中南大学通信原理实验报告数字基带信号
实验一数字基带信号的产生及波形变换实验
![实验一数字基带信号的产生及波形变换实验](https://img.taocdn.com/s3/m/102849300622192e453610661ed9ad51f01d5407.png)
实验一数字基带信号的产生及波形变换实验一、实验目的(1)了解多种时钟信号的产生方法;(2)了解帧同步信号的产生过程;(3)了解几种常见的数字基带信号;(4)掌握AMI码的编码规则。
二、实验原理通信的根本任务是远距离传递消息,因而如何准确地传输数字信息是数字通信的一个重要组成部分。
在数字传输系统中,其传输对象通常是二元数字信息,它可能来自计算机、电传打字机或其它数字设备的各种数字代码,也可能来自数字电话终端的脉冲编码信号。
对基带传输系统的要求就是选择一组有限的离散波形来表示数字信息。
其中未调制的电脉冲信号所占据的频带通常从直流和低频开始,因而称为数字基带信号。
数字基带信号实际上是消息代码的电波形,不同形式的数字基带信号具有不同的频谱结构。
在某些有线信道中,特别是传输距离不太远的情况下,数字基带信号可以直接传送,但必须合理地设计数字基带信号以使数字信息变换为适合于给定信道传输特性的频谱结构。
通常把数字信息的电脉冲表示过程称为码型变换,在有线信道中传输的数字基带信号又称为线路传输码型。
对于数字基带信号的码型选择通常考虑的原则是:(1)对于传输频带低端受限的信道,其线路传输码型的频谱中应不含直流分量;(2)码型变换过程应对任何信源具有透明性,即与信源的统计特性无关;(3)便于从基带信号中提取位定时信息;(4)便于实时监测传输系统信号传输质量,即应能检测出基带信号码流中错误的信号状态;(5)对于某些基带传输码型,信道中传输的单个误码会扰乱一段译码过程,从而导致译码信息中出现多个错误,这种现象称为误码扩散。
希望这种情况越少越好;(6)当采用分组形式的传递码型时,在接收端不但要从基带信号中提取位定时信息,而且要恢复出分组同步信息,以便将接收到的信号正确地划分成固定长度的码组;(7)尽量减少基带信号频谱中的高频分量;(8)编译码设备应尽量简单。
数字基带信号在通信系统中占有比较重要的位置,本实验是整个通信实验系统的数字发送端,其原理框图如图 1-1 所示。
中南大学 数字通信原理实验报告
![中南大学 数字通信原理实验报告](https://img.taocdn.com/s3/m/a2aae229312b3169a451a4f6.png)
.数字通信原理实验报告专业班级:指导老师:李敏姓名:学号:实验一数字基带信号学生姓名学号同组人:实验项目数字基带信号√必修□选修□演示性实验□验证性实验√操作性实验□综合性实验实验地点本部实验楼实验仪器台号指导老师李敏实验日期及节次第10周周五7-8节课一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握AMI、HDB3码的编码规则。
3、掌握从HDB3码信号中提取位同步信号的方法。
4、掌握集中插入帧同步码时分复用信号的帧结构特点。
5、了解HDB3(AMI)编译码集成电路CD22103。
二、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。
2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。
3、用示波器观察HDB3、AMI译码输出波形。
三、实验步骤本实验使用数字信源单元和HDB3编译码单元。
1、熟悉数字信源单元和HDB3编译码单元的工作原理。
接好电源线,打开电源开关。
2、用示波器观察数字信源单元上的各种信号波形。
用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察:(1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用开关K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ 码特点。
3、用示波器观察HDB3编译单元的各种波形。
仍用信源单元的FS信号作为示波器的外同步信号。
(1)示波器的两个探头CH1和CH2分别接信源单元的NRZ-OUT和HDB3单元的AMI-HDB3,将信源单元的K1、K2、K3每一位都置1,观察全1码对应的AMI码(开关K4置于左方AMI端)波形和HDB3码(开关K4置于右方HDB3端)波形。
通信原理实验报告实验四-时分复用数字基带通信系统
![通信原理实验报告实验四-时分复用数字基带通信系统](https://img.taocdn.com/s3/m/bd7a50bdd1f34693daef3ea9.png)
实验四时分复用数字基带通信系统电子二班 044 陈增贤一、实验目的1.掌握时分复用数字基带通信系统的基本原理及数字信号传输过程。
2.掌握位同步信号抖动、帧同步信号错位对数字信号传输的影响。
3.掌握位同步信号、帧同步信号在数字分接中的作用。
二、实验内容1.用数字信源模块、数字终端模块、位同步模块及帧同步模块连成一个理想信道时分复用数字基带通信系统,使系统正常工作。
2.观察位同步信号抖动对数字信号传输的影响。
3.观察帧同步信号错位对数字信号传输的影响。
4.用示波器观察分接后的数据信号、用于数据分接的帧同步信号、位同步信号。
三、基本原理本实验要使用数字终端模块。
1. 数字终端模块工作原理:原理框图如图4-1所示,电原理图如图4-2所示(见附录)。
它输入单极性非归零信号、位同步信号和帧同步信号,把两路数据信号从时分复用信号中分离出来,输出两路串行数据信号和两个8位的并行数据信号。
两个并行信号驱动16个发光二极管,左边8个发光二极管显示第一路数据,右边8个发光二极管显示第二路数据,二极管亮状态表示“1”,熄灭状态表示“0”。
两个串行数据信号码速率为数字源输出信号码速率的1/3。
延迟1延迟2整形延迟3FS-INBS-INS-INFD FD-7FD-15FD-8FD-16BD显示串/并变换串/并变换F2÷3并/串变换并/串变换D2B1F1D1SD-DBD显示B2图4-1 数字终端原理方框图延迟1、延迟2、延迟3、整形及÷3等5个单元可使串/并变换器和并/串变换器的输入信号SD 、位同步信号及帧同步信号满足正确的相位关系,如图4-3所示。
移位寄存器40174把FD 延迟7、8、15、16个码元周期,得到FD-7、FD-15、FD-8(即F1)和FD-16(即F2)等4个帧同步信号。
