一元二次函数、方程和不等式单元测试卷及答案解析
一元二次函数、方程和不等式单元检测试卷
![一元二次函数、方程和不等式单元检测试卷](https://img.taocdn.com/s3/m/242b8548d0d233d4b04e697a.png)
一元二次函数、方程和不等式单元检测试卷一、单选题1.若0a <b <,则下列不等式中成立的是( )A.|a|>b -B.1ab< < D.11a b< 2.关于x 的不等式22280(0)x ax a a --<>的解集为12(,)x x ,且:2115x x -=,则a =( ) A.52B.72C.154D.1523.若,,a b c 为实数,则下列命题错误的是( )A.若22ac bc >,则a b >B.若0a b <<,则22a b <C.若0a b >>,则11a b< D.若0a b <<,0c d >>,则ac bd < 4.在R 上定义运算:a b ad bc c d ⎛⎫=- ⎪⎝⎭ ,若不等式1211x a a x --⎛⎫≥ ⎪+⎝⎭对任意实数x 恒成立,则实数a 的最大值为( ) A .12-B .32-C .12D .325.已知2t a b =+,21s a b =++,则t 和s 的大小关系为( ) A .t s > B .t s ≥ C .t s < D .t s ≤6.某小型服装厂生产一种风衣,日销售量x (件)与单价P (元)之间的关系为1602P x =-,生产x 件所需成本为C (元),其中50030C x =+元,若要求每天获利不少于1300元,则日销量x 的取值范围是( ) A .2030x ≤≤B .2045x ≤≤C .1530x ≤≤D .1545x ≤≤7.函数2228(0)y x ax a a =-->,记0y ≤的解集为A ,若()1,1A -⊆,则a 的取值范围( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,4⎡⎫+∞⎪⎢⎣⎭C .11,42⎛⎫⎪⎝⎭D .11,42⎡⎤⎢⎥⎣⎦8.关于x 的不等式()()()110x b a x b ⎡⎤+-+->⎣⎦的解集为{1x x <-或}3x >,则关于x 的不等式220x bx a +-<的解集为( )A.{}25x x -<<B.1125x x ⎧⎫-<<⎨⎬⎩⎭ C.{}21x x -<<D.112x x ⎧⎫-<<⎨⎬⎩⎭9.已知命题:p x R ∀∈,20x x a -+>,若p ⌝是真命题,则实数a 的取值范围是( )A.1,4⎛⎤-∞ ⎥⎝⎦ B.10,4⎛⎤⎥⎝⎦ C.11,42⎛⎫ ⎪⎝⎭ D.1,2⎡⎫+∞⎪⎢⎣⎭10.若不等式()22123013aax a x -+>+恒成立,则实数a 的取值范围是( ) A.{}09a a < B.{}9a a C.19a a⎧⎫⎨⎬⎩⎭ D.109a a⎧⎫<⎨⎬⎩⎭11.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=( )A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<12.已知函数f (x )=x 2+(4-k )x ,若f (x )<k -2对x ∈[1,2]恒成立,则k 的取值范围为( )A.(-∞,72) B.(72,+∞) C.(-∞,143)D.(143,+∞)二、填空题13.已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是_______. 14.武广铁路上,高速列车跑出了350km/h 的高速度,但这个速度的2倍再加上100 km/h ,还不超过波音飞机的最低时速,可这个速度已经超过了普通客车的3倍,设高速列车速度为v 1,波音飞机速度为v 2,普通客车速度为v 3.则三种交通工具速度的不等关系分别为______. 15.已知正实数a ,b 满足a +b =4,则1113a b +++的最小值为________. 三、解答题16.设函数()21f x mx mx =--(1)若对一切实数x ,()0f x <恒成立,求m 的取值范围; (2)若对于[]1,3x ∈,()5f x m <-+恒成立,求m 的取值范围:17.运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油22360x ⎛⎫+ ⎪⎝⎭升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.18.()1若0x >,求函数4y x x=+的最小值,并求此时x 的值; ()2设302x <<,求函数()432y x x =-的最大值;()3已知2x >,求42x x +-的最小值; ()4已知0x >,0y >,且191x y+=,求x y +的最小值.19.如图,建立平面直角坐标系xoy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由。
高一数学第2章 一元二次函数、方程和不等式 章末测试(提升)(解析版)
![高一数学第2章 一元二次函数、方程和不等式 章末测试(提升)(解析版)](https://img.taocdn.com/s3/m/69ef4fc1e109581b6bd97f19227916888486b985.png)
第2章 一元二次函数、方程和不等式 章末测试(提升)第I 卷(选择题)一、单选题(每题5分,8题共40分)1.(2022·全国·专题练习)“不等式20x x m -+>在R 上恒成立”的充要条件是( ) A .14m >B .14m <C .1m <D . 1m【答案】A【解析】∵不等式20x x m -+>在R 上恒成立, ∵24(10)m ∆--<= ,解得14m >, 又∵14m >,∵140m ∆=-<,则不等式20x x m -+>在R 上恒成立, ∵“14m >”是“不等式20x x m -+>在R 上恒成立”的充要条件,故选:A. 2.(2022·四川成都)下列函数中,最小值为2的函数是( ) A .()10y x x x=+≠ B .222y x x -=+C .()230y x x x =+≥D .2211y x x =++【答案】D【解析】A.当0x <时,()()1122⎛⎫=--+≤--⋅=- ⎪--⎝⎭y x x x x ,当且仅当1x x-=-,即1x =-时,等号成立;当0x >时,112y x x x x=+≥⋅=,当且仅当1x x =,即1x =时,等号成立;故错误;B. ()2222111y x x x =-+=-+≥,故错误; C. ())223023123=+≥=+=+≥y x x x xx x ,故错误;D. 22221121211y x x x x +≥+⋅=++2211x x ++0x =时,等号成立,故正确故选:D3.(2022·安徽·合肥已知正数x ,y 满足21133x y x y+=++,则x y +的最小值( )A 322+B .324C 322+D .328+【答案】A【解析】令3x y m +=,3x y n +=,则211m n+=, 即()()()334m n x y x y x y +=+++=+,∵211212324442444444m n m n m n m n x y m n n m n m +⎛⎫⎛⎫+==++=+++≥⋅ ⎪⎪⎝⎭⎝⎭ 322324422==, 当且仅当244m n n m=,即22m =21n =时,等号成立, 故选:A.4.(2021·江苏·高一专题练习)下列说法正确的是( ) A .若2x >,则函数11y x x =+-的最小值为3 B .若0x >,0y >,315x y +=,则54x y +的最小值为5C .若0x >,0y >,3x y xy ++=,则xy 的最小值为1D .若1x >,0y >,2x y +=,则12y+的最小值为322+【答案】D【解析】选项A :1111121?13111y x x x x x x =+=-++-=---,当且仅当()211x -=时可以取等号, 但题设条件中2x >,故函数最小值取不到3,故A 错误;选项B :若0x >,0y >,315x y+=,则()1311512151219415545419192?555x y x y x y x y x y y x y x ⎛⎛⎫⎛⎫++=++=+++= ⎪ ⎪ ⎝⎭⎝⎭⎝512x y y x =时不等式可取等号,故B 错误;选项C :32230xy x y xy xy xy -=+⇒+-当且仅当x y =时取等号,()0xy t t =,2230t t +-,解得31t -,即01xy ,故xy 的最大值为1,故C 错误; 选项D :2x y +=,()11x y -+=,()()()21211212·11232?3221111x x y y x y x y x y x y x y --⎛⎫⎡⎤+=+-+=++++=+ ⎪⎣⎦----⎝⎭ 当且仅当22y x =又因为2x y +=,故222x y ⎧=⎪⎨=⎪⎩即121x y+-最小值可取到322+, 故D 正确. 故选:D .5.(2022·北京·101)已知某产品的总成本C (单位:元)与年产量Q (单位:件)之间的关系为23300010C Q =+.设该产品年产量为Q 时的平均成本为f (Q )(单位:元/件),则f (Q )的最小值是( ) A .30 B .60C .900D .1800【答案】B【解析】23300010()Q C f Q Q Q+==,3300010Q Q =+ ,3300022306010Q Q ≥⋅⨯=,当且仅当3300010Q Q =,即当100Q =时等号成立.所以f (Q )的最小值是60.故选:B.6.(2022·山西现代双语学校南校)已知关于x 的不等式()()()2233100,0a m x b m x a b +--->>>的解集为1(,1)(,)2-∞-+∞,则下列结论错误的是( )A .21a b +=B .ab 的最大值为18C .12a b+的最小值为4D .11a b+的最小值为322+【答案】C【解析】由题意,不等式()()223310a m x b m x +--->的解集为(]1,1,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭,可得230a m +>,且方程()()223310a m x b m x +---=的两根为1-和12,所以131223111223b m a m a m -⎧-+=⎪⎪+⎨⎪-⨯=-⎪+⎩,所以232a m +=,31b m -=-,所以21a b +=,所以A 正确;因为0a >,0b >,所以2122a b ab +=≥18ab ≤,当且仅当122a b ==时取等号,所以ab 的最大值为18,所以B 正确; 由121244()(2)44448b a b aa b a b a b a b a b+=++=++≥+⋅+=, 当且仅当4b a a b =时,即122a b ==时取等号,所以12a b+的最小值为8,所以C 错误; 由()111122233232b a b a a b a b a b a b a b⎛⎫+=++=++≥+⋅ ⎪⎝⎭ 当且仅当2b aa b=时,即2b a 时,等号成立, 所以11a b+的最小值为322+D 正确. 故选:C .7.(2022·广东深圳·高一期末)设a ,b ∈R ,0a b <<,则( ) A .22a b < B .b aa b> C .11a b a>- D .2ab b >【答案】D【解析】因为0a b <<,则0a b ->->,所以()()22a b ->-,即22a b >,故A 错误; 因为0a b <<,所以0ab >,则10ab>, 所以11a b ab ab⋅<⋅,即11b a <,∵1a a b a >=,1b b b a =>,即b aa b<,故B 错误; ∵由()()()11a a b b a b a a b a a b a---==---,因为0,0a b a -<<,所以()0a b a ->,又因为0b <,所以110a b a -<-,即11a b a<-,故C 错误; 由0a b <<可得,2ab b >,故D 正确. 故选:D.8.(2022·福建·厦门一中高一期中)已知关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,则下列说法正确的是( ) A .0a > B .不等式20ax cx b ++>的解集为{|2727}x x < C .0a b c ++< D .不等式0ax b +>的解集为{}|3x x >【答案】B【解析】因为关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,所以0a <,所以选项A 错误;由题得014,3,414a b b a c a a c a ⎧⎪<⎪⎪-+=-∴=-=-⎨⎪⎪-⨯=⎪⎩,所以20ax cx b ++>为2430,2727x x x --<∴<+所以选项B正确;设2()f x ax bx c =++,则(1)0f a b c =++>,所以选项C 错误; 不等式0ax b +>为30,3ax a x ->∴<,所以选项D 错误. 故选:B二、多选题(每题至少有两个选项为正确答案,少选且正确得2分,每题5分。
一元二次函数、方程和不等式(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册
![一元二次函数、方程和不等式(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册](https://img.taocdn.com/s3/m/7fdb37655627a5e9856a561252d380eb629423a0.png)
第二章一元二次函数、方程和不等式(单元测试卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a>b,则下列结论正确的是( )A.ac2>bc2B.a2>b2C.|a|>|b|D.a+c>b+c2.若A=a2+3ab,B=4ab-b2,则A,B的大小关系是( )A.A≤BB.A≥BC.A<B或A>BD.A>B3.已知a∈R,则“a>6”是“a2>36”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,用不等式(组)表示是( )A.Error!B.Error!Error! D.Error!5.下列说法正确的是( )A.若a>b,c>d,则ac>bdB.若1a>1b,则a<bC.若b>c,则|a|b≥|a|cD.若a>b,c>d,则a-c>b-d6.下列不等式中,正确的是( )A.a+4a≥4 B.a2+b2≥4abC.ab≥a+b2D.x2+3x2≥237.不等式x+61-x≥0的解集为( )A.{x|-6≤x≤1}B.{x|x≥1或x≤-6}C.{x|-6≤x<1}D.{x|x>1或x≤-6}8.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x(单位:元)的取值范围是( )A.{x|10≤x<16}B.{x|12≤x<18}C.{x|15<x<20}D.{x|10≤x<20}二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.若x>y>0,则下列不等式成立的是( )A.x2>y2B.-x>-yC.1x<1yD.xy<x+1y+110.已知实数a,b,下列不等式一定正确的有( )A.a+b2≥ab B.a+1a≥2C.≥2D.2(a2+b2)≥(a+b)211.若正实数a,b满足a+b=1,则下列选项中正确的是( )A.ab有最大值14B.a+b有最小值2C.1a+1b有最小值4 D.a2+b2有最小值22三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.如果a>b,ab<0,那么1a与1b的大小关系是________13.已知a>0,b>0,则1a+ab2+b的最小值为________14.若不等式x2+ax+b<0的解集为{x|-1<x<2},则a+b= ;不等式bx2+ax+1<0的解集为 W.四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.(13分)设a>0,b>0,比较a2b +b2a与a +b的大小.a b || b a16.(16分)已知关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1}.(1)求a,b的值;(2)若c∈R,解关于x的不等式ax2-(ac+b-1)x+(b-1)c<0.17.(16分)已知关于x的不等式(x-a)(x-a2)<0.(1)当a=2时,求不等式的解集;(2)当a∈R,a≠0且a≠1时,求不等式的解集.18.(16分)如图所示,要设计一张矩形广告,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空间的宽度为5 cm,怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌最省料?19.(16分)已知关于x 的不等式2kx 2+kx -38<0,k ≠0.(1)若不等式的解集为,求k 的值;(2)若不等式的解集为R ,求k的取值范围.{}3x |x 12-<<参考答案及解析:一、选择题1.D 解析:对于A,当c=0时,ac2=bc2,A错误;对于B,当a=1,b=-1时,a2=b2,B 错误;对于C,当a=1,b=-1时,|a|=|b|,C错误;对于D,由于a>b,所以a+c>b+c,D 正确.故选D.2.B 解析:因为A-B=a2+3ab-(4ab-b2)=+34b2≥0,所以A≥B.3.A 解析:由a>6,得a2>36,所以“a>6”是“a2>36”的充分条件;由a2>36,得a>6或a<-6,所以“a>6”不是“a2>36”的必要条件,故“a>6”是“a2>36”的充分不必要条件.故选A.4.D 解析:由题中x不低于95,即x≥95;y高于380,即y>380;z超过45,即z>45.5.C 解析:A项,a,b,c,d的符号不确定,故无法判断;B项,不知道ab的符号,无法确定a,b的大小;C项,|a|≥0,所以|a|b≥|a|c成立;D项,同向不等式不能相减.6.D 解析:若a<0,则a+4a≥4不成立,故A错;a=1,b=1,a2+b2<4ab,故B错;a=4,b=16,则ab<a+b2,故C错;由基本不等式可知D项正确.7.C 解析:不等式x+61-x≥0等价于Error!解得-6≤x<1.故解集为{x|-6≤x<1}8.C 解析:设这批台灯的销售单价为x元,则[30-(x-15)×2]x>400,即x2-30x+200<0,∴10<x<20,又∵x>15,∴15<x<20.故选C.二、选择题9.AC 解析:对于A,当x>y>0时,x2>y2,A成立;对于B,当x>y>0时,-x<-y,B不成立;对于C,当x>y>0时,xxy>yxy,即1x<1y,C成立;对于D,xy-x+1y+1=x(y+1)-y(x+1)y(y+1)=x-yy(y+1),∵x>y>0,∴x-y>0,∴xy-x+1y+1>0,即xy>x+1y+1,D不成立.故选AC.2b(a)210.CD 解析:当a <0,b <0时,a +b 2≥ab 不成立;当a <0,时,a +1a≥2不成立;因为≥2,故C 正确;因为2(a 2+b 2)-(a +b)2=a 2+b 2-2ab =(a -b)2≥0,所以2(a 2+b 2)≥(a +b)2,故D 正确.故选CD .11.AC 解析:∵a>0,b>0,且a +b =1,∴1=a +b ≥2ab ,∴ab ≤14,∴ab 有最大值14,∴A 正确;(a +b)2=a +b +2ab =1+2ab ≤1+(a +b)=2,∴0<a +b ≤2,∴B 错误;1a +1b =a +b ab =1ab ≥4,∴1a +1b 有最小值4,∴C 正确;∵a 2+b 2=(a +b)2-2ab =1-2ab ,且ab ≤14,∴a 2+b 2≥1-2×14=12,∴a 2+b 2的最小值是12,∴D 错误.故选AC .三、填空题12.答案:1a >1b 解析:1a -1b =b -a ab >0,所以1a >1b.13.答案:22 解析:∵a >0,b >0,∴1a +a b 2+b ≥21a ·a b 2+b =2b +b ≥22,当且仅当1a =a b 2且b =2b ,即a =b =2时取等号,∴1a +a b 2+b 的最小值为22.14.答案:-3, 解析:根据题意,不等式x 2+ax +b <0的解集为{x|-1<x <2},则-1和2是方程x 2+ax +b =0的两个根,则有(-1)+2=-a ,(-1)×2=b ,解得a =-1,b =-2.故a +b =-3.bx 2+ax +1<0⇒-2x 2-x +1<0⇒2x 2+x -1>0,解得x <-1或x >12,即不等式bx 2+ax +1<0的解集为.四、解答题a b a b ||||||b a b a+=+{1x |x 1x 2⎫<->⎬⎭或{1x |x 1x 2⎫<->⎬⎭或15.解:因为a>0,b>0,所以a2b +b2a=ab+ba.根据均值不等式可得ab+b≥2a,①ba+a≥2b,②当且仅当a=b时,取等号.由①+②,得ab+ba+ a +b≥2( a +b),即a2b+b2a≥ a +b.16.解:(1)关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1},即方程ax2-x-b=0的根为2,-1,∴Error!解得a=1,b=2.(2)由(1)得关于x的不等式x2-(c+1)x+c<0,即(x-1)(x-c)<0,当c>1时,不等式的解集为{x|1<x<c};当c=1时,不等式的解集为;当c<1时,不等式的解集为{x|c<x<1}.17.解:(1)当a=2时,不等式为(x-2)(x-4)<0,解得2<x<4,所以该不等式的解集为{x|2<x<4}.(2)因为a∈R,a≠0且a≠1,当0<a<1时,a2<a,解不等式(x-a)(x-a2)<0,得a2<x<a;当a<0或a>1时,a<a2,解不等式(x-a)(x-a2)<0,得a<x<a2.综上所述,当0<a<1时,不等式的解集为{x|a2<x<a};当a<0或a>1时,不等式的解集为{x|a<x<a2}.18.解:设矩形栏目的高为a cm,宽为b cm,则ab=9 000.①广告牌的高为(a+20)cm,宽为(2b+25)cm,其中a>0,b>0.广告牌的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18 500+25a+40b≥18 500+2 25a·40b=18 500+21 000ab=24 500.当且仅当25a=40b时,等号成立,此时b=58a,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24 500 cm2.故广告牌的高为140 cm,宽为175 cm时,可使矩形广告牌最省料.19.解:(1)因为关于x的不等式2kx2+kx-38<0的解集为,所以-32和1是方程2kx2+kx-38=0的两个实数根,由根与系数的关系可得-32×1=,得k=18.(2)因为关于x的不等式2kx2+kx-38<0的解集为R,k≠0,所以Error!解得-3<k<0,故k的取值范围为{k|-3<k<0}.{}3x|x12-<<382k-。
