
数列的定义
按一定的次序排列的一列数叫做数列。 数列中的每一个数叫做这个数列的项。
数列中的各项依次叫做这个数列的 第1项(或首项)用 a1 表示,
第2项用 a2 表示, 第n项用 an表示, 数列的一般形式可以写成:

高中数学数列的概念教案北师大版必修

高中数学数列的概念教案北师大版必修

北师大版高中数学必修5第一章《数列》全部教案第一课时 1.1.1数列的概念一、教学目标1、知识与技能:(1)理解数列及其有关概念;(2)了解数列的通项公式,并会用通项公式写出数列的任意一项;(3)对于比较简单的数列,会根据其前几项写出它的通项公式。

2、过程与方法:(1)采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学;(2)发挥学生的主体作用,作好探究性学习;(3)理论联系实际,激发学生的学习积极性。

3、情感态度与价值观:(1).通过日常生活中的大量实例,鼓励学生动手试验.理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点;(2).通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.二、教学重点:数列及其有关概念,通项公式及其应用.教学难点根据一些数列的前几项抽象、归纳数列的通项公式.三、教学方法:探究、交流、实验、观察、分析四、教学过程(一)、揭示课题:今天开始我们研究一个新课题.先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要但求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数象这样排好队的数就是我们的研究对象——数列.(二)、推进新课[合作探究]折纸问题师请同学们想一想,一张纸可以重复对折多少次?请同学们随便取一张纸试试(学生们兴趣一定很浓).生一般折5、6次就不能折下去了,厚度太高了.师你知道这是为什么吗?我们设纸原来的厚度为1长度单位,面积为1面积单位,随依次折的次数,它的厚度和每层纸的面积依次怎样?生 随着对折数厚度依次为:2,4,8,16,…,256,…;① 随着对折数面积依次为21,41 ,81 ,161 ,…,2561 ,…. 生 对折8次以后,纸的厚度为原来的256倍,其面积为原来的分 1[]256式,再折下去太困难了.师 说得很好,随数学水平的提高,我们的思维会更加理性化.请同学们观察上面我们列出的这一列一列的数,看它们有何共同特点?生 均是一列数.生 还有一定次序.师 它们的共同特点:都是有一定次序的一列数. [教师精讲] 1.数列的定义:按一定顺序排列着的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….同学们能举例说明吗?生 例如,上述例子均是数列,其中①中,“2”是这个数列的第1项(或首项),“16”是这个数列中的第4项.为表述方便给出几个名称:项--------数列中的每一个数叫做这个数列的项. 首项-------其中数列的第一项也称首项.通项-------数列的第n 项叫数列的通项.以上述两个数列为例,让学生练习指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,……,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系. 3.数列的分类:1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列.无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列.2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列.递减数列:从第2项起,每一项都不大于它的前一项的数列.常数数列:各项相等的数列.摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.请同学们观察:课本的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列? 生 这六组数列分别是(1)递增数列,(2)递增数列,(3)常数数列,(4)递减数列,(5)摆动数列,(6)1.递增数列,2.递减数列.4、通项公式法:如数列的通项公式为 ;的通项公式为 ; 的通项公式为 ;数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.例如,数列 的通项公式 ,则 . 值得注意的是,正如一个函数未必能用解析式表示一样,不是所有的数列都有通项公式,即便有通项公式,通项公式也未必唯一. [知识拓展]师 你能说出上述数列①中的256是这数列的第多少项?能否写出它的第n 项? 生 256是这数列的第8项,我能写出它的第n 项,应为a n =2n . [例题剖析]例1.根据下面数列{a n }的通项公式,写出前5项:(1)a n =1 n n ;(2)a n =(-1)n ·n . 师 由通项公式定义可知,只要将通项公式中n 依次取1,2,3,4,5,即可得到数列的前5项.生 解:(1)n =1,2,3,4,5.a 1=21;a 2=32;a 3=43;a 4=54;a 5=65. (2)n =1,2,3,4,5.a 1=-1;a 2=2;a 3=-3;a 4=4;a 5=-5.师 好!就这样解.例2.根据下面数列的前几项的值,写出数列的一个通项公式:(1)3,5,7,9,11,…;(2)32,154,356,638,9910,…; (3)0,1,0,1,0,1,…;(4)1,3,3,5,5,7,7,9,9,…;(5)2,-6,12,-20,30,-42,….师 这里只给出数列的前几项的值,哪位同学能写出这些数列的一个通项公式?(给学生一定的思考时间)生老师,我写好了!解:(1)a n =2n +1;(2)a n =)12)(12(2+-n n n ;(3)a n =2)1(1n -+; (4)将数列变形为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,…,∴a n =n +2)1(1n-+;(5)将数列变形为1×2,-2×3,3×4,-4×5,5×6,…,∴a n =(-1)n +1n (n +1). 师 完全正确!这是由“数”给出数列的“式”的例子,解决的关键是要找出这列数呈现出的规律性的东西,然后再通过归纳写出这个数列的通项公式.(三)、学生课堂练习:课本本节练习1、2、3、4补充题:已知数列{a n }的通项公式是a n =2n 2-n ,那么( ) A .30是数列{a n }的一项B .44是数列{a n }的一项 C.66是数列{a n }的一项 D .90是数列{a n }的一项分析:注意到30,44,66,90均比较小,可以写出这个数列的前几项,如果这前几项中出现了这四个数中的某一个,则问题就可以解决了.若出现的数比较大,还可以用解方程求正整数解的方法加以解决.答案:C点评:看一个数A 是不是数列{a n }中的某一项,实质上就是看能不能找出一个非零自然数n ,使得a n =A .(四)、课堂小结:对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n 项求一些简单数列的通项公式。

