氢原子的量子理论作业(含标准答案)

合集下载

大学物理量子力学习题附标准标准答案

大学物理量子力学习题附标准标准答案

一、选择题1.4185:已知一单色光照射在钠表面上,测得光电子地最大动能是1.2 eV ,而钠地红限波长是5400 Å,那么入射光地波长是(A) 5350 Å (B) 5000 Å (C) 4350 Å (D) 3550 Å []2.4244:在均匀磁场B 内放置一极薄地金属片,其红限波长为λ0.今用单色光照射,发现有电子放出,有些放出地电子(质量为m ,电荷地绝对值为e )在垂直于磁场地平面内作半径为R 地圆周运动,那末此照射光光子地能量是:(A) 0λhc (B) 0λhcm eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+[] 3.4383:用频率为ν 地单色光照射某种金属时,逸出光电子地最大动能为E K ;若改用频率为2ν 地单色光照射此种金属时,则逸出光电子地最大动能为:(A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K []4.4737:在康普顿效应实验中,若散射光波长是入射光波长地1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为(A) 2 (B) 3 (C) 4 (D) 5 []5.4190:要使处于基态地氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射地各谱线组成地谱线系)地最长波长地谱线,至少应向基态氢原子提供地能量是(A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV []6.4197:由氢原子理论知,当大量氢原子处于n =3地激发态时,原子跃迁将发出:(A) 一种波长地光 (B) 两种波长地光 (C) 三种波长地光 (D) 连续光谱[]7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 地状态跃迁到上述定态时,所发射地光子地能量为(A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV []8.4750:在气体放电管中,用能量为12.1 eV 地电子去轰击处于基态地氢原子,此时氢原子所能发射地光子地能量只能是(A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV []9.4241:若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 地圆形轨道运动,则α粒子地德布罗意波长是(A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [] 10.4770:如果两种不同质量地粒子,其德布罗意波长相同,则这两种粒子地(A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同[]11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为:a x ax 23cos 1)(π⋅=ψ ( -a ≤x ≤a ),那么粒子在x = 5a /6处出现地概率密度为(A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1[]12.4778:设粒子运动地波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量地精确度最高地波函数是哪个图?[]x (A)x (C)x (B) x(D)13.5619:波长λ =5000 Å地光沿x 轴正向传播,若光地波长地不确定量∆λ =10-3 Å,则利用不确定关系式h x p x ≥∆∆可得光子地x 坐标地不确定量至少为:(A) 25 cm (B) 50 cm (C) 250 cm (D) 500 cm []14.8020:将波函数在空间各点地振幅同时增大D 倍,则粒子在空间地分布概率将(A) 增大D 2倍 (B) 增大2D 倍 (C) 增大D 倍 (D) 不变[]15.4965:下列各组量子数中,哪一组可以描述原子中电子地状态?(A) n = 2,l = 2,m l = 0,21=s m (B) n = 3,l = 1,m l =-1,21-=s m (C) n = 1,l = 2,m l = 1,21=s m (D) n = 1,l = 0,m l = 1,21-=s m []16.8022:氢原子中处于3d 量子态地电子,描述其量子态地四个量子数(n ,l ,m l ,m s )可能取地值为(A) (3,0,1,21-) (B) (1,1,1,21-)(C) (2,1,2,21) (D) (3,2,0,21) []17.4785:在氢原子地K 壳层中,电子可能具有地量子数(n ,l ,m l ,m s )是(A) (1,0,0,21) (B) (1,0,-1,21)(C) (1,1,0,21-) (D) (2,1,0,21-) []18.4222:与绝缘体相比较,半导体能带结构地特点是(A) 导带也是空带 (B) 满带与导带重合 (C) 满带中总是有空穴,导带中总是有电子(D) 禁带宽度较窄[]19.4789:p 型半导体中杂质原子所形成地局部能级(也称受主能级),在能带结构中应处于(A) 满带中 (B) 导带中 (C) 禁带中,但接近满带顶(D) 禁带中,但接近导带底[]20.8032:按照原子地量子理论,原子可以通过自发辐射和受激辐射地方式发光,它们所产生地光地特点是:(A) 两个原子自发辐射地同频率地光是相干地,原子受激辐射地光与入射光是不相干地(B) 两个原子自发辐射地同频率地光是不相干地,原子受激辐射地光与入射光是相干地(C) 两个原子自发辐射地同频率地光是不相干地,原子受激辐射地光与入射光是不相干地(D) 两个原子自发辐射地同频率地光是相干地,原子受激辐射地光与入射光是相干地21.9900:xˆ与x P ˆ地互易关系[x P x ˆ,ˆ]等于 (A) i (B) i -(C)ih (D)ih -[] 22.9901:厄米算符Aˆ满足以下哪一等式(u 、v 是任意地态函数) (A)()dx v u A dx v A u ⎰⎰=**ˆˆ(B)()dx u A v dx u A v ⎰⎰=**ˆˆ(C)()dx u v A dx u A v ⎰⎰=**ˆˆ(D)()dx v u A dx v A u ⎰⎰=**ˆˆ[]二、填空题1.4179:光子波长为λ,则其能量=_____;动量地大小 =______;质量=_______.2.4180:当波长为3000 Å地光照射在某金属表面时,光电子地能量范围从0到4.0×10-19 J.在作上述光电效应实验时遏止电压为 |U a | =________V ;此金属地红限频率ν0 =_________Hz.3.4388:以波长为λ= 0.207 μm 地紫外光照射金属钯表面产生光电效应,已知钯地红限频率ν 0=1.21×1015赫兹,则其遏止电压|U a | =_______________________V.4.4546:若一无线电接收机接收到频率为108 Hz 地电磁波地功率为1微瓦,则每秒接收到地光子数为___________.5.4608:钨地红限波长是230 nm ,用波长为180 nm 地紫外光照射时,从表面逸出地电子地最大动能为_________eV.6.4611:某一波长地X 光经物质散射后,其散射光中包含波长________和波长__________地两种成分,其中___________地散射成分称为康普顿散射.7.4191:在氢原子发射光谱地巴耳末线系中有一频率为6.15×1014 Hz 地谱线,它是氢原子从能级E n =__________eV 跃迁到能级E k =__________eV 而发出地.8.4192:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射地各谱线组成地谱线系)地最短波长地谱线所对应地光子能量为_______________eV ;巴耳末系地最短波长地谱线所对应地光子地能量为___________________eV .9.4200:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射地各谱线组成地谱线系)地最短波长地谱线所对应地光子能量为_______________eV ;巴耳末系地最短波长地谱线所对应地光子地能量为___________________eV .10.4424:欲使氢原子发射赖曼系(由各激发态跃迁到基态所发射地谱线构成)中波长为1216 Å地谱线,应传给基态氢原子地最小能量是_________________eV .11.4754:氢原子地部分能级跃迁示意如图.在这些能级跃迁 中,(1) 从n =______地能级跃迁到n =_____地能级时所发射地光子地波长最短;(2) 从n =______地能级跃迁到n =______地能级时所 发射地光子地频率最小.12.4755:被激发到n =3地状态地氢原子气体发出地辐射中, 有______条可见光谱线和_________条非可见光谱线. 13.4760:当一个质子俘获一个动能E K =13.6 eV 地自由电子组成一个基态氢原子时,所发出地单色光频率是______________.14.4207:令)/(c m h e c =λ(称为电子地康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量).当电子地动能等于它地静止能量时,它地德布罗意波长是λ =______λc .15.4429:在戴维孙——革末电子衍射实验装置中,自热 阴极K 发射出地电子束经U = 500 V 地电势差加速后投射到晶 体上.这电子束地德布罗意波长λ =⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽nm. 16.4629:氢原子地运动速率等于它在300 K 时地方均根速率时,它地德布罗意波长是______.质量为M =1 g ,以速度 =v 1 cm ·s -1运动地小球地德布罗意波长是________.17.4630:在B =1.25×10-2 T 地匀强磁场中沿半径为R =1.66 cm 地圆轨道运动地α粒子地德布罗意波长是___________. 18.4203:设描述微观粒子运动地波函数为),(t r ψ,则*ψψ表示_______________________;),(t r ψ须满足地条件是_____________________;其归一化条件是___________________.19.4632:如果电子被限制在边界x 与x +∆x 之间,∆x =0.5 Å,则电子动量x 分量地不确定量近似地为________________kg ·m /s. n = 1 n = 2 n = 3 n = 4 4754图 U 4429图20.4221:原子内电子地量子态由n 、l 、m l 及m s 四个量子数表征.当n 、l 、m l 一定时,不同地量子态数目为_____________;当n 、l 一定时,不同地量子态数目为_________________;当n 一定时,不同地量子态数目为_______.21.4782:电子地自旋磁量子数m s 只能取______和______两个值.22.4784:根据量子力学理论,氢原子中电子地动量矩为 )1(+=l l L ,当主量子数n =3时,电子动量矩地可能取值为_____________________________.23.4963:原子中电子地主量子数n =2,它可能具有地状态数最多为______个.24.4219:多电子原子中,电子地排列遵循_____________原理和_______________原理.25.4635:泡利不相容原理地内容是________________________________________.26.4787:在主量子数n =2,自旋磁量子数21=s m 地量子态中,能够填充地最大电子数是_____________.27.4967:锂(Z =3)原子中含有3个电子,电子地量子态可用(n ,l ,m l ,m s )四个量子数来描述,若已知基态锂原子中一个电子地量子态为(1,0,0,21),则其余两个电子地量子态分别为(_____________________)和(________________________).28.4969:钴(Z = 27 )有两个电子在4s 态,没有其它n ≥4地电子,则在3d 态地电子可有____________个.29.8025:根据量子力学理论,原子内电子地量子态由(n ,l ,m l ,m s )四个量子数表征.那么,处于基态地氦原子内两个电子地量子态可由______________和______________两组量子数表征.30.4637:右方两图(a)与(b)中,(a)图是____型半导体地能带结构图,(b)图是____型半导体地能带结构图.31.4792:若在四价元素半导体中掺入五价元素原子,则可构成______型半导体,参与导电 地多数载流子是_______. 32.4793:若在四价元素半导体中掺入三价 元素原子,则可构成______型半导体,参与导电 地多数载流子是______.33.4971:在下列给出地各种条件中,哪些是 产生激光地条件,将其标号列下:___________.(1)自发辐射;(2)受激辐射;(3)粒子数反转;(4)三能极系统;(5)谐振腔.34.5244:激光器中光学谐振腔地作用是:(1)_____________________________________;(2)_________________________________;(3)_________________________________________.35.8034:按照原子地量子理论,原子可以通过____________________________两种辐射方式发光,而激光是由__________________方式产生地.36.8035:光和物质相互作用产生受激辐射时,辐射光和照射光具有完全相同地特性,这些特性是指_______________________________________________.37.8036:激光器地基本结构包括三部分,即_____________、___________和_____________.38.写出以下算符表达式:=x pˆ________;=H ˆ________;=y L ˆ________; 39.微观低速地(非相对论性)体系地波函数ψ满足薛定谔方程,其数学表达式为________.40.自旋量子数为______________地粒子称为费米子,自旋量子数为_______________地粒子称为玻色子;________________体系遵循泡利不相容原理.4637图E v e 41.[]x p x ˆˆ,=___________;[]=z y ˆˆ,___________;[]=z x p p ˆˆ,___________; []=z L L ˆ,ˆ2___________;[]=y x p L ˆ,ˆ___________. 42.线性谐振子地能量可取为________________;若32010352103u u u ++=ψ,nu 是谐振子地第n 个能量本征函数,则体系地能量平均值为________________.三、计算题1.4502:功率为P 地点光源,发出波长为λ地单色光,在距光源为d 处,每秒钟落在垂直于光线地单位面积上地光子数为多少?若λ =6630 Å,则光子地质量为多少?2.4431:α粒子在磁感应强度为B = 0.025 T 地均匀磁场中沿半径为R =0.83 cm 地圆形轨道运动.(1) 试计算其德布罗意波长;(2) 若使质量m = 0.1 g 地小球以与α粒子相同地速率运动.则其波长为多少?(α粒子地质量m α =6.64×10-27 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)3.4506:当电子地德布罗意波长与可见光波长( λ =5500 Å)相同时,求它地动能是多少电子伏特?(电子质量m e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s, 1 eV =1.60×10-19J)4.4535:若不考虑相对论效应,则波长为 5500 Å地电子地动能是多少eV ?