高中数学必修一第二章 一元二次函数、方程和不等式 单元测试(含答案)
![高中数学必修一第二章 一元二次函数、方程和不等式 单元测试(含答案)](https://img.taocdn.com/s3/m/14202307bf23482fb4daa58da0116c175e0e1e07.png)
高中数学必修一第二章一、单选题1.已知a>b>0,c>d,下列不等式中必成立的一个是( )A.a c>bdB.ad<bc C.a+c>b+d D.a―c>b―d2.已知x,y均为正实数,且1x+2+4y+3=12,则x+y的最小值为( )A.10B.11C.12D.133.若两个正实数x,y满足2x+1y=1,且x+2y>m2+2m恒成立,则实数m的取值范围是( )A.(―∞,―2)∪[4,+∞)B.(―∞,―4)∪[2,+∞)C.(―2,4)D.(―4,2)4.若x,y∈R+,且x+3y=5xy,则3x+4y的最小值是( )A.5B.245C.235D.1955.小明从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则( )A.a<v<ab B.v=ab C.ab<v<a+b2D.v=a+b26.已知a>0,b>0,若不等式m3a+b ―3a―1b≤0恒成立,则m的最大值为( )A.4B.16C.9D.37.已知x,y∈(―2,2),且xy=1,则22―x2+44―y2的最小值是( )A.207B.127C.16+427D.16―4278.已知函数f(x)=2x|2x―a|,若0≤x≤1时f(x)≤1,则实数a的取值范围为( )A.[74,2]B.[53,2]C.[32,2]D.[32,53]二、多选题9.已知a>b>c>0,则( )A.a+c>b+c B.ac>bc C.aa+c>bb+cD.a x<b c10.已知a>0,b>0,且a+b=ab,则( )A.(a―1)(b―1)=1B.ab的最大值为4C.a+4b的最小值为9D.1a2+2b2的最小值为2311.已知a,b∈R∗,a+2b=1,则b2a +12b+12ab的值可能为( )A.6B.315C.132D.5212. 现有图形如图所示,C 为线段AB 上的点,且AC =a ,BC =b ,O 为AB 的中点,以AB 为直径作半圆.过点.C 作AB 的垂线交半圆于点D ,连结OD ,AD ,BD ,过点C 作OD 的垂线,垂足为E.则该图形可以完成的无字证明有( )A .a +b 2≥ab (a >0,b >0)B .a 2+b 2≥2ab (a >0,b >0)C .a 2+b 22≥a +b2(a ≥0,b >0)D .ab ≥21a+1b(a >0,b >0)三、填空题13.已知不等式|x ―1|+|x +2|≥5的解集为 .14. 已知实数x ,y 满足―1≤x +y ≤4且2≤x ―y ≤3,则x +3y 的取值范围是 .15.若关于x 的不等式x 2+mx ―2<0在区间[1,2]上有解,则实数m 的取值范围为 .16.设正实数x ,y ,z 满足x 2―3xy +4y 2―z =0,则当xyZ 取得最大值时,2x+1y ―2z的最大值为 .四、解答题17.U =R ,非空集合 A ={x |x 2―5x +6<0} ,集合 B ={x |(x ―a )(x ―a 2―2)<0} .(1)a =12时,求 (∁ U B )∩A ;(2)若 x ∈B 是 x ∈A 的必要条件,求实数 a 的取值范围.18.已知 p :|1―x ―13|≤2 , q :x 2―2x +1―m 2≤0(m >0) ,若 ¬p 是 ¬q 的充分而不必要条件,求实数m 的取值范围.19.求解不等式x 2―a ≥|x ―1|―120.已知a ,b ,c 都为正实数,满足abc (a +b +c )=1(1)求S =(a +c )(b +c )的最小值(2)当S 取最小值时,求c 的最大值.21.某项研究表明;在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位;辆∕时)与车流速度v (假设车辆以相同速度v 行驶,单位米∕秒)、平均车长l (单位:米)的值有关,其公式为F =76000νv 2+18v +20l(1)如果不限定车型,l =6.05,则最大车流量为多少.(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加多少.22.已知a ,b ,c 为实数且a +2b +5c =10.(1)若a ,b ,c 均为正数,当2ab +5ac +10bc =10时,求a +b +c 的值;(2)证明:(2b +5c )2+(a +b +5c )2+(a +2b +4c )2≥4903.答案解析部分1.C已知a>b>0,c>d,由不等式的同向相加的性质得到a+c>b+d正确;当a=2,b=1,c=-1,d=-2时,a c<bd, ,a―c=b―d A,D不正确;c=2,d=1时,ad=bc,B不正确. 2.D解:因为x,y>0,且1x+2+4y+3=12,则x+y=(x+2)+(y+3)―5=2(1x+2+4y+3)[(x+2)+(y+3)]―5=2(5+y+3x+2+4(x+2)y+3)―5≥2(5+2y+3x+2⋅4(x+2)y+3―5=13,当且仅当y+3x+2=4(x+2)y+3,即x=4,y=9时等号成立,则x+y的最小值为13.3.D由基本不等式得x+2y=(x+2y)(2x +1y)=4yx+xy+4≥24yx⋅xy+4=8,当且仅当4yx=xy,由于x>0,y>0,即当x=2y时,等号成立,所以,x+2y的最小值为8,由题意可得m2+2m<8,即m2+2m―8<0,解得―4<m<2,因此,实数m的取值范围是(―4,2),4.A从题设可得15y+35x=1,则3x+4y=15(3x+4y)(1y+3x)=15(3x y+12yx+13)≥15(12+13)=5,5.A6.B7.C8.C不等式f(x)≤1可化为|2x―a|≤2―x,有―2―x≤a―2x≤2―x,有2x―2―x≤a≤2x+2―x,当0≤x≤1时,2x+2―x≥22x×2―x=2(当且仅当x=0时取等号),2x―2―x≤2―12=32,故有32≤a≤2。
一元二次函数、方程和不等式单元测试卷及答案解析
![一元二次函数、方程和不等式单元测试卷及答案解析](https://img.taocdn.com/s3/m/ac2bd0dd9fc3d5bbfd0a79563c1ec5da50e2d618.png)
高一上学期数学单元测试卷一元二次函数、方程和不等式考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1.不等式≥的解集是 【 】(A)(B)(C)(D)2.设,,则M与N的大小关系是【】(A)(B)M ≥ N(C)(D)M ≤ N3.已知实数,则以下不等关系正确的是【】(A)(B)(C)(D)4. “”是“一元二次不等式恒成立”的【】(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件5.已知,且,则的最小值为【】(A)5 (B)6 (C)7 (D)86.不等式组的解集为【】(A)(B)(C)(D)7.已知R,则下列说法中错误的是【】(A)≥(B)(C)(D)8.设正数满足,则当取得最大值时,代数式的最大值是【】(A)0 (B)1 (C)(D)3二、多项选择题(每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知不等式的解集为,则下列结论正确的是【】(A)(B)(C)(D)10.设为非零实数,且,则下列不等式恒成立的是【】(A)(B(C)(D)11.给出下列四个条件: ①; ②; ③; ④.其中能成为的充分条件的是【】(A)①(B)②(C)③(D)④12.若,且,则下列不等式恒成立的是【】(A)≥8 (B)≥(C)≥2 (D)≤1第Ⅱ卷 非选择题(共90分)二、填空题(每小题5分,共20分)13.已知,同时成立,则应满足的条件是__________.14.若不等式的解集为,则__________,_________.(本小题第一空2分,第二空3分)15.已知函数对任意实数,函数值恒大于零,则实数的取值范围是_____________.16.已知,不等式≥0对一切实数恒成立.若R,成立,则的最小值为__________.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)解下列不等式(组):(1);(2)≤.18.(本题满分12分)已知,且(1)求的最小值;(2)是否存在,使得的值为?并说明理由.19.(本题满分12分)已知命题R ,,命题R ,.(1)若命题为真命题,求实数的取值范围;(2)若命题为真命题,求实数的取值范围;(3)若命题至少有一个为真命题,求实数的取值范围.20.(本题满分12分)如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求点B在AM上,点D 在AN上,且对角线MN过点C,已知AB的长为3米,AD的长为2米.(1)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?(2)当DN的长为多少时,矩形花坛AMPN的面积最小?并求出最小值.21.(本题满分12分)设.(1)若不等式≥对一切实数恒成立,求实数的取值范围;(2)解关于的不等式(R).22.(本题满分12分)某企业准备投入适当的广告费对某产品进行促销,在一年内预计销售量Q(万件)与广告费(万元)之间的关系式为(≥0).已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需再投入32万元,若该企业产能足够,生产的产品均能售出,且每件销售价为“年平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和.(1)试写出年利润W(万元)与年广告费(万元)的关系式;(2)当年广告费投入多少万元时,企业年利润最大?最大年利润为多少?高一上学期数学单元测试卷一元二次函数、方程和不等式答案解析考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1.不等式≥的解集是 【 】(A)(B)(C)(D)答案 【 D 】解析本题考查一元二次不等式的解法,属于基础题.∵≥,∴0,∴≥0,解之得:≤0或≥2.∴原不等式的解集为.∴选择答案【 D 】.2.设,,则M与N的大小关系是【】(A)(B)M ≥ N(C)(D)M ≤ N答案 【 A 】解析本题考查作差法比较大小.利用作差法比较大小的一般步骤为:(1)作差;(2)变形: 对差进行变形.(3)判号: 判断差的符号(如果差中含有参数,则需要进行分类讨论).(4)定论: 根据差的符号作出大小判断.即: 作差变形判号定论.作差法的关键在于变形,常用的变形为:因式分解、配方、通分、分子或分母有理化等.∵,∴∵R,恒成立,∴.∴.∴选择答案【 A 】.3.已知实数,则以下不等关系正确的是【】(A)(B)(C)(D)答案 【 C 】解析本题宜采用特殊值法比较大小.∵,取∴.∵∴.∴选择答案【 C 】.4. “”是“一元二次不等式恒成立”的【】(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件答案 【 B 】解析本题考查充分必要条件的判断.方法总结 判断充分必要条件的基本思路(1)先确定条件是什么,结论是什么;(2)尝试用条件推结论,或由结论推条件;(必要时举出反例)(3)指出条件是结论的什么条件.若一元二次不等式恒成立,则有:.显然,由“”不能推出“一元二次不等式恒成立”,但是由“一元二次不等式恒成立”可以推出“”.∴“”是“一元二次不等式恒成立”的必要不充分条件.∴选择答案【 B 】.5.已知,且,则的最小值为【】(A)5 (B)6 (C)7 (D)8答案 【 A 】解析本题考查利用基本不等式求最值.注意利用基本不等式求最值时必须满足三个条件:一正、二定、三相等.∵,且∴.∴≥.当且仅当,即时,等号成立.∴的最小值为5.∴选择答案【 A 】.另解 ∵,∴.∴≥.当且仅当,即,等号成立.∴的最小值为5.∴选择答案【 A 】.6.不等式组的解集为【】(A)(B)(C)(D)答案 【 C 】解析本题考查一元二次不等式的解法.解不等式得:;解不等式得:.∴不等式组的解集为.∴选择答案【 C 】.7.已知R,则下列说法中错误的是【】(A)≥(B)(C)(D)答案 【 D 】解析本题考查不等式的基本性质.对于(A),当时,∵,∴;当时,显然.∴≥,故(A)正确;对于(B),∵,∴,∴.故(B)正确;对于(C),∵,∴.∵,∴.∴,∴.根据倒数法则,有.故(C)正确;对于(D),由不能得到,∴不一定成立.故(D)错误.∴选择答案【 D 】.8.设正数满足,则当取得最大值时,代数式的最大值是【】(A)0 (B)1 (C)(D)3答案 【 B 】解析本题考查基本不等式的应用.∵,∴.∵为正数∴≤.当且仅当,即时,等号成立.此时.∴∴当,即时,.∴选择答案【 B 】.二、多项选择题(每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知不等式的解集为,则下列结论正确的是【】(A)(B)(C)(D)答案 【 BCD 】解析本题考查一元二次不等式与对应一元二次方程之间的关系.要明白一元二次不等式的解集的端点值就是对应一元二次方程的实数根.∵不等式的解集为∴,方程的两个实数根分别为.由根与系数的关系定理可得:,∴,∴异号,异号且互为相反数.∵,∴,.∴.故(A)错误,(B)、(C)、(D)正确.∴选择答案【 BCD 】.10.设为非零实数,且,则下列不等式恒成立的是【】(A)(B)(C)(D)答案 【 CD 】解析本题考查不等式的基本性质.∵为非零实数,且,∴.对于(A),,当时,,即;当时, ,即.故不恒成立;对于(B),,∴的符号,即的大小关系取决于的符号,共有三种可能,特别地,当互为相反数时,,,此时,故不恒成立;对于(C),,故恒成立;对于(D),,故恒成立.(∵为非零实数,∴恒成立)∴选择答案【 CD 】.11.给出下列四个条件: ①; ②; ③; ④.其中能成为的充分条件的是【】(A)①(B)②(C)③(D)④答案 【 AD 】解析本题考查不等式的基本性质.对于(A),显然.∵,∴,∴.故是的充分条件;对于(B),当时,,∴.当时,,∴.故不是的充分条件;对于(C),,当,即时,.故不是的充分条件;对于(D),∵,∴,∴,∴.故是的充分条件.∴选择答案【 AD 】.12.若,且,则下列不等式恒成立的是【】(A)≥8 (B)≥(C)≥2 (D)≤1答案 【 AB 】解析本题考查基本不等式的应用.对于(A),∵,,∴≥,当且仅当时取等号,故(A)恒成立;(重要结论: ≤≤)对于(B),∵,,∴≤,当且仅当时取等号,∴≥.故(B)恒成立.对于(C),∵,,∴≤,故(C)不恒成立;对于(D),∵,,∴,≥,当且仅当,即时取等号.故(D)不恒成立.∴选择答案【 AB 】.第Ⅱ卷 非选择题(共90分)二、填空题(每小题5分,共20分)13.已知,同时成立,则应满足的条件是__________.答案 或解析本题考查分式不等式的解法.∵,∴,整理得:.它同解于不等式.∵,∴.∴,∴或.∴应满足的条件是或.14.若不等式的解集为,则__________,_________.(本小题第一空2分,第二空3分)答案 .解析本题考查一元二次不等式与相应一元二次方程的关系.∵不等式的解集为∴,一元二次方程的两个实数根分别为.由根与系数的关系定理可得:,解之得:.∴.15.已知函数对任意实数,函数值恒大于零,则实数的取值范围是_____________.答案解析本题考查与一元二次函数、一元二次不等式有关的恒成立问题.本题即R恒成立.令,解之得:.当时,对R恒成立,符合题意;当时,,其解集不是R,不符合题意;当,时,则有:,解之得:.综上所述,实数的取值范围是.16.已知,不等式≥0对一切实数恒成立.若R,成立,则的最小值为__________.答案解析本题考查一元二次不等式恒成立问题、利用基本不等式求最值.∵不等式≥0对一切实数恒成立(显然,)∴,∴≥1.∵R,成立∴方程有实数根.∴≥0,∴≤1.∵≥1,≤1,∴.∵,∴.∴≥.当且仅当,即时,等号成立.∴的最小值为.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)解下列不等式(组):(1);(2)≤.解:(1)解不等式得:或;解不等式得:.∴原不等式组的解集为;(2)原不等式可化为.解不等式≥得:≥3或≤;解不等式18得:∴原不等式的解集为.18.(本题满分12分)已知,且.(1)求的最小值;(2)是否存在,使得的值为?并说明理由.解:(1)∵,∴≥,∴≤.当且仅当时,等号成立.∴≥≥.当且仅当,即时,等号成立.∴的最小值为;(2)∵∴≥当且仅当,即时,等号成立.∵≤∴≥.当且仅当时,等号成立.∴.∵∴不存在,使得的值为.19.(本题满分12分)已知命题R,,命题R,.(1)若命题为真命题,求实数的取值范围;(2)若命题为真命题,求实数的取值范围;(3)若命题至少有一个为真命题,求实数的取值范围.解:(1)∵命题为真命题∴R,恒成立.∴,解之得:.∴实数的取值范围为;(2)∵命题为真命题∴函数有部分图象位于轴下方,即函数图象与轴有两个不同的交点,也即一元二次方程有两个不相等的实数根.∴,解之得:或.∴实数的取值范围为;(3)∵命题至少有一个为真命题∴实数的取值范围为20.(本题满分12分)如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求点B在AM上,点D 在AN上,且对角线MN过点C,已知AB的长为3米,AD的长为2米.(1)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?(2)当DN的长为多少时,矩形花坛AMPN的面积最小?并求出最小值.解:(1)设米,则米.∵∴△NDC∽△NAM.∴∴米.∵矩形AMPN的面积大于32平方米,∴,整理得:.解之得:或.∴DN 的长的范围为;(2)设矩形花坛AMPN的面积为平方米,则有:≥.当且仅当,即时,等号成立,取得最小值.∴(平方米).答:当DN的长为2米时,矩形花坛AMPN的面积最小,为24平方米. 21.(本题满分12分)设.(1)若不等式≥对一切实数恒成立,求实数的取值范围;(2)解关于的不等式(R).解:(1)∵≥对一切实数恒成立,∴R,≥0恒成立.当时,≥0,不符合题意;当时,则有:,解之得:≥.综上所述,实数的取值范围是;(2)∵(R)∴∴.当时,,解之得:,∴原不等式的解集为;当时,原不等式可化为.当时,,原不等式同解于,∴原不等式的解集为;当时,原不等式同解于:若,则,∴原不等式的解集为;若,则,,∴原不等式的解集为;若,则,∴原不等式的解集为.综上所述,当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式的解集为.22.(本题满分12分)某企业准备投入适当的广告费对某产品进行促销,在一年内预计销售量Q(万件)与广告费(万元)之间的关系式为(≥0).已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需再投入32万元,若该企业产能足够,生产的产品均能售出,且每件销售价为“年平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和.(1)试写出年利润W(万元)与年广告费(万元)的关系式;(2)当年广告费投入多少万元时,企业年利润最大?最大年利润为多少?解:(1)由题意可得,每年产品的生产成本为万元,每万件的销售价为:万元,即万元.∴该企业的年销售收入为万元.∴(≥0)(万元);(2)∵(≥0)∴≤.当且仅当,即时,等号成立.∴(万元).答: 当年广告费投入7万元时,企业年利润最大,最大年利润为48万元.。
