七年级数学一元一次方程应用题复习题及答案详解
2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题(含简单答案)
![2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题(含简单答案)](https://img.taocdn.com/s3/m/a2403a9727fff705cc1755270722192e453658f9.png)
2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题1.某中学学生步行到郊外旅行.七(1)班学生组成前队,步行速度为4千米/时,七(2)班的学生组成后队,速度为6千米/时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/时.(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员骑车的路程是多少千米?2.某开发公司生产出若干件新产品,需要精加工后才能投放市场,现有甲、乙两个工厂每天分别能加工这种产品16件和24件,已知甲单独加工这批产品比乙单独加工这批产品要多用20天,又知若由甲厂单独做,公司需付甲厂每天加工费用80元;若由乙厂单独做,公司需付乙厂每天加工费用120元。
(1)求这批新产品共有多少件?(2)若公司董事会制定了如下方案:可以由每个工厂单独完成,也可以由两个工厂合作完成,但在加工过程中,公司需派一名工程师到工厂进行技术指导,并由公司为其提供每天10元的午餐补助,请你帮助公司选择一种既省时又省钱的加工方案,并通过计算说明理由.3.某中学将举行“歌唱祖国”主题歌咏比赛,七年级需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知每袋贴纸有50张,每袋小红旗有20面,贴纸和小红旗需整袋购买,两家文具店的标价相同,每袋贴纸价格比每袋小红旗价格少5元,且4袋贴纸与3袋小红旗价格相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果购买贴纸和小红旗共90袋,给每位演出学生分发国旗图案贴纸2张、小红旗1面,恰好全部分完,请问贴纸和小红旗各多少袋?某校七年级(1)和(2)班共105人去游玩,其中七(1)班40多人不足50人,经计算,如果两个班都以班为单位购票,则一共应付1401元.(1)两班各有多少人?(2)如果两班联合起来,作为一个团体购票,能省多少钱?7.某中学举行校运会,初一(1)班同学准备用卡纸制成乒乓球拍和小旗作道具.若一张卡纸可以做3个球拍或6面小旗,用21张卡纸,刚好能够让每位同学拿一个球拍和一面小旗.(1)应用多少张卡纸做球拍,多少张卡纸做小旗?(2)若每个人的工作效率都相同,一个人完成道具制作要6个小时,先安排2个人做半小时,再增加几个人做1小时可以刚好完成?8.一段道路,甲工程队单独铺设需10天完成,乙工程队单独铺设需15天完成.(1)若两队自始至终合作铺设, 天可以完成;(2)实际由甲工程队先单独铺设几天后,为了加快进度,余下的部分由甲乙两个工程队合作完成,共用8天铺设完成了这段道路.甲工程队先铺设了几天道路?9. “双十二”期间,某个体商户在网上购进某品牌A 、B 两款羽绒服来销售,若购进3件A 和4件B 需支付2400元,若购进1件A 和1件B 则需支付700元.(1)求A 、B 两款羽绒服在网上的售价分别是每件多少元?(2)若个体商户把网上购买的A 、B 两款羽绒服各10件,均按每件600元进行销售,销售一段时间后,把剩下的羽绒服按6折销售完,若总获利为3800元,求个体商户打折销售的羽绒服是多少件?10.下雪了,学校七年级准备为同学们定制一批冬帽,现有甲、乙两个工厂都想加工这 批冬帽,已知甲工厂每天能加工这种冬帽20件,乙工厂每天能加工这种冬帽30件,且单独加工这批冬帽甲厂比乙厂要多用16天.(1)求这批冬帽共有多少件?(2)为了尽快完成这批冬帽,若先由甲、乙两厂按原生产速度合作一段时间后,甲工厂停工了,由乙工厂单独完成剩余部分,为此乙工厂每天的生产速度也提高20%.已知乙工厂的全部工作时间是甲工厂工作时间的2倍还少2天,求乙工厂共加工多少天?11.一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形.(1)设长方形的长为cm x ,请列出关于x 的方程.(2)说明8x =是(1)中所列方程的解,而10x =不是它的解.(3)设长方形的宽是cm y ,请列出关于y 的方程.(1)若小泮购买了25千克的柑橘,则他需要付多少元?(2)若小钱一次购买柑橘共付了200元,则小钱购买柑橘多少千克?(3)小王分两次共购买了柑橘90千克,第二次购买的数量要多于第一次购买的数量,共付出376元,请问小王第一次、第二次分别购买柑橘多少千克?14.某校开展劳动教育,在植树节当天组织植树活动,该校七年级共有120人参加活动,分成树苗保障组和种植组,种植组的人数是树苗保障组人数的2倍.(1)求树苗保障组的人数;(2)已知种植点有甲、乙两处,种植组在甲处有a人.①用含a的代数式表示种植组在乙处的人数;a ,树苗保障组人员在运送完树苗后全部去支援种植组,使在甲处种植的人数②若46是乙处种植人数的2倍,问应调往甲、乙两处各多少人?15.甲、乙两地相距72km ,一辆工程车和一辆洒水车上午6时同时从甲地出发,分别以1km/h v 、2km/h v 的速度匀速驶往乙地.工程车到达乙地后停留了2h ,沿原路以原速返回,中午12时到达甲地,此时洒水车也恰好到达乙地.(1)1v =______,2=v ______;(2)求出发多长时间后,两车相遇?(3)求出发多长时间后,两车相距30km ?(直接写出答案)______16.某同学进入初中后,家长为他买了一个电话手表.现从某电信运营商那里了解到,有两种电话卡,A 类卡收费标准如下:无月租,每通话1分钟交费0.6元;B 类卡收费标准如下:月租费15元,每通话1分钟交费0.3元.(1)若每月平均通话时间为100分钟,他应该选择哪类卡?(2)如果这位同学这个月预交话费120元,按A 、B 两类卡收费标准分别可以通话多长时间?(3)根据一个月的通话时间,你认为选择哪种卡更实惠?17.用80m 的篱笆围成一个长方形场地.(1)如果长比宽多6m ,求这个长方形的面积;(2)如果一边靠墙,墙长为32m ,长比宽多11m (长边与墙平行),这样设计是否可行?请说明理由.18.请列一元一次方程解决下面的问题:某超市计划购进甲、乙两种型号的钢笔共900支,这两种钢笔的进价、售价如下表:(1)如果进货款恰好为28500元,那么可以购进甲、乙两种型号的钢笔各多少支?(2)售完这批钢笔一共可以获利多少元钱?参考答案:1.(1)2小时(2)20千米2.(1)这批新产品共有960件.(2)甲、乙合作同时完成时,既省钱又省时间,理由见解析.3.(1)每袋国旗图案贴纸和每袋小红旗的价格各是15和20元(2)购买贴纸40袋,购买小红旗50袋4.(1)买卡合算,小张能节省400元(2)这台冰箱的进价是2480元5.(1)第一批购进文具盒40个,则第二批购进文具盒30个.(2)第二批文具盒中按标价售出的有7个.6.(1)七年级(1)班47人,(2)班58人(2)两个班联合起来,作为一个团体购票,可省351元7.(1)用14张卡纸做球拍,7张卡纸做小旗;(2)再增加3个人做1小时可以刚好完成8.(1)6(2)5天9.(1)A、B两款羽绒服在网上的售价分别是每件400元,300元(2)个体商户打折销售的羽绒服是5件10.(1)这批冬帽共有960件(2)乙工厂共加工22天(2)售完这批钢笔一共可以获利7500元钱。
(完整word版)七年级一元一次方程解决实际问题及分析答案
![(完整word版)七年级一元一次方程解决实际问题及分析答案](https://img.taocdn.com/s3/m/88a9d78b02768e9950e73899.png)
1、列方程解行程问题例1:甲乙两地相距1500千米,两辆汽车同时从两地相向而行,其中吉普车每小时60千米,是另一辆客车的1.5倍。
①几小时后两车相遇?②若吉普车先开40分钟,那客车开出多长时间两车相遇?分析:若两车同时出发,则等量关系为:吉普车的路程+客车的路程=1500①解:设两车X小时后相遇,根据题意得60x (60 1.5)x 1500解得:x 15答:15小时后两车相遇。
②分析:吉普车先出发40分钟,则等量关系式为:吉普车先行路程+吉普车后行路程+客车行驶路程=1500, 即吉普车行驶路程+ 客车行驶路程=1500。
解:设客车开出X小时后两车相遇,根据题意得60 (2 x) (60 1.5)x 15003解得x 14.6答:客车开车14.6小时后两车相遇。
例2、甲乙两名同学练习百米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过几秒可以追上乙?分析:甲让乙先跑1秒,则等量关系为:乙先跑的路程+乙后跑的路程=甲跑到路程,也就是乙跑的路程=甲跑的路程。
解:设甲经过X秒追上乙,根据题意得6.5(x 1) 7x解:得x 13答:甲经过13秒后追上乙。
例3、小明、小亮两人相距40km,小明先出发1.5h,小亮再出发,小明在后小亮在前,两人同向而行,小明的速度是8km/h,小亮的速度是6km/h,小明出发后几小时追上小亮?分析:小明快,小亮慢,两人同向而行,等量关系式为:小明走的路程一小亮走的路程=相距路程解:设小明出发后x小时追上小亮,根据题意得8x 6(x 1.5) 40解得x 15.5答:小明出发后15.5小时追上小亮例4、一艘船从甲码头到乙码头顺水行驶,用了2小时,从乙码头返回甲码头,逆水行驶,用了 2.5小时, 已知水流速度是3千米/时,求船在静水中的速度。
分析:水流存在如下相等关系:顺水速度=船在静水中的速度+水流速度,逆水速度=船在静水中的速度-水流速度。
由顺水行程=逆水行程可列方程.解:设船在静水中的速度为x千米/时,则船在顺水中的速度为( x 3 )千米/时,船在逆水中的速度为(x 3 )千米/时,根据题意得2(x 3) 2.5(x 3)解得x 27答:船在静水中的速度为27千米/时。
七年级一元一次方程:分配问题应用题(答案)
![七年级一元一次方程:分配问题应用题(答案)](https://img.taocdn.com/s3/m/afb4f7886aec0975f46527d3240c844768eaa045.png)
《一元一次方程:分配问题》应用题1、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。
为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?解:设x名工人生产螺钉,则有(22-x)人生产螺母,可得:2×1200x=2000(22-x)x=10所以生产螺母的人数为:22-10=12(人)2、某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?3、某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?【解】设安排生产甲零件的天数为x天,则安排生产乙零件的天数为(30-x)天,根据题意可得:2×120x=3×100(30-x),解得:x=50/3,则30-50/3=40/3(天),答:安排生产甲零件的天数为15天,安排生产乙零件的天数为12天4、用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?【解】设用x张做盒身,则做盒底为(100-x)张则:2×10x=30(100-x),x=60.100-x =100-60=40.答:用60张做盒身,40张做盒底.5、用白铁皮做罐头盒,每张铁皮可制盒身16个,或盒底43个,一个盒身与两个盒底配成一套罐头盒。
现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?【解】设 用(150-x )张制盒身,x 张制盒底x x 43)150(162=-⨯ x = 64 答:用86张制盒身,64张制盒底6、一批学生在礼堂就座,如果一条长凳上坐3人,就有25人没有座位;如果一条长凳上坐4人,就正好空出19条长凳,问这批学生共有多少人?【解】328人7、一批学生乘汽车去观看“2008北京奥运会”如果每辆汽车乘48人,那么还多4人;如果每辆汽车乘50人,那么还有6个空位,求汽车和学生各有多少?【解】设汽车有x 辆,则650448-=+x x 5=∴x 答: 汽车5辆,学生244人8、把一些图书分给某班学生阅读,如果每人分3本,则 剩余20本;如果每人分4本,则还缺25本.问这个班有多少 学生?设这个班有x 个学生,则3x+20=4x-25x=459、某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?【解】设X 人挖土,运土的则有(48-X)人,则:5X=3×(48-X )5X=144-3X 8X=144X=18 48-X=30答:应安排18人挖土,30人运土10、某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?【解】设租x辆45做客车45x=60(x-1) -3045x=60x-90 15x=90x=6 6×45=270人11、某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.12、有两个工程队,甲工程队有32人,乙工程队有28人,如果是甲工程队的人数是工程队人数的2倍,需从乙工程队抽调多少人到甲工程队?13、某班同学利用假期参加夏令营活动,分成几个小组,若每组7人还余1人,若每组8人还缺6人,问该班分成几个小组,共有多少名同学?14、机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?15、某厂一车间有64人,二车间有56人。
七年级数学上册第三单元《一元一次方程》-解答题专项复习题(含解析)
![七年级数学上册第三单元《一元一次方程》-解答题专项复习题(含解析)](https://img.taocdn.com/s3/m/c3628d0b11a6f524ccbff121dd36a32d7375c7cd.png)