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)5.4631:假如电子运动速度与光速可以比拟,则当电子地动能等于它静止能量地2倍时,其德布罗意波长为多少?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31kg)6.5248:如图所示,一电子以初速度v 0 = 6.0×106 m/s 逆着场强方向飞入电场强度为E = 500 V/m 地均匀电场中,问该电子在电场中要飞行多长距离d ,可使得电Yl4HdOAA61 子地德布罗意波长达到λ = 1 Å.(飞行过程中,电子地质量认为不变, 即为静止质量m e =9.11×10-31 kg ;基本电荷e =1.60×10-19 C ;普朗克 常量h =6.63×10-34 J ·s).7.4430:已知粒子在无限深势阱中运动,其波函数为)/sin(/2)(a x a x π=ψ(0≤x≤a ),求发现粒子地概率为最大地位置. 8.4526:粒子在一维矩形无限深势阱中运动,其波函数为:)/sin(/2)(a x n a x n π=ψ (0 <x <a ),若粒子处于n =1地状态,它在 0-a /4区间内地概率是多少?提示:C x x x x +-=⎰2sin )4/1(21d sin 29.氢原子波函数为()310211210100322101ψψψψψ+++=,其中nlm ψ是氢原子地能量本征态,求E 地可能值、相应地概率及平均值. 10.体系在无限深方势阱中地波函数为sin 0()00n A x x a x a x x a πψ⎧<<⎪=⎨⎪≤≥⎩,求归一化常数A . 11.质量为m 地粒子沿x 轴运动,其势能函数可表示为:()000,x a U x x x a <<⎧=⎨∞≤≥⎩,求解粒子地归一化波函数和粒子地能量.12.设质量为粒子处在(0,a )内地无限方势阱中,()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=x a x a a x ππψ2cos sin 4,对它地能量进行测量,可能得到地值有哪几个?概率各多少?平均能量是多少?13.谐振子地归一化地波函数:()()()()x cu x u x u x 3202131++=ψ.其中,()x u n 是归一化地谐振子地定态波函数.求:c 和能量地可能取值,以及平均能量E .一、选择题1.4185:D 2.4244:B 3.4383:D 4.4737:D 5.4190:C 6.4197:C 7.4748:A 8.4750:C 9.4241:A 10.4770:A 11.4428:A 12.4778:13.5619:C 14.8020:D 15.4965:B 16.8022:D 17.4785:A 18.4222:D 19.4789:C 20.8032:B 21.9900:A 22.9901:C二、填空题1.4179:λ/hc ----------------1分;λ/h ----------------2分;)/(λc h --------------2分2.4180: 2.5---------------------2分; 4.0×1014-----------2分3.4388: 0.99--------------------3分4.4546: 1.5×1019 ------------3分5.4608: 1.5 --------------------3分6.4611:不变-----------------1分;变长----------------1分;波长变长--------------1分7.4191:-0.85---------------2分;-3.4----------------2分8.4192: 13.6----------------- 2分; 3.4---------------- 2分9.4200: 6----------------------2分; 973----------------2分10.4424: 10.2-------------------3分11.4754: 4 1------------2分; 4 3----------------2分12.4755: 1-----------------------2分; 2----------------2分13.4760: 6.56×1015 Hz-------3分14.4207:3/1----------------3分15.4429: 0.0549----------------3分16.4629: 1.45 Å-----------------2分;6.63×10-19 Å-------------------2分17.4630: 0.1 Å-------------------3分18.4203:粒子在t 时刻在(x ,y ,z )处出现地概率密度-------------2分单值、有限、连续---------------------------------------------1分1d d d 2=⎰⎰⎰z y x ψ----------------------------------------2分19.4632: 1.33×10-23 -----------------------3分20.4221: 2-------------------1分;2×(2l +1)-------------2分;2n 2 --------------2分21.4782:21-------------------2分;21------------------------------2分22.4784: 0, 2, 6-----------------------------各1分23.4963: 8------------------------------------------------ 3分24.4219:泡利不相容---------------2分;能量最小-----------------2分25.4635:一个原子内部不能有两个或两个以上地电子有完全相同地四个量子数(n 、l 、m l 、m s )--------------------------3分26.4787: 4---------------------3分27.4967: 1,0,0,21---------------2分;2,0,0,21 2,0,0,21----------------------2分28.4969: 7----------------------------3分 29.8025: (1,0,0,21)----------2分; (1,0,0,21-)-----------------2分30.4637: n-----------------------2分; p-------------2分31.4792: n-----------------------2分;电子--------2分32.4793: p-----------------------2分;空穴--------2分33.4971: (2)、(3)、(4)、(5)-------3分答对2个1分34.5244:产生与维持光地振荡,使光得到加强---------------------------2分使激光有极好地方向性---------------------------------------------1分使激光地单色性好---------------------------------------------------2分35.8034:自发辐射和受激辐射-----------2分;受激辐射------------2分36.8035:相位、频率、偏振态、传播方向---------------------------------3分37.8036:工作物质、激励能源、光学谐振腔---------------------------各1分38.x i p x ∂∂-= ˆ;U H +∇-=222ˆμ ;)(ˆz x x z i L y ∂∂-∂∂-= 39.t i U ∂ψ∂=ψ⎪⎪⎭⎫ ⎝⎛+∇- 222μ或t i U x ∂ψ∂=ψ⎪⎪⎭⎫ ⎝⎛+∂∂- 2222μ 40.半奇数;整数;费米子41. i ;0;0;0;z pi ˆ 42.ω )21(+=n E n ,n =0,1,2,3……;ω 511三、计算题1.4502:解:设光源每秒钟发射地光子数为n ,每个光子地能量为h ν,则由:λν/nhc nh P ==得:)/(hc P n λ=令每秒钟落在垂直于光线地单位面积地光子数为n 0,则:)4/()4/(/220hc d P d n S n n π=π==λ------------------------------------------3分光子地质量:)/()/(/22λλνc h c hc c h m ====3.33×10-36 kg--------------------2分 2.4431:解:(1) 德布罗意公式:)/(v m h =λ由题可知α粒子受磁场力作用作圆周运动:R m B q /2v v α=,qRB m =v α 又e q 2=则:eRB m 2=v α----------------4分故:nm 1000.1m 1000.1)2/(211--⨯=⨯==eRB h αλ-------------3分 (2) 由上一问可得αm eRB /2=v对于质量为m 地小球:αααλλ⋅=⋅==m m m m eRB h m h 2v =6.64×10-34 m-----------3分3.4506:解:)2/()/()2/(22e e K m h m p E λ==---------------3分 =5.0×10-6 eV--------------------------------------2分4.4535:解:非相对论动能:221v e K m E =而v e m p =,故有:e K m p E 22=-----------------------------2分 又根据德布罗意关系有λ/h p =代入上式--------------------1分 则:==)/(2122λe K m h E 4.98×10-6 eV----------------------2分 5.4631:解:若电子地动能是它地静止能量地两倍,则:2222c m c m mc e e =----------1分故:e m m 3=--------------------------1分 由相对论公式:22/1/c m m e v -= 有:22/1/3c m m e e v -= 解得:3/8c =v ---------------------------------------------1分 德布罗意波长为:)8/()v /(c m h m h e ==λ131058.8-⨯≈m-----------------2分光电子地德布罗意波长为:===v e m h p h λ 1.04×10-9 m =10.4 Å------------------3分6.5248:解:)/(v e m h =λ①---------------------2分ad 2202=-v v ②a m eE e =③----------------------2分由①式:==)/(λe m h v 7.28×106 m/s由③式:==e m eE a /8.78×1013 m/s 2由②式:)2/()(202a d v v -== 0.0968 m = 9.68 cm-----------------------4分 7.4430:解:先求粒子地位置概率密度:)/(sin )/2()(22a x a x π=ψ)]/2cos(1)[2/2(a x a π-=--------------------2分当:1)/2cos(-=πa x 时,2)(x ψ有最大值.在0≤x ≤a 范围内可得π=πa x /2 ∴a x 21=--------------------------------3分 8.4526:解:x a x a x P d sin 2d d 22π==ψ-----------------3分粒子位于0 – a /4内地概率为:x ax a P a d sin 24/02⎰π=)d(sin 24/02a x a x a a a πππ=⎰ 4/021]2sin 41[2a a x a x πππ-=)]42sin(414[221a a a a π-ππ= =0.091----------2分9.解:根据给出地氢原子波函数地表达式,可知能量E 地可能值为:1E 、2E 、3E ,其中:113.6E eV =、2 3.4E eV =-、3 1.51E eV =------------------3分由于:11031021011022222=+++-----------------------1分 所以,能量为1E 地概率为5210221==P ---------------------1分能量为2E 地概率为103102101222=+=P ---------------------1分 能量为3E 地概率为10310323==P ---------------------1分 能量地平均值为:332211E P E P E PE ++=-----------------------2分 eV 913.6-=--------------------1分10.解:由归一化条件,应有1sin 022=⎰xdx a n A a π-----------------------3分 得:a A 2=-----------------------2分11.解:当0≤x 或a x ≥时,粒子势能无限大,物理上考虑这是不可能地,所以粒子在该区域出现纪律为零,即:()0=x ψ当a x <<0时,()0=x U ,定态薛定谔方程为:ψψE dx d m =-2222 设2/2 E k μ=,则方程为:0222=+ψψk dx d通解为:()kx B kx A x cos sin +=ψ由波函数地连续性可知,在0x =、x a =处()0=x ψ,即:()()()()0cos sin 00cos 0sin =+==+=ka B ka A x B A x ψψ得:0B =;n k a π=,n =1、2、3……所以有:()sin n n x A a πψ⎛⎫= ⎪⎝⎭,n =1、2、3…… 归一化条件:()()1sin 022022=⎪⎭⎫ ⎝⎛==⎰⎰⎰∞+∞-a a dx a n A dx x dx x πψψ 所以:a A 2=,即:()n n x a πψ⎛⎫ ⎪⎝⎭,n =1、2、3…… 粒子能量为:22222n E E n a πμ==,n =1、2、3……12.解:()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=a x a x a x a a x a x a x πππππψ2cos sin sin 2cos sin 22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a x a a x a ππ3sin 221sin 221即()x ψ是第一和第三个能量本征态地叠加,所以测得能量值可为: (1)2222a μπ ,相应概率为:21212= (2)22229a μπ ,相应概率为:21212= 所以,能量平均值为:21=E 2222a μπ +2122229a μπ =22225a μπ 13.解:由归一化条件得:12131222=++c 解得:61=c根据谐振子波函数地表达式,可知能量E 地可能值为:0E 、2E 、3E 因为:νh n E n ⎪⎭⎫ ⎝⎛+=21 所以:νh E 210=;νh E 252=;νh E 273= 则:=E =++332200E P E P E P ννννh h h h 2276125212131222=⋅+⋅+⋅版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.ViLRaIt6sk用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.9eK0GsX7H1个人收集整理仅供参考学习Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.naK8ccr8VI转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.B6JgIVV9aoReproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.P2IpeFpap511 / 11。