在FD-7及BD 的作用下,U65(4094)将第一路串行信号变成第一路8位并行信号,在FD-15和BD 作用下,U70(4094)将第二路串行信号变成第二路8位并行信号。
实验一-数字基带传输实验-实验总结报告
![实验一-数字基带传输实验-实验总结报告](https://img.taocdn.com/s3/m/35cc6e49a32d7375a5178068.png)
数字基带传输实验总结报告小组成员:所在班级:通信一班指导老师:马丕明目录一、实验目的 (3)二、实验原理 (3)三、实验内容 (4)(一)因果数字升余弦滚降滤波器设计 (4)1. 窗函数法设计非匹配形式的发送滤波器 (4)2. 频率抽样法设计匹配形式的发送滤波器 (6)(二)设计无码间干扰的二进制数字基带传输系统 (8)1、子函数模块 (8)2、无码间干扰的数字二进制基带传输系统的模拟 (11)四、实验总结: (145)一、实验目的1、提高独立学习的能力;2、培养发现问题、解决问题和分析问题的能力;3、学习Matlab 的使用;4、掌握基带数字传输系统的仿真方法;5、熟悉基带传输系统的基本结构;6、掌握带限信道的仿真以及性能分析;7、通过观测眼图和星座图判断信号的传输质量。
二、实验原理图1 基带系统传输模型1、信源信源就是消息的源,本实验中指数字基带信号,信源序列al 采用一个0、1等概率分布的二进制伪随机序列。
信源序列al 经在一比特周期中抽样A 点,即是序列al 每两点之前插A-1个零点,进行抽样,形成发送信号SigWave ,即是发送滤波器模块的输入信号。
2、发送滤波器匹配形式下的发送滤波器SF ,通过窗函数法对模拟升余弦滚降滤波器的时域单位冲激响应hd 进行时间抽样、截断、加窗、向右移位而得;非匹配形式下的发生滤波器SF ,通过频率抽样法对模拟升余弦滚降滤波器的频率响应Hd 进行频率抽样、离散时间傅里叶反变换、向右移位而得。
发送滤波器输出SFO 是由发送滤波器SF 和发送信号SigWave 卷积而得。
3、传输信道本实验中传输信道采用理想信道,即传输信道频率响应函数为1;传输信道输出信号Co 是由发送滤波器输出信号SFO 和加性高斯白噪声GN 叠加而成:Co=SFO+GN 。
4、噪声信道噪声当做加性高斯白噪声,给定标准差调用函数randn 生成高斯分布随机数GN 。
5、接收滤波器匹配形式下,接收滤波器与发送滤波器单位冲激响应幅度相同,角度相反,均为平方根信源发送滤波器信道噪声接收滤波器抽样判决位定时提取输出升余弦滚降滤波器。
《通信原理实验》AMI、HDB3等实验报告
![《通信原理实验》AMI、HDB3等实验报告](https://img.taocdn.com/s3/m/b1c339f5aeaad1f346933f2e.png)
《通信原理》实验报告一、实验目的1、了解几种常用的数字基带信号的特征和作用。
2、掌握AMI码的编译规则。
3、掌握HDB3码的编译规则。
4、了解滤波法位同步在码变换过程中的作用。
二、实验器材1、主控&信号源模块,2号、3号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、AMI编译码实验原理框图2、HDB3编译码实验原理框图四、实验步骤实验项目一AMI编译码(归零码实验)1、用示波器分别观测编码输入的数据TH3和编码输出的数据TH11(AMI输出),观察记录波形,有数字示波器的可以观测编码输出信号频谱,验证AMI编码规则。
时域波形:编码输出信号频谱:注:CH1(上面的波形)为编码输入的数据,CH2(下面的波形)为编码输出的数据。
2、保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP5(AMI-A1),观察基带码元的奇数位的变换波形。
注:CH1(上面的波形)为编码输入的数据,CH2(下面的波形)为AMI-A1。
3、保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP6(AMI-B1),观察基带码元的偶数位的变换波形。
注:CH1(上面的波形)为编码输入的数据,CH2(下面的波形)为AMI-B1。
4、用示波器减法功能观察AMI-A1与AMI-B1相减后的波形情况,并与AMI编码输出波形相比较。
注:CH1(上面的波形)为AMI-A1,CH2(下面的波形)为AMI-B1,中间的波形为AMI-A1与AMI-B1相减后的情况。
5、用示波器对比观测编码输入的数据和译码输出的数据,观察记录AMI译码波形与输入信号波形。
注:CH1(上面的波形)为编码输入的数据,CH2(下面的波形)为译码输出的数据。
思考:译码过后的信号波形与输入信号波形相比延时多少?1个码元6、用示波器分别观测TP9(AMI-A2)和TP11(AMI-B2),从时域或频域角度了解AMI码经电平变换后的波形情况。
通信原理实验一
![通信原理实验一](https://img.taocdn.com/s3/m/91e03dd47f1922791788e80c.png)
中南大学信息科学与工程学院通信原理实验报告学生学院信息科学与工程学院专业班级学号学生姓名指导教师时间实验一数字基带信号一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握AMI、HDB3码的编码规则。
3、掌握从HDB3码信号中提取位同步信号的方法。
4、掌握集中插入帧同步码时分复用信号的帧结构特点。
5、了解HDB3(AMI)编译码集成电路CD22103。
二、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI 码及整流后的HDB3 码。
2、用示波器观察从HDB3 码中和从AMI 码中提取位同步信号的电路中有关波形。
3、用示波器观察HDB3、AMI 译码输出波形。
三、实验步骤本实验使用数字信源单元和HDB3编译码单元。
1、熟悉数字信源单元和HDB3编译码单元的工作原理。
接好电源线,打开电源开关。
2、用示波器观察数字信源单元上的各种信号波形。
用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察:(1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,通过开关K1,K2,K3将数字信源置于01110010 11110000 11110000,理论上的波形应该是如下图1-11:图 1-1 示波器上的理想波形实际在示波器上看到此时示波器中的波形如下图 1-12,对比图1-11可以看到,发光状态是正确的。