一元二次函数、方程和不等式检测试卷及答案
![一元二次函数、方程和不等式检测试卷及答案](https://img.taocdn.com/s3/m/26353bfe0912a21615792914.png)
一元二次函数、方程和不等式检测试卷一、单选题1.不等式260x x +->的解集为( ) A.{|32}x x -<< B.{|32}x x x <->或 C.{|2}x x >D.{|3}x x <-2.若a ,b ,c R ∈,且a b >,则下列不等式一定成立的是( )A.2c 0a b>- B.()2a b c0- C. a c b c +>- D.22 ac bc >3.已知不等式220ax bx ++>的解集是()1,2-,则+a b 的值为( ) A.1B.1-C.0D.2-4.若不等式组2142x a x a⎧->⎨-<⎩的解集非空,则实数a 的取值范围是( )A.13a -<<B.1a <-或3a >C.31a -<<D.3a <-或1a >5.已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( ) A.[]0,1B.(]0,1C.()(),01,-∞⋃+∞D.()[),01,-∞+∞6.已知不等式()19a x y x y ⎛⎫++ ⎪⎝⎭≥对任意实数x 、y 恒成立,则实数a 的最小值为( ) A.8B.6C.4D.27.已知1230a a a >>>,则使得2(1)1(1,2,3)i a x i -<=都成立的x 取值范围是( )A.110,a ⎛⎫ ⎪⎝⎭B.220,a ⎛⎫ ⎪⎝⎭C.310,a ⎛⎫ ⎪⎝⎭D.320,a ⎛⎫ ⎪⎝⎭8.如图,某汽车运输公司刚买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N )为二次函数关系,若使营运的年平均利润最大,则每辆客车应营运( )A.3年B.4年C.5年D.6年9.已知22ππαβ-≤<≤,则2αβ-的范围是( )A.,02π⎛⎫- ⎪⎝⎭B.,02π⎡⎤-⎢⎥⎣⎦C.,02π⎛⎤-⎥⎝⎦D.,02π⎡⎫-⎪⎢⎣⎭10.已知正实数a b c d ,,,满足,a b c d >>,则下列不等式不正确的是( )A.22c db a> B.ac bd >> D.a c b d ->-11.对任意实数x ,不等式()()222240a x a x -+--<恒成立,则a 的取值范围是( ) A .22a -<≤B .22a -≤≤C .2a <-或2a ≥D .2a ≤-或2a ≥12.若0<t <1,则关于x 的不等式(t -x )1x t ⎛⎫- ⎪⎝⎭>0的解集是( )A .1xx t t ⎧⎫<<⎨⎬⎩⎭B .1x x t ⎧>⎨⎩或}x t < C .1x x t⎧<⎨⎩或}x t >D .1x t x t ⎧⎫<<⎨⎬⎩⎭三、填空题13.若不等式220ax bx ++>的解集为1123x x ⎧⎫-<<⎨⎬⎩⎭,则a =________,b =________. 14.设2:8120x x α-+>,2:x m m β-≤,若β是α的充分非必要条件,则实数m 的取值范围是_______________.15.当122x ≤≤时,函数2,()y x bx c b c R =++∈与21x x y x++'=在同一点取得相同的最小值,那么当122x ≤≤时,2y x bx c =++的最大值是______. 16.已知正数a ,b ,c ,d 满足121a b +=,232c d+=,则a bcd +的最小值为______.四、解答题17.当,p q 都为正数且1p q +=时,试比较代数式2()px qy +与22px qy +的大小.18.()1已知3x >,求43y x x =+-的最小值,并求取到最小值时x 的值; ()2已知0x >,0y >,223x y +=,求xy 的最大值,并求取到最大值时x 、y 的值.19.设,,a b c 均为正数,且1a b c ++=. (1)证明:13ab bc ac ++≤; (2)证明:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭答案一、单选题1.不等式260x x +->的解集为( ) A.{|32}x x -<< B.{|32}x x x <->或 C.{|2}x x > D.{|3}x x <-答:B不等式260x x +->等价于()()26=32023x x x x x x +-+->⇒><-或故答案为:B 。
一元二次函数、方程和不等式专项测试卷及答案解析
![一元二次函数、方程和不等式专项测试卷及答案解析](https://img.taocdn.com/s3/m/8b15aeeb3b3567ec112d8a13.png)
高一上学期数学专项测试卷一元二次函数、方程和不等式考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1. 若10<<a ,则关于x 的不等式()x a -01>⎪⎭⎫ ⎝⎛-a x 的解集为 【 】 (A )⎭⎬⎫⎩⎨⎧<<a x a x 1 (B )⎭⎬⎫⎩⎨⎧<<a x a x 1 (C )⎭⎬⎫⎩⎨⎧<>a x a x x 1或 (D )⎭⎬⎫⎩⎨⎧<>a x a x x 或1 2. 如果二次函数222+++=m mx x y 有两个不同的零点,那么实数m 的取值范围是 【 】(A ){}12<<-m m (B ){}21<<-m m(C ){}21>-<m m m 或 (D ){}12>-<m m m 或3. 记不等式()()02<+-x m x 的解集为A ,不等式()1-x x ≤0的解集为B .若A B ⊆,则正数m 的取值范围为 【 】(A ){}1>m m (B ){}1≥m m (C ){}1<m m (D ){}1≤m m4. 要使关于x 的方程()02122=-+-+a x a x 的一个根比1大且另一根比1小,则实数a 的取值范围是 【 】(A ){}21<<-a a (B ){}12<<-a a(C ){}2-<a a (D ){}1>a a5. 若关于x 的不等式()012<++-a x a x 的解集中恰有一个整数,则a 的取值范围是 【 】(A ){}3201<≤≤<-a a a 或 (B ){}4312≤<-≤<-a a a 或(C ){}3201≤<<≤-a a a 或 (D ){}4312<<-<<-a a a 或6. 共享单车给市民出行带来了诸多便利,某公司购买了一批共享单车投放到某地给市民使用,据市场分析,每辆单车的累计收入y (单位: 元)与营运天数x (∈x N*)满足关系式80060212-+-=x x y ,要使累计收入高于800元,则营运天数x 的取值范围为 【 】 (A ){}*,9030N x x x ∈<< (B ){}*,4030N x x x ∈<<(C ){}*,8040N x x x ∈<< (D ){}*,6020N x x x ∈<<7. 已知1≤x ≤2,02>-ax x 恒成立,则实数a 的取值范围是 【 】(A ){}1≥a a (B ){}1>a a (C ){}1≤a a (D ){}1<a a8. 设集合{}01<<-=m m P ,{}恒成立对任意实数x mx mx R m Q 0442<-+∈=,则下列说法正确的是 【 】(A )P 是Q 的真子集 (B )Q 是P 的真子集(C )Q P = (D )∅=Q P9. 某小区的蓄水池每日零时均有水400吨,并从零时开始,以每小时60吨的速度匀速向蓄水池注水,同时向该小区不间断供水,t 小时内供水总量为t 6120(0≤t ≤24)吨.若蓄水池的供水量小于80吨,则会出现供水紧张的情况,则每日处于供水紧张情况的时长为 【 】(A )6小时 (B )7小时 (C )8小时 (D )9小时10. 在R 上定义运算⊗:()y x y x -=⊗1.若不等式()()1<+⊗-a x a x 对任意实数x 都成立,则实数a 的取值范围为 【 】(A )⎭⎬⎫⎩⎨⎧<<-2321a a (B ){}20<<a a (C ){}11<<-a a (D )⎭⎬⎫⎩⎨⎧<<-2123a a 11.(多选)已知02>++c bx ax 的解集为{}21<<-x x ,则下列x 的取值范围能使不等式()()ax c x b x a 2112<+-++成立的是 【 】(A ){}30<<x x (B ){}3>x x(C ){}0<x x (D ){}12<<-x x12.(多选)若关于x 的一元二次方程()()m x x =--32有实数根21,x x ,且21x x <,则下列结论正确的是 【 】(A )当0=m 时,3,221==x x(B )41->m (C )当0>m 时,3221<<<x x(D )二次函数()()m x x x x y +--=21的图象与x 轴交点的坐标为()0,2和()0,3第Ⅱ卷 非选择题(共90分)二、填空题(每小题5分,共20分)13. 已知集合(){}0122=+++=x m x x A ,集合{}0>=x x B ,若∅=B A ,则实数m 的取值范围是_____________.14. 若实数21,x x 为方程0622=++-m mx x 的两根,则实数m 的取值范围是____________,()()222122-+-x x 的最小值是__________.(第一空2分,第二空3分)15. 如图所示,有长为30 m 的篱笆,一面利用墙(墙的最大可用长度为10 m ),围成中间隔有一道篱笆(平行于AB )的矩形花圃.设花圃的一边AB 为x m,面积为y m 2.如果围成的花圃的面积不少于63 m 2,则x 的取值范围是_____________.DCB A16. 研究问题:已知关于x 的不等式02>+-c bx ax 的解集为{}21<<x x ,解关于x 的不等式02>+-a bx cx ,解法为:由02>+-c bx ax 得0112>⎪⎭⎫ ⎝⎛+-x c x b a ,令x y 1=,则121<<y ,所以不等式02>+-a bx cx 的解集为⎭⎬⎫⎩⎨⎧<<121x x .参考上述解法,已知关于x 的不等式++a x k 0<++c x b x 的解集为{}3212<<-<<-x x x 或,则关于x 的不等式0111<--+-cx bx ax kx 的解集为_____________.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)(1)当3=a 时,求不等式022<++ax x 的解集;(2)若不等式022>++ax x 的解集为R ,求实数a 的取值范围.18.(本题满分12分)当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.解关于x 的不等式3222--+m mx x ≤()()922422--++-m x m x m .20.(本题满分12分)某辆汽车以x 千米/时的速度在高速公路上匀速行驶(考虑到高速公路上行车安全,要求60≤x ≤120)时,每小时耗油(所需要的汽油量)⎪⎭⎫ ⎝⎛+-x k x 450051升,其中k 为常数,60≤k ≤100. (1)若汽车以120千米/时的速度行驶,每小时耗油11. 5升,欲使每小时的油耗不超过9升,求x 的取值范围;(2)求该汽车行驶100千米的油耗的最小值.设p :实数x 满足03222<--a ax x (0>a ),q :实数x 满足2≤4<x .(1)若1=a ,且q p ,都为真命题,求x 的取值范围;(2)若q 是p 充分不必要条件,求实数a 的取值范围.22.(本题满分12分)已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.高一上学期数学专项测试卷一元二次函数、方程和不等式答案解析考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1. 若10<<a ,则关于x 的不等式()x a -01>⎪⎭⎫ ⎝⎛-a x 的解集为 【 】 (A )⎭⎬⎫⎩⎨⎧<<a x a x 1 (B )⎭⎬⎫⎩⎨⎧<<a x a x 1 (C )⎭⎬⎫⎩⎨⎧<>a x a x x 1或 (D )⎭⎬⎫⎩⎨⎧<>a x a x x 或1 答案 【 A 】解析 本题考查含参不等式的解法,注意解集的形式,在进行根的大小比较时要注意分类讨论.另外,在解一元二次不等式时,要把不等式化为左边是几个因式的乘积,且每个因式最高次项的系数为正,右边是0的形式.∵()x a -01>⎪⎭⎫ ⎝⎛-a x ,∴()a x -01<⎪⎭⎫ ⎝⎛-a x . ∵10<<a ,∴a a>1. ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<a x a x 1. ∴选择答案【 A 】.2. 如果二次函数222+++=m mx x y 有两个不同的零点,那么实数m 的取值范围是 【 】(A ){}12<<-m m (B ){}21<<-m m(C ){}21>-<m m m 或 (D ){}12>-<m m m 或答案 【 C 】解析 本题考查零点的定义: 我们把使一元二次方程02=++c bx ax 的实数x 叫做二次函数c bx ax y ++=2的零点.对零点的理解(1)二次函数的零点即相应一元二次方程02=++c bx ax 的实数根;(2)根据数形结合,二次函数的零点,即二次函数的图象与x 轴的交点的横坐标,且交点的个数等于零点的个数;(3)并非所有的二次函数都有零点.当ac b 42-=∆≥0时,一元二次方程有实数根,相应二次函数存在零点.∵二次函数222+++=m mx x y 有两个不同的零点∴方程0222=+++m mx x 有两个不相等实数根.∴()()084424222>--=+-=∆m m m m ,解之得:2>m 或1-<m .∴实数m 的取值范围是{}21>-<m m m 或.∴选择答案【 C 】.3. 记不等式()()02<+-x m x 的解集为A ,不等式()1-x x ≤0的解集为B .若A B ⊆,则正数m 的取值范围为 【 】(A ){}1>m m (B ){}1≥m m (C ){}1<m m (D ){}1≤m m答案 【 A 】解析 本题考查一元二次不等式的解法和根据集合之间的基本关系确定参数的取值范围. 解不等式()1-x x ≤0得: 0≤x ≤1. ∴{}10≤≤=x x B .∵m 为正数,∴2->m ,∴原不等式的解集为{}m x x A <<-=2.∵A B ⊆,∴1>m .∴正数m 的取值范围为{}1>m m .∴选择答案【 A 】.4. 要使关于x 的方程()02122=-+-+a x a x 的一个根比1大且另一根比1小,则实数a 的取值范围是 【 】(A ){}21<<-a a (B ){}12<<-a a(C ){}2-<a a (D ){}1>a a答案 【 B 】解析 本题考查一元二次方程实数根的分布(K 分布).结论 一元二次方程02=++c bx ax (0>a )的一个根大于k ,另一根小于k 的条件是()0<k f .设()()2122-+-+=a x a x x f由题意可知:()021112<-+-+=a a f ,解之得:12<<-a .∴实数a 的取值范围是{}12<<-a a .∴选择答案【 B 】.5. 若关于x 的不等式()012<++-a x a x 的解集中恰有一个整数,则a 的取值范围是 【 】(A ){}3201<≤≤<-a a a 或 (B ){}4312≤<-≤<-a a a 或(C ){}3201≤<<≤-a a a 或 (D ){}4312<<-<<-a a a 或答案 【 C 】解析 本题考查含参一元二次不等式的解法.原不等式可化为:()()01<--a x x .当1>a 时,原不等式的解集为{}a x x <<1.∵其解集中恰有一个整数,∴a <2≤3;当1=a 时,()012<-x ,原不等式的解集为空集,不符合题意;当1<a 时,原不等式的解集为{}1<<x a x .∵其解集中恰有一个整数,∴1-≤0<a .综上所述,实数a 的取值范围是{}3201≤<<≤-a a a 或.∴选择答案【 C 】.6. 共享单车给市民出行带来了诸多便利,某公司购买了一批共享单车投放到某地给市民使用,据市场分析,每辆单车的累计收入y (单位: 元)与营运天数x (∈x N*)满足关系式80060212-+-=x x y ,要使累计收入高于800元,则营运天数x 的取值范围为 【 】 (A ){}*,9030N x x x ∈<< (B ){}*,4030N x x x ∈<<(C ){}*,8040N x x x ∈<< (D ){}*,6020N x x x ∈<<答案 【 C 】解析 本题考查一元二次不等式的应用.由题意可知:80080060212>-+-x x ,整理得:032001202<+-x x . 解之得:8040<<x ,且∈x N*.∴营运天数x 的取值范围为{}*,8040N x x x ∈<<.∴选择答案【 C 】.7. 已知1≤x ≤2,02>-ax x 恒成立,则实数a 的取值范围是 【 】(A ){}1≥a a (B ){}1>a a (C ){}1≤a a (D ){}1<a a答案 【 D 】解析 本题考查一元二次不等式的恒成立问题.∵1≤x ≤2,02>-ax x 恒成立∴x a <恒成立,∴1min =<x a .∴实数a 的取值范围是{}1<a a .∴选择答案【 D 】.8. 设集合{}01<<-=m m P ,{}恒成立对任意实数x mx mx R m Q 0442<-+∈=,则下列说法正确的是 【 】(A )P 是Q 的真子集 (B )Q 是P 的真子集(C )Q P = (D )∅=Q P答案 【 A 】解析 本题考查含参一元二次不等式的恒成立问题,注意对二次项系数是否等于0进行讨论. 对于集合Q ,当0=m 时,04<-恒成立,符合题意;当0≠m 时,则有:()⎩⎨⎧<+=∆<016402m m m ,解之得:01<<-m . 综上所述,{}{}010442≤<-=<-+∈=m m x mx mx R m Q 恒成立对任意实数. ∵{}01<<-=m m P ,∴Q P ≠⊂.∴选择答案【 A 】.9. 