第二章 玻尔氢原子理论习题

第二章   玻尔氢原子理论习题

第二章 玻尔氢原子理论1.选择题:(1)若氢原子被激发到主量子数为n 的能级,当产生能级跃迁时可能发生的所有谱线总条数应为:A .n-1B .n(n-1)/2C .n(n+1)/2D .n(2)氢原子光谱赖曼系和巴耳末系的系线限波长分别为:A.R/4 和R/9B.R 和R/4C.4/R 和9/RD.1/R 和4/R(3)氢原子赖曼系的线系限波数为R,则氢原子的电离电势为:A .3Rhc/4 B. Rhc C.3Rhc/4e D. Rhc/e(4)氢原子基态的电离电势和第一激发电势分别是:A .13.6V 和10.2V;B –13.6V 和-10.2V; C.13.6V 和3.4V; D. –13.6V 和-3.4V(5)由玻尔氢原子理论得出的第一玻尔半径0a 的数值是:A.5.291010-⨯mB.0.529×10-10mC. 5.29×10-12mD.529×10-12m(6)根据玻尔理论,若将氢原子激发到n=5的状态,则:A.可能出现10条谱线,分别属四个线系B.可能出现9条谱线,分别属3个线系C.可能出现11条谱线,分别属5个线系D.可能出现1条谱线,属赖曼系(7)欲使处于激发态的氢原子发出αH 线,则至少需提供多少能量(eV )?A.13.6B.12.09C.10.2D.3.4(8)氢原子被激发后其电子处在第四轨道上运动,按照玻尔理论在观测时间内最多能看到几条线?A.1B.6C.4D.3(9)氢原子光谱由莱曼、巴耳末、帕邢、布喇开系…组成.为获得红外波段原子发射光谱,则轰击基态氢原子的最小动能为:A .0.66 eV B.12.09eV C.10.2eV D.12.57eV(10)用能量为12.7eV 的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能出现几条光谱线(不考虑自旋);A .3 B.10 C.1 D.4(11)有速度为1.875m/s 106⨯的自由电子被一质子俘获,放出一个光子而形成基态氢原子,则光子的频率(Hz )为:A .3.3⨯1015; B.2.4⨯1015 ; C.5.7⨯1015; D.2.1⨯1016.(12)按照玻尔理论基态氢原子中电子绕核运动的线速度约为光速的:A.1/10倍B.1/100倍 C .1/137倍 D.1/237倍(13)玻尔磁子B μ为多少焦耳/特斯拉?A .0.9271910-⨯ B.0.9272110-⨯ C. 0.9272310-⨯ D .0.9272510-⨯(14)已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子的结构的“正电子素”那么该“正电子素”由第一激发态跃迁时发射光谱线的波长应为:A.3R/8 B.3∞R/4 C.8/3∞R D.4/3∞R∞(15)象μ-子(带有一个单位负电荷)通过物质时,有些在核附近的轨道上将被俘获而形成μ-原子,那么μ-原子基态轨道半径与相应的电子轨道半径之比为(μ-子的质量为m=206m e)A.1/206B.1/(206)2C.206D.2062(16)电子偶素是由电子和正电子组成的原子,基态电离能量为:A.-3.4eVB.+3.4eVC.+6.8eVD.-6.8eV(17)根据玻尔理论可知,氦离子H e+的第一轨道半径是:A.2a B. 40a C. 0a/2 D. 0a/4(18)一次电离的氦离子H e+处于第一激发态(n=2)时电子的轨道半径为:A.0.53⨯10-10mB.1.06⨯10-10mC.2.12⨯10-10mD.0.26⨯10-10m(19)假设氦原子(Z=2)的一个电子已被电离,如果还想把另一个电子电离,若以eV为单位至少需提供的能量为:A.54.4 B.-54.4 C.13.6 D.3.4(20)在H e+离子中基态电子的结合能是:A.27.2eVB.54.4eVC.19.77eVD.24.17eV(21)夫—赫实验的结果表明:A电子自旋的存在;B原子能量量子化C原子具有磁性;D原子角动量量子化(22)夫—赫实验使用的充气三极管是在:A.相对阴极来说板极上加正向电压,栅极上加负电压;B.板极相对栅极是负电压,栅极相对阴极是正电压;C.板极相对栅极是正电压,栅极相对阴极是负电压;D.相对阴极来说板极加负电压,栅极加正电压(23)处于基态的氢原子被能量为12.09eV的光子激发后,其轨道半径增为原来的A.4倍 B.3倍 C.9倍 D.16倍λ=1026Å的光子后电子的轨道磁矩为原来的()(24)氢原子处于基态吸收1倍:A.3; B. 2; C.不变; D.92.简答题:(1)19世纪末经典物理出现哪些无法解决的矛盾?(2)用简要的语言叙述玻尔理论,并根据你的叙述导出氢原子基态能量表达式.(3)写出下列物理量的符号及其推荐值(用国际单位制):真空的光速、普朗克常数、玻尔半径、玻尔磁子、玻尔兹曼常数、万有引力恒量.(4)解释下列概念:光谱项、定态、简并、电子的轨道磁矩、对应原理.(5)简述玻尔对原子结构的理论的贡献和玻尔理论的地位与不足.(6) 波尔理论的核心是什么?其中那些理论对整个微观理论都适用?(7) 为什么通常总把氢原子中电子状态能量作为整个氢原子的状态能量?(8) 对波尔的氢原子在量子态时,势能是负的,且数值大于动能,这意味着什么?当氢原子总能量为正时,又是什么状态?(9)为什么氢原子能级,随着能量的增加,越来越密?(10)分别用入射粒子撞击氢原子和氦粒子,要使它们在量子数n 相同的相邻能级之间激发,问在哪一种情况下,入射粒子必须具有较大的能量?(11)当原子从一种状态跃迁到另一种状态时,下列物理量中那些是守恒的? 总电荷,总电子数,总光子数,原子的能量,总能量,原子的角动量,原子的线动量,总线动量.(12)处于n=3的激发态的氢原子(a)可能产生多少条谱线?(b)能否发射红外线?(c)能否吸收红外线?(13) 有人说:原子辐射跃迁所相应的两个状态能量相差越大,其相应的辐射波长越长,这种说法对不对?(14) 具有磁矩的原子在横向均匀磁场和横向非均匀磁场中运动时有什么不同?(15) 要确定一个原子的状态,需要哪些量子数?3.计算题:(1)单色光照射使处于基态的氢原子激发,受激发的氢原子向低能级跃迁时可能发出10条谱线.问:①入射光的能量为多少?②其中波长最长的一条谱线的波长为多少?(hc=12400eV ·Å)(2)已知一对正负电子绕共同质心转动会形成类似氢原子结构-正电子素.试求:①正电子素处于基态时正负电子间的距离;②n=5时正电子素的电离能(已知玻尔半径0a =0.529Å).(3)不计电子自旋当电子在垂直于均匀磁场B 的平面内运动时,试用玻尔理论求电子动态轨道半径和能级(提示: B v m E e n⋅-=ϕμ221 ; n me 2 =ϕμ n p =ϕ) (4)氢原子巴尔末系的第一条谱线与He +离子毕克林系的第二条谱线(6→4)两者之间的波长差是多少?(R H =1.09678×10-3 Å, R He =1.09722×10-3 Å) (5)设氢原子光谱的巴耳末系的第一条谱线αH 的波长为αλ,第二条谱线βH 的波长为βλ,试证明:帕邢系的第一条谱线的波长为βαβαλλλλλ-=(6) 一个光子电离处于基态的氢原子,被电离的自由电子又被氦原子核俘获,形成处于2=n 能级的氦离子He +,同时放出波长为500nm 的光子,求原入射光子的能量和自由电子的动能,并用能级图表示整个过程.(7) 在天文上可观察到氢原子高激发态之间的跃迁,如108=n 与109=n 之间,请计算此跃迁的波长和频率.(8) He +离子毕克林系的第一条谱线的波长与氢原子的巴耳末系αH 线相近. 为使基态的He +离子激发并发出这条谱线,必须至少用多大的动能的电子去轰击它?(9) 试用光谱的精细结构常数表示处于基态的氢原子中电子的速度、轨道半径、氢原子的电离电势和里德伯常数.(10) 计算氢原子中电子从量子数为n 的状态跃迁到1-n 的状态时所发出谱线的频率.(11) 试估算一次电离的氦离子He +、二次电离的锂离子Li ++的第一玻尔轨道半径、电离电势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。