图 1-2 代码01110010 11110000 11110000时的位同步信号和NRZ码(2)用开关K1产生代码01110010(1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ 码特点。
图 1-3 代码01110010 00000000 00000000时的位同步信号和NRZ码说明:集中插入法是将标志码组开始位置的群同步码插入一个码组的前边。
数字基带传输系统--通信原理实验报告
![数字基带传输系统--通信原理实验报告](https://img.taocdn.com/s3/m/9098743d856a561253d36f91.png)
实验3 数字基带传输系统一、实验目的1、掌握数字基带传输系统的误码率计算;2、熟悉升余弦传输特性的时域响应特征,观察不同信噪比下的眼图。
二、实验内容1、误码率的计算:画出A/σ和误码率之间的性能曲线;2、眼图的生成①基带信号采用矩形脉冲波形(选做)②基带信号采用滚降频谱特性的波形(必做)3、仿真码间干扰对误码率的影响(选做)三、实验步骤及结果1、误码率的计算10个二进制信息数据,采用双极性码,映射为±A。
随机产生高斯噪声(要求A/σ为0~随机产生612dB),叠加在发送信号上,直接按判决规则进行判决,然后与原始数据进行比较,统计出错的数据量,与发送数据量相除得到误码率。
画出A/σ和误码率之间的性能曲线,并与理论误码率曲线相比较。
(保存为图3-1)注意:信噪比单位为dB,计算噪声功率时需要换算。
Snr_A_sigma = 10.^(Snr_A_sigma_dB/20);1代码:clear all; clc;close all;A = 1;%定义信号幅度N = 10 ^ 6;%数据点数;a=A*sign(randn(1,N));Snr_A_sigma_dB = 0:12;Snr_A_sigma = 10 .^ (Snr_A_sigma_dB/20);sigma = A./Snr_A_sigma;ber = zeros(size(sigma));for n = 1 : length(sigma)rk = a + sigma(n) * randn(1, N);dec_a = sign(rk);ber(n) = length(find(dec_a~=a)) / N;endber_Theory = 1/2* erfc(sqrt(Snr_A_sigma.^2/2));semilogy(Snr_A_sigma_dB, ber, 'b-', Snr_A_sigma_dB, ber_Theory, 'k-*'); grid on;xlabel('A/\sigma'); ylabel('ber');legend('ber', 'ber\_Theory');title(' A/σ和误码率之间的性能曲线');2.绘制的图2、绘制眼图①设二进制数字基带信号{}1,1n a ∈-,波形()1,00,s t T g t ≤<⎧=⎨⎩其他,分别通过带宽为()15/4s B T =和()11/2s B T =两个低通滤波器,画出输出信号的眼图(保存为图3-2),并画出两个滤波器的频率响应。
数字基带信号实验报告
![数字基带信号实验报告](https://img.taocdn.com/s3/m/e7786779b307e87101f69693.png)
竭诚为您提供优质文档/双击可除数字基带信号实验报告篇一:《通信原理》数字基带信号实验报告武夷学院实验报告课程名称:_______________项目名称:_______________姓名:______专业:_______班级:________学号:____同组成员_______1注:1、实验预习部分包括实验环境准备和实验所需知识点准备。
2、若是单人单组实验,同组成员填无。
2注:实验过程记录要包含实验目的、实验原理、实验步骤,页码不够可自行添加。
实验报告成绩(百分制)__________实验指导教师签字:_________3注:1、实验小结应包含实验所需知识点和实验方法的总结,实验心得体会等。
2、分组实验需包含同组讨论内容。
篇二:数字基带信号报告数字基带信号实验20XX年04月01日08:43www.elecfans.co作者:本站用户评论(0)关键字:实验一数字基带信号一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握AmI、hDb3码的编码规则。
3、掌握从hDb3码信号中提取位同步信号的方法。
4、掌握集中插入帧同步码时分复用信号的帧结构特点。
5、了解hDb3(AmI)编译码集成电路cD22103。
二、实验内容1、用示波器观察单极性非归零码(nRZ)、传号交替反转码(AmI)、三阶高密度双极性码(hDb3)、整流后的AmI码及整流后的hDb3码。
2、用示波器观察从hDb3码中和从AmI码中提取位同步信号的电路中有关波形。
3、用示波器观察hDb3、AmI译码输出波形。
三、基本原理本实验使用数字信源模块和hDb3编译码模块。
1、数字信源本模块是整个实验系统的发终端,模块内部只使用+5V电压,其原理方框图如图1-1所示,电原理图如图1-3所示(见附录)。
本单元产生nRZ信号,信号码速率约为170.5Kb,帧结构如图1-2所示。
帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。
通信原理实验报告2
![通信原理实验报告2](https://img.taocdn.com/s3/m/e16b1e6e8f9951e79b89680203d8ce2f00666561.png)
数字基带传输实验报告一、 实验目的1、提高独立学习的能力;2、培养发现问题、解决问题和分析问题的能力;3、学习 Matlab 的使用;4、掌握基带数字传输系统的仿真方法;5、熟悉基带传输系统的基本结构;二、 实验原理从消息传输角度看,该系统包括两个重要的变换,即消息与数字基带信号之间的变换;数字基带信号与信道传输信号之间的变换。
在数字通信中,有些场合可以不经过载波调制和解调过程而让基带信号直接进行传 输。
称为基带传输系统。
与之对应,把包括了载波调制和解调过程的传输系统称为频带传 输系统。
无论是基带传输还是频带传输,基带信号处理是必须的组成部分。
因此掌握数字 基带传输的基本理论十分重要,它在数字通信系统中具有普遍意义。