某小区的蓄水池每日零时均有水400吨,并从零时开始,以每小时60吨的速度匀速向蓄水池注水,同时向该小区不间断供水,t 小时内供水总量为t 6120(0≤t ≤24)吨.若蓄水池的供水量小于80吨,则会出现供水紧张的情况,则每日处于供水紧张情况的时长为 【 】 (A )6小时 (B )7小时 (C )8小时 (D )9小时 答案 【 C 】解析 本题考查数学核心素养——数学建模. 由题意可知:80612060400<-+t t . 整理得:t t 66163<+.∵0163>+t ,∴()()2266163t t <+.整理得:025612092<+-t t ,∴()()032383<--t t .解之得:33238<<t . ∵838332=-,∴每日处于供水紧张情况的时长为8小时.∴选择答案【 C 】.10. 在R 上定义运算⊗:()y x y x -=⊗1.若不等式()()1<+⊗-a x a x 对任意实数x 都成立,则实数a 的取值范围为 【 】(A )⎭⎬⎫⎩⎨⎧<<-2321a a (B ){}20<<a a(C ){}11<<-a a (D )⎭⎬⎫⎩⎨⎧<<-2123a a答案 【 A 】解析 本题考查与一元二次不等式有关的恒成立问题. ∵()y x y x -=⊗1∴()()1<+⊗-a x a x ,即()()11<---a x a x . 整理得:()0122>----a a x x .由题意可知:()()014122<--+-=∆a a ,∴()()03212<-+a a ,解之得:2321<<-a .∴实数a 的取值范围为⎭⎬⎫⎩⎨⎧<<-2321a a . ∴选择答案【 A 】.另解: 由上面的解法知: ()0122>----a a x x .∴x x a a -<--221恒成立,只需()min 221x x a a -<--即可.∵412122-⎪⎭⎫ ⎝⎛-=-x x x ≥41-,∴()41min 2-=-x x .∴4112-<--a a ,∴03442<--a a ,解之得:2321<<-a . ∴实数a 的取值范围为⎭⎬⎫⎩⎨⎧<<-2321a a .∴选择答案【 A 】.11.(多选)已知02>++c bx ax 的解集为{}21<<-x x ,则下列x 的取值范围能使不等式()()ax c x b x a 2112<+-++成立的是 【 】(A ){}30<<x x (B ){}3>x x (C ){}0<x x (D ){}12<<-x x 答案 【 BC 】解析 本题考查一元二次不等式与对应的一元二次方程之间的关系.注意,一元二次不等式的解集的端点值就是对应一元二次方程的解(实数根). ∵02>++c bx ax 的解集为{}21<<-x x ∴0<a ,方程02=++c bx ax 的解分别为1-和2.由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-2121ac ab ,∴⎩⎨⎧-=-=ac a b 2.∵()()ax c x b x a 2112<+-++∴()()ax a x a x a 22112<---+,∴032<-ax ax . ∵0<a ,∴032<-ax ax 同解于032>-x x . 解之得:3>x 或0<x . ∴选择答案【 BC 】.12.(多选)若关于x 的一元二次方程()()m x x =--32有实数根21,x x ,且21x x <,则下列结论正确的是 【 】 (A )当0=m 时,3,221==x x (B )41->m (C )当0>m 时,3221<<<x x(D )二次函数()()m x x x x y +--=21的图象与x 轴交点的坐标为()0,2和()0,3 答案 【 ABD 】解析 本题考查一元二次函数、一元二次方程之间的关系.对于(A ),当0=m 时,()()032=--x x ,解之得:3,221==x x ,故(A )正确;对于(B ),整理()()m x x =--32得:0652=-+-m x x .由题意可知,该方程有两个不相等的实数根,∴()()06452>---=∆m ,解之得:41->m .故(B )正确; 对于(C ),采用数形结合的思想方法,设()()321--=x x y ,m y =2,则方程()()m x x =--32的解的问题就转化为两个函数21,y y 的图象的交点问题.如下图所示,显然,当0>m 时,有2132x x <<<.故(C )错误;对于(D ),∵方程()()m x x =--32,即()()032=---m x x 的实数根为21,x x ∴()()()()m x x x x x x ---=--3221.∴()()()()()()323221--=+---=+--=x x m m x x m x x x x y .∴二次函数()()m x x x x y +--=21的图象与x 轴交点的坐标为()0,2和()0,3.故(D )正确.∴选择答案【 ABD 】.第Ⅱ卷 非选择题(共90分)二、填空题(每小题5分,共20分)13. 已知集合(){}0122=+++=x m x x A ,集合{}0>=x x B ,若∅=B A ,则实数m 的取值范围是_____________. 答案 {}4->m m解析 本题考查一元二次不等式与一元二次方程的关系.在利用条件∅=B A 时,要注意分∅=A 和∅≠A 两种情况进行讨论.当∅=A 时,显然∅=B A .此时()044222<+=-+=∆m m m ,解之得:04<<-m ; 当∅≠A 时,设方程()0122=+++x m x 的两个实数根分别为21,x x . ∵{}0>=x x B ,∅=B A∴方程()0122=+++x m x 无正实数根.由根与系数的关系定理可得:()221+-=+m x x ,0121>=⋅x x ,显然,21,x x 均为负数.∴()⎩⎨⎧<+-≥+=∆02042m m m ,解之得:m ≥0.综上所述,实数m 的取值范围是{}4->m m .14. 若实数21,x x 为方程0622=++-m mx x 的两根,则实数m 的取值范围是____________,()()222122-+-x x 的最小值是__________.(第一空2分,第二空3分)答案 m ≥3或m ≤2-, 2解析 本题考查一元二次方程与一元二次函数的关系.由题意可知:()()6422+--=∆m m ≥0,解之得:m ≥3或m ≤2-. 由根与系数的关系定理可得:6,22121+==+m x x m x x .∴()()()844444222122212221212221++-+=+-++-=-+-x x x x x x x x x x ()()()2122121212212422444x x x x x x x x x x -+-+=-+++-+=.∴()()()()4414546242222222221-⎪⎭⎫ ⎝⎛-=+-+-=-+-m m m x x . ∴当3=m 时,()()222122-+-x x 取得最小值,最小值为244145342=-⎪⎭⎫ ⎝⎛-⨯. 另解: ()()222122-+-x x ≥()()()()8862842222212121+-+=++-=--m m x x x x x x 206+-=m . 当且仅当2221-=-x x ,即21x x =时,等号成立.此时,()()06422=+--=∆m m ,解之得:3,221=-=m m .显然,当3=m 时,()()222122-+-x x 取得最小值,最小值为22036=+⨯-.15. 如图所示,有长为30 m 的篱笆,一面利用墙(墙的最大可用长度为10 m ),围成中间隔有一道篱笆(平行于AB )的矩形花圃.设花圃的一边AB 为x m,面积为y m 2.如果围成的花圃的面积不少于63 m 2,则x 的取值范围是_____________.DCB A答案 ⎥⎦⎤⎢⎣⎡7,320解析 本题考查一元二次不等式的解法及其应用. 由题意可知:()x BC 330-=m,则有:()x x 330-≥63,且x 330-≤10.解之得:320≤x ≤7. ∴x 的取值范围是⎥⎦⎤⎢⎣⎡7,320. 16. 研究问题:已知关于x 的不等式02>+-c bx ax 的解集为{}21<<x x ,解关于x 的不等式02>+-a bx cx ,解法为:由02>+-c bx ax 得0112>⎪⎭⎫ ⎝⎛+-x c x b a ,令x y 1=,则121<<y ,所以不等式02>+-a bx cx 的解集为⎭⎬⎫⎩⎨⎧<<121x x .参考上述解法,已知关于x 的不等式++a x k0<++c x b x 的解集为{}3212<<-<<-x x x 或,则关于x 的不等式0111<--+-cx bx ax kx 的解集为_____________.答案 ⎭⎬⎫⎩⎨⎧-<<-<<3121121x x x 或解析 本题考查一元二次不等式的解法. 用x1-代替++a x k 0<++c x b x 中的x 可得:0111111<--+-=+-+-++-cx bx ax kx c xb x a x k . ∵++a x k 0<++cx bx 的解集为{}3212<<-<<-x x x 或 令x y 1-=,则有12-<<-y 或32<<y .∴112-<-<-x 或312<-<x ,解之得:121<<x 或3121-<<-x .∴不等式0111<--+-cx bx ax kx 的解集为⎭⎬⎫⎩⎨⎧-<<-<<3121121x x x 或.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)(1)当3=a 时,求不等式022<++ax x 的解集;(2)若不等式022>++ax x 的解集为R ,求实数a 的取值范围. 解:(1)当3=a 时,0232<++x x ,解之得:12-<<-x . ∴原不等式的解集为{}12-<<-x x ; (2)∵不等式022>++ax x 的解集为R ∴082<-=∆a ,解之得:2222<<-a . ∴实数a 的取值范围是{}2222<<-a a . 18.(本题满分12分)当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.分析: 本题的意思即方程m mx x 2122-=++有两个不相等的实数根,且两个实数根均在()1,0内,考查了一元二次方程实数根的K 分布.解: 原方程可化为: 02122=+++m mx x ,设()m mx x x f 2122+++=.由题意可得:()()()()⎪⎪⎩⎪⎪⎨⎧>+++=>+=<-<>+-=∆021211021010021422m m f m f m m m ,解之得:2121-<<-m .∴实数m 的取值范围是⎭⎬⎫⎩⎨⎧-<<-2121m m .19.(本题满分12分)解关于x 的不等式3222--+m mx x ≤()()922422--++-m x m x m . 解: 原不等式整理得:()6232++-x m mx ≤0.当0=m 时,62+-x ≤0,解之得:x ≥3,原不等式的解集为{}3≥x x ;当0≠m 时,原不等式可化为:()⎪⎭⎫⎝⎛--m x x m 23 ≤0.当0<m 时,原不等式同解于()⎪⎭⎫ ⎝⎛--m x x 23≥0,∴原不等式的解集为⎭⎬⎫⎩⎨⎧≤≥m x x x 23或; 当0>m 时,原不等式同解于()⎪⎭⎫⎝⎛--m x x 23 ≤0.若320<<m ,则m 23<,原不等式的解集为⎭⎬⎫⎩⎨⎧≤≤m x x 23;若32=m ,则()23-x ≤0,原不等式的解集为{}3=x x ; 若32>m ,则m 23>,原不等式的解集为⎭⎬⎫⎩⎨⎧≤≤32x m x .综上所述,当0=m 时,原不等式的解集为{}3≥x x ;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧≤≥m x x x 23或;当320<<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧≤≤m x x 23;当32=m 时,原不等式的解集为{}3=x x ;当32>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧≤≤32x m x .20.(本题满分12分)某辆汽车以x 千米/时的速度在高速公路上匀速行驶(考虑到高速公路上行车安全,要求60≤x ≤120)时,每小时耗油(所需要的汽油量)⎪⎭⎫⎝⎛+-x k x 450051升,其中k 为常数,60≤k ≤100.(1)若汽车以120千米/时的速度行驶,每小时耗油11. 5升,欲使每小时的油耗不超过9升,求x 的取值范围;(2)求该汽车行驶100千米的油耗的最小值.解:(1)∵汽车以120千米/时的速度行驶,每小时耗油11. 5升∴5.115.75124120450012051=+-=⎪⎭⎫ ⎝⎛+-⨯k k ,解之得:100=k . ∴每小时耗油⎪⎭⎫⎝⎛+-x x 450010051升.由题意可知:⎪⎭⎫⎝⎛+-x x 450010051≤9.整理得:45001452+-x x ≤0,解之得:45≤x ≤100. ∵60≤x ≤120∴x 的取值范围为[]100,60;(2)设该汽车行驶100千米的油耗为y 升,则有201201900004500511002+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+-⨯=x k x x k x x y .设x t 1=,则1201≤t ≤601,2020900002+-=kt t y . ∴9002090009000022k k t y -+⎪⎭⎫ ⎝⎛-=. ∵60≤k ≤100,∴1501≤9000k ≤901(故6019000<k ) 当9000k ≥1201,即75≤k ≤100时,900202min k y -=,此时9000kt =,k x 9000=;当12019000<k ,即60≤75<k 时,1201=t ,64105201201201201900002min k k y -=+⨯-⎪⎭⎫ ⎝⎛⨯=. 综上所述,当75≤k ≤100时,该汽车行驶100千米的油耗的最小值为⎪⎭⎫ ⎝⎛-900202k 升,当60≤75<k 时,该汽车行驶100千米的油耗的最小值为⎪⎭⎫⎝⎛-64105k 升. 21.(本题满分12分)设p :实数x 满足03222<--a ax x (0>a ),q :实数x 满足2≤4<x . (1)若1=a ,且q p ,都为真命题,求x 的取值范围; (2)若q 是p 充分不必要条件,求实数a 的取值范围. 解:(1)当1=a 时,0322<--x x ,解之得:31<<-x . ∵q p ,都为真命题∴x 的取值范围是{}{}{}324231<≤=<≤<<-x x x x x x ; (2)不等式03222<--a ax x 可化为()()03<-+a x a x . ∵0>a ,∴该不等式的解集为{}a x a x 3<<-. 设{}a x a x A 3<<-=,{}42<≤=x x B . ∵q 是p 充分不必要条件,∴A B ≠⊂∴a 3≥4,解之得:a ≥34. ∴实数a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,34. 22.(本题满分12分) 已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.解:(1)假设存在这样的实数b a ,.∵不等式012>+-bx ax 的解集是{}21<<x x ∴0<a ,方程012=+-bx ax 的两个实数根分别为2,1. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=--21121aa b ,解之得:⎪⎪⎩⎪⎪⎨⎧==2321b a . ∵021>=a ,与0<a 矛盾 ∴不存在这样的实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ; (2)∵2+=a b ∴()0122=++-x a ax .∵()[]()0314242222>+-=+-=-+-=∆a a a a a∴方程()0122=++-x a ax 总有两个不相等的实数根.∵方程()0122=++-x a ax 在{}12-<<-∈x x x 上恰有一个实数根 ∴()()[]()[]0121122222<+++-⨯⨯+++-⨯a a a a 整理得:()()03256<++a a ,解之得:6523-<<-a . ∵a 为整数 ∴a 的值为1-.。
一元二次函数、方程和不等式检测试卷及答案
![一元二次函数、方程和不等式检测试卷及答案](https://img.taocdn.com/s3/m/88477f54dcccda38376baf1ffc4ffe473368fdc8.png)
一元二次函数、方程和不等式检测试卷及答案1.不等式x^2+x-6>0的解集为(B){x|x2}。
2.若a>b>0,则不等式c^2/(a-b)>0一定成立,因为分母为正数。
3.已知不等式ax^2+bx+2>0的解集是(-1,2),则a+b的值为(D)-2.4.若不等式组{x-1>a/2.x-43.5.已知关于x的不等式kx^2-6kx+k+8≥0对任意x∈XXX成立,则k的取值范围是(A)[0,1]。
6.已知不等式(x+y)/(1+xy)≥9对任意实数x、XXX成立,则实数a的最小值为(D)2.7.已知a1>a2>a3>0,则使得(1-a1x)<1、(1-a2x)<1和(1-a3x)<1都成立的x取值范围是(B)0<x<(a2/a3)。
8.某汽车运输公司刚买了一批豪华大客车投入营运,每辆客车营运的总利润y(单位:10万元)与营运年数x(x∈N)为二次函数关系,若使营运的年平均利润最大,则每辆客车应营运(C)5年。
9.已知-π/2≤α<β≤π/2,则(α-β)^2的范围是(A)(-π^2/4,0]。
10.已知正实数a,b,c,d满足a>b,c>d,则不等式ac>bd不正确,因为b和c可能很小,导致右边小于左边。
11.对任意实数x,不等式(a-2)x+2(a-2)x-4<XXX成立,则a的取值范围是(C)a<-2或a≥2.该选项成立;对于选项C,a b0,a b,所以a c b c,该选项成立;对于选项D,a b,c20,但无法确定ac和bc的大小关系,所以该选项不一定成立。
故答案为B。
3.若函数f x x2ax b的图象过点1,0,且有两个不同的实数x1,x2满足f x1f x21,则a,b的值应该是()A.a2,b 1B.a2,b 1C.a1,b 2D.a1,b 2答:C由题意可得:f1b0,f x1f x2x1x2a,x1x2b0,又因为x1,x2不相等,所以x10,x2a,代入x1x20可得a0或b0,但因为f x1f x21,所以a0,故b0,代入x1x2a可得a1,故a,b的值应该是a1,b0,即选项C。
2023-2024学年高一上数学《一元二次函数、方程和不等式》测试卷及答案解析
![2023-2024学年高一上数学《一元二次函数、方程和不等式》测试卷及答案解析](https://img.taocdn.com/s3/m/41d49b3f53d380eb6294dd88d0d233d4b14e3fbd.png)
2023-2024学年高一数学《一元二次函数、方程和不等式》一.选择题(共12小题)
1.(2022春•福州期中)已知实数a,b满足e a+b﹣2
+=0,则下列关系一定不成立的是()
A.a+b=2B.a﹣3b=﹣2C.a+b<2D.a﹣b<﹣2 2.(2021秋•鼓楼区校级期中)“a<0”是“函数f(x)=(x﹣a)2在(0,+∞)内单调递增”的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要
3.(2020秋•福州期末)关于x的一元二次不等式x2﹣5x﹣6<0的解集为()A.{x|x<﹣1或x>6}B.{x|﹣1<x<6}C.{x|x<﹣2或x>3}
D.{x|﹣2<x<3}
4.(2016秋•福州期中)已知p=a
+,q=﹣b2﹣2b+3(b∈R),则p,q的
大小关系为()
A.p≥q B.p≤q C.p>q D.p<q
5.(2017秋•长乐市校级月考)已知不等式x2+px+q<0的解集为{x|1<x<2}
,则不等式
>0的解集为()
A.(1,2)B.(﹣∞,﹣1)∪(1,2)∪(6,+∞)
C.(﹣1,1)∪(2,6)D.(﹣∞,﹣1)∪(6,+∞)6.(2021秋•仓山区校级期中)设x1,x2为方程x2﹣4ax+3a=0(a>0)的两个根,则x1+x2+的最小值是()
A .
B .
C .
D .