11-26氢原子的量子理论 第26章-例题

11-26氢原子的量子理论 第26章-例题

例7.多电子原子中,电子的排列遵循( )原理和( ) 原理。 泡利不相容原理和能量最低原理
例8.当氢原子中的电子处在 n 3, l 2, ml 2, m s 1
的状态时,它的轨道角动量为 l ( l 1) 自旋角动量为 1 ( 1 1) 3 2 2 2
例7 试问氢原子处在 n=2 能级时有多少个不同的状 态?在不考虑电子自旋的情况下,对于各个状态,试 按量子数列出它们的波函数。 解: 氢原子的能量本征值 En 只依赖于主量子数 n ; n 确定后角量子数可取 0,1,2,…… (n-1), 共 n个值; 在给定 l 后磁量子数 m 可取 -l, -l+1,…0,…l-1, l, 共(2l+1) 个值; 属任一能级的量子态ψnlm 的数目为 n2。 据题意,当 n=2 时,可能的波函数为
Lz 0, , 2 , 3
200 ,
211,
210 ,
211 .
例8 讨论氢原子的 200 , 210 , 211 , 211四个状态的宇称。 解: nlm 的宇称取决于 (1)
l
l 为偶数时为偶宇称; l 为奇数时为奇宇称。 故 ψ200 有偶宇称; ψ210, ψ211,ψ21-1 有奇宇称。
属n=2能级的量子态 共有4。 据题意,当 n=2 时,可能的波函数为
200 , 211, 210 , 211.
例2:根据量子力学理论,氢原子中电子的角动量在外 磁场方向上的投影为 Lz ml , 当角量子数 l=2时,Lz
的可能取值为何值。 解: 磁量子数取值为 ml l , l 1, 0,, l 1, l
Байду номын сангаас

量子力学经典练习题及答案解析

量子力学经典练习题及答案解析

1.设氢原子处于基态030,1),,(0a e a r a r -=πϕθψ为Bohr 半径,求电子径向概率密度最大的位置(最概然半径)。

解 22)()(r r R r w nl nl ⋅= 23010021)(r e a r w a r ⋅=-π ⎭⎬⎫⎩⎨⎧+⋅-=--0202221203010a r a r re r e a a dr dw π 011203002=⎭⎬⎫⎩⎨⎧+-=-r a re a a r π 由此得0=r , ∞→r , 0a r =2. 验证ϕθϕθψ33sin )(),,(i e r f r =是2ˆL 和zL ˆ的共同本征函数,并指出相应的本征值。

( ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂-=22222sin 1)(sin sin 1ˆϕθθθθθ L )解 ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂-=22222sin 1)(sin sin 1ˆϕθθθθθ L 将2ˆL作用于所给函数上,得 ϕθϕθθθθθ332222sin )(sin 1)(sin sin 1i e r f ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂- ⎥⎦⎤⎢⎣⎡-∂∂-=ϕϕθθθθθθ332332sin )(sin 9cos sin )(sin 3i i e r f e r f ⎥⎦⎤⎢⎣⎡---=ϕϕθθθθθθ33222232sin )(sin 9)sin cos sin 3()(sin 3i i e r f e r f []ϕϕθθθ332232sin )(3sin )1(cos )(9i i e r f e r f +⋅--=ϕϕθθ332332sin )(3sin )(9i i e r f e r f +=ϕθ332sin )(12i e r f =上式满足本征方程ψψ22ˆL L =,可见θϕθψ3sin )(),,(r f r =ϕ3i e 是2ˆL的本征函数,本征值为212 。

又ϕ∂∂=i L z ˆ,将z L ˆ作用于所给函数上,得 ϕϕθθϕ33333sin )(sin )(i i ie r f ie rf i ⋅=∂∂ ϕθ33sin )(3i e r f ⋅=可见满足本征方程ψψz L L =2ˆ,故ϕθϕθψ33sin )(),,(i e r f r =是zL ˆ的本征函数,本征值为 3。

氢原子量子理论

氢原子量子理论

d 2u 2µ Ze2 l(l + 1) − 2 u=0 + 2 E+ 2 dr ℏ r r
于是化成了一维问题, 于是化成了一维问题,势V(r) 称为等效势, 称为等效势,它由离心势和库 仑势两部分组成。 仑势两部分组成。
l(l + 1)ℏ2 Ze2 V(r) = − 2 2µr r
θ r
r
y
1 ∂ 1 ∂2 Ze2 ℏ2 1 ∂ 2 ∂ ∂ ( ) (r )+ (sinθ )+ − ψ− ψ = Eψ r 2µ r 2 ∂r ∂r sinθ ∂θ ∂θ sin2 θ ∂ϕ 2
x
ϕ 球 坐 标
ˆ ℏ2 L2 Ze ∂ 2 ∂ (r )+ − − 2 2µr 2 r ∂r 2µr ∂r
或: 1 ∂ 1 ∂2 ∂ (sinθ ) + 2 ]Y(θ ,ϕ) = λY(θ ,ϕ) −[ 2 sinθ ∂θ ∂θ sin θ ∂φ
为使 Y(θ,ϕ) 在θ 变化的整个区域(0, π)内都是有限的, Y(θ 变化的整个区域(0, π)内都是有限的 内都是有限的, 则必须满足: 则必须满足: λ = ℓ(ℓ + 1), 其中 ℓ = 0, 1, 2, ...
ρ →∞
αeρ / 2 ρ
→∞
ρ →∞

最高幂次项的 νmax = nr

注意 此时多项式最高项 的幂次为 nr+ ℓ + 1
bnr ≠ 0 所以
bnr ≠ 0 于是递推公式改写为 bnr +1 = 0
因为 分子
nr + l + 1− β = 0
量子数 取值

玻尔的原子模型 每课一练(含解析) (38)

玻尔的原子模型 每课一练(含解析) (38)
考点:黑体及其辐射的规律,光电效应的规律,康普顿效应,光子的动量,结合能和比结合能,波尔理论
3.CDE
【解析】
试题分析:玻尔理论认为原子的能量是量子化的,轨道半径也是量子化的,故氢原子在辐射光子的同时,轨道不是连续地减小,故A错误.半衰期是放射性元素的原子核有半数发生衰变时所需要的时间,由原子核本身决定,与原子的物理、化学状态无关,故B错误;核子结合成原子核与原子核分解为核子是逆过程,质量的变化相等,能量变化也相等,故用能量等于氘核结合能的光子照射静止氘核,还要另给它们分离时所需要的足够的动能(光子方向有动量),所以不可能使氘核分解为一个质子和一个中子,故C正确;根据质量数和电荷数守恒,某放射性原子核经过2次α衰变质子数减少4,一次β衰变质子数增加1,故核内质子数减少3个,D正确;能级跃迁时,由于高能级轨道半径较大,速度较小,电势能较大,故氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,同时电子的动能增大,电势能减小,故E正确;故选CDE.
考点:考查了氢原子跃迁
【名师点睛】解决本题的关键知道跃迁种类的计算方法,以及知道能级间跃迁时辐射或吸收的光子能量等于两能级间的能级差,注意电离现象的条件.
2.ABE
【解析】
试题分析:随着温度的升高,黑体的辐射一方面各种波长的辐射强度都有增加,另一方面辐射强度的极大值向波长较短的方向移动,故A正确;根据光电效应方程光电子的最大初动能 ,入射光的频率一定,最大初动能越大,说明金属的逸出功越小,故B正确;在康普顿效应中,当入射光子与晶体中的电子碰撞时,会把一部分动量转移给电子,因此光子的动量变小,根据波长 ,可知散射后光子的波长变长,故C错误;“比结合能越大,原子中核子结合得越牢固,原子核越稳定”,而不是“结合能越大,原子中核子结合得越牢固,原子核越稳定”,故D错误;氢原子的核外电子由较高能级跃迁到较低能级时,轨道半径减小,要释放一定频率的光子,总能量减少,库仑力做正功,电子的动能增大,电势能减小,故E正确。

量子力学:氢原子理论2

量子力学:氢原子理论2

w00
w10
w1±1
§20.8 电子的自旋.泡利原理.原子的壳层结构
一.电子的自旋 电子绕核运动形成电流,因而具有 磁矩,称为轨道磁矩 Pm ,它和轨道角动 量 L 的关系为:
e
L
e Pm L 2m
Pm
因为角动量是量子化的,所以磁矩也是量子化

因为角动量是量子化的,所以磁矩也是量子化的 斯特恩-盖拉赫实验(1921)
nlm(r, , ) Rnl (r)lm ( )m ( ) Rnl (r)Ylm ( , )
其中: Rnl ( r ) 为径向函数; Ylm ( , ) 为球谐函数
简并度:同一个能级所对应的状态(波函数)称为能级 2 的简并度。氢原子,能级仅与n 有关,简并度:( n ) 3、讨论: 波函数(空间)的解为: 这里:
目的是:对于任意给定的E 值,找出满足标准条件的 上述方程的解 ( r , , ) ,在求解过程中自然地得 到 E 0 束缚态 一些量子化条件。
令:
ψ(r,θ,) R(r)Θ(θ)Φ() Y ( , )
代入方程,分离变量
sin 2 θ d 2 dR 2m 2 e2 2 (r ) 2 r sin θ(E ) R dr dr 4πε0 r 1 d dΘ 1 d Φ sin θ ( sin θ ) Θ dθ dθ d 2
ms称为自旋磁量子数, ms : s, s 1,...s 1, s
它只能取两个值:
1 ms 2
1 Sz 2
电子除了轨道运动外,还有自旋运动。 关于原子中各个电子的运动状态,量子力 学给出的一般结论是:电子运动状态由四个量 子数决定; n=1,2,3….它大体上决定了原子中 1)主量子数 n 总结