图 1数字通信系统模型1.带限信道的基带系统模型(连续域分析)x(t) y(t)三、实验内容1、如发送滤波器长度为N=31,时域抽样频率F0 为s 4 /T ,滚降系数分别取为0.1、0.5、1,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。
以此发送滤波器构成最佳基带系统,计算并画出接收滤波器的输出信号波形和整个基带系统的频率特性,计算第一零点带宽和第一旁瓣衰减。
close allN=31;n=-15:15;%抽样点数31Ts=4;for alpha=[0.1,0.5,1];Fs=4/Ts;%抽样频率f=n*Fs;z=(n/Ts)+eps;t1=sin(pi*z)./(pi*z);t2=cos(alpha*pi*z);t3=1-4*alpha*alpha*z.*z;h=t1.*t2./(t3);figure;plot(n,h)gridxlabel('Time');ylabel('Amplitude');%时域作图title('发送滤波器时域响应');tmp=fft(h)/Fs;H(1:(N-1)/2)=tmp((N+3)/2:N);H((N+1)/2+1:N)=tmp(2:(N+1)/2); H((N+1)/2)=tmp(1);figure;plot(f,abs(H));%频域作图gridxlabel('Frequency');ylabel('Amplitude');title('发送滤波器频域响应');db=real(20*log10(H/max(H))) end其结果如下:*注:以下实验因为程序子函数太多,故以.m格式压缩打包发过去。
通信原理实验报告(优秀范文5篇)
![通信原理实验报告(优秀范文5篇)](https://img.taocdn.com/s3/m/7ce325e632d4b14e852458fb770bf78a65293af1.png)
通信原理实验报告(优秀范文5篇)第一篇:通信原理实验报告通信原理实验报告1、实验名称:2、实验目的:3、实验步骤:(详细记录你的实验过程)例如:(1)安装MATLAB6.5软件;(2)学习简单编程,画图plot(x,y)函数等(3)进行抽样定理验证:首先确定余弦波形,设置其幅度?、频率?和相位?等参数,然后画出该波形;进一步,设置采样频率?。
画出抽样后序列;再改变余弦波形的参数和抽样频率的值,改为。
,当抽样频率?>=余弦波形频率2倍时,怎么样?否则的话,怎么样。
具体程序及图形见附录1(或者直接放在这里,写如下。
)(4)通过DSP软件验证抽样定理该软件主要有什么功能,首先点“抽样”,选取各种参数:a, 矩形波,具体参数,出现图形B,余弦波,具体参数,出现图形然后点击“示例”中的。
具体参数,图形。
4、思考题5、实验心得6、附录1有附录1的话有这项,否则无。
第二篇:通信原理实验报告1,必做题目1.1 无线信道特性分析 1.1.1 实验目的1)了解无线信道各种衰落特性;2)掌握各种描述无线信道特性参数的物理意义;3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。
1.1.2 实验内容1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰落信道,观察信号经过衰落前后的星座图,观察信道特性。
仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0-3-6-9]dB,最大多普勒频移为200Hz。
例如信道设置如下图所示:移动通信系统1.1.3 实验作业1)根据信道参数,计算信道相干带宽和相干时间。
fm=200;t=[0 4e-06 8e-06 1.2e-05];p=[10^0 10^-0.3 10^-0.6 10^-0.9];t2=t.^2;E1=sum(p.*t2)/sum(p);E2=sum(p.*t)/sum(p);rms=sq rt(E1-E2.^2);B=1/(2*pi*rms)T=1/fm2)设置较长的仿真时间(例如10秒),运行链路,在运行过程中,观察并分析瑞利信道输出的信道特征图(观察Impulse Response(IR)、Frequency Response(FR)、IR Waterfall、Doppler Spectrum、Scattering Function)。
通信原理实验报告
![通信原理实验报告](https://img.taocdn.com/s3/m/181177e7f605cc1755270722192e453610665b89.png)
实验一基带信号的常见码型变换一、实验目的1.熟悉NRZ,BNRZ,RZ,BRZ,曼彻斯特,CMI,密勒,PST码型变换原理及工作过程。
2.观测数字基带信号的码型变换测量点波形。
二、实验原理在实际的基带传输系统中,传输码的结构应具有以下主要特性:1).相应的基带信号无直流分量,且低频分量少。
2).便于从信号中提取定时信息。
3).信号中高频分量尽量少,以节省传输频带并减少码间串扰。
4).以上特性不受信息源统计特性的影响,即适应信息源的变化。
5).编译码设备要尽可能简单。
1.单极性不归零码(NRZ码)单极性不归零码中,二进制代码“1”用幅度为E的正电平表示,“0”用零电平表示,单极性码中含有直流成分,而且不能直接提取同步信号。
2.双极性不归零码(BNRZ码)二进制代码“1”、“0”分别用幅度相等的正负电平表示,当二进制代码“1”和“0”等概出现时无直流分量。
3.单极性归零码(RZ码)单极性归零码与单极性不归零码的区别是码元宽度小于码元间隔,每个码元脉冲在下一个码元到来之前回到零电平。
单极性码可以直接提取定时信息,仍然含有直流成分。
4.双极性归零码(BRZ码)它是双极性码的归零形式,每个码元脉冲在下一个码元到来之前回到零电平。
5.曼彻斯特码曼彻斯特码又称为数字双相码,它用一个周期的正负对称方波表示“0”,而用其反相波形表示“1”。
编码规则之一是:“0”码用“01”两位码表示,“1”码用“10”两位码表示。
例如:消息代码: 1 1 0 0 1 0 1 1 0…曼彻斯特码:10 10 01 01 10 01 10 10 01…曼彻斯特码只有极性相反的两个电平,因为曼彻斯特码在每个码元中期的中心点都存在电平跳变,所以含有位定时信息,又因为正、负电平各一半,所以无直流分量。
6.CMI码CMI码是传号反转码的简称,与曼彻斯特码类似,也是一种双极性二电平码,其编码规则:“1”码交替的用“11“和”“00”两位码表示;“0”码固定的用“01”两位码表示。