一、解答题1.列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服. 下面是某服装厂给出的运动服价格表:已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元. 问七年级一班和七年级二班各有学生多少人?解析:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【分析】首先根据题中表格数据得出有一个班的人数大于35人,接着设大于35人的班有学生x 人,根据等量关系列出方程,求解即可.【详解】⨯=解:∵67604020>40203650∴所以一定有一个班的人数大于35人.设大于35人的班有学生x人,则另一班有学生(67-x)人,依题意得+-=x x5060(67)3650-=x6730答:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.解析:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【解析】试题分析:首先设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,然后根据两本书的售价总和为80元列出一元一次方程,从而求出x的值,得出答案.试题设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元, 根据题意得:50%x+60%(150﹣x )=80,解得:x=100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.3.10.3x -﹣20.5x + =1.2. 解析:4【解析】 试题分析:先将分母化成整数后,再去分母,去括号,移项,系数为1的步骤解方程即可; 试题12 1.20.30.5x x -+-=10103x --10205x +=6550x-50-30x-60=1820 x=128x=6.4 4.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?解析:10个家长,5个学生【分析】设小明他们一共去了x 个家长,则有(15﹣x )个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可.【详解】解:设小明他们一共去了x 个家长,(15﹣x )个学生,根据题意得:100x +100×0.8(15﹣x )=1400,解得:x =10,15﹣x =5,答:小明他们一共去了10个家长,5个学生.【点睛】本题考查了一元一次方程的应用.5.某同学在解方程21132y y a -+=-去分母时,方程右边的-1没有乘6,结果求得方程的解为y =2,试求a 的值及此方程的解.解析:y =-3.【分析】根据题意得到去分母结果,把y=2代入求出a 的值,即可确定出方程的解.【详解】根据题意去分母得:4y-2=3y+3a-1,把y=2代入得:6=6+3a-1,解得:a=13,方程为12131 32yy+-=-,去分母得:4y-2=3y+1-6,解得:y=-3.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.解下列方程:(1)15(x+15)=1231-(x-7).(2)2110121364x x x-++-=-1.解析:(1)x=-516;(2)x=16.【分析】(1)直接根据解一元一次方程的步骤进行即可;(2)直接根据解一元一次方程的步骤进行即可.【详解】解:(1)15(x+15)=1231-(x-7).去分母,得6(x+15)=15-10(x-7).去括号,得6x+90=15-10x+70.移项及合并同类项,得16x=-5.系数化为1,得x=-5 16.(2)2110121 364x x x-++-=-1去分母,得4(2x-1)-2(10x+1)=3(2x+1)-12.去括号,得8x-4-20x-2=6x+3-12.移项,得8x-20x-6x=3-12+4+2.合并同类项,得-18x=-3.系数化为1,得x=16.【点睛】此题主要考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键.7.运用等式的性质解下列方程:(1)3x=2x-6;(2)2+x=2x+1;(3)35x-8=-25x+1.解析:(1)x=-6;(2)x=1;(3)x=9【分析】(1)根据等式的性质:方程两边都减2x,可得答案;(2)根据等式的性质:方程两边都减x,化简后方程的两边都减1,可得答案.(3)根据等式的性质:方程两边都加25x,化简后方程的两边都加8,可得答案.【详解】(1)两边减2x,得3x-2x=2x-6-2x.所以x=-6.(2)两边减x,得2+x-x=2x+1-x.化简,得2=x+1.两边减1,得2-1=x+1-1所以x=1.(3)两边加25 x,得35x-8+25x=-25x+1+25x.化简,得x-8=1.两边加8,得x-8+8=1+8.所以x=9.【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.8.某同学在解方程21233x x a-+=-时,方程右边的﹣2没有乘以3,其它步骤正确,结果方程的解为x=1.求a的值,并正确地解方程.解析:a=2,x=-3【分析】由题意可知x=1是方程2x-1=x+a-2的解,然后可求得a的值,然后将a的值代入方程求解即可.【详解】解:将x=1代入2x﹣1=x+a﹣2得:1=1+a﹣2.解得:a=2,将a=2代入21233x x a-+=-得:2x﹣1=x+2﹣6.解得:x =﹣3.【点睛】本题主要考查的是一元一次方程的解,明确x=1是方程2(2x-1)=3(x+a )-2的解是解题的关键.9.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②. 解析:(1)5;(2)138; 【分析】①方程去括号,移项合并,把x 系数化为1,即可求出解;②方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】①去括号得:3x−7x+7=3−2x−6,移项合并得:−2x=−10,解得:x=5;②去分母,去括号得:10−2x−6=6x−9,移项合并得:8x=13, 解得:x=138. 【点睛】 此题考查解一元一次方程,解题关键在于掌握方程的解法.10.关于x 的方程357644m x m x +=-的解比方程4(37)1935x x -=-的解大1,求m 的值. 解析:623m =-【分析】 分别求出两方程的解,根据题意列出关于m 的方程,然后求解即可.【详解】 解:357644m x m x +=-, 整理得:2(310)321m x m x +=- 313x m =- 解得:331m x =-, 4(37)1935x x -=-4747x =1x =由题意得:311 31m--=解得:623 m=-【点睛】本题考查了一元二次方程的解和解方程,关键是能先用含有m的式子表示x,然后根据题意列出方程.11.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行.(1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离;(3)求两船从开始航行到两船相距12海里,需要多长时间?解析:(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时.【分析】(1)根据1h后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得;(2)根据2h后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得;(3)可分相遇前与相遇后两种情况讨论即可解答.【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h后甲、乙间的距离=60-25×1-15×1=20海里;(2)2h后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t小时则12=60-(25+15)t,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t1小时则12+60=(25+15)t1,求得t1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时.【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.12.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2015年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a=,若居民乙用电200千瓦时,交电费元.(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x的代数式表示应交的电费.(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?解析:(1)0.6;122.5.(2)0.9x﹣82.5.(3)250千瓦.【分析】(1)根据100<150结合应交电费60元即可得出关于a的一元一次方程,解之即可得出a 值;再由150<200<300,结合应交电费=150×0.6+0.65×超出150千瓦时的部分即可求出结论;(2)根据应交电费=150×0.6+(300-150)×0.65+0.9×超出300千瓦时的部分,即可得出结论;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,分x在第二档及第三档考虑,根据总电费=均价×数量即可得出关于x的一元一次方程,解之即可得出x值,结合实际即可得出结论.【详解】(1)∵100<150,∴100a=60,∴a=0.6,若居民乙用电200千瓦时,应交电费150×0.6+(200-150)×0.65=122.5(元),故答案为0.6;122.5;(2)当x>300时,应交的电费150×0.6+(300-150)×0.65+0.9(x﹣300)=0.9x﹣82.5;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,当该居民用电处于第二档时,90+0.65(x﹣150)=0.62x,解得:x=250;当该居民用电处于第三档时,0.9x﹣82.5=0.62x,解得:x≈294.6<300(舍去).综上所述该居民用电不超过250千瓦时,其当月的平均电价每千瓦时不超过0.62元.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据数量关系列式计算;(2)根据数量关系列出代数式;(3)根据总电费=均价×数量列出关于x的一元一次方程.13.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A 种记录本的数量比B 种记录本的2倍还多20本.(1)求购买A 和B 两种记录本的数量;(2)某商店搞促销活动,A 种记录本按8折销售,B 种记录本按9折销售,则学校此次可以节省多少钱?解析:(1)购买A 种记录本120本,B 种记录本50本;(2)学校此次可以节省82元钱.【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B 种记录本x 本,则购买A 种记录表(2x +20)本,依题意,得:3(2x +20)+2x =460,解得:x =50,∴2x +20=120.答:购买A 种记录本120本,B 种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.【点睛】根据题意中的等量关系列出方程是解决问题的关键14.解方程:(1)3x ﹣4=2x +5;(2)253164x x --+=. 解析:(1)9x = ;(2)13x =【分析】(1)通过移项,合并同类项,便可得解;(2)通过去分母,去括号,移项,合并同类项,进行解答便可.【详解】(1)3x ﹣2x =5+4,解得:x =9;(2)去分母得:2(2x ﹣5)+3(3﹣x )=12,去括号得:4x ﹣10+9﹣3x =12,移项得:4x ﹣3x =12+10﹣9,合并同类项得:x =13.【点睛】本题主要考查了解一元一次方程,熟记解一元一次方程的一般步骤是解题的关键. 15.已知关于x 的方程:2(x ﹣1)+1=x 与3(x +m )=m ﹣1有相同的解,求以y 为未知数的方程3332my m x --=的解.解析:214y=-.【分析】根据方程可直接求出x的值,代入另一个方程可求出m,把所求m和x代入方程3,可得到关于y的一元一次方程,解答即可.【详解】解:解方程2(x﹣1)+1=x得:x=1将x=1代入3(x+m)=m﹣1得:3(1+m)=m﹣1解得:m=﹣2将x=1,m=﹣2代入33 32my m x --=得:3(2)2332y----=,解得:214y=-.【点睛】本题考查了含分母的一次方程,属于简单题,正确求解方程是解题关键.16.在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与爸爸的对话(如图),请根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮他们算算,用哪种方式购票更省钱?解析:(1)他们一共去了8个成人,4个学生;(2)按团体票购票更省钱【分析】(1)本题有两个相等关系:学生人数+成人人数=12人,成人票价+学生票价=400元,据此设未知数列方程组求解即可;(2)计算出按照团体票购买需要的钱数,然后与400元作对比即得答案.【详解】解:(1)设去了x个成人,y个学生,依题意得,1240400.5400x y x y +=⎧⎨+⨯=⎩,解得84x y =⎧⎨=⎩, 答:他们一共去了8个成人,4个学生;(2)若按团体票购票,共需16×40×0.6=384(元),∵384<400,∴按团体票购票更省钱.【点睛】本题主要考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.17.由于施工,需要拆除学校图书馆,七年级同学主动承担图书馆整理图书的任务,如果由一个人单独做要用30小时完成,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么先按排整理的人员有多少?