焊点可靠性之焊点寿命改善

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焊点可靠性之焊点寿命改善

提高SMT焊点可靠性的方法主要有以下四种:

(1) 研制开发新型基板材料以减小陶瓷芯片载体与树脂基板之间的热膨胀系数差。研究主要集中于印刷电路板材料,已经研制开发了42%Ni-Fe合金(CTE=5ppm/o C)、Cu-因瓦合金-Cu复合材料板(CTE=2.8~13ppm/o C)等新型基板材料,效果较好[41]。但是由于新型材料制作工艺复杂、价格昂贵,其实用性受到很大限制,90年代起极少有此类研究见于文献。

(2) 提高软钎料合金自身的力学性能,向Sn-Pb共晶合金基体中加入微量合金元素以实现合金强化。由于实际生产中需综合考虑成本、工艺性等多方面问题,对Sn-Pb基钎料合金而言,这方面的工作较少,主要是添加Ag[42]。朱颖博士开发了Sn-Pb-RE系列钎料合金,不仅提高表面组装焊点热循环寿命2-3倍,而且在成本和工艺性方面均有很好的应用前景[43]。近年来,随着环境保护呼声的日益提高,开发无铅钎料(Lead-Free Solder)成为了软钎焊材料研究的热点,HP公司的Glazer对此作了很好的综述[44],焦点在于新型无铅钎料合金在保证润湿性的前提下,其熔点要与现有工艺条件匹配且其力学性能要优于Sn-Pb共晶合金。

(3) 焊点形态优化设计。作为承受载荷的结构件,不同的焊点形态将导致焊点内部不同的热应力-应变分布,从而导致不同的焊点热疲劳性能。焊点形态优化设计包括两方面的内容:一是焊点形态预测,即在钎料量、焊点高度、焊盘几何、软钎焊规范等工艺参数确定的条件下,借助于焊点成型的数学物理模型计算出焊点的最终形态。近年来提出了多种基于能量最小原理的焊点形态预测模型[45-47]。二是优化设计,即何种焊点形态才具有最优的热疲劳性能。优化判据的确定是一个涉及到焊点失效机制的理论问题,目前还远没有

—1 —

解决,现有的优化设计工作的优化判据均是不同形态焊点的热疲劳寿命试验数据[48]。事实上由于实际工艺条件下形成的焊点形态与理论预测结果存在一定的偏差,因此热疲劳寿命数据仅能说明定性的趋势。

(4) 在陶瓷芯片载体与印刷电路板之间除软钎焊焊点之外的空间内添加填充材料(Underfill),这是近几年内发展出的新的焊点寿命改善方法。所用的填充材料为一种胶体,应用最广泛的是以有机酸酐为固化剂的环脂族环氧树脂。有试验结果表明该种方法可大幅度提高焊点寿命[49-51]并提高集成电路的抗腐蚀性[51]。有限元计算结果将改善原因归结为焊点内部剪切应变[52]或奇性应力场强度的减小[53]

2

——

相关文档
最新文档