中南大学通信原理实验报告数字基带信号
![中南大学通信原理实验报告数字基带信号](https://img.taocdn.com/s3/m/e90ca70c16fc700abb68fc40.png)
中南大学《通信原理》实验报告专业班级:物联网专业1102班姓名:学号:0909112017实验时间:2013年4月25日第九周周一实验名称:数字基带信号(一)实验目的:1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握AMI、HDB3码的编码规则。
3、掌握从HDB3码信号中提取位同步信号的方法。
4、掌握集中插入帧同步码时分复用信号的帧结构特点。
5、了解HDB3(AMI)编译码集成电路CD22103。
(二)实验内容:1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。
2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。
3、用示波器观察HDB3、AMI译码输出波形。
(三)基本原理:本实验使用数字信源模块和HDB3编译码模块。
1、数字信源本模块是整个实验系统的发终端,模块内部只使用+5V电压,其原理方框图如所示。
本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图所示。
帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。
此NRZ信号为集中插入帧同步码时分复用信号,实验电路中数据码用红色发光二极管指示,帧同步码及无定义位用绿色发光二极管指示。
发光二极管亮状态表示1码,熄状态表示0码。
本模块有以下测试点及输入输出点:∙ CLK 晶振信号测试点∙ BS-OUT 信源位同步信号输出点/测试点(2个)∙ FS 信源帧同步信号输出点/测试点∙ NRZ-OUT(AK) NRZ信号(绝对码)输出点/测试点(4个)图1-1中各单元与电路板上元器件对应关系如下:∙晶振CRY:晶体;U1:反相器7404∙分频器U2:计数器74161;U3:计数器74193;U4:计数器40160 ∙并行码产生器K1、K2、K3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管:左起分别与一帧中的24位代码相对应∙八选一U5、U6、U7:8位数据选择器4512∙三选一U8:8位数据选择器4512∙倒相器U20:非门74HC04∙抽样U9:D触发器74HC742. HDB3编译码原理框图如图所示。
通信原理实验报告小结
![通信原理实验报告小结](https://img.taocdn.com/s3/m/f3db4e76bc64783e0912a21614791711cc797989.png)
一、实验背景与目的通信原理实验是通信工程专业学生学习通信基础知识的重要环节,旨在通过实际操作加深对通信原理的理解,提高学生的实践能力。
本次实验主要针对通信系统中常用的数字基带信号、调制解调技术、信道模型等方面进行实验研究。
二、实验内容及方法1. 数字基带信号实验(1)实验内容:了解几种常用的数字基带信号的特征和作用,如AMI码、HDB3码等。
(2)实验方法:通过MATLAB软件模拟数字基带信号的生成、传输和接收过程,观察信号波形,分析信号特性。
2. 调制解调技术实验(1)实验内容:学习AM、SSB、FM调制与解调技术,掌握调制解调原理。
(2)实验方法:利用SystemView软件模拟调制解调过程,观察调制解调信号波形,分析调制解调效果。
3. 信道模型实验(1)实验内容:学习加性白高斯噪声信道模型,分析信号在信道中的传输特性。
(2)实验方法:通过MATLAB软件生成加性白高斯噪声,模拟信号在信道中的传输过程,观察信号波形和频谱,分析信号传输效果。
4. 码间串扰实验(1)实验内容:研究码间串扰对数字信号传输的影响,掌握眼图分析方法。
(2)实验方法:通过MATLAB软件生成受码间串扰和未受码间串扰影响的数字信号,绘制眼图,分析眼图特性。
5. 双机通信实验(1)实验内容:掌握单片机串行口工作方式,学习双机通信接口电路设计及程序设计。
(2)实验方法:利用单片机实验模块和数码管显示模块,实现双机通信功能,观察通信过程,分析通信效果。
三、实验结果与分析1. 数字基带信号实验通过实验,我们掌握了AMI码、HDB3码等数字基带信号的特征和作用,了解了信号在传输过程中的特性。
2. 调制解调技术实验通过实验,我们熟悉了AM、SSB、FM调制与解调技术,掌握了调制解调原理,提高了信号处理能力。
3. 信道模型实验通过实验,我们学习了加性白高斯噪声信道模型,了解了信号在信道中的传输特性,为后续通信系统设计提供了理论基础。
4. 码间串扰实验通过实验,我们掌握了眼图分析方法,了解了码间串扰对数字信号传输的影响,为通信系统性能优化提供了参考。
《通信原理》数字基带信号实验报告
![《通信原理》数字基带信号实验报告](https://img.taocdn.com/s3/m/8c0401da26fff705cc170a34.png)
二、实验过程记录:
三、实验结果与讨论:
实验报告成绩(百分制)__________实验指导教师签字:_________
专业:_______班级:________学号:____同组成员_______
一、实验预习部分:
本实验使用数字信源模块和HDB3编译码模块。
1、数字信源
本模块是整个实验系统的发终端,模块内部只使用+5V电压,其原理方框图如图1-1所示,电原理图如图1-3所示(见附录)。本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。
2、FS信号、NRZ-OUT信号之间的相位关系如图1-5所示,图中NRZ-OUT的无定义位为0,帧同步码为1110010,数据1为11110000,数据2为00001111。FS信号的低电平、高电平分别为4位和8位数字信号时间,其上升沿比NRZ-OUT码第一位起始时间超前一个码元。
3、AMI码的编码规律是:信息代码1变为带有符号的1码即+1或-1,1的符号交替反转;信息代码0的为0码。AMI码对应的波形是占空比为0.5的双极性归零码,即脉冲宽度τ与码元宽度(码元周期、码元间隔)4个连0信息码用取代节000V或B00V代替,当两个相邻V码中间有奇数个信息1码时取代节为000V,有偶数个信息1码(包括0个信息1码)时取代节为B00V,其它的信息0码仍为0码;信息码的1码变为带有符号的1码即+1或-1;HDB3码中1、B的符号符合交替反转原则,而V的符号破坏这种符号交替反转原则,但相邻V码的符号又是交替反转的;HDB3码是占空比为0.5的双极性归零码。