解析:6人【分析】设先安排整理的人员有x 人,根据工作效率×工作时间×工作人数=工作总量结合题意,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设先安排整理的人员有x 人, 根据题意得:()1126=13030x x +⨯+, 解得:x =6.答:先安排整理的人员有6人.【点睛】本题考查了一元一次方程的应用,找准等量关系正确列出一元一次方程是解题的关键. 18.一项工程,甲队独做10h 完成,乙队独做15h 完成,丙队独做20h 完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6h ,问甲队实际工作了几小时?解析:3【分析】设三队合作时间为x ,总工程量为1,根据等量关系:三队合作部分工作量+乙、丙两队合作部分工作量=1,列式求解即可得到甲队实际工作时间.【详解】设三队合作时间为xh ,乙、丙两队合作为(6)x h -,总工程量为1, 由题意得:11111()()(6)11015201520x x ++++-=, 解得:3x =,答:甲队实际工作了3小时.【点睛】本题主要考查了一元一次方程实际问题中的工程问题,准确分析题目中的等量关系以及设出未知量是解决本题的关键.19.小明解方程26152x x a -++=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此得到方程的解为1x =-,试求a 的值,并正确地求出原方程的解. 解析:2a =-,8x =【分析】先根据错误的做法:“方程左边的1没有乘以10”而得到1x =-,代入错误方程,求出a 的值,再把a 的值代入原方程,求出正确的解.【详解】解:412155x x a -+=+∵1x =-为412155x x a -+=+的解∴16155a -+=-+∴2a =-;∴原方程为:262152x x --+= 去分母得:41210510x x -+=-∴45101012x x -=--+∴8x -=-∴8x =.【点睛】本题考查了解一元一次方程,本题易在去分母、去括号和移项中出现错误.由于看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.20.如果,a b 为定值,关于x 的方程2236kx a x bk +-=+无论k 为何值时,它的根总是1,求,a b 的值. 解析:a=132,b=﹣4 【分析】 先把方程化简,然后把x =1代入化简后的方程,因为无论k 为何值时,它的根总是1,就可求出a 、b 的值.【详解】解:方程两边同时乘以6得:4kx +2a =12+x−bk ,(4k−1)x +2a +bk−12=0①,∵无论为k 何值时,它的根总是1,∴把x =1代入①,4k−1+2a +bk−12=0,则当k =0,k =1时,可得方程组:12120412120a ab --⎧⎨--⎩+=++=, 解得:a=132,b=﹣4 当a=132,b=﹣4时,无论为k 何值时,它的根总是1. ∴a=132,b=﹣4 【点睛】本题主要考查了一元一次方程的解,理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.本题利用方程的解求未知数a 、b .21.依据下列解方程0.30.5210.23x x +-=的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。
初中数学一元一次方程精选试题(含答案和解析)
![初中数学一元一次方程精选试题(含答案和解析)](https://img.taocdn.com/s3/m/a7e1567f7275a417866fb84ae45c3b3566ecdd7b.png)
初中数学一元一次方程精选试题(含答案和解析)一.选择题1.(2018·湖北省恩施·3分)一商店在某一时间以每件120元的价格卖出两件衣服.其中一件盈利20%.另一件亏损20%.在这次买卖中.这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元.根据利润=销售收入﹣进价.即可分别得出关于x、y的一元一次方程.解之即可得出x、y的值.再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元.根据题意得:120﹣x=20%x.y﹣120=20%y.解得:x=100.y=150.∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.2.(2018湖南省邵阳市)(3分)程大位是我国明朝商人.珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著.详述了传统的珠算规则.确立了算盘用法.书中有如下问题:一百馒头一百僧.大僧三个更无争.小僧三人分一个.大小和尚得几丁.意思是:有100个和尚分100个馒头.如果大和尚1人分3个.小和尚3人分1个.正好分完.大、小和尚各有多少人.下列求解结果正确的是()A.大和尚25人.小和尚75人 B.大和尚75人.小和尚25人C.大和尚50人.小和尚50人 D.大、小和尚各100人【分析】根据100个和尚分100个馒头.正好分完.大和尚一人分3个.小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100.大和尚分得的馒头数+小和尚分得的馒头数=100.依此列出方程即可.【解答】解:设大和尚有x人.则小和尚有(100﹣x)人.根据题意得:3x+=100.解得x=25则100﹣x=100﹣25=75(人)所以.大和尚25人.小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用.关键以和尚数和馒头数作为等量关系列出方程.二.填空题1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)某公司积极开展“爱心扶贫”的公益活动.现准备将6000件生活物资发往A.B两个贫困地区.其中发往A区的物资比B区的物资的1.5倍少1000件.则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据发往A.B两区的物资共6000件.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据题意得:x+1.5x﹣1000=6000.解得:x=2800.∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018•上海•4分)方程组的解是..【分析】方程组中的两个方程相加.即可得出一个一元二次方程.求出方程的解.再代入求出y即可.【解答】解:②+①得:x2+x=2.解得:x=﹣2或1.把x=﹣2代入①得:y=﹣2.把x=1代入①得:y=1.所以原方程组的解为..故答案为:..【点评】本题考查了解高次方程组.能把二元二次方程组转化成一元二次方程是解此题的关键.三.解答题1.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.2.(2018•海南•8分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护.截至2017年底.全省建立国家级、省级和市县级自然保护区共49个.其中国家级10个.省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据国家级、省级和市县级自然保护区共49个.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据题意得:10+x+5+x=49.解得:x=17.∴x+5=22.答:省级自然保护区有22个.市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018湖南张家界5.00分)列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(员).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.。
初一数学 一元一次方程应用题经典汇总(含答案)
![初一数学 一元一次方程应用题经典汇总(含答案)](https://img.taocdn.com/s3/m/ff9c3a03964bcf84b9d57be8.png)
一元一次方程应用题知识点一:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B.80%×(1+45%)x-x=50C.x-80%×(1+45%)x=50D.80%×(1-45%)x-x=504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知识点点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元, 经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨, 但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜, 在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。
七年级数学一元一次方程应用题复习题及答案
![七年级数学一元一次方程应用题复习题及答案](https://img.taocdn.com/s3/m/c88f898951e79b896902260c.png)
�为示表图画�题问及追�析分 .略�答 4.2=x ∴ 021=x05 006=084+x)09 � 041( � 得 意 题 由 � 里 公 006 距 相 车 两 后 时 小 x 设 � 解 。里 公 006=里公 084+程路走所车慢�程路走所车快�为系关量等�析分�3� .略�答 32 =x ∴ 21 021=x032�程方个这解 006=084+x)09+041(�得意题由 �里公 006 距相车两后时小 x 设�解
8
�角直成候时么什针分与针时�间之点 5 与点 4 在 .4 �度少多是角夹的针分与针时�时分 8 零点 5 上面钟 .3 �次 几 合重夜昼一针时和针分上面钟个一� 次一合重间时少多隔每针时和针分 .2 �合重次一第候时么什针分和针时起在现从�点 3 午下是在现 .1 �题习练础基 。度 5.0 即�度 06*21/063 转钟分每针时 �°6 即�度 06/063 转钟分每针分�°063 是周一周圆面钟�看点观度角从 �法方数度② 。格分 21/1 走钟 分每针时�格分 1 走钟分每针分故�格分 5 走只针时而;周一即�格分 06 走时 小每针分。格分 1 为称们我格小每�格小 06 成分匀以均被周圆面钟的钟时 �法方格分① �法方本基 ;差程路的针时与针分定确② ;置位始初的针时与针分定确① �题问键关 。题问及追的上线曲闭封�路思本基 及追面钟—题问钟时、11 .略 �答
48 � x 4 � x 2 � x 21 � x
48 是和的数个三�系关量等�析分 x4�x2�x 为别分数个三则�x 为份一设�解 �几是数 的大最中数个三这么那�48 是和的们它�4�2�1 为比的数整正个三 .4 例 。量总�和之分部各�系关量等用常 。式 数代的应相出写�比的知已用利�x 为份一中其设�为路思般一的题问类这 �题问配分例比 .01 .略�答
人教版七年级数学上册《一元一次方程应用题》期末专题练习-带答案
![人教版七年级数学上册《一元一次方程应用题》期末专题练习-带答案](https://img.taocdn.com/s3/m/10f07d536ad97f192279168884868762cbaebb13.png)
人教版七年级数学上册《一元一次方程应用题》期末专题练习-带答案学校:班级:姓名:考号:1.一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?2.列方程解决问题:某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,两种笔共卖出60支,卖得金额84元.求卖出铅笔的支数.3.家具厂制作一张桌子需要一个桌面和3条桌腿,1立方米木材可制作20个桌面,或者制作360条桌腿,现有7立方米木材,应该用多少立方米木材生产桌面,才能使所有木材生产出的桌面与桌腿正好配套?4.一项工程,甲队独做10ℎ完成,乙队独做15ℎ完成,丙队独做20ℎ完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6ℎ,问甲队实际工作了几小时?5.某机械加工厂计划在规定期限内完成一批零件的生产任务,如果每天生产零件25个,那么到期将比原计划少生产100个;如果每天生产零件30个,那么到期将比原计划多生产80个,求原计划几天完成任务?6.某儿童服装店欲购进A、B两种型号的儿童服装;经调查:B型号童装的进货单价是A型号童装的进货单价的两倍,购进A型号童装60件和B型号童装40件共用去2100元.求A、B两种型号童装的进货单价各是多少元?7.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,已知每名同级别的技工每天的工作效率相同,每名一级技工比二级技工一天多粉刷10m2墙面.求每个一级技工和二级技工每天粉刷的墙面各是多少平方米?8.台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域交流越来越深,在北京故宫博物院成立90周年院庆时,两岸故宫同根同源,合作举办了多项纪念活动.据统计,北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中台北故宫博物院藏品数量比北京故宫博物院藏品数量的12还少25万件,求北京故宫博物院约有多少万件藏品?9.举世瞩目的2019年中国北京世界园艺博览会在长城脚下的北京延庆开园,它给人们提供了看山、看水、看风景的机会.一天小龙和朋友几家去延庆世园会游玩,他们购买普通票比购买优惠票的数量少5张,买票共花费了1400元,符合他们购票的条件如下表,请问他们买了多少张优惠票?