7.(2021
秋•福清市期中)已知函数过点(n,1)(m,n>0),则的
最小值为()
A.8B.9C.10D.12 8.(2021秋•连江县期中)已知命题p:x<3,q:2x2﹣3x﹣2<0,则p是q的()
第1页(共17页)。
高中数学第二章一元二次函数方程和不等式专项训练题(带答案)
![高中数学第二章一元二次函数方程和不等式专项训练题(带答案)](https://img.taocdn.com/s3/m/d449418577a20029bd64783e0912a21615797f4e.png)
高中数学第二章一元二次函数方程和不等式专项训练题单选题1、实数a,b 满足a >b ,则下列不等式成立的是( ) A .a +b <ab B .a 2>b 2C .a 3>b 3D .√a 2+b 2<a +b 答案:C分析:利用不等式的性质逐一判断即可. A ,若a =1,b =0,则a +b >ab ,故A 错误; B ,若a =1,b =−2,则a 2<b 2,故B 错误;C ,若a >b ,则a 3−b 3=(a −b )(a 2+ab +b 2)=(a −b )[(a +b 2)2+3b 24]>0,所以a 3>b 3,故C 正确;D ,若a =1,b =−2,则√a 2+b 2>a +b ,故D 错误. 故选:C2、若a,b,c ∈R ,则下列命题为假命题的是( ) A .若√a >√b ,则a >b B .若a >b ,则ac >bc C .若b >a >0,则1a >1b D .若ac 2>bc 2,则a >b 答案:B分析:根据不等式的性质逐一分析各选项即可得答案. 解:对A :因为√a >√b ,所以a >b ≥0,故选项A 正确;对B :因为a >b ,c ∈R ,所以当c >0时,ac >bc ;当c =0时,ac =bc ;当c <0时,ac <bc ,故选项B 错误;对C :因为b >a >0,所以由不等式的性质可得1a>1b >0,故选项C 正确;对D :因为ac 2>bc 2,所以c 2>0,所以a >b ,故选项D 正确. 故选:B.3、若x >53,则3x +43x−5的最小值为( )A .7B .4√3C .9D .2√3 答案:C分析:利用基本不等式即可求解. 解:∵x >53, ∴3x −5>0,则3x +43x−5=(3x −5)+43x−5+5≥2√(3x −5)⋅43x−5+5=9, 当且仅当3x −5=2时,等号成立, 故3x +43x−5的最小值为9,故选:C .4、已知2<a <3,−2<b <−1,则2a −b 的范围是( ) A .(6,7)B .(5,8)C .(2,5)D .(6,8) 答案:B分析:由不等式的性质求解即可.,故4<2a <6,1<−b <2,得5<2a −b <8 故选:B5、已知a,b >0,a +4b =ab ,则a +b 的最小值为( ) A .10B .9C .8D .4 答案:B分析:由题可得4a +1b =1,根据a +b =(a +b )(4a +1b )展开利用基本不等式可求.∵a,b >0,a +4b =ab ,∴4a +1b =1, ∴a +b =(a +b )(4a +1b )=4b a +a b +5≥2√4b a ⋅ab +5=9,当且仅当4ba =ab 时等号成立,故a +b 的最小值为9. 故选:B.23,21<<-<<-a b6、已知两个正实数x ,y 满足x +y =2,则1x+9y+1的最小值是( )A .163B .112C .8D .3 答案:A分析:根据题中条件,得到1x +9y+1=13(1x +9y+1)[x +(y +1)],展开后根据基本不等式,即可得出结果. 因为正实数x,y 满足x +y =2,则1x +9y+1=13(1x +9y+1)[x +(y +1)]=13(10+y+1x+9x y+1)≥13(10+2√y+1x⋅9x y+1)=163,当且仅当y+1x=9xy+1,即x =34,y =54时,等号成立.故选:A .小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.7、关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根α,β,且α2+β2=12,那么m 的值为( ) A .−1B .−4C .−4或1D .−1或4 答案:A分析:α2+β2=(α+β)2−2α⋅β,利用韦达定理可得答案. ∵关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根, ∴Δ=[2(m −1)]2−4×1×(m 2−m )=−4m +4⩾0, 解得:m ⩽1,∵关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根α,β, ∴α+β=−2(m −1),α⋅β=m 2−m ,∴α2+β2=(α+β)2−2α⋅β=[−2(m −1)]2−2(m 2−m )=12,即m 2−3m −4=0,解得:m =−1或m =4(舍去). 故选:A.8、已知实数x ,y 满足x 2+y 2=2,那么xy 的最大值为( ) A .14B .12C .1D .2 答案:C分析:根据重要不等式x 2+y 2≥2xy 即可求最值,注意等号成立条件.由x 2+y 2=2≥2xy ,可得xy ≤1,当且仅当x =y =1或x =y =−1时等号成立. 故选:C. 多选题9、下面所给关于x 的不等式,其中一定为一元二次不等式的是( ) A .3x +4<0B .x 2+mx -1>0 C .ax 2+4x -7>0D .x 2<0 答案:BD分析:利用一元二次不等式的定义和特征对选项逐一判断即可.选项A 是一元一次不等式,故错误;选项B ,D ,不等式的最高次是二次,二次项系数不为0,故正确;当a =0时,选项C 是一元一次不等式,故不一定是一元二次不等式,即错误. 故选:BD.10、已知a >0,b >0,且a 2+b 2=2,则下列不等式中一定成立的是( ) A .ab ≥1B .a +b ≤2 C .lga +lgb ≤0D .1a +1b ≤2 答案:BC分析:对于AD ,举例判断,对于BC ,利用基本不等式判断 解:对于A ,令a =√22,b =√62满足a 2+b 2=2,则ab =√22×√62=√32<1,所以A 错误,对于B ,因为(a +b)2=a 2+b 2+2ab =2+2ab ≤2+a 2+b 2=4,所以a +b ≤2,当且仅当a =b =1时取等号,所以B 正确,对于C ,因为lga +lgb =lgab ≤lg a 2+b 22=lg1=0,当且仅当a =b =1时取等号,所以C 正确,对于D ,令a =√22,b =√62满足a 2+b 2=2,则1a +1b =√2+√63≈1.414+0.8165>2,所以D 错误,故选:BC11、已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12B .2a−b >12C .log 2a +log 2b ≥−2D .√a +√b ≤√2 答案:ABD分析:根据a +b =1,结合基本不等式及二次函数知识进行求解. 对于A ,a 2+b 2=a 2+(1−a )2=2a 2−2a +1=2(a −12)2+12≥12, 当且仅当a =b =12时,等号成立,故A 正确;对于B ,a −b =2a −1>−1,所以2a−b >2−1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log 2(a+b 2)2=log 214=−2,当且仅当a =b =12时,等号成立,故C 不正确; 对于D ,因为(√a +√b)2=1+2√ab ≤1+a +b =2,所以√a +√b ≤√2,当且仅当a =b =12时,等号成立,故D 正确; 故选:ABD小提示:本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养.12、下列选项中正确的是( ) A .不等式a +b ≥2√ab 恒成立B .存在实数a ,使得不等式a +1a ≤2成立 C .若a ,b 为正实数,则ba +ab ≥2D .若正实数x ,y 满足,则2x +1y ≥821x y +=答案:BCD分析:根据基本不等式的条件与“1”的用法等依次讨论各选项即可得答案. 解:对于A选项,当a<0,b<0时不成立,故错误;对于B选项,当a<0时,a+1a =−[(−a)+(−1a)]≤2,当且仅当a=−1等号成立,故正确;对于C选项,若a,b为正实数,则ba >0,ab>0,所以ba+ab≥2√ba⋅ab=2,当且仅当a=b时等号成立,故正确;对于D选项,由基本不等式“1”的用法得2x +1y=(2x+1y)(x+2y)=4+4yx+xy≥4+2√4yx⋅xy=8,当且仅当x=2y时等号成立,故正确.故选:BCD13、已知函数f(x)=x2−2(a−1)x+a,若对于区间[−1,2]上的任意两个不相等的实数x1,x2,都有f(x1)≠f(x2),则实数a的取值范围可以是()A.(−∞,0]B.[0,3]C.[−1,2]D.[3,+∞)答案:AD解析:对于区间[−1,2]上的任意两个不相等的实数x1,x2,都有f(x1)≠f(x2),分析即f(x)在区间[−1,2]上单调,利用二次函数的单调区间判断.二次函数f(x)=x2−2(a−1)x+a图象的对称轴为直线x=a−1,∵任意x1,x2∈[−1,2]且x1≠x2,都有f(x1)≠f(x2),即f(x)在区间[−1,2]上是单调函数,∴a−1≤−1或a−1≥2,∴a≤0或a≥3,即实数a的取值范围为(−∞,0]∪[3,+∞).故选:AD小提示:(1)多项选择题是2020年高考新题型,需要要对选项一一验证.(2)二次函数的单调性要看开口方向、对称轴与区间的关系.填空题14、已知三个不等式:①ab>0,②ca >db,③bc>ad,用其中两个作为条件,剩下的一个作为结论,则可组成______个真命题. 答案:3分析:根据题意,结合不等式性质分别判断①、②、③作为结论的命题的真假性即可. 由不等式性质,得{ab >0c a >d b ⇒{ab >0bc−ad ab>0⇒bc >ad ;{ab >0bc >ad ⇒c a >d b ;{ca>d bbc >ad⇒{bc−adab>0bc >ad⇒ab >0.故可组成3个真命题.所以答案是:3.15、命题p:∀x ∈R ,x 2+ax +a ≥0,若命题p 为真命题,则实数a 的取值范围为___________. 答案:[0,4]分析:根据二次函数的性质判别式解题即可.∀x ∈R ,要使得x 2+ax +a ≥0,则Δ=a 2−4a ≤0,解得0≤a ≤4. 若命题p 为真命题,则实数a 的取值范围为[0,4]. 所以答案是:[0,4]. 16、a >b >c ,n ∈N ∗,且1a−b+1b−c≥n a−c恒成立,则n 的最大值为__.答案:4分析:将不等式变形分离出n ,不等式恒成立即n 大于等于右边的最小值;由于a −c =a −b +b −c ,凑出两个正数的积是常数,利用基本不等式求最值. 解:由于1a−b+1b−c≥n a−c恒成立,且a >c即恒成立 只要的最小值即可∵a −c a −b +a −c b −c =a −b +b −c a −b +a −b +b −cb −c=2+b −c a −b +a −bb −c∵a >b >ca c a cn a b b c --≤+--a c a cn a b b c --≤+--∴a −b >0,b −c >0,故(a−c a−b +a−cb−c )≥4,因此n ≤4 所以答案是:4. 解答题17、(1)已知x >1,求4x +1+1x−1的最小值;(2)已知0<x <1,求x (4−3x )的最大值. 答案:(1)9;(2)43.分析:(1)由于x −1>0,则4x +1+1x−1=4(x −1)+1x−1+5,然后利用基本不等式求解即可, (2)由于0<x <1,变形得x (4−3x )=13⋅(3x )⋅(4−3x ),然后利用基本不等式求解即可. (1)因为x >1,所以x −1>0,所以4x +1+1x−1=4(x −1)+1x−1+5≥2√4(x −1)⋅1x−1+5=9, 当且仅当4(x −1)=1x−1,即x =32时取等号,所以4x +1+1x−1的最小值为9.(2)因为0<x <1,所以x (4−3x )=13⋅(3x )⋅(4−3x )≤13(3x+4−3x 2)2=43,当且仅当3x =4−3x ,即x =23时取等号,故x (4−3x )的最大值为43.18、在△ABC 中,内角A ,B ,C 对边分别为a ,b ,c ,已知2acosB =2c −b . (1)求角A 的值;(2)若b =5,AC⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =−5,求△ABC 的周长; (3)若2bsinB +2csinC =bc +√3a ,求△ABC 面积的最大值. 答案:(1)A =π3;(2)20;(3)3√34. 解析:(1)利用正弦定理及两角和的正弦公式展开,可得,可求得角A 的值;(2)根据向量的数量积及余弦定理分别求出a,c ,即可求得周长;1cos 2A(3)将利用正弦定理将角化成边,再利用余弦定理结合基本不等式可求得面积的最值; (1)∵2acosB =2c −b ⇒2sinA ⋅cosB =2sinC −sinB ,∴2sinA ⋅cosB =2⋅sin(A +B)−sinB =2(sinA ⋅cosB +cosA ⋅sinB)−sinB , ∴,∵0<A <π,∴A =π3;(2)∵AC⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ ⋅(AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )=AC ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ 2 =c ⋅5⋅cos π3−52=52c −25=−5⇒c =8,在△ABC 中利用余弦定理得:a 2=b 2+c 2−2b ⋅c ⋅cosA =52+82−2⋅5⋅8⋅12=49, ∴a =7,∴ΔABC 的周长为:5+8+7=20; (3)∵bsinB =csinC =asinA =√32=2√3a3,∴sinB =√32ba,sinC =√32ca, ∴2b ⋅√32⋅b a+2c ⋅√32⋅ca=bc +√3a ,∴√3(b 2+c 2−a 2)=abc ⇒√3⋅cosA =a2⇒√3⋅12=a2⇒a =√3, ∴√3(b 2+c 2−3)=√3bc ⇒b 2+c 2=3+bc , ∴3+bc ⩾2bc ⇒bc ⩽3,等号成立当且仅当, △ABC 面积的最大值为(12bcsinA)max=3√34. 小提示:本题考查三角恒等变换、正余弦定理在解三角形中的应用,求解时注意选择边化成角或者角化成边的思路.1cos 2A =b c =。
人教A版高一数学必修第一册《一元二次函数、方程和不等式》单元练习题卷含答案解析(1)
![人教A版高一数学必修第一册《一元二次函数、方程和不等式》单元练习题卷含答案解析(1)](https://img.taocdn.com/s3/m/47cd2fe16bd97f192379e9ba.png)
人教A 版高一数学必修第一册《一元二次函数、方程和不等式》单元练习题卷(共22题)一、选择题(共10题)1. 已知关于 x 的不等式 (a 2−1)x 2−(a −1)x −1<0 的解集是 R ,则实数 a 的取值范围是 ( ) A . (−∞,−35)∪(1,+∞)B . (−35,1)C . [−35,1]D . (−35,1]2. 若不等式 ax 2−bx +c >0 的解集是 (−2,3),则不等式 bx 2+ax +c <0 的解集是 ( ) A . (−3,2)B . (−2,3)C . (−∞,−2)∪(3,+∞)D . (−∞,−3)∪(2,+∞)3. 已知 a >0,b >0,a +b =2,则 1a +4b 的最小值为 ( ) A . 72B . 4C . 92D . 54. 若 2x +2y =1,则 x +y 的取值范围是 ( ) A . [0,2] B . [−2,0] C . [−2,+∞)D . (−∞,−2]5. 若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是( ) A .RB .(−2,2)C .(−∞,−2)∪(2,+∞)D .[−2,2]6. 不等式 x 2−ax −12a 2<0(其中a <0) 的解集为 ( ) A .(−3a,4a ) B .(4a,−3a ) C .(−3,4) D .(2a,6a )7. 气象学院用 32 万元购置了一台天文观测仪,已知这台观测仪从启动的第 1 天开始连续使用,第 n 天的维修保养费为 4n +46(n ∈N ∗) 元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器平均每天耗资最少)为止,则一共要使用 ( ) A . 300 天 B . 400 天 C . 600 天 D . 800 天8. 已知 x >0,y >0,x +2y +2xy =8,则 x +2y 的最小值是 A . 3 B . 4C . 92D .1129.若m2x−1mx+1<0(m≠0)对一切x≥4恒成立,则实数m的取值范围是( )A.{m∣ m<3}B.{m∣∣ m<−12}C.{m∣ m>2}D.{m∣ −2<m<3}10.已知集合A={x∣ x2−3x+2<0},B={x∣ x(x−m)>0},若A∩B=∅,则实数m的取值范围是( )A.{m∣ m≤0}B.{m∣ 0≤m≤2}C.{m∣ m≥2}D.{m∣ 0≤m≤1}二、填空题(共6题)11.不等式x2−x+1<0的解集为.12.设正实数x,y,z满足x2−xy+4y2−z=0,则当zxy 取得最小值时,2x+3y−6z的最大值为.13.二次函数y=x2−x−6的零点是.14.定义区间[a,b](a<b)的长度为b−a,若关于x的不等式x2−4x+m≤0的解集区间长度为2,则实数m的值为.15.已知集合A={x∣ x2−x−12<0},集合B={x∣ x2+2x−8>0},集合C={x∣ x2−4ax+3a2<0,a≠0},若C⊇(A∩B),则实数a的取值范围是.16.若不等式ax2+1x2+1≥2−3a3(a>0)恒成立,则实数a的取值范围是.三、解答题(共6题)17.求下列不等式的解集:(1) 13−4x2>0;(2) (x−3)(x−7)<0;(3) x2−3x−10>0;(4) −3x2+5x−4>0.18.已知a>0,b>0.(1) 求证:a3+b3≥a2b+ab2;(2) 若 a +b =3,求 1a +4b 的最小值.19. 已知 f (x )=(a −2)x 2+2(a −2)x −4(a ∈R ).(1) 当 x ∈R 时,恒有 f (x )<0,求 a 的取值范围;(2) 当 x ∈(1,3) 时,不等式 f (x )<mx −7(m ∈R ) 恰好成立,求 a ,m 的值.20. 阅读:已知 a,b ∈(0,+∞),a +b =1,求 y =1a+2b 的最小值.解法如下:y =1a +2b =(1a +2b )(a +b )=b a +2a b+3≥3+2√2,当且仅当 ba =2a b,即 a =√2−1,b =2−√2 时取到等号,则 y =1a+2b 的最小值为 3+2√2. 应用上述解法,求解下列问题:(1) 已知 a,b,c ∈(0,+∞),a +b +c =1,求 y =1a+1b+1c的最小值;(2) 已知 x ∈(0,12),求函数 y =1x +81−2x 的最小值;(3) 已知正数 a 1,a 2,a 3,⋯,a n ,a 1+a 2+a 3+⋯+a n =1,求证:S =a 12a1+a 2+a 22a2+a 3+a 32a 3+a 4+⋯+a n2an +a 1≥12.21. 请回答下列问题:(1) 已知 x >0,y >0,xy =4,求 2x +1y 的最小值; (2) 已知 x >0,y >0,x +2y =2,求 2x +1y 的最小值.22. 不等式性质(1) 如果 a >b >0,那么 a n >b n (n ∈N ∗,且 n >1).本性质根据 n 为奇数或偶数时,可以怎样的推广? (2) 如果 a >b >0,那么 (n ∈N ∗,且 n >1). (3) 如果 a >b 且 ab >0,那么 1a 1b . (4) 如何理解上述性质?答案一、选择题(共10题) 1. 【答案】D【解析】当 a =1 时,不等式为 −1<0,恒成立,满足题意; 当 a =−1 时,不等式为 2x −1<0,解得 x <12,不满足题意;当 a ≠±1 时,由 (a 2−1)x 2−(a −1)x −1<0 的解集为 R , 可知 {a 2−1<0,[−(a −1)]2+4(a 2−1)<0,解得 −35<a <1. 综上,−35<a ≤1. 【知识点】二次不等式的解法2. 【答案】D【解析】不等式 ax 2−bx +c >0 的解集是 (−2,3), 所以方程 ax 2−bx +c =0 的解是 −2 和 3,且 a <0; 即 {−2+3=ba ,−2×3=c a ,解得 b =a ,c =−6a ;所以不等式 bx 2+ax +c <0 化为 ax 2+ax −6a <0, 即 x 2+x −6>0, 解得 x <−3 或 x >2,所以所求不等式的解集是 (−∞,−3)∪(2,+∞). 【知识点】二次不等式的解法3. 【答案】C【知识点】均值不等式的应用4. 【答案】D【解析】因为 2x +2y ≥2√2x ⋅2y =2√2x+y (当且仅当 2x =2y 时等号成立), 所以 √2x+y ≤12,所以 2x+y ≤14,得 x +y ≤−2. 