(完整word版)数字基带传输实验实验报告
![(完整word版)数字基带传输实验实验报告](https://img.taocdn.com/s3/m/eaf754b9a26925c52dc5bf08.png)
实验一数字基带传输实验一、实验目的1提高独立学习的能力;2、 培养发现问题、解决问题和分析问题的能力;3、 学习Matlab 的使用;4、 掌握基带数字传输系统的仿真方法;5、 熟悉基带传输系统的基本结构;6、 掌握带限信道的仿真以及性能分析;7、 通过观测眼图和星座图判断信号的传输质量。
二、实验原理1. 数字通信系统模型数字通信系统模型2 •数字基带系统模型发送滤波器口 f 前俞信道心接受滤56器*'图中各方框功能简述如下: 信道:是允许基带信号通过的媒质, 为均值为零的高斯白噪声。
发送滤波器:用于产生适合信道传输的基带信号波形,若采用匹配滤波器, 则它与接收滤波信源信源编码器信道 编码器数字 调制器数字信源噪声信道信道 译码器数字- 解调器编码信道通常会引起传输波形的失真并且引入噪声, 实验中假设器共同决定传输系统的特性。
接收滤波器:用来接收信号,尽可能滤除信道噪声和其他干扰,使输出波形有利于抽样判决。
若采用非匹配滤波器,则接收滤波器为直通,不影响系统特性。
抽样判决器:在传输特性不理想及噪声背景下,在规定时刻对接收滤波器的输出波形进行抽样判决以恢复或再生基带信号。
位定时提取:用来位定时脉冲依靠同步提取电路从接收信号中提取,其准确与否直接影响判决结果。
传输物理过程简述如下:假设输入符号序列为畑紆,在二进制的情况下,符号.■:的取值为0,1或-1,+1。
为方便分析,我们把这个序列对应的基带信号表示成这个信号是由时间间隔为Tb的单位冲激响应燉:「构成的序列,其每一个懿厂强度则由二决离散域发送信号一一I:.,比特周期,二进制码元周期d〔叹〕=戈曾®哄咲一丛7訂设发送滤波器的传输特性絲敝蠅或伉廳口贝U的何"二爲09評时谢当曲・;•激励发送滤波器时,发送滤波器产生的输出信号为x(0 = d(t) x=略饰逾「課:冷力総=总叫岛欲场強离散域发送滤波器输出:癌礙戦和加綽溢=_ 「- - •- = z. 一 --信道输出信号史匸亠•忒;:}(信道特性为1)离散域信道输出信号或接收滤波器输入信号一一呼;』一心•:>斗疥氏:J険純或喙灣或.血-『」泌门以处加则接收滤波器的输出信号说对「肿"匸心、=:魚-一. .-- --其中.①一匚忌㈡弋门®⑺洱W 离散域接收滤波器的输出信号r (7iT 0) = y(nT D ) * 弘(nT 0)=的蠶:魅树補-曲畤:沁隸吓:辭緒:=:-. ------其中g( 一)=臥心二〕n 船垃J如果位同步理想,则抽样时刻为".■=抽样点数值为_ .=〕一-:判决为 {「一匕J 比较即可得到误码率,分析传输质量。
中南大学通信专业数字信号实验报告
![中南大学通信专业数字信号实验报告](https://img.taocdn.com/s3/m/44790ad24028915f804dc251.png)
中南大学《数字信号》处理实验报告姓名:余启航班级:通信1204班学号:0909123227指导老师:李宏实验一 常见离散时间信号的产生和频谱分析一、 实验目的(1) 熟悉MATLAB 应用环境,常用窗口的功能和使用方法; (2) 加深对常用离散时间信号的理解; (3) 掌握简单的绘图命令;(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号进行频域分析。
二、 实验原理(1) 常用离散时间信号a )单位抽样序列⎩⎨⎧=01)(n δ≠=n n 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ≠=n kn b )单位阶跃序列⎩⎨⎧=01)(n u00<≥n n c )矩形序列 ⎩⎨⎧=01)(n R N 其他10-≤≤N nd )正弦序列)sin()(ϕ+=wn A n xe )实指数序列f )复指数序列()()jw n x n e σ+=(2)离散傅里叶变换:()()n x n a u n =设连续正弦信号()x t 为0()sin()x t A t φ=Ω+这一信号的频率为0f ,角频率为002f πΩ=,信号的周期为00012T f π==Ω。
如果对此连续周期信号()x t 进行抽样,其抽样时间间隔为T ,抽样后信号以()x n 表示,则有0()()sin()t nTx n x t A nT φ===Ω+,如果令w 为数字频率,满足000012s sf w T f f π=Ω=Ω=,其中s f 是抽样重复频率,简称抽样频率。
为了在数字计算机上观察分析各种序列的频域特性,通常对)(jw e X 在[]π2,0上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n), 有∑-=-=1)()(N n n jw jw k ke n x eX其中 1,,1,02-==M k k Mw k ,π通常M 应取得大一些,以便观察谱的细节变化。
中南大学 通信原理实验报告20121212汇总
![中南大学 通信原理实验报告20121212汇总](https://img.taocdn.com/s3/m/cd84c453f12d2af90242e6dd.png)
中南大学通信原理课程设计报告学院:信息科学与工程学院电子信息班级:通信 20121212 学号: 2012121212姓名: 123321 指导老师:肯定是咋们铁道学院的老师了你完成时间: 2012年2月12号 12点12分12秒目录一、《硬件实验》1、实验三《模拟锁相环与载波同步》 (4)2、实验五《数字锁相环与位同步》 (9)3、实验六《帧同步》 (15)4、实验七《时分复用数字基带通信系统》 (18)二、《软件设计实验》1、实验目的 (23)2、实验基本要求 (23)3、实验原理分析 (23)4、仿真程序代码及分析 (26)5、波形图结果显示 (30)6、心得体会 (33)7、参考文献 (33)《一》硬件实验实验三:模拟锁相环与载波同步一、实验目的1. 掌握模拟锁相环的工作原理,以及环路的锁定状态、失锁状态、同步带、捕捉带等基本概念。
2. 掌握用平方环法从2DPSK信号中提取相干载波的原理及模拟锁相环的设计方法。