量子力学作业及参考答案

量子力学作业及参考答案

15-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的m 35.0m μλ=,天狼星的m 29.0m μλ=,试求这些星球的表面温度.解:将这些星球看成绝对黑体,则按维恩位移定律:K m 10897.2,3⋅⨯==-b b T m λ对太阳: K 103.51055.010897.236311⨯=⨯⨯==--mbT λ对北极星:K 103.81035.010897.236322⨯=⨯⨯==--mbT λ对天狼星:K 100.11029.010897.246333⨯=⨯⨯==--mbT λ15-3 从铝中移出一个电子需要4.2 eV 的能量,今有波长为2000οA 的光投射到铝表面.试问:(1)由此发射出来的光电子的最大动能是多少?(2)遏止电势差为多大?(3)铝的截止(红限)波长有多大?解:(1)已知逸出功eV 2.4=A 据光电效应公式221m mv hv =A +则光电子最大动能:A hcA h mv E m -=-==λυ2max k 21eV0.2J 1023.3106.12.41020001031063.6191910834=⨯=⨯⨯-⨯⨯⨯⨯=----m2max k 21)2(mvE eUa==∴遏止电势差 V 0.2106.11023.31919=⨯⨯=--a U(3)红限频率0υ,∴000,λυυcA h ==又∴截止波长 1983401060.12.41031063.6--⨯⨯⨯⨯⨯==Ahc λm 0.296m 1096.27μ=⨯=-15-4 在一定条件下,人眼视网膜能够对5个蓝绿光光子(m 105.0-7⨯=λ)产生光的感觉.此时视网膜上接收到光的能量为多少?如果每秒钟都能吸收5个这样的光子,则到 达眼睛的功率为多大? 解:5个兰绿光子的能量J1099.1100.51031063.65187834---⨯=⨯⨯⨯⨯⨯===λυhcn nh E功率 W 1099.118-⨯==tE15-5 设太阳照射到地球上光的强度为8 J ·s -1·m -2,如果平均波长为5000οA ,则每秒钟落到地面上1m 2的光子数量是多少?若人眼瞳孔直径为3mm ,每秒钟进入人眼的光子数是多少? 解:一个光子能量 λυhch E ==1秒钟落到2m 1地面上的光子数为21198347ms1001.21031063.6105888----⋅⨯=⨯⨯⨯⨯⨯===hcEn λ每秒进入人眼的光子数为11462192s1042.14/10314.31001.24--⨯=⨯⨯⨯⨯==dnN π15-6若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量.解:电子的静止质量S J 1063.6,kg 1011.934310⋅⨯=⨯=--h m 当 20c m h =υ时,则Hz10236.11063.6)103(1011.92034283120⨯=⨯⨯⨯⨯==--hc m υο12A 02.0m 104271.2=⨯==-υλc122831020122sm kg 1073.21031011.9sm kg 1073.2-----⋅⋅⨯=⨯⨯⨯=====⋅⋅⨯==c m cc m c E p cpE hp 或λ15-7 光电效应和康普顿效应都包含了电子和光子的相互作用,试问这两个过程有什么不同? 答:光电效应是指金属中的电子吸收了光子的全部能量而逸出金属表面,是电子处于原子中束缚态时所发生的现象.遵守能量守恒定律.而康普顿效应则是光子与自由电子(或准自由电子)的弹性碰撞,同时遵守能量与动量守恒定律.15-8 在康普顿效应的实验中,若散射光波长是入射光波长的1.2倍,则散射光子的能量ε与反冲电子的动能k E 之比k E /ε等于多少? 解:由 2200mc h c m hv +=+υ)(00202υυυυ-=-=-=h h h cm mcE kυεh =∴5)(00=-=-=υυυυυυεh h E k已知2.10=λλ由2.10=∴=υυλυc2.11=υυ则52.0112.110==-=-υυυ15-10 已知X 光光子的能量为0.60 MeV ,在康普顿散射之后波长变化了20%,求反冲电子的能量.解:已知X 射线的初能量,MeV 6.00=ε又有00,ελλεhchc =∴=经散射后 000020.1020.0λλλλ∆λλ=+=+= 此时能量为 002.112.1ελλε===hc hc反冲电子能量 MeV 10.060.0)2.111(0=⨯-=-=εεE15-11 在康普顿散射中,入射光子的波长为0.030 οA ,反冲电子的速度为0.60c ,求散射光子的波长及散射角. 解:反冲电子的能量增量为202022020225.06.01c m cm cm cm mcE =--=-=∆由能量守恒定律,电子增加的能量等于光子损失的能量, 故有 20025.0c m hchc=-λλ散射光子波长ο121083134103400A043.0m 103.410030.0103101.925.01063.610030.01063.625.0=⨯=⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯=-=------λλλc m h h由康普顿散射公式2sin0243.022sin22200ϕϕλλλ∆⨯==-=cm h可得 2675.00243.02030.0043.02sin2=⨯-=ϕ散射角为 7162'=οϕ15-12 实验发现基态氢原子可吸收能量为12.75eV 的光子. (1)试问氢原子吸收光子后将被激发到哪个能级?(2)受激发的氢原子向低能级跃迁时,可发出哪几条谱线?请将这些跃迁画在能级图上. 解:(1)2eV 6.13eV 85.0eV 75.12eV 6.13n -=-=+-解得 4=n 或者 )111(22n Rhc E -=∆75.12)11.(1362=-=n解出 4=n题15-12图 题15-13图(2)可发出谱线赖曼系3条,巴尔末系2条,帕邢系1条,共计6条.15-13 以动能12.5eV 的电子通过碰撞使氢原子激发时,最高能激发到哪一能级?当回到基态时能产生哪些谱线?解:设氢原子全部吸收eV 5.12能量后,最高能激发到第n 个能级,则]11[6.135.12,eV 6.13],111[2221nRhc nRhc E E n -==-=-即得5.3=n ,只能取整数,∴ 最高激发到3=n ,当然也能激发到2=n 的能级.于是ο322ο222ο771221A 6563536,3653121~:23A 121634,432111~:12A1026m 10026.110097.18989,983111~:13===⎥⎦⎤⎢⎣⎡-=→===⎥⎦⎤⎢⎣⎡-=→=⨯=⨯⨯===⎥⎦⎤⎢⎣⎡-=→-R R R n R R R n RR R n λυλυλυ从从从可以发出以上三条谱线.题15-14图15-14 处于基态的氢原子被外来单色光激发后发出巴尔末线系中只有两条谱线,试求这两 条谱线的波长及外来光的频率.解:巴尔末系是由2>n 的高能级跃迁到2=n 的能级发出的谱线.只有二条谱线说明激发后最高能级是4=n 的激发态.ο1983424ο101983423222324A4872106.1)85.04.3(1031063.6A6573m 1065731060.1)51.14.3(10331063.6e 4.326.13e 51.136.13e 85.046.13=⨯⨯-⨯⨯⨯=-==⨯=⨯⨯-⨯⨯⨯⨯=-=∴-=∴-==-=-=-=-=-=-=-----E E hc E E hcE E hc E E hch VE V E V E a mn mn βλλλλυ基态氢原子吸收一个光子υh 被激发到4=n 的能态 ∴ λυhcE E h =-=14Hz 1008.310626.6106.1)85.06.13(15341914⨯=⨯⨯⨯-=-=--hE E υ15-15 当基态氢原子被12.09eV 的光子激发后,其电子的轨道半径将增加多少倍? 解: eV 09.12]11[6.1321=-=-nE E n 26.1309.126.13n =-51.16.1309.12.1366.132=-=n , 3=n12r n r n =,92=n,19r r n =轨道半径增加到9倍.15-16德布罗意波的波函数与经典波的波函数的本质区别是什么?答:德布罗意波是概率波,波函数不表示实在的物理量在空间的波动,其振幅无实在的物理意义,2φ仅表示粒子某时刻在空间的概率密度.15-17 为使电子的德布罗意波长为1οA ,需要多大的加速电压? 解: ooA 1A 25.12==uλ 25.12=U∴ 加速电压 150=U 伏15-18 具有能量15eV 的光子,被氢原子中处于第一玻尔轨道的电子所吸收,形成一个 光电子.问此光电子远离质子时的速度为多大?它的德布罗意波长是多少?解:使处于基态的电子电离所需能量为eV 6.13,因此,该电子远离质子时的动能为eV 4.16.13152112=-=+==E E mvE k φ它的速度为31191011.9106.14.122--⨯⨯⨯⨯==mE v k -15s m 100.7⋅⨯=其德布罗意波长为:o953134A 10.4m 1004.1100.71011.91063.6=⨯=⨯⨯⨯⨯==---mvh λ15-19 光子与电子的波长都是2.0οA ,它们的动量和总能量各为多少? 解:由德布罗意关系:2mc E =,λhmv p ==波长相同它们的动量相等.1-241034s m kg 103.3100.21063.6⋅⋅⨯=⨯⨯==---λhp光子的能量eV 102.6J 109.9103103.3316824⨯=⨯=⨯⨯⨯====--pc hch λυε电子的总能量 2202)()(c m cp E +=,eV 102.63⨯=cp而 eV 100.51MeV 51.0620⨯==c m∴ cp c m >>2∴ MeV 51.0)()(202202==+=c m c m cp E15-20 已知中子的质量kg 1067.127n -⨯=m ,当中子的动能等于温度300K 的热平衡中子气体的平均动能时,其德布罗意波长为多少? 解:kg 1067.127n -⨯=m ,S J 1063.634⋅⨯=-h ,-123K J 1038.1⋅⨯=-k中子的平均动能 mpKT E k 2232==德布罗意波长 oA 456.13===mkTh phλ15-21 一个质量为m 的粒子,约束在长度为L 的一维线段上.试根据测不准关系估算这个粒子所具有的最小能量的值.解:按测不准关系,h p x x ≥∆∆,x x v m p ∆=∆,则h v x m x ≥∆∆,xm h v x ∆≥∆这粒子最小动能应满足222222min 22)(21)(21mLhxm hxm h m v m E x =∆=∆≥∆=15-22 从某激发能级向基态跃迁而产生的谱线波长为4000οA ,测得谱线宽度为10-4οA ,求该激发能级的平均寿命. 解:光子的能量 λυhch E ==由于激发能级有一定的宽度E ∆,造成谱线也有一定宽度λ∆,两者之间的关系为: λλ∆=∆2hcE由测不准关系,h t E ≥∆⋅∆,平均寿命t ∆=τ,则λλτ∆=∆=∆=c Eh t 2s 103.51010103)104000(81048210----⨯=⨯⨯⨯⨯=15-23 一波长为3000οA 的光子,假定其波长的测量精度为百万分之一,求该光子位置的测不准量.解: 光子λhp =,λλλλ∆=∆-=∆22hhp由测不准关系,光子位置的不准确量为cm 30A 103103000o962=⨯=====-λλ∆λλ∆λ∆∆p h x。