【知识点】均值不等式的应用5. 【答案】B【解析】【分析】利用一元二次不等式的解法即可得出.【解析】解:∵不等式x2+mx+1>0的解集为R,∴△=m2−4<0,解得−2<m<2.∴m的取值范围是(−2,2).故选:B.【点评】熟练掌握一元二次不等式的解法是解题的关键.6. 【答案】B【知识点】二次不等式的解法7. 【答案】B【解析】使用n天的平均耗资为320000+(50+4n+46)n2n=320000n+2n+48(元),当且仅当320000n=2n时取得最小值,此时n=400.【知识点】均值不等式的应用8. 【答案】B【知识点】均值不等式的应用9. 【答案】B【解析】依题意,对任意的x≥4,有y=(mx+1)⋅(m2x−1)<0恒成立,结合图象(图略)分析可知{m<0,−1m<4,1m2<4,由此解得m<−12,即实数m的取值范围是{m∣∣ m<−12}.【知识点】恒成立问题10. 【答案】C【解析】集合A={x∣ 1<x<2},若m<0,则集合B={x∣ x<m或x>0},不满足A∩B=∅,舍去;若m=0,则B={x∣ x≠0},不满足A∩B=∅,舍去;若m>0,则B= {x∣ x<0或x>m},要使A∩B=∅,则m≥2,综上可得m的取值范围是{m∣ m≥2},故选C.【知识点】二次不等式的解法、交、并、补集运算二、填空题(共6题)11. 【答案】∅【知识点】二次不等式的解法12. 【答案】4【解析】由已知z=x2−xy+4y2,得zxy =x2−xy+4y2xy=xy+4yx−1≥2√xy⋅4yx−1=3,当且仅当xy =4yx,即x=2y时等号成立,则z=6y2,2x +3y−6z=22y+3y−66y2=4y−(1y)2,当1y=2时,取最大值4.【知识点】均值不等式的应用13. 【答案】−2,3【解析】方法一:令x2−x−6=0.因为Δ=(−1)2−4×1×(−6)=25>0,所以方程x2−x−6=0有两个不相等的实数根,x1=−2,x2=3.所以函数y=x2−x−6的零点是x1=−2,x2=3.方法二:由x2−x−6=(x−3)(x+2)=0,得x1=−2,x2=3.所以函数y=x2−x−6的零点是x1=−2,x2=3.方法三:作出函数y=x2−x−6的图象,如图所示.因为函数的图象是一条开口向上的抛物线,且f(0)=−6<0,所以函数y=x2−x−6的图象与x轴有两个交点A(−2,0),B(3,0),故y=x2−x−6的零点是x1=−2,x2=3.【知识点】函数零点的概念与意义14. 【答案】3【知识点】二次不等式的解法15. 【答案】43≤a≤2【知识点】交、并、补集运算16. 【答案】{a∣ a≥19}【知识点】均值不等式的应用三、解答题(共6题)17. 【答案】(1) {x∣∣∣−√132<x<√132}.(2) {x∣ 3<x<7}.(3) {x∣ x<−2或x>5}.(4) ∅.【知识点】二次不等式的解法18. 【答案】(1) 因为a>0,b>0,所以a3+b3−a2b−ab2=a2(a−b)+b2(b−a)=(a2−b2)(a−b)=(a−b)2(a+b)≥0,所以a3+b3≥a2b+ab2.(2) 因为a>0,b>0,a+b=3,所以1 a +4b=13(a+b)(1a+4b)=13(5+ba+4ab)≥13(5+2√ba⋅4ab) =3,当且仅当ba =4ab,即a=1,b=2时取等号,所以1a +4b的最小值为3.【知识点】均值不等式的应用、不等式的性质19. 【答案】(1) a∈(−2,2].(2) 将原不等式整理变形,可得(a−2)x2+(2a−4−m)x+3<0,则该不等式在1<x<3时恰好成立.不妨设g(x)=(a−2)x2+(2a−4−m)x+3,可知{a>2,g(1)=0, g(3)=0.所以 a =3,m =6.【知识点】二次函数的性质与图像、二次不等式的解法20. 【答案】(1)y =1a +1b +1c=(1a +1b +1c )(a +b +c )=3+(ba +ab +ca +ac +cb +bc),而 ba +ab +ca +ac +cb +bc ≥6,当且仅当 a =b =c =13 时取到等号,则 y ≥9, 即 y =1a+1b+1c的最小值为 9.(2)y =22x +81−2x=(22x +81−2x )⋅(2x +1−2x )=10+2⋅1−2x 2x+8⋅2x1−2x ,而 x ∈(0,12),2⋅1−2x 2x+8⋅2x1−2x ≥2√16=8,当且仅当 2⋅1−2x 2x =8⋅2x1−2x ,即 x =16∈(0,12) 时取到等号,则 y ≥18,所以函数 y =1x+81−2x的最小值为 18.(3) 2S=(a 12a1+a 2+a 22a2+a 3+⋯+a n2an +a 1)[(a 1+a 2)+(a 2+a 3)+⋯+(a n +a 1)]=(a 12+a 22+⋯+a n 2)+a 12a1+a 2⋅(a 2+a 3)+a 22a2+a 3⋅(a 1+a 2)+⋯+a n2an +a 1⋅(a 1+a 2)+a 12a1+a 2⋅(a n +a 1)≥(a 12+a 22+⋯+a n 2)+(2a 1a 2+2a 2a 3+⋯+2a n a 1)=(a 1+a 2+⋯+a n )2=1.当且仅当 a 1=a 2=⋯=a n =1n时取到等号,则 S ≥12.【知识点】均值不等式的应用21. 【答案】(1) 因为 xy =4,且 x >0,y >0, 所以 2x +1y ≥2√2xy =2√12=√2, 当且仅当 x =2√2,y =√2 时取等号,即 2x+1y的最小值为 √2.(2) 因为 x >0,y >0,x +2y =2, 所以 2(2x +1y )=(x +2y )(2x +1y )=4+4y x+xy ≥4+4=8,所以 2x +1y ≥4, 当且仅当4y x=xy ,即 x =2y =1 时取等号,即 2x +1y 的最小值为 4. 【知识点】均值不等式的应用22. 【答案】(1) 当 n 为奇数时,如果 a >b ,那么 a n >b n (n ∈N ∗,n 为奇数);当 n 为偶数时,如果 a >b >0,那么 a n >b n ,如果 0>a >b ,那么 a n <b n (n ∈N ,n 为偶数). (2) √a n>√b n(3) <(4) 上述性质称为倒数的性质,注意 ab <0 时,此性质不成立(此时 1a >1b ). 【知识点】不等式的性质。
高一数学必修一第二章测试题及答案
![高一数学必修一第二章测试题及答案](https://img.taocdn.com/s3/m/5693c4c04bfe04a1b0717fd5360cba1aa9118c5d.png)
人教版高中数学必修一第二章 《一元二次函数、方程和不等式》测试题及答案解析(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式x 2≥2x 的解集是( ) A .{x |x ≥2} B .{x |x ≤2} C .{x |0≤x ≤2}D .{x |x ≤0或x ≥2}解析:选D 由x 2≥2x 得x (x -2)≥0,解得x ≤0或x ≥2,故选D. 2.若A =a 2+3ab ,B =4ab -b 2,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B 或A >BD .A >B解析:选B ∵A-B =a 2+3ab -(4ab -b 2)=⎝ ⎛⎭⎪⎫a -b 22+34b 2≥0,∴A ≥B.3.不等式组⎩⎨⎧x 2-1<0,x 2-3x <0的解集为( )A .{x |-1<x <1}B .{x |0<x <3}C .{x |0<x <1}D .{x |-1<x <3}解析:选C 由⎩⎨⎧x2-1<0,x2-3x<0,得⎩⎨⎧-1<x<1,0<x<3,所以0<x<1,即不等式组的解集为{x|0<x<1},故选C.4.已知2a +1<0,则关于x 的不等式x 2-4ax -5a 2>0的解集是( ) A .{x |x <5a 或x >-a } B .{x |x >5a 或x <-a } C .{x |-a <x <5a }D .{x |5a <x <-a }解析:选A 方程x 2-4ax -5a 2=0的两根为-a ,5a.因为2a +1<0,所以a<-12,所以-a>5a.结合二次函数y =x 2-4ax -5a 2的图象,得原不等式的解集为{x|x<5a 或x>-a},故选A.5.已知a ,b ,c ∈R ,则下列说法中错误的是( ) A .a >b ⇒ac 2≥bc 2 B.a c >b c,c <0⇒a <b C .a 3>b 3,ab >0⇒1a <1bD .a 2>b 2,ab >0⇒1a <1b解析:选D 对于A ,c 2≥0,则由a>b 可得ac 2≥bc 2,故A 中说法正确; 对于B ,由a c >b c ,得a c -b c =a -bc >0,当c<0时,有a -b<0,则a<b ,故B 中说法正确;对于C ,∵a 3>b 3,ab>0,∴a 3>b 3两边同乘1a3b3,得到1b3>1a3,∴1a <1b,故C 中说法正确;对于D ,∵a 2>b 2,ab>0,∴a 2>b 2两边同乘1a2b2, 得到1b2>1a2,不一定有1a <1b,故D 中说法错误.故选D.6.若关于x 的一元二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( )A .m ≤-2或m ≥2B .-2≤m ≤2C .m <-2或m >2D .-2<m <2解析:选B 因为不等式x 2+mx +1≥0的解集为R ,所以Δ=m 2-4≤0,解得-2≤m≤2.7.某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-300x +80 000,为使平均处理成本最低,该厂每月处理量应为( )A .300吨B .400吨C .500吨D .600吨解析:选B 由题意,月处理成本y(元)与月处理量x(吨)的函数关系为y=12x 2-300x +80 000,所以平均处理成本为s =y x =12x2-300x +80 000x =x 2+80 000x -300,其中300≤x≤600,又x 2+80 000x-300≥2x 2·80 000x-300=400-300=100,当且仅当x 2=80 000x 时等号成立,所以x =400时,平均处理成本最低.故选B.8.设正数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y-2z的最大值是( ) A .0 B .1 C.94D .3解析:选B 由题意得xy z =xy x2-3xy +4y2=1x y +4y x -3≤14-3=1,当且仅当x=2y 时,等号成立,此时z =2y 2.故2x +1y -2z =-1y2+2y =-⎝ ⎛⎭⎪⎫1y -12+1≤1,当且仅当y =1时,等号成立,故所求的最大值为1.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.已知不等式ax 2+bx +c >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <2,则下列结论正确的是( )A .a >0B .b >0C .c >0D .a +b +c >0解析:选BCD 因为不等式ax 2+bx +c>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x<2,故相应的二次函数y =ax 2+bx +c 的图象开口向下,所以a<0,故A 错误;易知2和-12是关于x 的方程ax 2+bx +c =0的两个根,则有c a =2×⎝ ⎛⎭⎪⎫-12=-1<0,-b a =2+⎝ ⎛⎭⎪⎫-12=32>0,又a<0,故b>0,c>0,故B 、C 正确;因为ca =-1,所以a +c =0,又b>0,所以a +b +c>0,故D 正确.故选B 、C 、D.10.下列结论中正确的有( )A .若a ,b 为正实数,a ≠b ,则a 3+b 3>a 2b +ab 2B .若a ,b ,m 为正实数,a <b ,则a +m b +m <a bC .若a c 2>bc2,则a >bD .当x >0时,x +2x的最小值为2 2解析:选ACD 对于A ,∵a ,b 为正实数,a ≠b ,∴a 3+b 3-(a 2b +ab 2)=(a -b)2(a +b)>0,∴a 3+b 3>a 2b +ab 2,故A 正确;对于B ,若a ,b ,m 为正实数,a<b ,则a +m b +m -a b =m (b -a )b (b +m )>0,则a +m b +m >ab,故B 错误;对于C ,若a c2>bc2,则a>b ,故C 正确; 对于D ,当x>0时,x +2x 的最小值为22,当且仅当x =2时取等号,故D正确.故选A 、C 、D.11.下列各式中,最大值是12的是( )A .y =x 2+116x 2B .y =x 1-x 2(0≤x ≤1)C .y =x 2x 4+1D .y =x +4x +2(x >-2) 解析:选BCA中,y =x 2+116x2≥2x2·116x2=12⎝ ⎛⎭⎪⎫当且仅当x =±12时取等号,因此式子无最大值;B 中,y 2=x 2(1-x2)≤⎝⎛⎭⎪⎫x2+1-x222=14,y ≥0, ∴0≤y ≤12,当且仅当x =22时y 取到最大值12; C 中,当x =0时,y =0,当x≠0时,y =1x2+1x2≤12x2·1x2=12,当且仅当x =±1时y 取到最大值12;D 中,y =x +4x +2=x +2+4x +2-2≥2(x +2)·4x +2-2=2(x>-2)(当且仅当x =0时取等号),无最大值,故选B 、C.12.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏,若售价每提高1元,则日销售量将减少2盏.为了使这批台灯每天获得400元以上(不含400)的销售收入,则这批台灯的售价x (元)的取值可以是( )A .10B .15C .16D .20解析:选BC 设这批台灯的售价定为x 元,x ≥15,则[30-(x -15)×2]·x>400,即x 2-30x +200<0,因为方程 x 2-30x +200=0的两根分别为x 1=10,x 2=20,所以x 2-30x +200<0的解集为{x|10<x<20},又因为x≥15,所以15≤x<20.故选B 、C.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知a >b ,a -1a >b -1b同时成立,则ab 应满足的条件是________.解析:因为a -1a >b -1b ,所以⎝ ⎛⎭⎪⎫a -1a -⎝ ⎛⎭⎪⎫b -1b =(a -b )(ab +1)ab >0.又a>b ,即a -b>0,所以ab +1ab>0,从而ab(ab +1)>0,所以ab<-1或ab>0.答案:ab<-1或ab>014.一个大于50小于60的两位数,其个位数字b 比十位数字a 大2.则这个两位数为________.解析:由题意知⎩⎨⎧50<10a +b<60,b -a =2,0<a ≤9,0≤b ≤9,解得4411<a<5311. 又a∈N*,∴a =5.∴b =7,∴所求的两位数为57. 答案:5715.一元二次不等式x 2+ax +b >0的解集为{x |x <-3或x >1},则a +b =________,一元一次不等式ax +b <0的解集为________.解析:由题意知,-3和1是方程x 2+ax +b =0的两根, 所以⎩⎨⎧-3+1=-a ,-3×1=b ,解得⎩⎨⎧a =2,b =-3, 故a +b =-1.不等式ax +b<0即为2x -3<0, 所以x<32.答案:-1⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<32 16.已知正数x ,y 满足x +2y =2,则x +8yxy的最小值为________. 解析:因为x ,y 为正数,且x +2y =2,所以x 2+y =1,所以x +8yxy =⎝ ⎛⎭⎪⎫1y +8x ·⎝ ⎛⎭⎪⎫x 2+y =x 2y +8yx +5≥2x 2y ·8y x +5=9,当且仅当x =4y =43时,等号成立,所以x +8yxy的最小值为9. 答案:9四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)解下列不等式: (1)2+3x -2x 2>0; (2)x (3-x )≤x (x +2)-1.解:(1)原不等式可化为2x 2-3x -2<0,所以(2x +1)(x -2)<0,故原不等式的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x<2. (2)原不等式可化为2x 2-x -1≥0. 所以(2x +1)(x -1)≥0,故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x≤-12或x≥1.18.(本小题满分12分)当p ,q 都为正数且p +q =1时,试比较代数式(px +qy )2与px 2+qy 2的大小.解:(px +qy)2-(px 2+qy 2)=p(p -1)x 2+q(q -1)y 2+2pqxy. 因为p +q =1,所以p -1=-q ,q -1=-p ,所以(px +qy)2-(px 2+qy 2)=-pq(x 2+y 2-2xy)=-pq(x -y)2. 因为p ,q 都为正数,所以-pq(x -y)2≤0,因此(px +qy)2≤px 2+qy 2,当且仅当x =y 时等号成立.19.(本小题满分12分)已知关于x 的方程x 2-2x +a =0.当a 为何值时, (1)方程的一个根大于1,另一个根小于1?(2)方程的一个根大于-1且小于1,另一个根大于2且小于3?解:(1)已知方程的一个根大于1,另一个根小于1,结合二次函数y =x 2-2x +a 的图象(如图所示)知,当x =1时,函数值小于0,即12-2+a<0,所以a<1.因此a 的取值范围是{a|a<1}.(2)由方程的一个根大于-1且小于1,另一个根大于2且小于3,结合二次函数y =x 2-2x +a 的图象(如图所示)知,x 取-1,3时函数值为正,x 取1,2时函数值为负,即⎩⎨⎧1+2+a>0,1-2+a<0,4-4+a<0,9-6+a>0,解得-3<a<0.因此a 的取值范围是{a|-3<a<0}.20.(本小题满分12分)已知a >0,b >0且1a +2b=1.(1)求ab 的最小值; (2)求a +b 的最小值.解:(1)因为a>0,b>0且1a +2b =1,所以1a +2b≥21a ·2b=22ab,则22ab≤1, 即ab≥8,当且仅当⎩⎪⎨⎪⎧1a +2b =1,1a =2b ,即⎩⎨⎧a =2,b =4时取等号,所以ab 的最小值是8. (2)因为a>0,b>0且1a +2b =1,所以a +b =⎝ ⎛⎭⎪⎫1a +2b (a +b)=3+b a +2ab≥3+2b a ·2ab=3+22, 当且仅当⎩⎪⎨⎪⎧1a +2b =1,b a =2a b ,即⎩⎪⎨⎪⎧a =1+2,b =2+2时取等号,所以a +b 的最小值是3+2 2.21.(本小题满分12分)设y =ax 2+(1-a )x +a -2.(1)若不等式y ≥-2对一切实数x 恒成立,求实数a 的取值范围; (2)解关于x 的不等式ax 2+(1-a )x +a -2<a -1(a ∈R).解:(1)ax 2+(1-a)x +a -2≥-2对于一切实数x 恒成立等价于ax 2+(1-a)x +a≥0对于一切实数x 恒成立.当a =0时,不等式可化为x≥0,不满足题意; 当a≠0时,由题意得⎩⎨⎧a>0,(1-a )2-4a2≤0,解得a≥13.所以实数a的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥13.(2)不等式ax 2+(1-a)x +a -2<a -1等价于ax 2+(1-a)x -1<0. 当a =0时,不等式可化为x<1,所以不等式的解集为{x|x<1}; 当a>0时,不等式可化为(ax +1)(x -1)<0,此时-1a<1,所以不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x<1; 当a<0时,不等式可化为(ax +1)(x -1)<0,①当a =-1时,-1a=1,不等式的解集为{x|x≠1};②当-1<a<0时,-1a >1,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<1或x>-1a ;③当a<-1时,-1a <1,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<-1a 或x>1. 综上所述,当a<-1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<-1a 或x>1;当a =-1时,不等式的解集为{x|x≠1};当-1<a<0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<1或x>-1a ;当a =0时,不等式的解集为{x|x<1};当a>0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x<1. 22.(本小题满分12分)某企业准备投入适当的广告费对某产品进行促销,在一年内预计销售量Q (万件)与广告费x (万元)之间的关系式为Q =3x +1x +1(x ≥0).已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需再投入32万元,若该企业产能足够,生产的产品均能售出,且每件销售价为“年平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和.(1)试写出年利润W (万元)与年广告费x (万元)的关系式;(2)当年广告费投入多少万元时,企业年利润最大?最大年利润为多少? 解:(1)由题意可得,每年产品的生产成本为(32Q +3)万元,每万件销售价为⎝⎛⎭⎪⎫32Q +3Q ×150%+x Q ×50%万元, ∴年销售收入为⎝⎛⎭⎪⎫32Q +3Q ×150%+x Q ×50%·Q =32(32Q +3)+12x , ∴W =32(32Q +3)+12x -(32Q +3)-x=12(32Q +3)-12x =12(32Q +3-x) =-x2+98x +352(x +1)(x≥0).(2)由(1)得,W =-x2+98x +352(x +1)=-(x +1)2+100(x +1)-642(x +1)=-x +12-32x +1+50.∵x +1≥1,∴x +12+32x +1≥2x +12·32x +1=8, ∴W ≤42,当且仅当x +12=32x +1,即x =7时,W 有最大值42,即当年广告费投入7万元时,企业年利润最大,最大年利润为42万元.。