平日普通票•适用所有人•除指定日外任一平日参观120 优惠票•适用残疾人士、60周岁以上老年人、学生、中国现役军人(具体人群规则同指定日优惠票)•购票及入园时需出示相关有效证件•除指定日外任一平日参观8010.某商场开展优惠促销活动,将甲种商品六折出存,乙种商品八折出售,已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,问:商场销售甲、乙两种商品各一件时是盈利还是亏损了?具体金额是多少?11.某水果店用500元购进甲、乙两种水果共50kg,这两种水果的进价、售价如下表所示:品名甲种乙种进价(元/kg)7 12售价(元/kg)10 16(1)求这两种水果各购进多少千克?(2)如果这批水果当天售完,水果店除进货成本外,还需其它成本0.1元/kg,那么水果店销售完这批水果获得的利润是多少元?(利润=售价-成本)12.为开展阳光体育活动,某班需要购买一批羽毛球拍和羽毛球,现了解情况如下:甲、乙两家商店出售同样品牌的羽毛球拍和羽毛球,羽毛球拍每副定价30元,羽毛球每盒定价5元,且两家都有优惠:甲店每买一副球拍赠一盒羽毛球;乙店全部按定价的9折优惠.(1)若该班需购买羽毛球拍5副,购买羽毛球x盒(不小于5盒)当购买多少盒羽毛球时,在两家商店购买所花的钱相等?(2)若需购买10副羽毛球拍,30盒羽毛球,怎样购买更省钱?13.某商场十月以每件500元的进价购进一批羽绒服,当月以标价销售,售出20件.十一月搞促销活动,每件降价50元,售出的数量是十月的1.5倍,这样销售额比十月增加了5500元.(1)求每件羽绒服的标价是多少元?(2)十二月商场决定把剩余的羽绒服按十月标价的八折销售,如果全部售完这批羽绒服总获利12700元,求这批羽绒服共购进多少件?14.庆祝建党100周年,学校七、八年级开展“追寻建党足迹,传承红船精神”的革命纪念馆研学活动,根据防控要求,入馆前需体温检测.其中A通道是电子测温,B通道是人工测温,A通道每分钟通过的人数是B通道的2倍.已知该校七、八年级学生人数分别为96人和144人,七年级学生进馆时,同时开通了A、B两通道,经过4分钟,学生全部进馆.(1)分别求A、B两通道每分钟通过的人数.(2)八年级学生进馆时,先同时开通A、B两通道,1分钟后增开一个人工测温通道C,已知C通道每分,求八年级学生全部进馆所需时间.钟通过的人数是B通道的3415.为庆祝新年晚会,各学校准备参加县里组织的文艺汇演,其中甲、乙两所学校共有102人参加(甲学校的人数多于乙学校的人数,且甲学校的人数不足100人),两学校准备购买统一服装参加演出,下面是服装厂给出的演出服的价格表.服装套数1~50套51~100套101套及以上每套演出服的价格70元60元50元(1)如果两所学校分别购买演出服,那么一共应付6570元,甲乙两所学校各有多少名学生准备参加演出?(2)请你为两所学校设计一种最省钱的购买方案,并计算出这种方案比两所学校分别购买演出服省了多少钱?16.桐梓县为了扎实落实脱贫攻坚中“两不愁,三保障”的住房保障工作,娄山关街道进行住房改造工程,有甲乙两个工程队加入到住房改造中来,如果由甲工程队单独做需要30天完成,甲、乙两个工程队合做12天完成.(1)求乙工程队单独完成这项工程需要几天?(2)甲工程队先单独做6天,因特殊事物离开,余下的乙工程队单独做.因2020年脱贫攻坚收官之年,为了是人民能够更快住上干净漂亮的房屋,要求乙工程队提高一倍的工作效率来完成房屋改造工程,问乙工程队还需要几天完成此项工程?17.某超市先后以每千克12元和每千克14元的价格两次共购进大葱800千克,且第二次付款是第一次付款的1.5倍.(1)求两次各购进大葱多少千克?(2)该超市以每千克18元的标价销售这批大葱,售出500千克后,受市场影响,把剩下的大葱标价每千克22元,并打折全部售出.已知销售这批大葱共获得利润4440元,求超市对剩下的大葱是打几折销售的?(总利润=销售总额-总成本)倍18.贵阳市人民广场某超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)甲乙进价(元/件)22 30售价(元/件)29 40(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品.其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?19.暑假里某班同学相约一起去某公园划船,在售票处了解到该公园划船项目收费标准如下:船型两人船(仅限两人)四人船(仅限四人)六人船(仅限六人)八人船(仅限八人)每船租金(元/小时)100 130(1)其中,两人船项目和八人船项目单价模糊不清,通过询问,了解到以下信息:①一只八人船每小时的租金比一只两人船每小时的租金的2倍少30元;②租2只两人船,3只八人船,游玩一个小时,共需花费630元.请根据以上信息,求出两人船项目和八人船项目每小时的租金;(2)若该班本次共有18名同学一起来游玩,每人乘船的时间均为1小时,且每只船均坐满,试列举出可行的方案(至少四种),通过观察和比较,找到所有方案中最省钱的方案.参考答案1.解:设剩下的部分由乙单独做,由题意得4×(110+115)+x15=1解得x=5.答:乙还需5天完成.2.解:设卖出铅笔的支数为x,则圆珠笔卖出了(60-x)支根据题意得:1.2x+2(60-x)=84解得:x=45∴卖出铅笔45支.3.解:设用x立方米木材生产桌面3×20x=360(7−x)x=6答:用6立方米木材生产桌面.4.解:设三队合作时间为xh,乙、丙两队合作为(6−x)ℎ,总工程量为1由题意得:(110+115+120)x+(115+120)(6−x)=1解得:x=3答:甲队实际工作了3小时5.解:设原计划x天完成任务由题意得:25x+100=30x−80解得x=36答:原计划36天完成任务.6.解:设A型号的进货单价为x元,则B型号的进货单价为2x元根据题意得:60x+40×2x=2100 解得:x=15,则2x=30答:A、B两种型号童装的进货单价分别是15元、30元7.解:设每个二级技工每天刷 xm2,则每个一级技工每天刷(x+10)m2依题意得5x−40 10=3(x+10)+508解得x=112x+10=122答:每个一级和二级技工每天粉刷的墙面各是 122 和 112平方米.8.解:设北京故宫博物院约有x万件藏品,则台北故宫博物院约有(12x−25)万件藏品.根据题意列方程得x+(12x−25)=245解得x=180.答:北京故宫博物院约有180万件藏品.故答案为180万件.9.解:设小龙和几个朋友购买了x张优惠票,则普通票购买了(x-5)张根据题意列方程,得:80x+120(x-5)=140080x+120x-600=1400200x=2000x=10答:小龙和几个朋友购买了10张优惠票.10.(1)解:设甲商品原销售单价为x元,则乙商品的原销售单价为(1400-x)元根据题意得:0.6x+0.8(1400-x)=1000解得:x=600∴1400-x=800.答:甲商品原销售单价为600元,乙商品的原销售单价为800元.(2)解:设甲商品的进价为a元/件,乙商品的进价为b元/件根据题意得:(1-25%)a=60%×600,(1+25%)b=80%×800解得:a=480,b=512∴1000-a-b=1000-480-512=8.答:商场在这次促销活动中盈利,盈利了8元.11.(1)解:设购进甲种水果xkg,则购进乙种水果(50-x)kg,根据题意得7x+12(50-x)=500解之:x=20则50-x=50-20=30答:购进甲种水果20kg,则购进乙种水果30kg。
人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练(含答案)
![人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练(含答案)](https://img.taocdn.com/s3/m/44783aaee109581b6bd97f19227916888486b9d5.png)
人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练1.一项工作,如果由甲单独做,需6小时完成;如果由乙单独做,需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?2.一项道路工程,甲队单独做9天完成,乙队单独做天完成.现在甲、乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,则乙队还需几天才能完成?3.整理一批图书,由一个人做要10小时完成.现计划由一部分人先做1小时,然后增加2人与他们一起做2小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?4.某地为了打造风光带,将一段长为的河道整治任务分配给甲,乙两个工程队先后接力完成,共用时天,已知甲工程队每天整治,乙工程队每天整治.求:(1)甲,乙两个工程队分别整治了多长的河道?(2)甲、乙两工程队各整治河道的天数.5.甲、乙两队修一座桥,如果由甲队单独完成,需要15天;如果由乙队单独完成,需要30天.现在由甲队单独做了3天后,承办方接到通知,需要加快修桥进度,后续工程由甲、乙两队共同完成,则甲、乙两队后续需要合作多少天才能修完这座桥?6.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?12360m 2024m 16m7.将一批工业最新动态信息输入管理储存网络,甲单独完成需要4小时,乙单独完成需要6小时.(1)如果让甲、乙合作,需几小时完成这项工作任务的一半?(2)如果乙先做90分钟,然后甲、乙合作,还需多长时间才能完成这项工作?8.某工程队修一条隧道,计划每天修600米,20天完成,而实际每天多修25%,实际可以提前几天完成?(用比例解)9.一项工程,甲单独做需20天完成 ,乙单独做需15天完成,现在先由甲、乙合作若干天后,剩下的部分由乙独做,先后共用12天,请问甲做了多少天?10.修一条高速公路,甲队修了全长的60%,乙队修了全长的30%,甲队比乙队多修27千米,这条公路全长多少千米?11.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.正常情况下,甲、乙两人能否履行该合同?12.为了打赢蓝天保卫战,某市环保局对一段长的河道进行整治,整治任务由甲、乙两个工程队来完成.已知甲工程队每天完成,乙工程队每天完成.(1)若该任务由甲、乙两个工程队合作完成,则整治这段河道需要多少天?(2)若甲工程队先单独整治一段时间后离开,剩下的由乙工程队来完成,两队共用时天,求甲、乙工程队分别整治了多长的河道.13.修一条公路,甲单独完成需要20天,乙单独完成需要12天,甲先修4天后,为加快工程进度,乙加入,二人合作完成余下的任务,问还需多少天完成?(列方程解)2400m 30m 50m 6020.某信息管理中心,在距下班还剩4小时的时候,接到将一批工业最新动态信息输入管理储存网络的任务,甲单独做需6小时完成,乙单独做需4小时完成:(1)甲乙合作需要小时完成?(2)若甲先做30分钟,然后甲、乙合作,则甲、乙合作还需多少小时才能完成工作?(3)若甲先做30分钟,然后甲、乙合作1小时,这时又接到新的工作任务,必须调走一人,问剩下那人能否在下班之前完成这项工作?参考答案:。
2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练(含解析)
![2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练(含解析)](https://img.taocdn.com/s3/m/727eae1576232f60ddccda38376baf1ffc4fe30a.png)
2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练1.请根据图中提供的信息,回答下列问题:(1)一个水瓶是多少元?(2)商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买个水瓶和个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)2.新华书店准备订购一批图书,现有甲、乙两个供应商,均标价每本40元.为了促销,甲说:“凡来我处购书一律九折.”乙说:“如果购书超出100本,则超出的部分打八折.”(1)若新华书店准备订购150本图书,请分别求出去甲、乙两处需支付的钱数;(2)若新华书店去甲乙两处订购了相同数量的图书并且付了相同数量的钱,请问新华书店去甲乙各定了多少本书?3.某种笔记本的售价为5元/本,如果买100本以上,超过100本部分的,每本售价打八折.(1)甲校和乙校分别买了80本和120本,乙校比甲校多花了多少钱?(2)如果丙校买这种笔记本花了740元,丙校买了多少本?(列方程求解)(3)如果丁校买这种笔记本花了a 元,丁校买了多少本?(a 是20的整数倍)4.某商铺准备在端午节前购进一批肉粽和蜜枣粽,已知肉粽的单价比蜜枣粽的单价多元,且花元购买的肉粽数刚好是花元购买的蜜枣粽数的倍.5202.53001002(2)若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得多少元的利润?(3)在实际销售过程中,超市按预售价将购进的甲型号节能灯全部售出,购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,求乙型号节能灯按预售价售出了多少只?8.晨光文具店分两次购进一款礼品盲盒共70盒,总共花费960元,已知第一批盲盒进价为每盒15元,第二批盲盒进价为每盒12元.(利润销售额成本)(1)求两次分别购进礼品盲盒多少盒?(2)文具店老板计划将每盒盲盒标价20元出售,销售完第一批盲盒后,再打八折销售完第二批盲盒,按此计划该老板总共可以获得多少元利润?(3)在实际销售中,该文具店老板在以(2)中的标价20元售出一些第一批盲盒后,决定搞一场促销活动,尽快把第一批剩余的盲盒和第二批盲盒售完.老板现将标价提高到40元/盒,再推出活动:购买两盒,第一盒七五折,第二盒半价,不单盒销售.售完所有盲盒后该老板共获利润710元,按(2)中标价售出的礼品盲盒有多少盒?9.为了拉动内需,哈尔滨市自10月份开始启动“家电下乡”活动,某家电公司销售给农户的A 型电视机和型电视机在9月份(活动未开启)共售出960台,10月份销售给农户的A 型和型电视机的销量分别比9月份增长,,这两种型号的电视机共售出1228台.