第六节 量子力学对氢原子的描述(原子物理中的)

第六节 量子力学对氢原子的描述(原子物理中的)

Y
Z
对于p态 l 对于 态(l=1,m=0,±1) ± ρy
3 = 3 cos2 θ cos θ ω10 = 4π 4π
2
X
X Y
2
Z
X
Z
ω11 = Y 11
2
3 3 2 iϕ sinθe = sin θ = 8π 8π
2
ρx
Z
X
Y
Z
ω1−1 = Y1−1
2 2 2 0 ∞
π 2π
0 0

Y(θ,ϕ) sin θdθdϕ
2

∫R
0
π
2 nl
(r)r dr =1
2
2Z (n −l −1)! Cnl = − na 2n[(n +l)!]3 0
3
1 2
2 n
l
∫ Θlm(θ) sin θdθ =1
x= r sinθcosϕ θ ϕ
cosθ = z/r θ tgϕ = y/x ϕ r2=x2+y2+z2
将上三式写成球极坐标形式: 将上三式写成球极坐标形式:
ˆ L x = i h (sin ˆ L
y= r sinθsinϕ θ ϕ z= r cosθ θ
ϕ
∂ ∂ + cot θ cos ϕ ) ∂ϕ ∂θ ∂ ∂θ
H χ Hδ
4341 4102
波长埃
巴尔末线系的前4 巴尔末线系的前4条谱线
氢光谱
证明存在能级的实验
原子的线状光谱 夫兰克——赫兹实验 夫兰克——赫兹实验
2)角动量 )
将上式写成分量算符的形式
ˆ = y p − zp = − ih ( y ∂ − z ∂ ) ˆz ˆy Lx ∂y ∂z

量子力学作业参考答案(刘觉平)

量子力学作业参考答案(刘觉平)
同理在本征态 中
因此 = 同理 =
3-4.定义向自旋态 的投影算子为 ,证明:向本征值为 的本征态 和 的投影算子分别为
解:令 , 则 则由 得
1)本征值为1,本征态为


2)本征值为-1,本征态为


习题五
2-7.有限空间平移变换算符为
式中, 为动量算符。
计算 ;期望值 在坐标平移变换下的变化。
(1)解:
得:
而吸收过程中作用距离(即核半径)约为飞米量级,比 小,因此要用量子力学处理。
(2)由
注意到: >>

利用Einstein-de Broglie关系
得:
这比原子半径小的多,因此不需用量子力学处理。
(3)显然子弹不是相对论的,故可利用 。
代入Einstein-de Broglie关系
得: ,这比子弹的运动尺度小的多,不需用量子力学处理。
解:
同取行列式得
det( )=
由于
解之得
9.假设Hilbert空间由厄密算符A的非简并本征态矢 所张成。
a.试证 是零算符。
b.说明算符 的意义。
解:
(1)
(2)由 可知当 , ;
当 , 。由此可知此算符是选出矢量 部分
11.算符 (相应于物理量 )在 和 中的测量值分别为 ,算符 (相应于物理量 )在 和 中的测量值分别为b1和b2,而
习题一
1.计算下列情况的Einstein-de Broglie波长,指出哪种过程要用量子力学处理:
(1)能量为0.025eV的慢中子 被铀吸收;
(2)能量为5MeV的α粒子穿过原子 ;
(3)飞行速度为 质量 为的子弹的运动。

玻尔理论试题

玻尔理论试题

例4、已知氢原子基态的电子轨道半径为r1=0.528×10-10m,基态的能量为E1 =—13.6eV,(静电力恒量k=9。

0×109N·m2/c2,电子电量e=1。

60×10-19c,普朗克恒量h=6.63×10-34J·s,真空中光速C=3。

0×108m/s)(1)求电子在基态轨道上运动时的动能。

(2)有一群氢原子处于量子数n=3的激发态,画一能级图在图上用箭头标明这些氢原子能发出哪几条光谱线。

(3)计算这几条光谱线中波长最短的一条的波长(4)求这三个频率之间的关系和三个波长之间的关系,并比较能级差的大小。

(5)如果用能量为11 eV的外来光去激发处于基态的氢原子,可使氢原子激发到哪一能级上去?(能量为14eV的光呢?)(6)如果用动能为11 eV的外来电子去激发处于基态的氢原子,可使氢原子激发到哪一能级上去?(动能为14eV的电子呢?)提示:(1)电子绕核做匀速圆周运动遵从牛顿定律,向心力是核对电子的库仑力.设电子质量为m,电子在基态轨道上运动的速度为V1,则由牛顿第二定律和库仑定律有:(2),画出n=1,2,3时的能级图如图示。

当氢原子从量子数n=3的能级跃迁到较低能级时,可以得到三条光谱线,如能级图中所示。

(3)上述三条光谱线中,波长最短的光谱线频率最大,光子能量最大,能级差最大,因此发生于n=3的激发态到n=1的基态的跃迁过程中。

n=3时,n=1时E=-13。

6eV,能级差E3-E1=12。

09eV,由频率条件得,则:,代入数据可得1。

03×10-7m的结论。

例2、氢原子的能级如图所示,已知可见的光的光子能量范围约为1。

62eV~3.11eV.下列说法错误的是()A.处于n=3能级的氢原子可以吸收任意频率的紫外线,并发生电离B.大量氢原子从高能级向n=3能级跃迁时,发出的光具有显著的热效应C.大量处于n=4能级的氢原子向低能级跃迁时,可能发出6种不同频率的光D.大量处于n=4是能级的氢原子向低能级跃迁时,可能发出3种不同频率的可见光解析:,处于n=3能级的氢原子只需吸收1.51eV的能量就发生电离,A选项正确;氢原子从高能级向n=3能级跃迁时,发出的光子能量均小于1.51eV,这些光在红外区,具有显著的热效应,B选项正确;大量处于n=4能级的氢原子向低能级跃迁时,可能发出种不同频率的光,C选项正确,D选项错误。

黑龙江省大庆市喇中高考物理复习考题精选124量子论初步

黑龙江省大庆市喇中高考物理复习考题精选124量子论初步

高中物理考题精选〔124〕——量子论初步1、氢原子在基态时轨道半径r1=0.53×10-10 m,能量E1=-13.6 eV.求氢原子处于基态时:(1)电子的动能.(2)原子的电势能.(3)用波长是多少的光照射可使其电离?答案解析:(1)设处于基态的氢原子核外电子速度为v1,那么:k·=,故电子动能Ek1=mv==eV=13.6 eV.(2)E1=Ek1+Ep1,故Ep1=E1-Ek1=-13.6 eV-13.6 eV=-27.2 eV.(3)设用波长λ的光照射可使氢原子电离:=0-E1,λ=-=m=0.914 1×10-7 m.答案:(1)13.6 eV(2)-27.2 eV(3)0.914 1×10-7 m2、氢原子辐射出一个光子后,以下说法正确的选项是 (填正确答案标号)A.电子绕核旋转半径减小B.电子的动能减小C.氢原子的电势能减小D.原子的能级值减小E.电子绕核旋转的周期增大答案ACD3、关于太阳光谱,以下说法正确的选项是〔)B.太阳光谱中的暗线,是太阳光经过太阳大气层时某些特定频率的光被吸收后而产生的C.根据太阳光谱中的暗线,可以分析太阳的物质组成D.根据太阳光谱中的暗线,可以分析地球大气层中含有哪些元素答案AB解:太阳光谱是吸收光谱,其中的暗线,是太阳光经过太阳大气层时某些特定频率的光被吸收后而产生的,说明太阳大气中存在与这些暗线相对应的元素.故AB正确,CD错误;应选:AB4、仔细观察氢原子的光谱,发现它只有几条不连续的亮线,其原因是()C.氢原子有时发光,有时不发光D.氢原子辐射的光子的能量是不连续的,所以对应的光的频率也是不连续的答案D。

氢原子光谱只有几条不连续的亮线,原因是氢原子辐射的光子的能量是不连续的,所以对应的光的频率是不连续的,D正确。

5、以下说法正确的选项是〔〕A.居里夫妇发现了铀和含铀矿物的天然放射现象B.根据玻尔理论可知,氢原子辐射出一个光子后,氢原子的电势能减小,核外电子的运动速度增大C.德布罗意在爱因斯坦光子说的根底上提出物质波的概念,认为一切物体都具有波粒二象性。

量子力学初步作业(含答案解析)

量子力学初步作业(含答案解析)