3. 了解相干载波相位模糊现象产生的原因。
二、实验内容1. 观察模拟锁相环的锁定状态、失锁状态及捕捉过程。
2. 观察环路的捕捉带和同步带。
3. 用平方环法从2DPSK信号中提取载波同步信号,观察相位模糊现象。
三、基本原理通信系统中常用平方环或同相正交环(科斯塔斯环)从2DPSK信号中提取相干载波。
本实验系统的载波同步提取模块用平方环,原理方框图如图3-1所示,电原理图如图3-2所示(见附录)。
模块内部使用+5V、+12V、-12V电压,所需的2DPSK输入信号已在实验电路板上与数字调制单元2DPSK输出信号连在一起。
下面介绍模拟锁相环原理及平方环载波同步原理。
锁相环由鉴相器(PD)、环路滤波器(LF)及压控振荡器(VCO)组成,如图3-3所示。
图3-3 锁相环方框图模拟锁相环中,PD是一个模拟乘法器,LF是一个有源或无源低通滤波器。
锁相环路是一个相位负反馈系统,PD检测ui(t)与uo(t)之间的相位误差并进行运算形成误差电压ud(t),LF用来滤除乘法器输出的高频分量(包括和频及其他的高频噪声)形成控制电压uc(t),在uc(t)的作用下、uo(t)的相位向ui(t)的相位靠近。
通信原理实验讲义
![通信原理实验讲义](https://img.taocdn.com/s3/m/b2b68c9cfd0a79563c1e7299.png)
实验一数字基带信号系统实验一、实验目的1、了解插入帧同步码信号的帧结构特点。
2、了解数字绝对波形输出特点。
3、了解单极性码、归零码、不归零码等基带信号波形特点。
二、实验原理数字信源块是整个实验系统的发终端,模块内部只使用+5V电压,其原理方块图如图1-1所示。
本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。
帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。
此NRZ信号为集中插入帧同步码时分复用信号,实验电路中数据码用红色发光二极管指示,帧同步码及无定义位用绿色发光二极管指示。
发光二极管亮状态表示1码,熄状态表示0码。
图1-1 数字信源方框图图1-2帧结构MAR-OUTFS图1-3 FS、NRZ-OUT波形三、实验内容用示波器观察数字信源中晶振信号试点,信源位同步信号,信源帧同步信号,NRZ信号(绝对码)。
本模块有以下测试点及输入输出点:CLK 晶振信号测试点BS—OUT 信源位同步信号输出点/测试点(2个)FS 信源帧同步信号输出点/测试点NRZ—OUT(AK) NRZ信号(绝对码)输出点/测试点(4个)四、实验步骤本实验使用数字信源单元。
1、熟悉数字信源单元的工作原理,检查直流稳压电源输出正常的+5V,+12V、-12V电压,关直流稳压电源。
将与直流稳压电源相连(若未连接好请通知指导教师)的实验专用的电源四芯插头正确的插入实验板左上角的四芯插座中。
打开直流稳压电源,实验中不再改变电源输出参数。
(以后的实验中接通电源均照此操作!)2、用示波器观察数字信源单元上的各种信号波形。
01110010 11110000 00001111(1.)示波器的两个通道探头分别接信源单元的NRZ—OUT和BS—OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄。
)(2.)用开关K1产生代码X1110010(X为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。
通信原理_数字基带传输实验报告
![通信原理_数字基带传输实验报告](https://img.taocdn.com/s3/m/82256bce2e3f5727a5e96290.png)
基带传输系统实验报告一、实验目的1、提高独立学习的能力;2、培养发现问题、解决问题和分析问题的能力;3、学习matlab的使用;4、掌握基带数字传输系统的仿真方法;5、熟悉基带传输系统的基本结构;6、掌握带限信道的仿真以及性能分析;7、通过观察眼图和星座图判断信号的传输质量。
二、实验原理在数字通信中,有些场合可以不经载波调制和解调过程而直接传输基带信号,这种直接传输基带信号的系统称为基带传输系统。
基带传输系统方框图如下:基带脉冲输入噪声基带传输系统模型如下:各方框的功能如下:(1)信道信号形成器(发送滤波器):产生适合于信道传输的基带信号波形。
因为其输入一般是经过码型编码器产生的传输码,相应的基本波形通常是矩形脉冲,其频谱很宽,不利于传输。
发送滤波器用于压缩输入信号频带,把传输码变换成适宜于信道传输的基带信号波形。
(2)信道:是基带信号传输的媒介,通常为有限信道,如双绞线、同轴电缆等。
信道的传输特性一般不满足无失真传输条件,因此会引起传输波形的失真。
另外信道还会引入噪声n(t),一般认为它是均值为零的高斯白噪声。
信道信号形成器信道接收滤波器抽样判决器同步提取基带脉冲(3)接收滤波器:接受信号,尽可能滤除信道噪声和其他干扰,对信道特性进行均衡,使输出的基带波形有利于抽样判决。
(4)抽样判决器:在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。
(5)定时脉冲和同步提取:用来抽样的位定时脉冲依靠同步提取电路从接收信号中提取。
三、实验内容1采用窗函数法和频率抽样法设计线性相位的升余弦滚讲的基带系统(不调用滤波器设计函数,自己编写程序)设滤波器长度为 N=31,时域抽样频率错误!未找到引用源。
o为 4 /Ts,滚降系数分别取为 0.1、0.5、1,(1)如果采用非匹配滤波器形式设计升余弦滚降的基带系统,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中南大学
《通信原理》
实验报告
专业班级:物联网专业1102班
姓名:
学号:0909112017
实验时间:2013年4月25日第九周周一实验名称:数字基带信号
(一)实验目的:
1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握AMI、HDB3码的编码规则。
3、掌握从HDB3码信号中提取位同步信号的方法。
4、掌握集中插入帧同步码时分复用信号的帧结构特点。
5、了解HDB3(AMI)编译码集成电路CD22103。
(二)实验内容:
1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。