(1)9月份销售给农户的A 型和型电视机分别是多少台?(2)如果A 型电视机每台价格是1000元,型电视机每台价格是2000元,根据“家电下乡”的有关政府将按每台电视机价格的给购买电视机的农户补贴,10月份销售给农户的这两种型号共1228台电视机,政府共补贴了多少钱?10.某公司生产某种产品,每件成本价是元,销售价为元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,经过市场调研,预计下一季度这种商品每件售价会降低.销售量将提高.(1)下一季度每件产品的销售价和销售量各是多少?(2)为了使两个季度的销售利润保持不变,公司必须降低成本,问每件商品的成本应降低=-B B 30%25%B B 3%4006205%10%多少元11.静静超市购进一批魔方,按进价提高40%后标价,为了促销,超市决定打八折出售,这时每个魔方的售价为28元.(1)求每个魔方的进价是多少元?(2)魔方卖出一半后,超市决定将剩下的魔方以3个为一组捆绑销售,分组后恰好没有剩余,每组售价80元,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?12.工业园区某服装厂加工A,B两种款式的学生服共100件,加工A种学生服的成本为每件80元,加工B种学生服的成本为每件100元,加工两种学生服的成本共用去9200元.(1)A、B两种学生服各加工多少件?(2)服装厂将这批学生服送到市场部销售,A种学生服的售价为200元,B种学生服的售价为220元,在销售过程中发现A种学生服的销量不好,A种学生服卖出一定数量后,服装厂决定余下的部分按原价的八折出售,两种学生服全部卖出后,共获利10520元,则A种学生服卖出多少件后打折销售?13.某超市购进一批运动服,按进价提高40%后标价.(1)为了让利于民,增加销量,超市决定打八折(即按标价的80%)出售,超市是亏损了还是盈利了?请说明理由.(2)若每套运动服的售价为140元,在(1)的条件下,超市卖出一半后,正好赶上双十一促销,商店决定将剩下的运动服每3套400元的价格出售,很快销售一空,这批运动服超市共获利7000元,求该超市所购进运动服的进价及数量?14.某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.(1)请分别计算生产并销售A型车床5台与11台时,工厂的总获利分别是多少?(2)若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销参考答案:1.(1)元(2)选择乙商场购买更合算.【分析】本题考查一元一次方程的应用,有理数混合运算的实际应用,有理数的大小比较,(1)设一个水瓶元,则一个水杯为元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场的费用,比较即可得到结果;正确理解题意,找出题目中的等量关系并列出方程是解题的关键.【详解】(1)解:设一个水瓶元,则一个水杯为元,根据题意得:,解得:,∴(元),∴一个水瓶元,一个水杯是元;(2)选择乙商场购买更合算.理由:在甲商场购买所需费用为:(元),在乙商场购买所需费用为:(元),∵,∴选择乙商场购买更合算.2.(1)去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元(2)当订购200本图书时,去两个供应商处的进货价钱一样【分析】(1)根据题意列式计算即可;(2)列出方程,进行计算即可.【详解】(1)解:由题意得:甲:(元);乙:(元),答:去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元;40x ()48x -x ()48x -()3448152x x +-=40x =4848408x -=-=408()40582080%288⨯+⨯⨯=()40520528280⨯+-⨯⨯=288280>150400.95400⨯⨯=()40100150100400.85600⨯+-⨯⨯=∴,解得:,答:第二次甲种商品按原价打8折销售.【点睛】此题考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.7.(1)购进甲型号的节能灯300只,购进乙型号的节能灯400只(2)3500元(3)300只【分析】(1)设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,根据购进700只节能灯的进货款恰好为20000元,列出方程,解方程即可;(2)根据题意列出算式进行计算即可;(3)设乙型号节能灯按预售价售出了y 只,根据购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,列出方程,解方程即可.【详解】(1)解:设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,由题意,得,解得,所以(只).答:该超市购进甲型号的节能灯300只,购进乙型号的节能灯400只.(2)解:(元).答:若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得3500元的利润.(3)解:设乙型号节能灯按预售价售出了y 只,由题意,得,解得.答:乙型号节能灯按预售价售出了300只.【点睛】本题主要考查了一元一次方程的应用,解题的关键是根据等量关系列出方程.8.(1)第一次购买了40盒,第二次购买了30盒(2)按此计划该老板总共可以获得320元的利润120050004600y﹣=8y =()700x -()700x -()203570020000x x +-=300x =700700300400x -=-=()()30025204004035150020003500⨯-+⨯-=+=()()()()300252040354004090%353100y y ⨯-+-+-⨯⨯-=300y =程求解;(2)根据总价乘以,列算式计算求解.【详解】(1)解:设9月份销售给农户的型台,则型电视机是台,则:,解得:,,答:9月份销售给农户的型560台,型电视机是400台;(2)(元,答:政府共补贴了51840元.【点睛】本题考查了一元一次方程的应用,根据题意列方程是解题的关键.10.(1)销售价为元,销售量为件(2)元【分析】(1)根据“商品每件售价会降低,销售量将提高”进行计算;(2)由题意可得等量关系:销售利润(销售利润=销售价-成本价)保持不变,列方程即可解得.【详解】(1)解:下一季度每件产品销售价为:(元).销售量为(件);(2)解:设该产品每件的成本价应降低x 元,则根据题意得:解这个方程得:.答:该产品每件的成本价应降低元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.11.(1)魔方的进价是25元(2)该超市共购进四阶魔方1200个【分析】(1)设魔方的进价是元,进价八折售价,列方程并解出即可;(2)设该超市共购进四阶魔方个,根据“商店决定将剩下的魔方以每3个80元的价格出0.03A x B (960)x -()0.30.259601228960x x +-=-560x =960400x ∴-=A B ()1000560 1.32000400 1.250.0351840´´+´´´=)58955000115%10%()62015%589⨯-=()50000110%55000⨯+=[589(400)]55000(620400)50000x --=-⨯⨯11x =11x (140%)⨯+⨯=y当生产并销售A 型车床11台时,总获利是:万元.答:工厂的总获利分别是158万元,161万元.(2)设生产并销售B 型车床x 台,则生产并销售A 型车床台,当时,,不成立;当时,每台B 型车床可以获利万元;由题意得:解得:,(舍去)答:生产并销售B 型车床10台.【点睛】本题考查有理数的四则混合计算的实际应用,一元一次方程的运用,审题,明确数量间的关系是解题的关键.15.(1)每件服装的标价为200元,进价为120元(2)最低能打5折【分析】(1)设标价是x 元,根据题意,列出一元一次方程进行求解即可;(2)设小张最低能打a 折,根据题意,列出一元一次方程进行求解即可.【详解】(1)解:设标价是x 元,由题意,得,解得.即每件服装的标价是200元.进价为(元).答:每件服装的标价为200元,进价为120元.(2)解:设小张最低能打a 折,由题意,得:.解得.答:小张最低能打5折.【点睛】本题考查一元一次方程的应用.读懂题意,找准等量关系,正确的列出方程,是解题的关键.16.(1)购进青菜120斤,则购进瓜类80斤1110(1411)17161⨯+-⨯=()14x -4x ≤()171014271400x x x --=-<4x >()()17421x x ⎡⎤⎣=⎦---()()21101470x x x ---=110x =221x =50%2080%40x x +=-200x =50%2050%20020120x +=⨯+=()()()3002001205003002000.112020000a ⨯-+-⨯⨯-=5a =乙种商品每件的进价是元;∴甲、乙两种商品每件的进价分别是330元、590元.【点睛】此题考查了一元一次方程的应用,正确理解题意列得方程是解题的关键.19.(1)元(2)当每条裤子降价元时达到盈利的预期目标【分析】(1)根据利润(售价进价)数量直接计算即可得到答案;(2)设降价x 元,根据利润列方程求解即可得到答案;【详解】(1)解:由题意可得,(元),∴前条裤子的利润是元;(2)解:设降价x 元,由题意可得,,解得:,答:当每条裤子降价元时达到盈利的预期目标;【点睛】本题考查列代数式与一元一次方程解决销售利润问题,解题的关键是找到等量关系式.20.(1)第一次购进甲种商品50件,则购进乙种商品115件(2)9折【分析】(1)设第一次购进甲种商品x 件,则购进乙种商品件,根据“第一次以4450元购进甲、乙两种商品”列方程求解即可;(2)设第二次甲商品是按原价打m 折销售,根据“第二次两种商品都销售完以后获得的总利润与第一次获得的总利润一样”列方程求解即可.【详解】(1)解:设第一次购进甲种商品x 件,则购进乙种商品件,由题意得:,解得,,因此第一次购进甲种商品50件,则购进乙种商品115件.(2)解:设第二次甲商品是按原价打m 折销售,8000.850590⨯-=160002045%=-⨯400(12080)16000⨯-=4001600016000100(12080)8050045%x +⨯--=⨯⨯20x =2045%(215)x +(215)x +2030(215)4450x x ++=50x =21525015115x +=⨯+=。
初一七年级一元一次方程30题含答案解析
![初一七年级一元一次方程30题含答案解析](https://img.taocdn.com/s3/m/eefbe8d07d1cfad6195f312b3169a4517723e56b.png)
初一七年级一元一次方程30题〔含答案解析〕一.解答题〔共30小题〕1.〔2005•〕解方程:2*+1=72.3.〔1〕解方程:4﹣*=3〔2﹣*〕;〔2〕解方程:.4.解方程:.5.解方程〔1〕4〔*﹣1〕﹣3〔20﹣*〕=5〔*﹣2〕;〔2〕*﹣=2﹣.6.〔1〕解方程:3〔*﹣1〕=2*+3;〔2〕解方程:=*﹣.7.﹣〔1﹣2*〕=〔3*+1〕8.解方程:〔1〕5〔*﹣1〕﹣2〔*+1〕=3〔*﹣1〕+*+1;〔2〕.9.解方程:.10.解方程:〔1〕4*﹣3〔4﹣*〕=2;〔2〕〔*﹣1〕=2﹣〔*+2〕.11.计算:〔1〕计算:〔2〕解方程:12.解方程:13.解方程:〔1〕〔2〕14.解方程:〔1〕5〔2*+1〕﹣2〔2*﹣3〕=6 〔2〕+2〔3〕[3〔*﹣〕+]=5*﹣115.〔A类〕解方程:5*﹣2=7*+8;〔B 类〕解方程:〔*﹣1〕﹣〔*+5〕=﹣;〔C 类〕解方程:.16.解方程〔1〕3〔*+6〕=9﹣5〔1﹣2*〕〔2〕〔3〕〔4〕17.解方程:〔1〕解方程:4*﹣3〔5﹣*〕=13〔2〕解方程:*﹣﹣318.〔1〕计算:﹣42×+|﹣2|3×〔﹣〕3〔2〕计算:﹣12﹣|0.5﹣|÷×[﹣2﹣〔﹣3〕2] 〔3〕解方程:4*﹣3〔5﹣*〕=2;〔4〕解方程:.19.〔1〕计算:〔1﹣2﹣4〕×;〔2〕计算:÷;〔3〕解方程:3*+3=2*+7;〔4〕解方程:.20.解方程〔1〕﹣0.2〔*﹣5〕=1;〔2〕.21.解方程:〔*+3〕﹣2〔*﹣1〕=9﹣3*.22.8*﹣3=9+5*.5*+2〔3*﹣7〕=9﹣4〔2+*〕...23.解以下方程:〔1〕0.5*﹣0.7=5.2﹣1.3〔*﹣1〕;〔2〕=﹣2.24.解方程:〔1〕﹣0.5+3*=10;〔2〕3*+8=2*+6;〔3〕2*+3〔*+1〕=5﹣4〔*﹣1〕;〔4〕.25.解方程:.26.解方程:〔1〕10*﹣12=5*+15;〔2〕27.解方程:〔1〕8y﹣3〔3y+2〕=7〔2〕.28.当k 为什么数时,式子比的值少3.29.解以下方程:〔I〕12y﹣2.5y=7.5y+5〔II 〕.30.解方程:.6.2.4解一元一次方程〔三〕参考答案与试题解析一.解答题〔共30小题〕1.〔2005•〕解方程:2*+1=7考点:解一元一次方程.专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2*=7﹣1 合并得:2*=6系数化为1得:*=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程"转化〞成*=a的形式.2.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2*﹣〔*﹣1〕]=8〔*﹣1〕,化简可得:3*+3=8*﹣8,移项可得:5*=11,解可得*=.故原方程的解为*=.点评:假设是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.〔1〕解方程:4﹣*=3〔2﹣*〕;〔2〕解方程:.考点:解一元一次方程.专题:计算题.分析:〔1〕先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;〔2〕题的方程中含有分数系数,应先对各式进展化简、整理,然后再按〔1〕的步骤求解.