第二章 一元二次函数、方程和不等式(章末测试)(解析版)
![第二章 一元二次函数、方程和不等式(章末测试)(解析版)](https://img.taocdn.com/s3/m/1bdd4d89804d2b160a4ec0c9.png)
第二章 一元二次函数、方程和不等式章末测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题只有一个选项是正确答案,每题5分,共40分)1.(2020·浙江高一单元测试)若12a <<,13b -<<,则-a b 的值可能是( ). A .4- B .2-C .2D .4【答案】C 【解析】13b -<<,31b ∴-<-<,23a b ∴-<-<.故选:C.2.(2020·浙江高一单元测试) 不等式(x +3)2<1的解集是( ) A .{x |x >-2} B .{x |x <-4} C .{x |-4<x <-2} D .{x |-4≤x ≤-2}【答案】C【解析】原不等式可化为x 2+6x +8<0,解得-4<x <-2.选C.3.(2020·浙江高一单元测试)若0a <b <,则下列结论中不恒成立的是( )A .a b >B .11a b> C .222a b ab +> D .a b +>-【答案】D【解析】因为0a <b <,所以0->->a b 所以a b >,11a b -<-即11a b>,故A ,B 正确.因为()20a b -≥,所以222a b ab +≥,所以222a b ab +>故C 正确.当 2,1a b =-=-时, +<-a b D 错误.故选:D4.(2020·浙江高一单元测试)已知不等式220ax bx ++>的解集是()1,2-,则+a b 的值为( ). A .1 B .1-C .0D .2-【答案】C 【解析】由已知得212,12b a a-=-+=-⨯,解得1,1a b =-=,故0a b +=,故选:C .5.(2020·浙江高一课时练习)已知a 、b 、c 满足c b a <<且0ac <,则下列选项中不一定能成立的是( ) A .ab ac > B .()0c b a -> C .22cb ca < D .()0ac a c -<【答案】C 【解析】c b a <<且0ac <,0a ∴>,0c <且b 的符号不确定.对于A 选项,b c >,0a >,由不等式的基本性质可得ab ac >,A 选项中的不等式一定能成立;对于B 选项,a b >,则0b a -<,又0c <,()0c b a ∴->,B 选项中的不等式一定能成立;对于C 选项,取0b =,则22b a <,0c <,22cb ca ∴>;取3c =-,1b =-,2a =,则22cb ca >,C 选项中的不等式不一定成立; 对于D 选项,0a >,0c <,则0ac <,0a c ->,()0ac a c ∴-<,D 选项中的不式一定能成立.故选:C.6.(2020·驻马店市基础教学研究室高二期末(理))已知正实数x ,y 满足22x y xy +=.则x y +的最小值为( )A .4 BC D 32【答案】D【解析】由22x y xy +=,得1112x y+=, 因为x ,y 为正实数,所以11133()()122222x y x y x y x y y x +=++=+++≥=,当且仅当2y x x y =,即2122x y ==时取等号,所以x y +32, 故选:D7.(2020·安徽省舒城中学高二期末(文))如图在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.我们教材中利用该图作为一个说法的一个几何解释,这个说法正确的是( )A .如果0a b >>,>B .如果0a b >>,那么22a b >C .对任意正实数a 和b ,有222a b ab +≥, 当且仅当a b =时等号成立D .对任意正实数a 和b,有a b +≥当且仅当a b =时等号成立 【答案】C【解析】通过观察,可以发现这个图中的四个直角三角形是全等的,设直角三角形的长直角边为a ,短直角边为b ,如图,整个大正方形的面积大于等于4个小三角形的面积和,即22142a b a b ⎛⎫+≥⨯⋅ ⎪⎝⎭,即222a b ab +≥.当a b =时,中间空白的正方形消失,即整个大正形与4个小三角形重合.其他选项通过该图无法证明,故选C8.(2020·全国高一)已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是( ) A .[7,26]- B .[1,20]- C .[4,15] D .[1,15]【答案】B【解析】令m x y =-,4n x y =-,,343n m x n m y -⎧=⎪⎪⇒⎨-⎪=⎪⎩, 则855520941,33333z x y n m m m =-=--≤≤-∴≤-≤ 又884015333n n -≤≤∴-≤≤,因此80315923z x y n m -=-=-≤≤,故本题选B.二、多选题(每题至少有一个选项为正确答案,少选且正确得3分,每题5分,共20分) 9.(2020·浙江高一单元测试)已知函数11(0)y x x x=++<,则该函数的( ). A .最小值为3 B .最大值为3 C .没有最小值 D .最大值为1-【答案】CD【解析】0x <,∴函数111()12(11()y x x x x x ⎡⎤=++=--++--=-⎢⎥-⎣⎦,当且仅当1x =-时取等号,∴该函数有最大值1-.无最小值.故选:CD .10.(2020·江苏省天一中学高一期中)对于实数,,a b c ,下列说法正确的是( ) A .若0a b >>,则11a b<B .若a b >,则22ac bc ≥C .若0a b >>,则2ab a <D .若c a b >>,则a bc a c b>-- 【答案】ABC【解析】A.在0a b >>三边同时除以ab 得110b a>>,故A 正确; B.由a b >及2c ≥0得22ac bc ≥,故B 正确;C.由0a b >>知a b >且0a >,则2a ab >,故C 正确;D.若1,2,3c a b =-=-=-,则2a c a =--,32b c b =--, 322-<-,故D 错误.故选:ABC.11.(2020·湖南高新技术产业园区。
高中数学必修一第二章 一元二次函数、方程和不等式 单元测试(含答案)
![高中数学必修一第二章 一元二次函数、方程和不等式 单元测试(含答案)](https://img.taocdn.com/s3/m/f30040998ad63186bceb19e8b8f67c1cfbd6ee73.png)
高中数学必修一第二章一、单选题1.已知集合A ={x‖x ―2|<1}, B ={x |x 2―2x ―3<0}.则A ∩B =A .{x |1<x <3}B .{x |―1<x <3}C .{x |―1<x <2}D .{x |x >3}2.下列结论成立的是( )A .若ac >bc ,则a >bB .若a >b ,则a 2>b 2C .若a >b ,c <d ,则a+c >b+dD .若a >b ,c >d ,则a ﹣d >b ﹣c3.已知关于 x 的不等式 a x 2―2x +3a <0 在 (0,2] 上有解,则实数 a 的取值范围是( )A .(―∞,33)B .(―∞,47)C .(33,+∞)D .(47,+∞)4.当x >3时,不等式x+1x ―1≥a 恒成立,则实数a 的取值范围是( ) A .(﹣∞,3]B .[3,+∞)C .[ 72,+∞)D .(﹣∞, 72]5.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a +b ≥―2|ab |C .a 2+b 2≥―2abD .a +b ≤2|ab |6.已知 x >2 ,函数 y =4x ―2+x 的最小值是( ) A .5B .4C .8D .67.设正实数x ,y ,z 满足x 2―3xy +4y 2―z =0,则当xy z取得最大值时,2x +1y ―2z 的最大值是( )A .0B .1C .94D .38.已知正数x ,y 满足x+y =1,且 x 2y +1+y 2x +1≥m ,则m 的最大值为( ) A .163B .13C .2D .4二、多选题9.设正实数a ,b 满足a +b =1,则( )A .a 2b +b 2a ≥14B .1a +2b +12a +b ≥43C .a 2+b 2≥12D .a 3+b 3≥1410.若a ,b ∈(0,+∞),a +b =1,则下列说法正确的有( )A .(a +1a)(b +1b )的最小值为4B .1+a +1+b 的最大值为6C.1a +2b的最小值为3+22D.2aa2+b+ba+b2的最大值是3+23311.已知a,b是正实数,若2a+b=2,则( )A.ab的最大值是12B.12a+1b的最小值是2C.a2+b2的最小值是54D.14a+b+2a+b的最小值是3212.已知a,b,c为实数,则下列命题中正确的是( )A.若a c2<bc2,则a<b B.若ac>bc,则a>bC.若a>b,c>d,则a+c>b+d D.若a<b<0,则1a >1 b三、填空题13.不等式﹣2x(x﹣3)(3x+1)>0的解集为 .14.已知正实数x,y满足xy―x―2y=0,则x+y的最小值是 . 15.已知a,b均为正数,且ab―a―2b=0,则a24+b2的最小值为 .16.以max A表示数集A中最大的数.已知a>0,b>0,c>0,则M=max{1c +ba,1ac+b,ab+c}的最小值为 四、解答题17.已知U=R且A={x∣x2―5x―6<0},B={x∣―4≤x≤4},求:(1)A∪B;(2)(C U A)∩(C U B).18.解下列关于x的不等式:(1)x2―2x―3≤0;(2)―x2+4x―5>0;(3)x2―ax+a―1≤019.已知关于x的不等式2x2+x>2ax+a(a∈R).(1)若a=1,求不等式的解集;(2)解关于x的不等式.20.某县一中计划把一块边长为20米的等边三角形ABC的边角地辟为植物新品种实验基地,图中DE 需把基地分成面积相等的两部分,D在AB上,E在AC上.(1)设AD=x(x≥10),ED=y,试用x表示y的函数关系式;(2)如果DE是灌溉输水管道的位置,为了节约,则希望它最短,DE的位置应该在哪里?如果DE 是参观线路,则希望它最长,DE的位置又应该在哪里?说明理由.答案解析部分1.【答案】A2.【答案】D3.【答案】A4.【答案】D5.【答案】C6.【答案】D7.【答案】B8.【答案】B9.【答案】B,C,D10.【答案】B,C,D11.【答案】A,B12.【答案】A,C,D13.【答案】(﹣∞,﹣1)∪(0,3)314.【答案】3+2215.【答案】816.【答案】217.【答案】(1)解:因为A={x∣x2―5x―6<0}=(―1,6),且B={x∣―4≤x≤4}=[―4,4],则A ∪B=[―4,6).(2)解:由(1)可知,A=(―1,6),B=[―4,4],则C U A=(―∞,―1]∪[6,+∞),C U B=(―∞,―4)∪(4,+∞),所以(C U A)∩(C U B)=(―∞,―4)∪[6,+∞).18.【答案】(1)解:x2―2x―3≤0,(x―3)(x+1)≤0⇒x≤―1或x≥3,故解集为: (―∞,―1]∪[3,+∞).(2)解:―x2+4x―5>0,∴x2―4x+5<0⇒(x―2)2+1<0⇒x无解,故解集为: ∅(3)解:x2―ax+a―1≤0,∴[x―(a―1)](x―1)≤0,当a―1<1,即a<2时,解集为[a―1,1],当a―1=1,即a=2时,解集为x=1,当 a ―1>1 ,即 a >2 时,解集为 [1,a ―1] .所以:当 a <2 时,解集为 [a ―1,1] ,当 a =2 时,解集为 x =1 ,当 a >2 时,解集为 [1,a ―1] .19.【答案】(1)解:2x 2+x >2ax +a ,∴x (2x +1)>a (2x +1),∴(x ―a )(2x +1)>0,当a =1时,可得解集为{x |x >1或x <―12}.(2)对应方程的两个根为a ,―12,当a =―12时,原不等式的解集为{x |x ≠―12},当a >―12时,原不等式的解集为{x |x >a 或x <―12},当a <―12时,原不等式的解集为{x |x <a 或x >―12}.20.【答案】(1)解:∵△ABC 的边长是20米,D 在AB 上,则10≤x≤20,S △ADE = 12S △ABC ,∴12 x•AEsin60°= 12 • 34 •(20)2,故AE= 200x,在三角形ADE 中,由余弦定理得:y= x 2+4⋅104x 2―200 ,(10≤x≤20);(2)解:若DE 作为输水管道,则需求y 的最小值, ∴y= x 2+4⋅104x 2―200 ≥ 400―200 =10 2 ,当且仅当x 2= 4⋅104x 2即x=10 2 时“=”成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一上学期数学单元测试卷 一元二次函数、方程和不等式考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1. 不等式2x ≥x 2的解集是 【 】 (A ){}2≥x x (B ){}2≤x x (C ){}20≤≤x x (D ){}20≥≤x x x 或2. 设()722+-=a a M ,()()32--=a a N ,则M 与N 的大小关系是 【 】 (A )N M > (B )M ≥ N (C )N M < (D )M ≤ N3. 已知实数10<<a ,则以下不等关系正确的是 【 】(A )a a a a ->>>12 (B )a a a a ->>>12 (C )a a a a ->>>21 (D )a a a a->>>214. “0>a ”是“一元二次不等式02>++c bx ax 恒成立”的 【 】 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件5. 已知0,0>>y x ,且21131=++y x ,则y x +的最小值为 【 】(A )5 (B )6 (C )7 (D )86. 不等式组⎩⎨⎧<-<-030122x x x 的解集为 【 】(A ){}11<<-x x (B ){}30<<x x (C ){}10<<x x (D ){}31<<-x x7. 已知∈c b a ,,R ,则下列说法中错误的是 【 】(A )2ac b a ⇒>≥2bc (B )b a c cbc a <⇒<>0, (C )b a ab b a 110,33<⇒>> (D )ba ab b a 110,22<⇒>>8. 设正数z y x ,,满足04322=-+-z y xy x ,则当zxy 取得最大值时,代数式z y x 212-+的最大值是 【 】 (A )0 (B )1 (C )49(D )3 二、多项选择题(每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9. 已知不等式02>++c bx ax 的解集为⎭⎬⎫⎩⎨⎧<<-221x x ,则下列结论正确的是 【 】 (A )0>a (B )0>b (C )0>c (D )0>++c b a10. 设b a ,为非零实数,且b a <,则下列不等式恒成立的是 【 】 (A )ab a >2 (B )22b a < (C )ba ab 2211< (D )33b a < 11. 给出下列四个条件: ①22yt xt >; ②yt xt >; ③22y x >; ④yx 110<<.其中能成为y x >的充分条件的是 【 】 (A )① (B )② (C )③ (D )④12. 若0,0>>b a ,且4=+b a ,则下列不等式恒成立的是 【 】(A )22b a +≥8 (B )ab 1≥41 (C )ab ≥2 (D )ba 11+≤1第Ⅱ卷 非选择题(共90分)二、填空题(每小题5分,共20分)13. 已知b a >,bb a a 11->-同时成立,则ab 应满足的条件是__________. 14. 若不等式052>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<2131x x ,则=a __________,=c _________.(本小题第一空2分,第二空3分)15. 已知函数()()3145422+-+-+=x m x m m y 对任意实数x ,函数值恒大于零,则实数m 的取值范围是_____________.16. 已知b a >,不等式b x ax ++22≥0对一切实数x 恒成立.若∃∈0x R ,0202=++b x ax 成立,则ba b a -+22的最小值为__________.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分) 解下列不等式(组):(1)()⎩⎨⎧<>+1022x x x ;(2)x 26-≤1832<-x x .18.(本题满分12分)已知0,0>>b a ,且()1=+ab b a .(1)求3311ba +的最小值; (2)是否存在b a ,,使得ba 3121+的值为36?并说明理由.已知命题∈∀x p :R ,0322>-+m x ,命题∈∃x q :R ,0222<++-m mx x . (1)若命题p 为真命题,求实数m 的取值范围; (2)若命题q 为真命题,求实数m 的取值范围;(3)若命题q p ,至少有一个为真命题,求实数m 的取值范围.20.(本题满分12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知AB 的长为3米,AD 的长为2米. (1)要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内? (2)当DN 的长为多少时,矩形花坛AMPN 的面积最小?并求出最小值.NPMDCBA设()212-+-+=a x a ax y .(1)若不等式y ≥2-对一切实数x 恒成立,求实数a 的取值范围; (2)解关于x 的不等式()1212-<-+-+a a x a ax (∈a R ).22.(本题满分12分)某企业准备投入适当的广告费对某产品进行促销,在一年内预计销售量Q (万件)与广告费x (万元)之间的关系式为113++=x x Q (x ≥0).已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需再投入32万元,若该企业产能足够,生产的产品均能售出,且每件销售价为“年平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和. (1)试写出年利润W (万元)与年广告费x (万元)的关系式; (2)当年广告费投入多少万元时,企业年利润最大?最大年利润为多少?高一上学期数学单元测试卷 一元二次函数、方程和不等式答案解析考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1. 不等式2x ≥x 2的解集是 【 】 (A ){}2≥x x (B ){}2≤x x (C ){}20≤≤x x (D ){}20≥≤x x x 或 答案 【 D 】解析 本题考查一元二次不等式的解法,属于基础题.∵2x ≥x 2,∴x x 22-≥0,∴()2-x x ≥0,解之得:x ≤0或x ≥2. ∴原不等式的解集为{}20≥≤x x x 或. ∴选择答案【 D 】.2. 设()722+-=a a M ,()()32--=a a N ,则M 与N 的大小关系是 【 】 (A )N M > (B )M ≥ N (C )N M < (D )M ≤ N 答案 【 A 】解析 本题考查作差法比较大小. 利用作差法比较大小的一般步骤为: (1)作差;(2)变形: 对差进行变形.(3)判号: 判断差的符号(如果差中含有参数,则需要进行分类讨论). (4)定论: 根据差的符号作出大小判断. 即: 作差→变形→判号→定论.作差法的关键在于变形,常用的变形为:因式分解、配方、通分、分子或分母有理化等. ∵()722+-=a a M ,()()32--=a a N∴()6574222+--+-=-a a a a N M 6574222-+-+-=a a a a 12++=a a 43212+⎪⎭⎫ ⎝⎛+=a ∵∈∀a R ,043212>+⎪⎭⎫ ⎝⎛+a 恒成立,∴0>-N M . ∴N M >.∴选择答案【 A 】.3. 