量子力学初步1. 设描述微观粒子运动的波函数为(),r t ψ,则ψψ*表示______________________________________;(),r t ψ须满足的条件是_______________________________;其归一化条件是_______________________________.2. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将_______________________________. (填入:增大D 2倍、增大2D 倍、增大D 倍或不变)3. 粒子在一维无限深方势阱中运动(势阱宽度为a ),其波函数为()()30x x x a a πψ=<<粒子出现的概率最大的各个位置是x = ____________________.4. 在电子单缝衍射实验中,若缝宽为a =0.1 nm (1 nm = 10-9 m),电子束垂直射在单缝面上,则衍射的电子横向动量的最小不确定量y p ∆= _________N·s.(普朗克常量h =6.63×10-34 J·s)5. 波长λ= 5000 Å的光沿x 轴正向传播,若光的波长的不确定量λ∆= 10-3 Å,则利用不确定关系式x p x h ∆∆≥可得光子的x 坐标的不确定量至少为_________.6. 粒子做一维运动,其波函数为()000xAxe x x x λψ-≥=≤式中λ>0,粒子出现的概率最大的位置为x = _____________.7. 量子力学中的隧道效应是指______________________________________ 这种效应是微观粒子_______________的表现.8. 一维无限深方势阱中,已知势阱宽度为a ,应用测不准关系估计势阱中质量为m 的粒子的零点能量为____________.9. 按照普朗克能量子假说,频率为ν的谐振子的能量只能为_________;而从量子力学得出,谐振子的能量只能为___________.10. 频率为ν的一维线性谐振子的量子力学解,其能量由下式给出:______________________,其中最低的量子态能量为__________,称为“零点能”.11. 根据量子力学,粒子能透入势能大于其总能量的势垒,当势垒加宽时,贯穿系数__________;当势垒变高时,贯穿系数________. (填入:变大、变小或不变)12. 写出以下算符表达式:ˆx p=__________;ˆH =__________;ˆyL =__________. 13. ˆx与ˆx p 的对易关系[]ˆˆ,x x p 等于__________. 14. 试求出一维无限深方势阱中粒子运动的波函数()()sin 1,2,3,n n xx A n a πψ==的归一化形式. 式中a 为势阱宽度.15. 利用不确定关系式x x p h ∆∆≥,估算在直径为d = 10-14 m 的核的质子最小动能的数量级.(质子的质量m =1.67×10-27 kg , 普朗克常量h =6.63×10-34 J·s )16. 已知粒子处于宽度为a 的一维无限深方势阱中运动的波函数为(),1,2,3,n n x x n a πψ==试计算n =1时,在x 1=a /4 → x 2=3a /4 区间找到粒子的概率.17. 一维无限深方势阱中的粒子,其波函数在边界处为零,这种定态物质波相当于两段固定的弦中的驻波,因而势阱的宽度a 必须等于德布罗意波半波长的整数倍。

氢原子的量子理论作业(含标准答案)

氢原子的量子理论作业(含标准答案)

氢原⼦的量⼦理论作业(含标准答案)第26章氢原⼦的量⼦理论习题 (初稿)⼀、填空题1. 氢原⼦的波函数可以写成如下形式(,,)()(,)l l nlm nl lm r R r Y ψθ?θ?=,请给出电⼦出现在~r r dr +球壳内的概率为___________,电⼦出现在(),θ?⽅向⽴体⾓d Ω内的概率为_______________。

2. 泡利不相容原理是指 ______________ ,原⼦核外电⼦排布除遵循泡利不相容原理外,还应遵循的物理规律是 __________ 。

3. 可以⽤⽤ 4 个量⼦数描述原⼦中电⼦的量⼦态,这 4 个量⼦数各称和取值范围怎样分别是:(1) (2) (3) (4) 。

4. 根据量⼦⼒学原理,如果不考虑电⼦⾃旋,对氢原⼦当n 确定后,对应的总量⼦态数⽬为_ _个,当n 和l 确定后,对应的总量⼦态数⽬为__ __个5. 给出以下两种元素的核外电⼦排布规律:钾(Z=19): 铜(Z=29): ___ __6. 设有某原⼦核外的 3d 态电⼦,其可能的量⼦数有个,分别可表⽰为____________________________。

7. 电⼦⾃旋与其轨道运动的相互作⽤是何种性质的作⽤。

8. 类氢离⼦是指___________________,⾥德伯原⼦是指________________。

9. 在主量⼦数为n=2,⾃旋磁量⼦数为s=1/2的量⼦态中,能够填充的最⼤电⼦数是________。

10. 1921年斯特恩和格拉赫实验中发现,⼀束处于s 态的原⼦射线在⾮均匀磁场中分裂为两束,对于这种分裂⽤电⼦轨道运动的⾓动量空间取向量⼦化难于解释,只能⽤_________来解释。

⼆、计算题11. 如果⽤13.0 eV 的电⼦轰击处于基态的氢原⼦,则:(1)氢原⼦能够被激发到的最⾼能级是多少?(2)氢原⼦由上⾯的最⾼能级跃迁到基态发出的光⼦可能波长为多少?(3)如果使处于基态的氢原⼦电离,⾄少要多⼤能量的电⼦轰击氢原⼦?12. 写出磷的电⼦排布,并求每个电⼦的轨道⾓动量。

《大学物理II》作业-No.07量子力学的基本原理及其应用-C-参考答案

《大学物理II》作业-No.07量子力学的基本原理及其应用-C-参考答案

《大学物理II 》作业 No.07 量子力学的基本原理及其应用(C 卷)班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题(8小题)1、下列说法不正确的是 [ B ](A)德布罗意提出了物质波假说; (B)爱因斯坦提出了概率波假说; (C)海森堡提出了不确定关系; (D)波尔提出了互补原理。

解: 《大学物理学》下册第二版(张晓 王莉 主编)160页,玻恩于1926年用概率波的概念来解释微观粒子的波动性与粒子性的关联,所以B 的说法不对。

故选B2.如图所示,一束动量为p 的电子,通过缝宽为a 的狭缝。

在距离狭缝为R 处放置一荧光屏,屏上衍射图样中央最大的宽度d 等于 [ D ](A) 2a 2/R (B) 2ha /p(C) 2ha /(Rp )(D) 2Rh /(ap )解:根据单缝衍射中央明纹线宽度有()222hp Rhd R R ap a aλ=⨯⨯=⨯⨯= 故选D3. 我们不能用经典力学中的轨道运动来描述微观粒子,是因为: [ C ] (1)微观粒子的波粒二象性 (2)微观粒子的位置不能确定(3)微观粒子的动量不能确定 (4)微观粒子的位置和动量不能同时确定 (A) (1)(3) (B )(2)(3) (C)(1)(4) (D)(2)(4) 解:《大学物理学》下册第二版(张晓 王莉 主编)161-162页。

由于微观粒子的波粒二象性,使其运动具有一种不确定性。

不确定关系式 ≥∆⋅∆x p x 表明,微观粒子的位置和动量不能同时确定。

故选C4. 已知粒子在一维矩形无限深势阱中运动,其波函数为:()()2cos 0x x x a aπψ=<<那么粒子在/3x a =处出现的概率密度为[ A ] (A)a 21 (B) a1(C) a21 (D) a1解:任意位置概率密度()2222cos x x a aπψ=,将/3x a =代入,得 ()22221cos 32a x a a aπψ=⋅= 故选A5.锂(Z =3)原子中含有3个电子,电子的量子态可用(n ,l ,m l ,m s )四个量子数来描述,若已知基态锂原子中一个电子的量子态为(1,0,0,21),则其余电子的量子态不可能为[ C ] (A) (1,0,0,21-) (B) (2,0,0,21-)(C) (2,1,1,21)(D) (2,0,0,21)解:根据泡利不相容原理和能量最小原理知,处于基态的锂原子中其余两个电子的量子态分别为 (1,0,0,21-)和 (2,0,0,21)或 (2,0,0,21-), 故选C6.一个光子和一个电子具有同样的波长,关于二者动量的大小比较,有: [ B ] (A) 光子具有较大的动量 (B )他们具有相同的动量 (C )电子具有较大的动量 (D )它们的动量不能确定解:根据德布罗意公式和爱因斯坦光量子理论,知B 正确。

原子量子物理试题及答案

原子量子物理试题及答案

原子量子物理试题及答案一、选择题(每题4分,共40分)1. 量子力学中,波函数的平方代表粒子在空间中的概率密度,以下哪个选项正确描述了波函数的性质?A. 波函数是实数B. 波函数是复数C. 波函数是实数或复数D. 波函数是复数,但概率密度是实数答案:D2. 根据海森堡不确定性原理,以下哪个物理量对的不确定性乘积不可能小于一个常数?A. 位置和动量B. 能量和时间C. 电荷和电流D. 电压和电流答案:A3. 氢原子的能级公式为E_n = -13.6 eV / n^2,其中n是主量子数。

当n=1时,氢原子的能级是多少?A. -13.6 eVB. -3.4 eVC. -6.8 eVD. -27.2 eV答案:A4. 以下哪个选项正确描述了泡利不相容原理?A. 同一原子内,两个电子可以有相同的主量子数和自旋量子数B. 同一原子内,两个电子可以有相同的主量子数和轨道量子数,但自旋量子数必须不同C. 同一原子内,两个电子不能有相同的四个量子数D. 同一原子内,两个电子可以有相同的主量子数和自旋量子数,但轨道量子数必须不同答案:C5. 量子力学中的隧道效应是指粒子能够穿越势垒的现象,以下哪个选项正确描述了隧道效应?A. 只有质量非常小的粒子才能发生隧道效应B. 隧道效应只发生在宏观尺度C. 隧道效应是经典物理学可以解释的现象D. 隧道效应是量子力学特有的现象答案:D6. 以下哪个选项正确描述了电子的自旋?A. 自旋是电子围绕自身轴线的旋转B. 自旋是电子的内禀角动量C. 自旋是电子的轨道角动量D. 自旋是电子的磁矩答案:B7. 以下哪个选项正确描述了光的波粒二象性?A. 光有时表现为波动,有时表现为粒子B. 光同时具有波动性和粒子性C. 光的波动性只在宏观尺度上表现,粒子性只在微观尺度上表现D. 光的波动性和粒子性是相互独立的答案:B8. 根据德布罗意波长公式λ = h/p,以下哪个选项正确描述了波长和动量的关系?A. 动量越大,波长越长B. 动量越大,波长越短C. 动量越小,波长越长D. 动量越小,波长越短答案:B9. 以下哪个选项正确描述了量子纠缠?A. 两个粒子的量子态可以独立描述B. 两个粒子的量子态不能独立描述,必须作为一个整体来描述C. 两个粒子的量子态可以独立描述,但它们之间存在某种联系D. 两个粒子的量子态不能独立描述,但它们之间没有联系答案:B10. 以下哪个选项正确描述了量子力学中的测量问题?A. 测量不会影响量子系统的状态B. 测量会导致量子系统状态的塌缩C. 测量不会改变量子系统的波函数D. 测量会导致量子系统状态的连续变化答案:B二、填空题(每题4分,共20分)11. 量子力学中,波函数的归一化条件是∫|ψ|^2 dτ = ________。

2大学物理量子力学的氢原子理论四个量子数 (1)

2大学物理量子力学的氢原子理论四个量子数 (1)