解答:解:〔1〕去括号得:4﹣*=6﹣3*,移项得:﹣*+3*=6﹣4,合并得:2*=2,系数化为1得:*=1.〔2〕去分母得:5〔*﹣1〕﹣2〔*+1〕=2,去括号得:5*﹣5﹣2*﹣2=2,移项得:5*﹣2*=2+5+2,合并得:3*=9,系数化1得:*=3.点评:〔1〕此题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比拟多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进展,从而到达分解难点的效果.〔2〕此题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小假设干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.专题:计算题.分析:此题两边都含有分数,分母不一样,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3〔2﹣*〕﹣18=2*﹣〔2*+3〕,去括号得:6﹣3*﹣18=﹣3,移项合并得:﹣3*=9,∴*=﹣3.点评:此题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进展,从而到达分解难点的效果.5.解方程〔1〕4〔*﹣1〕﹣3〔20﹣*〕=5〔*﹣2〕;〔2〕*﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:〔1〕先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;〔2〕先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:〔1〕去括号得:4*﹣4﹣60+3*=5*﹣10〔2分〕移项得:4*+3*﹣5*=4+60﹣10〔3分〕合并得:2*=54〔5分〕系数化为1得:*=27;〔6分〕〔2〕去分母得:6*﹣3〔*﹣1〕=12﹣2〔*+2〕〔2分〕去括号得:6*﹣3*+3=12﹣2*﹣4〔3分〕移项得:6*﹣3*+2*=12﹣4﹣3〔4分〕合并得:5*=5〔5分〕系数化为1得:*=1.〔6分〕点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子〔如果是一个多项式〕作为一个整体加上括号.去括号时要注意符号的变化.6.〔1〕解方程:3〔*﹣1〕=2*+3;〔2〕解方程:=*﹣.考点:解一元一次方程.专题:计算题.分析:〔1〕是简单的一元一次方程,通过移项,系数化为1即可得到;〔2〕是较为复杂的去分母,此题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进展化简、整理为整数形式,难度就会降低.解答:解:〔1〕3*﹣3=2*+33*﹣2*=3+3*=6;〔2〕方程两边都乘以6得:*+3=6*﹣3〔*﹣1〕*+3=6*﹣3*+3*﹣6*+3*=3﹣3﹣2*=0∴*=0.点评:此题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进展,从而到达分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子〔如果是一个多项式〕作为一个整体加上括号.7.﹣〔1﹣2*〕=〔3*+1〕考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7〔1﹣2*〕=3×2〔3*+1〕﹣7+14*=18*+6﹣4*=13*=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子〔如果是一个多项式〕作为一个整体加上括号.8.解方程:〔1〕5〔*﹣1〕﹣2〔*+1〕=3〔*﹣1〕+*+1;〔2〕.考点:解一元一次方程.专题:计算题.分析:〔1〕可采用去括号,移项,合并同类项,系数化1的方式进展;〔2〕此题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进展化简、整理为整数形式,难度就会降低.解答:解:〔1〕5〔*﹣1〕﹣2〔*+1〕=3〔*﹣1〕+*+13*﹣7=4*﹣2∴*=﹣5;〔2〕原方程可化为:去分母得:40*+60=5〔18﹣18*〕﹣3〔15﹣30*〕,去括号得:40*+60=90﹣90*﹣45+90*,移项、合并得:40*=﹣15,系数化为1得:*=.点评:〔1〕此题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比拟多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进展,从而到达分解难点的效果;〔2〕此题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小假设干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:,去分母得:2*﹣〔3*+1〕=6﹣3〔*﹣1〕,去括号得:2*﹣3*﹣1=6﹣3*+3,移项、合并同类项得:2*=10,系数化为1得:*=5.点评:去分母时,方程两端同乘小公倍数时,不要漏乘没有分母的项,同时要把分子〔如果是一个多项式〕作为一个整体加上括号.10.解方程:〔1〕4*﹣3〔4﹣*〕=2;〔2〕〔*﹣1〕=2﹣〔*+2〕.考点:解一元一次方程.专题:计算题.分析:〔1〕先去括号,再移项,合并同类项,系数化1,即可求出方程的解;〔2〕先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.解答:解:〔1〕4*﹣3〔4﹣*〕=2去括号,得4*﹣12+3*=2移项,合并同类项7*=14系数化1,得*=2.〔2〕〔*﹣1〕=2﹣〔*+2〕去分母,得5〔*﹣1〕=20﹣2〔*+2〕去括号,得5*﹣5=20﹣2*﹣4类项,得7*=21系数化1,得*=3.点评:〔1〕此题主要是去括号,移项,合并同类项,系数化1.〔2〕方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.11.计算:〔1〕计算:〔2〕解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:〔1〕根据有理数的混合运算法则计算:先算乘方、后算乘除、再算加减;〔2〕两边同时乘以最简公分母4,即可去掉分母.解答:解:〔1〕原式=,=,=.〔2〕去分母得:2〔*﹣1〕﹣〔3*﹣1〕=﹣4,解得:*=3.点评:解答此题要注意:〔1〕去分母时最好先去中括号、再去小括号,以减少去括号带来的符号变化次数;〔2〕去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:〔1〕这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.〔2〕解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化解答:解:〔1〕去分母得:3〔3*﹣1〕+18=1﹣5*,去括号得:9*﹣3+18=1﹣5*,移项、合并得:14*=﹣14,系数化为1得:*=﹣1;〔2〕去括号得:*﹣*+1=*,移项、合并同类项得:*=﹣1,系数化为1得:*=﹣.点评:此题考察解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时"1〞也要乘以最小公倍数.13.解方程:〔1〕〔2〕考点:解一元一次方程.专题:计算题.分析:〔1〕去分母、去括号、移项、合并同类项、化系数为1.〔2〕去分母、项、合并同类项、化系数为1.解答:〔1〕解:去分母得:5〔3*+1〕﹣2×10=3*﹣2﹣2〔2*+3〕,去括号得:15*+5﹣20=3*﹣2﹣4*﹣6,移项得:15*+*=﹣8+15,合并得:16*=7,解得:;〔2〕解:,4〔*﹣1〕﹣18〔*+1〕=﹣36,4*﹣4﹣18*﹣18=﹣36,﹣14*=﹣14,*=1.点评:此题考察解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时"1〞也要乘以最小公倍数.14.解方程:〔1〕5〔2*+1〕﹣2〔2*﹣3〕=6 〔2〕+2〔3〕[3〔*﹣〕+]=5*﹣1考点:解一元一次方程.专题:计算题.分析:〔2〕通过去括号、移项、合并同类项、系数化为1,解得*的值;〔3〕乘最小公倍数去分母即可;〔4〕主要是去括号,也可以把分数转化成整数进展计算.解答:解:〔1〕去括号得:10*+5﹣4*+6=6移项、合并得:6*=﹣5,方程两边都除以6,得*=﹣;〔2〕去分母得:3〔*﹣2〕=2〔4﹣3*〕+24,去括号得:3*﹣6=8﹣6*+24,移项、合并得:9*=38,方程两边都除以9,得*=;〔3〕整理得:[3〔*﹣〕+]=5*﹣1,4*﹣2+1=5*﹣1,移项、合并得:*=0.点评:一元一次方分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程"转化〞成*=a的形式.解题时,要灵活运用这些步骤.15.〔A类〕解方程:5*﹣2=7*+8;〔B类〕解方程:〔*﹣1〕﹣〔*+5〕=﹣;〔C类〕解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5*﹣2=7*+8移项:5*﹣7*=8+2化简:﹣2*=10即:*=﹣5;B类:〔*﹣1〕﹣〔*+5〕=﹣去括号:*﹣﹣*﹣5=﹣化简:*=5即:*=﹣;=1去分母:3〔4﹣*〕﹣2〔2*+1〕=6去括号:12﹣3*﹣4*﹣2=6化简:﹣7*=﹣4即:*=.点评:此题主要考察一元一次方程的解法,比拟简单,但要细心运算.16.解方程〔1〕3〔*+6〕=9﹣5〔1﹣2*〕〔2〕〔3〕〔4〕考点:解一元一次方程.专题:计算题.分析:〔1〕去括号以后,移项,合并同类项,系数化为1即可求解;〔2〕〔3〕首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;〔4〕首先根据分数的根本性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:〔1〕去括号得:3*+18=9﹣5+10*移项得:3*﹣10*=9﹣5﹣18合并同类项得:﹣7*=﹣14则*=2;〔2〕去分母得:2*+1=*+3﹣5移项,合并同类项得:*=﹣3;〔3〕去分母得:10y+2〔y+2〕=20﹣5〔y﹣1〕去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;〔4〕原方程可以变形为:﹣5*=﹣1去分母得:17+20*﹣15*=﹣3移项,合并同类项得:5*=﹣20评:17.解方程:〔1〕解方程:4*﹣3〔5﹣*〕=13 〔2〕解方程:*﹣﹣3 考点:解一元一次方程.专题:计算题.分析:〔1〕先去括号,再移项,化系数为1,从而得到方程的解.〔2〕这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:〔1〕去括号得:4*﹣15+3*=13,移项合并得:7*=28,系数化为1得:得*=4;〔2〕原式变形为*+3=,去分母得:5〔2*﹣5〕+3〔*﹣2〕=15〔*+3〕,去括号得10*﹣25+3*﹣6=15*+45,移项合并得﹣2*=76,系数化为1得:*=﹣38.点评:此题考察解一元一次方般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.〔1〕计算:﹣42×+|﹣2|3×〔﹣〕3〔2〕计算:﹣12﹣|0.5﹣|÷×[﹣2﹣〔﹣3〕2] 〔3〕解方程:4*﹣3〔5﹣*〕=2;〔4〕解方程:.考点:解一元一次方程;有理数的混合运算.分析:〔1〕利用平方和立方的定义进展计算.〔2〕按四则混合运算的顺序进展计算.〔3〕主要是去括号,移项合并.〔4〕两边同乘最小公倍数去分母,再求值.解答:解:〔1〕﹣42×+|﹣2|3×〔﹣〕3==﹣1﹣1〔2〕﹣12﹣|0.5﹣|÷×[﹣2﹣〔﹣3〕2] ====.〔3〕解方程:4*﹣3〔5﹣*〕=2去括号,得4*﹣15+3*〕=2移项,得4*+3*=2+15 合并同类项,得7*=17系数化为1,得.〔4〕解方程:去分母,得15*﹣3〔*﹣2〕=5〔2*﹣5〕﹣3×15去括号,得15*﹣3*+6=10*﹣25﹣45移项,得15*﹣3*﹣10*=﹣25﹣45﹣6合并同类项,得2*=﹣76-点评:前两道题考察了学生有理数的混合运算,后两道考察了学生解一元一次方程的能力.19.〔1〕计算:〔1﹣2﹣4〕×;〔2〕计算:÷;〔3〕解方程:3*+3=2*+7;〔4〕解方程:.考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:〔1〕和〔2〕要熟练掌握有理数的混合运算;〔3〕和〔4〕首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解答:解:〔1〕〔1﹣2﹣4〕×=﹣=﹣13;〔2〕原式=﹣1×〔﹣4﹣2〕×〔﹣〕=6×〔﹣〕=﹣9;〔3〕解方程:3*+3=2*+7合并同类项,得*=4;〔4〕解方程:去分母,得6〔*+15〕=15﹣10〔*﹣7〕去括号,得6*+90=15﹣10*+70移项,得6*+10*=15+70﹣90合并同类项,得16*=﹣5系数化为1,得*=.点评:〔1〕和〔2〕要注意符号的处理;〔4〕要特别注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20.解方程〔1〕﹣0.2〔*﹣5〕=1;〔2〕.考点:解一元一次方程.分析:〔1〕通过去括号、移项、系数化为1等过程,求得*的值;〔2〕通过去分母以及去括号、移项、系数化为1等过程,求得*的值.解答:解:〔1〕﹣0.2﹣0.2*+1=1,∴﹣0.2*=0,∴*=0;〔2〕.去分母得:2〔*﹣2〕+6*=9〔3*+5〕﹣〔1﹣2*〕,∴﹣21*=48,∴*=﹣.点评:此题主要考察了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.21.解方程:〔*+3〕﹣2〔*﹣1〕=9﹣3*.考点:解一元一次方程.专题:计算题.分析:先去括号得*+3﹣2*+2=9﹣3*,然后移项、合并同类得到2*=4,然后把*的系数化为1即可.