已知实数10<<a ,则以下不等关系正确的是 【 】(A )a a a a ->>>12 (B )a a a a ->>>12 (C )a a a a ->>>21 (D )a a a a->>>21答案 【 C 】解析 本题宜采用特殊值法比较大小. ∵10<<a ,取21=a ∴21,21,412122-=-==⎪⎭⎫ ⎝⎛=a a a . ∵2141212->>> ∴a a a a->>>21. ∴选择答案【 C 】.4. “0>a ”是“一元二次不等式02>++c bx ax 恒成立”的 【 】 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 答案 【 B 】解析 本题考查充分必要条件的判断. 方法总结 判断充分必要条件的基本思路 (1)先确定条件是什么,结论是什么;(2)尝试用条件推结论,或由结论推条件;(必要时举出反例)(3)指出条件是结论的什么条件.若一元二次不等式02>++c bx ax 恒成立,则有:⎩⎨⎧<-=∆>0402ac b a . 显然,由“0>a ”不能推出“一元二次不等式02>++c bx ax 恒成立”,但是由“一元二次不等式02>++c bx ax 恒成立”可以推出“0>a ”.∴“0>a ”是“一元二次不等式02>++c bx ax 恒成立”的必要不充分条件. ∴选择答案【 B 】. 5. 已知0,0>>y x ,且21131=++y x ,则y x +的最小值为 【 】(A )5 (B )6 (C )7 (D )8 答案 【 A 】解析 本题考查利用基本不等式求最值.注意利用基本不等式求最值时必须满足三个条件:一正、二定、三相等. ∵0,0>>y x ,且21131=++y x ∴1232=++yx . ∴()[]()[]()323213232333++++=-⎪⎭⎫ ⎝⎛++++=-++=+x y y x y x y x y x y x≥()5323221=+⋅++x yy x . 当且仅当()3232+=+x y y x ,即4,1,3==+=y x x y 时,等号成立. ∴y x +的最小值为5. ∴选择答案【 A 】. 另解 ∵0,0>>y x ,21131=++y x ∴142162++=++=x x x y . ∴1141214++++=+++=+x x x x y x ≥()511412=++⋅+x x .当且仅当141+=+x x ,即41142,1=++==y x 时,等号成立.∴y x +的最小值为5. ∴选择答案【 A 】.6. 不等式组⎩⎨⎧<-<-030122x x x 的解集为 【 】(A ){}11<<-x x (B ){}30<<x x (C ){}10<<x x (D ){}31<<-x x 答案 【 C 】解析 本题考查一元二次不等式的解法. 解不等式012<-x 得:11<<-x ; 解不等式032<-x x 得:30<<x .∴不等式组的解集为{}{}{}103011<<=<<<<-x x x x x x . ∴选择答案【 C 】.7. 已知∈c b a ,,R ,则下列说法中错误的是 【 】(A )2ac b a ⇒>≥2bc (B )b a c cbc a <⇒<>0, (C )b a ab b a 110,33<⇒>> (D )ba ab b a 110,22<⇒>>答案 【 D 】解析 本题考查不等式的基本性质.对于(A ),当0≠c 时,∵b a >,∴22bc ac >;当0=c 时,显然22bc ac =. ∴2ac ≥2bc ,故(A )正确; 对于(B ),∵0,<>c c b c a ,∴c cbc c a ⋅<⋅,∴b a <.故(B )正确; 对于(C ),∵33b a >,∴()()02233>++-=-b ab a b a b a .∵0>ab ,∴043212222>+⎪⎭⎫ ⎝⎛+=++b b a b ab a .∴0>-b a ,∴b a >.根据倒数法则,有ba 11<.故(C )正确; 对于(D ),由0,22>>ab b a 不能得到b a >,∴ba 11<不一定成立.故(D )错误.∴选择答案【 D 】.8. 设正数z y x ,,满足04322=-+-z y xy x ,则当zxy 取得最大值时,代数式z y x 212-+的最大值是 【 】 (A )0 (B )1 (C )49(D )3 答案 【 B 】解析 本题考查基本不等式的应用.∵04322=-+-z y xy x ,∴2243y xy x z +-=. ∵z y x ,,为正数 ∴3414322-+=+-=x y y x y xy x xy z xy ≤13421=-⋅xy y x . 当且仅当xyy x 4=,即y x 2=时,等号成立.此时22y z =. ∴1112122122212222+⎪⎭⎫⎝⎛--=+-=-+=-+y y y y y y z y x∴当11=y ,即1=y 时,1212max=⎪⎭⎫⎝⎛-+z y x . ∴选择答案【 B 】.二、多项选择题(每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9. 已知不等式02>++c bx ax 的解集为⎭⎬⎫⎩⎨⎧<<-221x x ,则下列结论正确的是 【 】(A )0>a (B )0>b (C )0>c (D )0>++c b a 答案 【 BCD 】解析 本题考查一元二次不等式与对应一元二次方程之间的关系.要明白一元二次不等式的解集的端点值就是对应一元二次方程的实数根.∵不等式02>++c bx ax 的解集为⎭⎬⎫⎩⎨⎧<<-221x x ∴0<a ,方程02=++c bx ax 的两个实数根分别为2,21-.由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-221221a c a b ,∴1,23-=-=a c a b ,∴b a ,异号,c a ,异号且互为相反数. ∵0<a ,∴0,0>>c b ,0=+c a .∴0>=++b c b a .故(A )错误,(B )、(C )、(D )正确. ∴选择答案【 BCD 】.10. 设b a ,为非零实数,且b a <,则下列不等式恒成立的是 【 】 (A )ab a >2 (B )22b a < (C )ba ab 2211< (D )33b a < 答案 【 CD 】解析 本题考查不等式的基本性质. ∵b a ,为非零实数,且b a <,∴0<-b a .对于(A ),()b a a ab a -=-2,当0>a 时,()0<-b a a ,即ab a <2;当0<a 时,()0>-b a a ,即ab a >2.故ab a >2不恒成立;对于(B ),()()b a b a b a -+=-22,∴22b a -的符号,即22,b a 的大小关系取决于b a +的符号,共有三种可能,特别地,当b a ,互为相反数时,0=+b a ,022=-b a ,此时22b a =,故22b a <不恒成立; 对于(C ),()011222<-=-ab b a b a ab ,故ba ab 2211<恒成立; 对于(D ),()()()04321222233<⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+-=++-=-b b a b a b ab a b a b a ,故33b a <恒成立.(∵b a ,为非零实数,∴0432122>+⎪⎭⎫ ⎝⎛+b b a 恒成立)∴选择答案【 CD 】.11. 给出下列四个条件: ①22yt xt >; ②yt xt >; ③22y x >; ④yx 110<<.其中能成为y x >的充分条件的是 【 】 (A )① (B )② (C )③ (D )④ 答案 【 AD 】解析 本题考查不等式的基本性质. 对于(A ),显然0≠t .∵22yt xt >,∴222211tyt t xt ⋅>⋅,∴y x >.故22yt xt >是y x >的充分条件;对于(B ),当0>t 时,tyt t xt 11⋅>⋅,∴y x >.当0<t 时,tyt txt 11⋅<⋅,∴y x <.故yt xt >不是y x >的充分条件;对于(C ),()()022>-+=-y x y x y x ,当0>+y x ,即y x ->时,y x >.故22y x >不是y x >的充分条件; 对于(D ),∵y x 110<<,∴0,0,0>>>xy y x ,∴xy y xy x ⋅<⋅<110,∴y x >.故yx 110<<是y x >的充分条件.∴选择答案【 AD 】.12. 若0,0>>b a ,且4=+b a ,则下列不等式恒成立的是 【 】(A )22b a +≥8 (B )ab 1≥41 (C )ab ≥2 (D )ba 11+≤1答案 【 AB 】解析 本题考查基本不等式的应用.对于(A ),∵0,0>>b a ,4=+b a ,∴22b a +≥82422222=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛+⨯b a ,当且仅当b a =时取等号,故(A )恒成立;(重要结论: ab ≤22⎪⎭⎫ ⎝⎛+b a ≤222b a +) 对于(B ),∵0,0>>b a ,4=+b a ,∴ab ≤424222=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+b a ,当且仅当b a =时取等号,∴ab 1≥41.故(B )恒成立. 对于(C ),∵0,0>>b a ,4=+b a ,∴ab ≤2242==+b a ,故(C )不恒成立; 对于(D ),∵0,0>>b a ,4=+b a ,∴()141=+b a ,()⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++=+a b b a b a b a b a 4121114111≥124121=⋅⨯+a b b a ,当且仅当abb a =,即b a =时取等号.故(D )不恒成立. ∴选择答案【 AB 】.第Ⅱ卷 非选择题(共90分)二、填空题(每小题5分,共20分) 13. 已知b a >,bb a a 11->-同时成立,则ab 应满足的条件是__________. 答案 0>ab 或1-<ab解析 本题考查分式不等式的解法. ∵b b a a 11->-,∴()011>+--ba b a ,整理得:()()01>+-ab ab b a . 它同解于不等式()()01>+-ab b a ab . ∵b a >,∴0>-b a .∴()01>+ab ab ,∴0>ab 或1-<ab . ∴ab 应满足的条件是0>ab 或1-<ab .14. 若不等式052>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<2131x x ,则=a __________,=c _________.(本小题第一空2分,第二空3分) 答案 1,6--.解析 本题考查一元二次不等式与相应一元二次方程的关系.∵不等式052>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<2131x x∴0<a ,一元二次方程052=++c x ax 的两个实数根分别为21,31. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=-213121315a c a ,解之得:⎩⎨⎧-=-=16c a . ∴1,6-=-=c a .15. 已知函数()()3145422+-+-+=x m x m m y 对任意实数x ,函数值恒大于零,则实数m 的取值范围是_____________. 答案 [)19,1解析 本题考查与一元二次函数、一元二次不等式有关的恒成立问题. 本题即∈∀x R ,()()03145422>+-+-+x m x m m 恒成立.令0542=-+m m ,解之得:5,121-==m m . 当1=m 时,03>对∈∀x R 恒成立,符合题意; 当5-=m 时,0324>+x ,其解集不是R ,不符合题意; 当1≠m ,5-≠m 时,则有:()[]()⎩⎨⎧<-+--=∆>-+0541214054222m m m m m ,解之得:19<<m . 综上所述,实数m 的取值范围是[)19,1.16. 已知b a >,不等式b x ax ++22≥0对一切实数x 恒成立.若∃∈0x R ,0202=++b x ax 成立,则ba b a -+22的最小值为__________.答案 22解析 本题考查一元二次不等式恒成立问题、利用基本不等式求最值. ∵不等式b x ax ++22≥0对一切实数x 恒成立(显然,0≠a )∴⎩⎨⎧≤-=∆>0440ab a ,∴ab ≥1.∵∃∈0x R ,0202=++b x ax 成立 ∴方程022=++b x ax 有实数根. ∴ab 44-=∆≥0,∴ab ≤1. ∵ab ≥1,ab ≤1,∴1=ab . ∵b a >,∴0>-b a .∴()b a b a b a ab b a b a b a -+-=-+-=-+22222≥()2222=-⋅-ba b a .当且仅当ba b a -=-2,即262,262,2+-=+==-b a b a 时,等号成立. ∴ba b a -+22的最小值为22.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分) 解下列不等式(组):(1)()⎩⎨⎧<>+1022x x x ;(2)x 26-≤1832<-x x .解:(1)解不等式()02>+x x 得:0>x 或2-<x ; 解不等式12<x 得:11<<-x . ∴原不等式组的解集为{}10<<x x ;(2)原不等式可化为⎩⎨⎧<--≥-18326322x x xx x .解不等式x x 32-≥x 26-得:x ≥3或x ≤2-; 解不等式<-x x 3218得: 63<<-x∴原不等式的解集为{}6323<≤-≤<-x x x 或. 18.(本题满分12分)已知0,0>>b a ,且()1=+ab b a .(1)求3311b a +的最小值; (2)是否存在b a ,,使得ba 3121+的值为36?并说明理由. 解:(1)∵0,0>>b a ,()1=+ab b a ∴abb a 1=+≥ab 2,∴ab ≤21. 当且仅当b a =时,等号成立. ∴3311b a +≥()333212ab b a =≥242123=⎪⎭⎫⎝⎛. 当且仅当3311b a =,即b a =时,等号成立. ∴3311ba +的最小值为24; (2)∵0,0>>b a ∴b a 3121+≥abab b a 6261231212==⋅. 当且仅当ba 3121=,即b a 32=时,等号成立. ∵ab ≤21∴abab⨯=6262≥332322162==⨯. 当且仅当b a =时,等号成立.∴3323121>+b a . ∵36332>∴不存在b a ,,使得ba 3121+的值为36. 19.(本题满分12分)已知命题∈∀x p :R ,0322>-+m x ,命题∈∃x q :R ,0222<++-m mx x . (1)若命题p 为真命题,求实数m 的取值范围; (2)若命题q 为真命题,求实数m 的取值范围;(3)若命题q p ,至少有一个为真命题,求实数m 的取值范围. 解:(1)∵命题p 为真命题 ∴∈∀x R ,m x 232->恒成立. ∴023<-m ,解之得:23>m . ∴实数m 的取值范围为⎭⎬⎫⎩⎨⎧>23m m ; (2)∵命题q 为真命题∴函数222++-=m mx x y 有部分图象位于x 轴下方,即函数图象与x 轴有两个不同的交点,也即一元二次方程0222=++-m mx x 有两个不相等的实数根. ∴()()084424222>--=+--=∆m m m m ,解之得:2>m 或1-<m . ∴实数m 的取值范围为{}12-<>m m m 或; (3)∵命题q p ,至少有一个为真命题 ∴实数m 的取值范围为 ⎭⎬⎫⎩⎨⎧>23m m {}⎭⎬⎫⎩⎨⎧>-<=-<>23112m m m m m m 或或. 20.(本题满分12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知AB 的长为3米,AD 的长为2米. (1)要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内?(2)当DN 的长为多少时,矩形花坛AMPN 的面积最小?并求出最小值.NPMDCBA解:(1)设x DN =米,则()2+=x AN 米. ∵AM CD // ∴△NDC ∽△NAM .∴AMx x AM DC AN DN 32,=+= ∴⎪⎭⎫ ⎝⎛+=+=x x x AM 6363米.∵矩形AMPN 的面积大于32平方米,0>x∴()32632>⎪⎭⎫ ⎝⎛++x x ,整理得:0122032>+-x x .解之得:6>x 或320<<x . ∴DN 的长x 的范围为⎭⎬⎫⎩⎨⎧<<>3206x x x 或; (2)设矩形花坛AMPN 的面积为y 平方米,则有:()xx x x y 12312632++=⎪⎭⎫ ⎝⎛++=≥24123212=⋅+x x . 当且仅当xx 123=,即2=x 时,等号成立,y 取得最小值. ∴24min =y (平方米).答:当DN 的长为2米时,矩形花坛AMPN 的面积最小,为24平方米. 21.(本题满分12分) 设()212-+-+=a x a ax y .(1)若不等式y ≥2-对一切实数x 恒成立,求实数a 的取值范围; (2)解关于x 的不等式()1212-<-+-+a a x a ax (∈a R ). 解:(1)∵y ≥2-对一切实数x 恒成立,()212-+-+=a x a ax y∴∈∀x R ,()a x a ax +-+12≥0恒成立. 当0=a 时,x ≥0,不符合题意; 当0≠a 时,则有:()⎩⎨⎧≤--=∆>041022a a a ,解之得:a ≥31. 综上所述,实数a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,31; (2)∵()1212-<-+-+a a x a ax (∈a R ) ∴()0112<--+x a ax ∴()()011<+-ax x .当0=a 时,01<-x ,解之得:1<x ,∴原不等式的解集为{}1<x x ;当0≠a 时,原不等式可化为()011<⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---a x x a . 当0>a 时,11<-a ,原不等式同解于()011<⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---a x x ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<-11x a x ;当0<a 时,原不等式同解于()011>⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---a x x : 若01<<-a ,则11>-a ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<->11x a x x 或;若1-=a ,则11=-a,()012>-x ,∴原不等式的解集为{}1≠x x ; 若1-<a ,则11<-a ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧-<>a x x x 11或.综上所述,当0=a 时,原不等式的解集为{}1<x x ;当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-11x a x ;当01<<-a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<->11x a x x 或; 当1-=a 时,原不等式的解集为{}1≠x x ;当1-<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<>a x x x 11或.22.(本题满分12分)某企业准备投入适当的广告费对某产品进行促销,在一年内预计销售量Q (万件)与广告费x (万元)之间的关系式为113++=x x Q (x ≥0).已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需再投入32万元,若该企业产能足够,生产的产品均能售出,且每件销售价为“年平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和. (1)试写出年利润W (万元)与年广告费x (万元)的关系式; (2)当年广告费投入多少万元时,企业年利润最大?最大年利润为多少? 解:(1)由题意可得,每年产品的生产成本为()332+Q 万元,每万件的销售价为:⎪⎭⎫ ⎝⎛⨯+⨯+%50%150332Q x Q Q 万元,即⎪⎭⎫ ⎝⎛++Q x 2948万元. ∴该企业的年销售收入为⎪⎭⎫ ⎝⎛++=⋅⎪⎭⎫ ⎝⎛++29482948x Q Q Q x 万元.∴()123598231633229482+++-=-+=---++=x x x x Q x Q x Q W (x ≥0)(万元); (2)∵()1235982+++-=x x x W (x ≥0)∴()()()501322150132211264110012+⎪⎭⎫⎝⎛+++-=++-+-=+-+++-=x x x x x x x W≤4250132212=++⋅+-x x . 当且仅当13221+=+x x ,即7=x 时,等号成立. ∴48max =W (万元).答: 当年广告费投入7万元时,企业年利润最大,最大年利润为48万元.。