北师大版高二数学上册必修五1.1数列的概念教学设计

北师大版高二数学上册必修五1.1数列的概念教学设计

定边县教育教学成果参评
课题:数列的概念
邹英
教学目标
(一)知识与技能:1.理解数列及其有关概念,了解数列和函数之间的关系;
2.了解数列的通项公式,并会用通项公式写出数列的任意一项;
3.对于比较简单的数列,会根据其前几项写出它的通项公式。

(二)过程与方法:1.采用探究法,通过观察、思考、交流、分析得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性学习;3.理论联系实际,激发学生的学习积极性。

(三)情感、态度与价值观:1.通过日常生活中的大量实例,鼓励学生动手试验.理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点;2.通过本节课的学习,体会数学来源于生活,服务于生活,提高数学学习的兴趣。

教学重点
数列及其有关概念,通项公式及其应用。

教学难点
根据一些数列的前几项抽象、归纳出数列的通项公式。

教学方法
启发式教学法:以设问和疑问层层引导,激发学生,启发学生积极思考,逐步从常识走向科学,将感性认识提升到理性认识,培养和发展学生的抽象思维能力。

探究教学法:引导学生去疑;鼓励学生去探;激励学生去思,培养学生的创造性思维和批判精神。

合作学习:通过师生讨论达到探究、归纳的目的。


教师引导学生去思考,让学生来
定边县教育教学成果参评
参评类型:教学设计
科目:数学
工作单位:定边四中
姓名:邹英
课题名称:数列的概念。

数学北师大版高中必修5北师大版高二数学必修5第一章数列第7.1节数列的概念的教学设计

数学北师大版高中必修5北师大版高二数学必修5第一章数列第7.1节数列的概念的教学设计

数列概念教学大致分为概念的引入、概念的辨析、概念的深化和概念的巩固这样四个阶段。

数列概念的引入阶段,鉴于本节课是数列的第一堂课,学生第一次接触数列,因此从整个章节内容来考虑,先让学生见识各种各样的数列是非常必要的。

这样可以为他们今后的学习打下基础。

基于这种考虑,在引入部分一共设计了五个数列。

第一个例子用捐助失学儿童的背景,经过教师的引导生成一个常数数列;第二个例子通过统计中国参加六届奥运会所获得的金牌数生成一个数列;第三个例子用几何图形来生成一个数列;第四个例子通过一个代数式计算得到一个数列;第五个例子通过一个函数式得到一系列的函数值,由这些函数值生成一个数列。

在这里出现了等差数列、等比数列、常数数列、摆动数列还有无规律的数列等。

在数列概念的辨析阶段,并把数列与数集概念加以区别,这样的方式直观生动易于被学生接受。

在辨析三当中有这样一句话:在数列1,0.84,0.842,0.833中。

它的首项为1,第二项为0.84,第三项为0.842,那么它的第十项是多少?第n项呢?这个问题承上启下与前可以呼应,对后可以衔接,通过这个问题情境我们可以自然过渡到概念的深化阶段。

在数列概念的深化阶段,即数列与函数关系的研究。

为什么用了无穷数列1,0.84,0.842,0.833,…,作为研究对象呢?一方面是为了用好用透数列,使教学内容层层推进环环相扣,另一方面也是为了顺应教材。

教材上有这样一句话:从函数观点看:数列可以看作是定义域为正整数集N*(或者它有限子集{1,2,3,…,k})为定义域的函数,当自变量从小到大取值时,对应的一系列函数值。

如果用有穷数列来研究,它的定义域是正整数集的有限子集,而书上讲定义域为正整数集在前,用有穷数列来处理感觉不太顺,于是就用了无穷数列1,0.84,0.842,0.843,…这个数列。