解答:解:去括号得*+3﹣2*+2=9﹣3*,移项得*﹣2*+3*=9﹣3﹣2,合并得2*=4,点评:此题考察了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8*﹣3=9+5*.5*+2〔3*﹣7〕=9﹣4〔2+*〕...考点:解一元一次方程.专题:方程思想.分析:此题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再通过移项、合并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8*﹣3=9+5*,解:8*﹣5*=9+3,∴*=4是原方程的解;5*+2〔3*﹣7〕=9﹣4〔2+*〕,解:5*+6*﹣14=9﹣8﹣4*,5*+6*+4*=9﹣8+14,15*=15,∴*=1.∴*=1是原方程的解..解:3〔*﹣1〕﹣2〔2*+1〕=12,3*﹣3﹣4*﹣2=12,3*﹣4*=12+3+2,﹣*=17,∴*=﹣17.∴*=﹣17是原方程的解.,解:,5〔10*﹣3〕=4〔10*+1〕+40,50*﹣15=40*+4+ 40,50*﹣40*=4+40+ 15,10*=59,∴*=.∴*=是原方程的解.点评:此题考察的知识点是解一元一次方程,关键是注意解方程时的每一步都要认真仔细,如移项时要变符号.23.解以下方程:〔1〕0.5*﹣0.7=5.2﹣1.3〔*﹣1〕;〔2〕=﹣2.考点:解一元一次方程.分析:〔1〕首先去括号,然后移项、合并同类项,系数化成1,即可求解;〔2〕首先去分母,然后去括号,移项、合并同类项,系数化成1,即可求解解答:解:〔1〕去括号,得:0.5*﹣0.7=5.2﹣1.3*+1.3移项,得:0.5*+1.3*=5.2+1.3+0.7合并同类项,得:1.8*=7.2,则*=4;〔2〕去分母得:7〔1﹣2*〕=3〔3*+1〕﹣42,去括号,得:7﹣14*=9*+3﹣42,移项,得:﹣14*﹣9*=3﹣42﹣7,合并同类项,得:﹣23*=﹣46,则*=2.点评:此题考察解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.解方程:〔1〕﹣0.5+3*=10;〔2〕3*+8=2*+6;〔3〕2*+3〔*+1〕=5﹣4〔*﹣1〕;〔4〕.考点:解一元一次方程.分析:〔1〕移项,合并同类项,然后系数化成1即可求解;〔2〕移项,合并同类项,然后系数化成1即可求解;〔3〕去括号、移项,合并同类项,然后系数化成1即可求解;〔4〕首先去分母,然后去括号、移项,合并同类项,然后系数化成1即可求解.解答:解:〔1〕3*=10.5,*=3.5;〔2〕3*﹣2*=6﹣8,*=﹣2;〔3〕2*+3*+3=5﹣4*+4,2*+3*+4*=5+4﹣3,9*=6,*=;〔4〕2〔*+1〕+6=3〔3*﹣2〕,2*+2+6=9*﹣6,2*﹣9*=﹣6﹣2﹣6,﹣7*=﹣14,*=2.点评:此题考察解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.25.解方程:.考点:解一元一次方程.专题:计算题.分析:方程两边乘以10去分母后,去括号,移项合并,将*系数化为1,即可求出解.解答:解:去分母得:5〔3*﹣1〕﹣2〔5*﹣6〕=2,去括号得:15*﹣5﹣10*+12=2,移项合并得:5*=﹣5,解得:*=﹣1.点评:此题考察了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.解方程:〔1〕10*﹣12=5*+15;〔2〕考点:解一元一次方程.专题:计算题.分析:〔1〕先移项,再合并同类项,最后化系数为1,从而得到方程的解;〔2〕先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.解答:解:〔1〕移项,得10*﹣5*=12+15,合并同类项,得5*=27,方程的两边同时除以5,得*=;〔2〕去括号,得=,方程的两边同时乘以6,得*+1=4*﹣2,移项、合并同类项,得3*=3,方程的两边同时除以3,得*=1.点评:此题考察解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.27.解方程:〔1〕8y﹣3〔3y+2〕=7 〔2〕.考点:解一元一次方程.专题:计算题.分析:〔1〕根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解;〔2〕这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:〔1〕去括号得,8y﹣9y﹣6=7,移项、合并得,﹣y=13,系数化为1得,y=﹣13;〔2〕去分母得,3〔3*﹣1〕﹣12=2〔5*﹣7〕,去括号得,9*﹣3﹣12=10*﹣14,移项得,9*-﹣10*=﹣14+3+12,合并同类项得,﹣*=1,系数化为1得,*=﹣1.点评:此题主要考察了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子〔如果是一个多项式〕作为一个整体加上括号.28.当k 为什么数时,式子比的值少3.考点:解一元一次方程.专题:计算题.分析:先根据题意列出方程,再根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.解答:解:依题意,得=+3,去分母得,5〔2k+1〕=3〔17﹣k〕+45,去括号得,10k+5=51﹣3k+45,移项得,10k+3k=51+45﹣5,合并同类项得,13k=91,系数化为1得,k=7,∴当k=7时,式子比的值少3.点评:此题主要考察了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子〔如果是一个多项式〕作为一个整体加上括号.29.解以下方程:〔I〕12y﹣2.5y=7.5y+5〔II 〕.考点:解一元一次方程.专题:计算题.分析:〔Ⅰ〕根据一元一次方程的解法,移项,合并同类项,系数化为1即可得解;〔Ⅱ〕是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:〔Ⅰ〕移项得,12y﹣2.5y﹣7.5y=5,合并同类项得,2y=5,系数化为1得,y=2.5;〔Ⅱ〕去分母得,5〔*+1〕﹣10=〔3*﹣2〕﹣2〔2*+3〕,去括号得,5*+5﹣10=3*﹣2﹣4*﹣6,移项得,5*﹣3*+4*=﹣2﹣6﹣5+10,合并同类项得,6*=﹣3,系数化为1得,*=﹣.点评:此题主要考察了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子〔如果是一个多项式〕作为一个整体加上括号.30.解方程:.考点:解一元一次方程.专题:计算题.分析:由于方程的分子、分母均有小数,利用分数的根本性质,分子、分母同时扩大一样的倍数,可将小数化成整数.解答:解:原方程变形为,〔3分〕去分母,得3×〔30*﹣11〕﹣4×〔40*﹣2〕=2×〔16﹣70*〕,〔4分〕去括号,得90*﹣33﹣160*+8=32﹣140*,〔5分〕移项,得90*﹣160*+140*=32+33﹣8,〔6分〕合并同类项,得70*=57,〔7分〕系数化为1,得.〔8分〕点评:此题考察一元一次方程的解法.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.此题的难点在于方程的分子、分母均有小数,将小数化成整数不同于去分母,不是方程两边同乘一个数,而是将分子、分母同乘一个数.。
七年级数学一元一次方程应用题复习题及答案1(家长必备)
![七年级数学一元一次方程应用题复习题及答案1(家长必备)](https://img.taocdn.com/s3/m/6874ecd727fff705cc1755270722192e4536580d.png)
一元一次方程应用题知识积累:解一元一次方程的步骤。
1、去分母:在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不含分母的部分都乘以所有分母的最小公倍数。
注意事项:①不含分母的项也要乘以最小公倍数;②分子是多项式的一定要先用括号括起来。
2、去括号:去括号法则(可先分配再去括号)。
注意事项:注意正确的去掉括号前带负数的括号。
3、移项:把未知项移到议程的一边(左边),常数项移到另一边(右边)。
注意事项:移项一定要改变符号。
4、合并同类项:分别将未知项的系数相加、常数项相加。
注意事项:单独的一个未知数的系数为“±1”。
5、系数化为“1”:在方程两边同时除以未知数的系数(方程两边同时乘以未知数系数的倒数)。
注意事项:不要颠倒了被除数和除数(未知数的系数作除数——分母)。
6、验算:方法:把x=a分别代入原方程的两边,分别计算出结果。
①若左边=右边,则x=a是方程的解;②若左边≠右边,则x=a不是方程的解。
注意事项:当题目要求时,此步骤必须表达出来。
(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.一元一次方程应用题的类型分析一、和差倍分问题增长量=原有量×增长率现在量=原有量+增长量此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。
审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别例题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可乘坐64人,还需租用44座的客车多少辆?解:设还需要租用44座的客车X辆依据题意,得方程328-64 = 44X则 X = 264÷44X = 6答:还需要租用44座的客车6辆。
七年级一元一次方程应用题经典例题及解析
![七年级一元一次方程应用题经典例题及解析](https://img.taocdn.com/s3/m/36ff8a4ba7c30c22590102020740be1e640ecc7f.png)
七年级一元一次方程应用题经典例题及解析一、问题描述1.小明在超市买了一些苹果,每斤5元,共用了15元,求小明买了多少斤苹果?解析这是一个典型的一元一次方程问题。
设小明买了x斤苹果,则根据题意可得方程5x = 15。
解方程得x = 3,小明买了3斤苹果。
二、问题描述2.一种牛奶每瓶售价为x元,小红买了5瓶牛奶共花了30元,求每瓶牛奶的售价是多少?解析设每瓶牛奶的售价为x元,则根据题意可得方程5x = 30。
解方程得x = 6,每瓶牛奶的售价为6元。
三、问题描述3.某商店进行促销活动,一种商品原价x元,经过7折优惠后售价为21元,求该商品的原价是多少?解析设该商品的原价为x元,根据题意可得方程0.7x = 21。
解方程得x = 30,该商品的原价为30元。
四、问题描述4.小明和小刚一起去电影院看电影,两人共花了36元,小明比小刚多出了4元,求小明和小刚各自花了多少钱?解析设小明花了x元,小刚花了(x-4)元,根据题意可得方程x + (x-4) = 36。
解方程得x = 20,小明花了20元,小刚花了16元。
五、问题描述5.一家服装店进行清仓处理,原价为x元的衣服打折后售价为15元,打折了x的3/5,求原价是多少?设该衣服的原价为x元,根据题意可得方程(1-3/5)x = 15。
解方程得x = 25,该衣服的原价为25元。
六、问题描述6.某公司组织员工团建活动,共花费了240元,如果每人平均花费30元,求这个团队有多少人?解析设团队人数为x人,根据题意可得方程30x = 240。
解方程得x = 8,这个团队有8人。
七、问题描述7.一家餐馆供应两种套餐,A套餐售价x元,B套餐售价为25元,小张买了4份A套餐和2份B套餐共花了130元,求A套餐的售价是多少?解析设A套餐的售价为x元,根据题意可得方程4x + 2*25 = 130。
解方程得x = 20,A套餐的售价为20元。
八、问题描述8.甲乙两人玩猜硬币游戏,甲猜错了4次给了乙16元,每猜错一次需要支付4元,求共猜了多少次?解析设共猜了x次,根据题意可得方程4x = 16。
人教版七年级上册数学期末一元一次方程应用题(配套问题)专题训练(含答案)
![人教版七年级上册数学期末一元一次方程应用题(配套问题)专题训练(含答案)](https://img.taocdn.com/s3/m/08bba660cdbff121dd36a32d7375a417866fc130.png)
7.(1)七年级 2001 班有男生 20 人,女生 30 人 (2)应该分配 30 人剪筒身,20 人剪筒底
8.(1)裁剪出的侧面个数是 4x ;裁剪出的底面个数是 6x 672 (2)A 方法裁剪 84 张,B 方法裁剪 28 张,能做 84 个盒子
9.应该分配 27 名学生做机身,18 名学生做机翼,每小时能够做出 540 套
(1)请用含 x 的代数式分别表示裁剪出的侧面和底面个数; (2)若裁剪出的侧面和底面恰好全部用完,问 A 方法、B 方法各裁剪几张?能做多少个盒 子?
9.初一年级共 45 名学生参与科技节活动,制作纸飞机模型.每人每小时可做 20 个机 身或 60 个机翼,一个飞机模型要 1 个机身配 2 个机翼,为了使每小时制作的成品刚好 配套,应该分配多少名学生做机身?多少名学生做机翼?在刚好配套的情况下,每小时 能够做出多少套?
5.一套仪器由一个 A 部件和三个 B 部件构成.用1m3 钢材可做 40 个 A 部件或 200 个 B 部件.现要用 8m3 钢材制作这种仪器,应用多少钢材做 A 部件,多少钢材做 B 部件,恰 好配成这种仪器多少套?
6.某瓷器厂共有工人120 人,每个工人一天能做 200 只茶杯或 50只茶壶.如果 8 只茶杯 和一只茶壶为一套. (1)应安排多少人生产茶杯,可使每天生产的瓷器配套. (2)按(1)中的安排,每天可以生产多少套茶具?
17.(1)侧面数:5x+90;底面数:120﹣4x;(2)若裁剪出的侧面和底面恰好全部用完, 能做 32 个盒子. 18.(1)20 立方米 (2)800 元
(1)按 B 种方法剪裁的有______张白板纸;(用含 x 的代数式表示) (2)将 5 32 名工人生产桌子和椅子,每人每天平均生产 15 张桌子或 50 把椅子,一 张桌子要配两把椅子.已知车间每天安排 x 名工人生产桌子. (1)求车间每天生产桌子和椅子各多少?(用含 x 的式子表示) (2)当每天安排多少名工人生产桌子时,生产的桌子和椅子刚好配套?