2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。
3、用示波器观察HDB3、AMI译码输出波形。
(三)基本原理:
本实验使用数字信源模块和HDB3编译码模块。
1、数字信源
本模块是整个实验系统的发终端,模块内部只使用+5V电压,其原理方框图如所示。
本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图所示。
帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。
此NRZ信号为集中插入帧同步码时分复用信号,实验电路中数据码用红色发光二极管指示,帧同步码及无定义位用绿色发光二极管指示。
发光二极管亮状态表示1码,熄状态表示0码。
本模块有以下测试点及输入输出点:
∙ CLK 晶振信号测试点
∙ BS-OUT 信源位同步信号输出点/测试点(2个)
∙ FS 信源帧同步信号输出点/测试点
∙ NRZ-OUT(AK) NRZ信号(绝对码)输出点/测试点(4个)
图1-1中各单元与电路板上元器件对应关系如下:
∙晶振CRY:晶体;U1:反相器7404
∙分频器U2:计数器74161;U3:计数器74193;U4:计数器40160 ∙并行码产生器K1、K2、K3:8位手动开关,从左到右依次与帧同步码、数
据1、数据2相对应;发光二极管:左起分别与一帧中的
24位代码相对应
∙八选一U5、U6、U7:8位数据选择器4512
∙三选一U8:8位数据选择器4512
∙倒相器U20:非门74HC04
∙抽样U9:D触发器74HC74
2. HDB3编译码
原理框图如图所示。
本模块内部使用+5V和-5V电压,其中-5V电压由-12V电源经三端稳压器7905变换得到。
本单元有以下信号测试点:
∙ NRZ 译码器输出信号
∙ BS-R 锁相环输出的位同步信号
∙(AMI)HDB3 编码器输出信号
∙ BPF 带通滤波器输出信号
∙ DET (AMI)HDB3整流输出信号
本模块上的开关K4用于选择码型,K4位于左边A(AMI端)选择AMI码,位于右边H (HDB3端)选择HDB3码。
各单元与电路板上元器件的对应关系如下:
∙ HDB3编译码器U10:HDB3编译码集成电路CD22103A
∙单/双极性变换器U11:模拟开关4052
∙双/单极性变换器U12:非门74HC04
∙相加器U17:或门74LS32
∙带通滤波器U13、U14:运放UA741
∙限幅放大器U15:运放LM318
∙锁相环U16:集成锁相环CD4046
(四)实验步骤:
1、熟悉数字信源单元和HDB3编译码单元的工作原理。
接好电源线,打开电源开关。
2、用示波器观察数字信源单元上的各种信号波形。
用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察:
(1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);
(2)用开关K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ
码特点。
3、用示波器观察HDB3编译单元的各种波形。
仍用信源单元的FS信号作为示波器的外同步信号。
(1)示波器的两个探头CH1和CH2分别接信源单元的NRZ-OUT和HDB3单元的AMI-HDB3,将信源单元的K1、K2、K3每一位都置1,观察全1码对应的AMI
码(开关K4置于左方AMI端)波形和HDB3码(开关K4置于右方HDB3端)
波形。
再将K1、K2、K3置为全0,观察全0码对应的AMI码和HDB3码。
观察时应注意AMI、HDB3码的码元都是占空比为0.5的双极性归零矩形脉冲。
编码输出AMI-HDB3比信源输入NRZ-OUT延迟了4个码元。
(AMI)(HDB3)(2)将K1、K2、K3置于0111 0010 0000 1100 0010 0000态,观察并记录对应的AMI 码和HDB3码。
(3)将K1、K2、K3置于任意状态,K4先置左方(AMI)端再置右方(HDB3)端,CH1接信源单元的NRZ-OUT,CH2依次接HDB3单元的DET、BPF、BS-R和NRZ ,观察这些信号波形。
观察时应注意:
DET(AMI)DET(HDB3)
BPF(AMI和HDB3相同)
BS-R(AMI和HDB3相同)
NRZ(AMI和HDB3相同)∙ HDB3单元的NRZ信号(译码输出)滞后于信源模块的NRZ-OUT信号(编码输入)8个码元。
∙ DET是占空比等于0.5的单极性归零码。
∙ BPF信号是一个幅度和周期都不恒定的准正弦信号,BS-R是一个周期基本恒定(等
于一个码元周期)的TTL电平信号。
信源代码连0个数越多,越难于从AMI码中提取位同步信号(或者说要求带通滤波的Q值越高,因而越难于实现),而HDB3码则不存在这种问题。
本实验中若24位信源代码中连零很多时,则难以从AMI码中得到一个符合要求的稳定的位同步信号,因此不能完成正确的译码(由于分离参数的影响,各实验系统的现象可能略有不同。
一般将信源代码置成只有1个“1”码的状态来观察译码输出)。
若24位信源代码全为“0”码,则更不可能从AMI 信号(亦是全0信号)得到正确的位同步信号。
(五)分析讨论实验结果:
(1)不归零码在传输中难以确定一位的结束和另一位的开始,需要用某种方法使发送器和接收器之间进行定时或同步;归零码的脉冲较窄,根据脉冲宽度与传输频带宽度成反比的关系,因而归零码在信道上占用的频带较宽。
归零码中含有位同步信息,在译码时容易提取定时信息。
(2)与信源代码中的“1”码相对应的AMI码及HDB3码不一定相同,因信源代码中的“1”码对应的AMI码“1”、“-1”相间出现。
而HDB3中的“1”、“-1”不但与信源代码中的“1“码有关,而且还与信源代码中的”0“码有关。
(3)工程上,一般将hdb3码数字信号进行整流处理,得到占空比为0.5的单极性归零码。
由于整流后的hdb3码中含有离散谱fs,故可用一选频网络得到频率为fs的正弦波,经整形、限幅、放大处理后即可得到位同步信号。
(4)将HDB3码整流得到的占空比为0.5的单极性归零码中连“0”最多为3,而将AMI码整流后得到的占空比为0.5的单极性归零码中连“0“个数相同。
所以信息代码中连”0“码越长,AMI码对应的单极性归零码中”1“码出现概率越小,fs离散谱强度越小,越南语提取同步信号。
而HDB3码对应的单极性归零码中”1“码出现的概率大,fs离散谱强度大,便于提取同步信号。