……在数列概念的巩固阶段,就是“举三反一”和“举一反三”的过程,让学生讨论举例,通过实例来理解巩固概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 数列的概念
教学目标
1.通过教学使学生理解数列的概念,了解数列的表示法,能够根据通项公式写出数列的项.
2.通过数列定义的归纳概括,初步培养学生的观察、抽象概括能力;渗透函数思想.
3.通过有关数列实际应用的介绍,激发学生学习研究数列的积极性.
教学重难点
教学重点是数列的定义的归纳与认识;
教学难点是数列与函数的联系与区别.
教学过程
一.揭示课题
先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数
(板书)象这样排好队的数就是我们的研究对象——数列.(板书)第一章数列
(一)数列的概念
二.讲解新课
要研究数列先要知道何为数列,即先要给数列下定义,为帮助同学概括出数列的定义,再给出几列数:
①各排钢管的数量:3,4,5,6,7,8,9
②我国1998~2002年GDP值(亿元):78345 82067 89442 95933 102389
③五次人口普查的数量(百万):60193 72307 103188 116002 129533
④正弦函数x y sin =的图像在y 轴左边所有最低点从右向左,它们的横坐标依
次排成一列数:2
π
- 2
5π-
29π- 213π- 217π- ……
⑤正整数
的倒数排成一列数:4
1
,31,21,1……
⑥某人2006年1~~12月工资,按月顺序排列为:1100 1100 1100 …… 1100 ⑦函数21
x
y =
当 依次取n ,...,3,2,1(*∈N n )时得到一列数:21
,...,91,41,1n
请学生观察7列数,说明每列数就是一个数列,数列中的每个数都有自己的特定的位置,这样数列就是按一定顺序排成的一列数. (板书)1.数列的定义:按一定次序排成的一列数叫做数列.
为表述方便给出几个名称:项,项数,首项(以幻灯片的形式给出).以上述七个数列为例,让学生练习指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.
由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,……,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系. 对概念的理解
数集中的元素具有确定性,互异性,无序性,那么数列中的项是否具有这些属性? 教师提出问题:
1:1,2,3,4与4,3,2,1是否为同一数列? 2: -1,1,-1,1是否为一个数列?
遇到数学概念不但要下定义,还要给其数学表示,以便研究与交流,下面探讨数列的表示法. (板书)2.数列的表示法
数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法.相对于列表法表示一个函数,数列有这样的表示法:用 表示第一项,用
表示第一项,……,用
表示第
项,依次写出成为
(板书)(1)列举法
. 简记为 .
一个函数的直观形式是其图象,我们也可用图形表示一个数列,把它称作图示法.
(板书)(2)图示法
启发学生仿照函数图象的画法画数列的图形.具体方法是以项数 为横坐标,相应的项
为纵坐标,即以
为坐标在平面直角坐标系中做出点(以
前面提到的数列 4
1
,31,21,1…为例,做出一个数列的图象),所得的数列的图形
是一群孤立的点,因为横坐标为正整数,所以这些点都在 轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.
有些函数可以用解析式来表示,解析式反映了一个函数的函数值与自变量之间的数量关系,类似地有一些数列的项能用其项数的函数式表示出来,即
,这个函数式叫做数列的通项公式.
(板书)(3)通项公式法 认识数列的通项公式
数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法。

对应于函数的解析式法,认识数列的通项公式。

如 1100 1100 1100 …… 1100的通项公式为 1100=n a (121≤≤n )
41,31,21,1… 的通项公式为n
a n 1
=*∈N n ; 数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项. 例如,数列
的通项公式
,则

值得注意的是,正如一个函数未必能用解析式表示一样,不是所有的数列都有通项公式,即便有通项公式,通项公式也未必唯一.
除了以上三种表示法,某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式. (板书)3.数列与函数的关系 认识数列与函数的关系
数列中的数和它的序号是什么关系?哪个是变动的量,哪个是随之变动的量?你能联想到以前学过的哪些相关内容?
教师:举例。

将序号写在上面,下面的相应位置写上数列的各项。

首先引导学生说出上下两行是两组变量,然后分析这两组变量之间的关系。

学生:联想到函数间的变量依赖关系,认识到数列是函数。

教师:数列的定义域和值域分别是什么?
教师引导学生归纳出:数列可以看成是以正整数N*(或它的有限子集{1,2,3,…,n })为定义域的函数
)
(n f a n =,当自变量按照从小到大的顺序依次取值时,所
对应的一列函数值。

数列可以看作特殊的函数,项数是其自变量,项是项数所对应的函数值,数列的定义域是正整数集
,或是正整数集
的有限子集

于是我们研究数列就可借用函数的研究方法,用函数的观点看待数列. 例:P5课本例题
练习:(1)数列{}n a 的通项公式1n a n n
=+-174是该数列中的第 16
项.
(2)已知数列{}n a 的通项公式2412n a n n =--,则4a = 12-,7a = 9 ,65是它
的第 11 项 ;从第 7 项起各项为正;{}n a 中第 2 项的值最小为 16-
(3){}n a 中29100n a n n =--,则值最小的项是第 4或5 项. 三.小结
1.数列的概念 2.数列的四种表示 四.作业 略
五.板书设计。

相关文档
最新文档