初一数学一元一次方程应用题复习练习及答案
![初一数学一元一次方程应用题复习练习及答案](https://img.taocdn.com/s3/m/2742cb217f1922791788e857.png)
初一数学一元一次方程应用题复习练习及答案列方程(组)解应用题的方法及步骤:(1)审题:要明确已知什么,未知什么及其相互关系,并用x表示题中的一个合理未知数。
(2)根据题意找出能够表示应用题全部含义的一个相等关系.(关键一步)(3)根据相等关系,正确列出方程,即所列的方程应满足等号两边的量要相等;方程两边的代数式的单位要相同。
(4)解方程:求出未知数的值.(5)检验后明确地、完整地写出答案。
检验应是:检验所求出的解既能使方程成立,又能使应用题有意义。
2。
应用题的类型和每个类型所用到的基本数量关系:(1)等积类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积)。
(2)调配类应用题的特点是:调配前的数量关系,调配后又有一种新的数量关系.(3)利息类应用题的基本关系式:本金×利率=利息,本金+利息=本息。
(4)商品利润率问题:商品的利润率,商品利润=商品售价-商品进价.(5)工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,工作效率=工作总量÷工作时间。
(6)行程类应用题基本关系:路程=速度×时间。
相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。
追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。
环形跑道题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。
飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速航行问题,基本等量关系:①顺水速度=静水速度+水速②逆水速度=静水速度-水速(7)比例类应用题:若甲、乙的比为2:3,可设甲为2x,乙为3x。
(8)数字类应用题基本关系:若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这三位数为: 。
1学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?2变题学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?分析设应调往甲处x人,题目中涉及的有关数量及其关系可以用下表表示:3某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?4某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)5 一张方桌由一张桌面和四根桌腿做成,已知一立方米木料可做桌面50个或桌腿300根,现在5立方米木料,恰好能做桌子多少张?6某班有50名学生,在一次数学考试中,女生的及格率为80%,男生的及格率为75%,全班的及格率为78%,问这个班的男女生各有多少人?7一份试卷共有25道题,每道题都给出了4个答案,其中只有一个正确答案,每道题选对得4分,不选或错选倒扣1分,如果一个学生得90分,那么他做对了多少道题.8有人问毕达哥拉斯,他的学校中有多少学生,他回答说:“一半学生学数学,四分之一学音乐,七分之一正休息,还剩3个女学生。
七年级数学一元一次方程应用题复习题及答案
![七年级数学一元一次方程应用题复习题及答案](https://img.taocdn.com/s3/m/48e373ec250c844769eae009581b6bd97f19bc97.png)
以下是十道七年级数学一元一次方程应用题复习题及试题及答案:1.小明用100元买了一些苹果,每个苹果10元,剩下的钱他用来买香蕉,每个香蕉5元,小明一共买了多少个香蕉?方程:10x+5y=100解:x表示苹果的个数,y表示香蕉的个数2.一辆计程车每公里收费2元,小明乘坐计程车行驶了20公里,一共支付了多少元?方程:2x=20解:x表示行驶的公里数3.一份图书的原价是x元,打折后打8折,售价是35元,求原价x是多少?方程:0.8x=35解:x表示原价4.一桶水共有x升,每天使用3升,经过7天后还剩下15升,求原来桶里有多少升水?方程:x-3(7)=15解:x表示原来的水量5.一支笔的原价是x元,现在打折促销,售价是8元,打折了多少折?方程:8=0.8x解:x表示原价6.小华一次性买了x只铅笔,每只铅笔3元,共花了9元,求小华一共买了多少只铅笔?方程:3x=9解:x表示铅笔的个数7.一份试卷满分为x分,小明得了80分,他的得分率是多少?方程:80/x=y%解:x表示试卷满分,y表示得分率8.一份作业共有x页,小华每天完成3页,经过5天后还剩下10页,求原来作业有多少页?方程:x-3(5)=10解:x表示原来作业的页数9.小明每天花30分钟上网,一共上了x天,总共花了180分钟,求x的值。
方程:30x=180解:x表示上网的天数10.一根木棍的长度是x厘米,从中间折断后,两段木棍的长度之比是2:3,求原来木棍的长度。
方程:x=(2/3)(x)解:x表示原来木棍的长度答案:1.小明一共买了12个香蕉。
2.小明一共支付了40元。
3.原价x是43.75元。
4.原来桶里有36升水。
5.打折了10折。
6.小华一共买了3只铅笔。
7.小明的得分率是80%。
8.原来作业有25页。
9.x的值是6天。
10.原来木棍的长度是60厘米。
部编数学七年级上册专题07一元一次方程的应用(12大考点)专题讲练(解析版)含答案
![部编数学七年级上册专题07一元一次方程的应用(12大考点)专题讲练(解析版)含答案](https://img.taocdn.com/s3/m/185f047f4a73f242336c1eb91a37f111f1850d28.png)
专题07 一元一次方程的应用(12大考点) 专题讲练一元一次方程的应用题属于人教版七年级上期期末必考题,需要完全掌握各个类型的应用题,该专题将应用题分为分段计费、行程问题、工程问题、方案优化选择、商品销售问题、比赛积分问题、日历问题(数字问题)、配套问题、调配问题、和差倍分问题(比例问题)、几何图形问题、动态问题等共进行方法总结与经典题型进行分类。
1、知识储备2、经典基础题考点1. 分段计费问题考点2. 行程问题考点3. 工程问题考点4. 方案优化问题考点5. 商品销售问题考点6. 比赛积分问题考点7. 配套问题考点8. 调配问题考点9. 数字与日历问题考点10.和、差、倍、分(比例)问题考点11. 几何问题(等积问题)考点12. 动态问题3、优选提升题1.用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题¾¾¾®分析抽象方程¾¾¾®求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答. 2 .建立书写模型常见的数量关系1)公式形数量关系:生活中许多数学应用情景涉及如周长、面积、体积等公式。
在解决这类问题时,必须通过情景中的信息,准确联想有关的公式,利用有关公式直接建立等式方程。
长方形面积=长×宽长方形周长=2(长+宽) 正方形面积=边长×边长正方形周长=4边长2)约定型数量关系:利息问题,利润问题,质量分数问题,比例尺问题等涉及的数量关系,像数学中的公式,但常常又不算数学公式。
我们称这类关系为约定型数量关系。
3)基本数量关系:在简单应用情景中,与其他数量关系没有什么差别,但在较复杂的应用情景中,应用方法就不同了。
我么把这类数量关系称为基本数量关系。
单价×数量=总价速度×时间=路程工作效率×时间=总工作量等。
3.分析数量关系的常用方法1)直译法分析数量关系:将题中关键性的数量关系的语句译成含有未知数的代数式,并找出没有公国的等量关系,翻译成含有未知数的等式。
初一数学一元一次方程试题答案及解析
![初一数学一元一次方程试题答案及解析](https://img.taocdn.com/s3/m/95c6718570fe910ef12d2af90242a8956becaae7.png)
初一数学一元一次方程试题答案及解析1.(1)解不等式:5(x-2)+8<7-6(x-1)(2)若(1)中的不等式的最大整数解是方程2x-ax=3的解,求a的值.【答案】(1)x<;(2)a=-1.【解析】(1)根据不等式的解法:先去括号移项,然后合并同类项,系数化为1,求出不等式的解;(2)根据(1)所求的不等式的解,可得方程2x-ax=3的解为1,代入求a的值.试题解析:(1)去括号得:5x-10+8<7-6x+6,移项合并同类项得:11x<15,系数化为1得:x<;(2)由(1)得,方程2x-ax=3的解为1,将x=1代入得:2-a=3,解得:a=-1.【考点】1.解一元一次不等式;2.一元一次方程的解;3.一元一次不等式的整数解.2.初一(19)班有48名同学,其中有男同学名,将他们编成1号、2号、…,号。
在寒假期间,1号给3名同学打过电话,2号给4名同学打过电话,3号给5名同学打过电话,…,号同学给一半同学打过电话,由此可知该班女同学的人数是()A.22B.24C.25D.26【答案】D.【解析】已知初一(19)班有48名同学,则一半学生数为24,根据1号给3=2+1名同学打过电话,2号给4=2+2名同学打过电话,3号给5=2+3名同学打过电话,…,号同学给一半同学打过电话,求解即可.∵初一(19)班有48名同学,∴一半学生数为24,∵1号给3=2+1名同学打过电话,2号给4=2+2名同学打过电话,3号给5=2+3名同学打过电话,…,号同学给一半同学打过电话,∴,则该班女同学的人数是48-22=26人,故选D.【考点】应用类问题.3.的倒数与互为相反数,那么的值是()A.B.C.3D.-3【答案】C【解析】由题意可知,解得,故选C.4.若方程的解为,则的值为( )A.B.C.D.【答案】C【解析】将代入中,得,解得故选C.5.江南生态食品加工厂收购了一批质量为的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量倍还多,求粗加工的该种山货质量.【答案】【解析】解:设粗加工的该种山货质量为,根据题意,得,解得.答:粗加工的该种山货质量为.6.右面是“美好家园”购物商场中“飘香”洗发水的价格标签,请你在横线上填出它的现价.【答案】28.8【解析】设出洗发水的现价是x元,直接得出有关原价的一元一次方程,再进行求解.设洗发水的现价为x元,由题意得:0.8×36=x,解得:x=28.8(元).故答案为:28.8元.7.若当时,代数式的值为,那么当时,该代数式的值是_______.【答案】5.【解析】∵代入可得,解得:.把,代入代数式得:=.故答案为:5.【考点】1.解一元一次方程;2.代数式求值.8.义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?【答案】(1)购买一块A型小黑板需要l00元,购买一块8型小黑板需要l20元;(2)有两种购买方案:方案一:购买A型小黑板21块,购买8型小黑板39块;方案二:购买A型小黑板22块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程应用题
1.列一元一次方程解应用题的一般步骤
(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.2.和差倍分问题
增长量=原有量×增长率 现在量=原有量+增长量
3.等积变形问题
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.
①圆柱体的体积公式 V=底面积×高=S·h=r2h
②长方体的体积 V=长×宽×高=abc
4.数字问题
一般可设个位数字为a,十位数字为b,百位数字为c.
十位数可表示为10b+a, 百位数可表示为100c+10b+a.
然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题
(1)商品利润=商品售价-商品成本价 (2)商品利润率=×100%(3)商品销售额=商品销售价×商品销售量
(4)商品的销售利润=(销售价-成本价)×销售量
(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.
6.行程问题:路程=速度×时间 时间=路程÷速度 速度=路程÷时间
(1)相遇问题: 快行距+慢行距=原距
(2)追及问题: 快行距-慢行距=原距
(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.
7.工程问题:工作量=工作效率×工作时间
完成某项任务的各工作量的和=总工作量=1
8.储蓄问题
利润=×100% 利息=本金×利率×期数
1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?
2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?
3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,≈3.14).
4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.
5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?
6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.
7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a 千瓦时,则超过部分按基本电价的70%收费.
(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?应交电费是多少元?
8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
答案
1.解:设甲、乙一起做还需x小时才能完成工作.
根据题意,得×+(+)x=1
解这个方程,得x=
=2小时12分
答:甲、乙一起做还需2小时12分才能完成工作.
2.解:设x年后,兄的年龄是弟的年龄的2倍,
则x年后兄的年龄是15+x,弟的年龄是9+x.
由题意,得2×(9+x)=15+x
18+2x=15+x,2x-x=15-18
∴x=-3
答:3年前兄的年龄是弟的年龄的2倍.
(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3年后具有相反意义的量)
3.解:设圆柱形水桶的高为x毫米,依题意,得
·()2x=300×300×80
x≈229.3
答:圆柱形水桶的高约为229.3毫米.
4.解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,过完第一铁桥所需的时间为分.
过完第二铁桥所需的时间为分.
依题意,可列出方程
+=
解方程x+50=2x-50
得x=100
∴2x-50=2×100-50=150
答:第一铁桥长100米,第二铁桥长150米.
5.解:设这种三色冰淇淋中咖啡色配料为2x克,
那么红色和白色配料分别为3x克和5x克.
根据题意,得2x+3x+5x=50
解这个方程,得x=5
于是2x=10,3x=15,5x=25
答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.
6.解:设这一天有x名工人加工甲种零件,
则这天加工甲种零件有5x个,乙种零件有4(16-x)个.
根据题意,得16×5x+24×4(16-x)=1440
解得x=6
答:这一天有6名工人加工甲种零件.
7.解:(1)由题意,得
0.4a+(84-a)×0.40×70%=30.72
解得a=60
(2)设九月份共用电x千瓦时,则
0.40×60+(x-60)×0.40×70%=0.36x
解得x=90
所以0.36×90=32.40(元)
答:九月份共用电90千瓦时,应交电费32.40元.
8.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,
设购A种电视机x台,则B种电视机y台.
(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程
1500x+2100(50-x)=90000
即5x+7(50-x)=300
2x=50
x=25
50-x=25
②当选购A,C两种电视机时,C种电视机购(50-x)台,
可得方程1500x+2500(50-x)=90000
3x+5(50-x)=1800
x=35
50-x=15
③当购B,C两种电视机时,C种电视机为(50-y)台.
可得方程2100y+2500(50-y)=90000
21y+25(50-y)=900,4y=350,不合题意
由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.
(2)若选择(1)中的方案①,可获利
150×25+250×15=8750(元)
若选择(1)中的方案②,可获利
150×35+250×15=9000(元)
9000>8750 故为了获利最多,选择第二种方案.。