综上
电子状态:由 n, l, ml , m四s 个量子数决定。
轨道能量:由 n, l两个量子数决定。
(1) 主量子数 n : n =1,2,3,… 决定电子能量的
大小
(2) 角量子数 l : l =0,1,2,…, n-1。决定电子轨道
角动量的大小。
(3) 磁量子数 m:l ml 0 ,1,2, ,l
2
2
采用分离变量法求解,令
(r,,) R(r) ()()
(1)径向波函数方程
1 r2
d dr
(
r2
dR dr
)

2me 2
E

e2
4
0r


l(
l 1)
r2
R

0
(2)轨道角动量波函数方程
1
sin
d
d
(sin
d d
1 2
,
1 2
状态数为14, n大于等于4.
例:试问氢原子处于 n=2 能级有多少个不同的 状态?并列出各个状态的量子数。
解:n=2 时的状态数为 2n2 个8。 l 可能取
值为 0,1两个值。
当 l 0 时, ml 0,
1 ms 2
or
1 ms 2
当 l 1 时,可能有
第六节
量子力学的 氢原子理论
一、氢原子的定态薛定谔方程
势能分布
U (r) e2
4 0 r
属定态问题,符合定态薛定谔方程
h2

2me
2
U (r)


E
球坐标中的拉普拉斯算符:
2

1 r2

H原子量子物理习题

H原子量子物理习题

⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε5.1 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。

解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。

据题意知)()(ˆ0r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 r ze r U 024πε-=)( )(r U 为考虑这种效应后的势能分布,在0r r ≥区域,r Ze r U 024)(πε-= 在0r r <区域,)(r U 可由下式得出, ⎰∞-=r Edr e r U )( ⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,4344102003003303420r r r Ze r r r r Ze r r Ze r E πεπεπππε ⎰⎰∞--=0)(r r r Edr e Edr e r U ⎰⎰∞--=02023002144r r rdr r Zerdr r Ze πεπε )3(84)(822030020022203002r r r Ze r Ze r r r Ze --=---=πεπεπε ⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε 由于0r 很小,所以)(2ˆˆ022)0(r U H H +∇-=<<'μ ,可视为一种微扰,由它引起的一级修正为(基态r a Z e a Z 02/1303)0(1)(-=πψ) ⎰∞'=τψψd H E )0(1*)0(1)1(1ˆ ⎰-+--=0022022203023034]4)3(8[r r a Z dr r e r Ze r r r Ze a Z ππεπεπ ∴0a r <<,故102≈-r a Z e 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第26章 氢原子的量子理论 习题 (初稿)一、填空题1. 氢原子的波函数可以写成如下形式(,,)()(,)l l nlm nl lm r R r Y ψθϕθϕ=,请给出电子出现在~r r dr +球壳内的概率为___________,电子出现在(),θϕ方向立体角d Ω内的概率为_______________。

2. 泡利不相容原理是指 ______________ ,原子核外电子排布除遵循泡利不相容原理外,还应遵循的物理规律是 __________ 。

3. 可以用用 4 个量子数描述原子中电子的量子态,这 4 个量子数各称和取值范围怎样分别是:(1) (2) (3) (4) 。

4. 根据量子力学原理,如果不考虑电子自旋,对氢原子当n 确定后,对应的总量子态数目为_ _个,当n 和l 确定后,对应的总量子态数目为__ __个5. 给出以下两种元素的核外电子排布规律: 钾(Z=19): 铜(Z=29): ___ __6. 设有某原子核外的 3d 态电子,其可能的量子数有 个,分别可表示为____________________________。

7. 电子自旋与其轨道运动的相互作用是何种性质的作用 。

8. 类氢离子是指___________________,里德伯原子是指________________。

9. 在主量子数为n=2,自旋磁量子数为s=1/2的量子态中,能够填充的最大电子数是________。

10. 1921年斯特恩和格拉赫实验中发现,一束处于s 态的原子射线在非均匀磁场中分裂为两束,对于这种分裂用电子轨道运动的角动量空间取向量子化难于解释,只能用_________来解释。

二、计算题11. 如果用13.0 eV 的电子轰击处于基态的氢原子,则: (1)氢原子能够被激发到的最高能级是多少?(2)氢原子由上面的最高能级跃迁到基态发出的光子可能波长为多少? (3)如果使处于基态的氢原子电离,至少要多大能量的电子轰击氢原子?12. 写出磷的电子排布,并求每个电子的轨道角动量。

13. 已知氢原子处于状态()()()()()211021 1 11,,,,22r R r Y R r Y ψθϕθϕθϕ-=-,试求:氢原子能量、角动量平方,及角动量z 分量的可能值?求这些可能值出现的概率和这些力学量的平均值?14. 若氢原子处于基态,求在0r a ≥区域发现电子的概率。

试问:若在半径为0r 的球内发现电子的概率为0.9,则该半径多大?15. 证明:若氢原子处于角动量L =,z L =±h 描写的状态,则在该状态下,在45oθ=和135o θ=发现电子的概率最大。

16. 如果假定电子是直径为15110m d -=⨯的均匀实心球,试利用经典力学估算电子自旋的角动量和电子表面的最大线速度?并根据该结论作出评述。

已知电子的质量是319.10910kg -⨯。

17. 试根据钠黄双线的波长求钠原子3P1/2和3P3/2态的能级差?并估算该能级时价电子所感受到的磁场强度?三、问答题(4道)18. 给出利用量子力学描述氢原子时所得到的三个量子条件?什么是能级简并?19. 电子的自旋有何实验验证?试举例进行说明。

20. 什么是全同粒子?请说明玻色子和费米子的区别?21. 试述基态氢原子中电子的概率分布,何谓电子云?【参考答案】一、填空题1. ()22d ()d nl P r r R r r r =,()2d (,)lm P Y d θθϕΩ=Ω2. 不可能有两个或两个以上的电子处于同一个量子态,能量取最小值原理3. (1)主量子数n ,可取1,2,3,4… (2)角量子数l ,取值范围0~(n -1) (3)磁量子数m ,取值范围-l~+l (4)自旋量子数s ,取值范围+1/2和-1/2 4. n 2, 2l+15. 2262611,2,2,3,3,4s s p s p s 226216101,2,2,3,3,,34s p s s p s d6. 10个, (3,2,0, ±1/2), (3,2, ±1, ±1/2), (3,2, ±2, ±1/2)7. 电磁相互作用8. 原子核外只有一个核外电子的离子,但其核电荷数Z>1 原子中有一个电子被激发到主量子数很高的定态能级 9. n 2=410. 电子自旋的角动量空间取向量子化二、计算题 11. 解:(1)假设轰击电子的能量全部被氢原子吸收,则氢原子激发态的能量为()113.0eV 13.613.0eV 0.6eV E E =+=-+=-。

根据氢原子能级公式()21220014n E e E s a n nπε=-= 将1E 代入可得,4.8n ==≈ 所以轰击电子的能量最多将氢原子激发到n=4的激发态。

(2)氢原子从n=4的激发态向低能级跃迁,可以发出如下六种波长的光子:对于41→的跃迁,()()34871941 6.626103100.975101/16113.6 1.60210hc m E E λ---⨯⨯⨯===⨯--⨯-⨯⨯ 对于42→的跃迁,()()34871942 6.62610310 4.86101/161/413.6 1.60210hc m E E λ---⨯⨯⨯===⨯--⨯-⨯⨯ 对于43→的跃迁,()()34871943 6.6261031018.8101/161/913.6 1.60210hc m E E λ---⨯⨯⨯===⨯--⨯-⨯⨯ 对于31→的跃迁,()()34871931 6.62610310 1.03101/9113.6 1.60210hc m E E λ---⨯⨯⨯===⨯--⨯-⨯⨯ 对于32→的跃迁,()()34871932 6.62610310 6.56101/91/413.6 1.60210hc m E E λ---⨯⨯⨯===⨯--⨯-⨯⨯ 对于21→的跃迁,()()34871921 6.62610310 1.21101/4113.6 1.60210hc m E E λ---⨯⨯⨯===⨯--⨯-⨯⨯ (3)要使基态氢原子电离,至少需要的电子能量为113.6eV E =。

12. 解: P 的原子序数为15,按照能量最低原理和泡利不相容原理,在每个量子态内填充1个电子, 得磷 (P)的电子排布 1s 22s 22p 63s 23p 3。

1s ,2s 和3s 的6个电子0l =0=。

2p 和3p 电子的9个电子1l==,该轨道角动量在z方向的投影可以为0,,m =-h h h 。

13. 解:由题目中波函数可以知道,该氢原子所处的状态是n=2,l=1,m=0与n=2,l=1,m=-1的混合态。

氢原子的能量由主量子数决定,所以该氢原子的能量是n=2级能量1213.6eV 3.4eV 44E E -===-,其概率为1. 氢原子的角动量平方由l 决定,其表达式为()21l l +h ,从而该氢原子的角动量平方为()22212L l l =+=h h ,其概率为1.氢原子的角动量z 分量由m 决定,其表达式为m h,从而其可能取值为:())21220, 1/21/4, 23/4⎧==⎪⎨-==⎪⎩h 概率为P 概率为P 平均值为z 01/43/43/4L =⨯-⨯=-h h 。

14. 解:氢原子处于基态时,电子的径向概率密度为()()022/2/10103/2324r a r a P r R r e e a a --===。

电子处于半径为0r 球内的概率为()()020010002000221exp 2/1r r r P P r dr r a a a ⎛⎫==--++ ⎪⎝⎭⎰。

从而电子处在02r a ≥的概率为1减去电子处在半径为02a 球内的概率,即()020020024004813exp 4/10.24r a a a P a a a a e ≥⎛⎫=-++=≈ ⎪⎝⎭(2) 求解超越方程()20000200221exp 2/10.9r r r a a a ⎛⎫--++= ⎪⎝⎭,可得002.66r a ≈15. 证明:根据题意可知,l=2,m=1,查表可知,波函数对应的球谐函数为:()2,1,cos i Y e ϕθϕθθ±±= 在(),θϕ对应的立体角d Ω发现电子的概率为()()22222,11515,sin cos sin 2832P d Y d d d θθϕθθθππ±Ω=Ω=Ω=Ω 可见,当/4,3/4θππ=时有极大值。

16. 解:电子自旋的角动量的大小为/2L =h , 球体绕其过球心的转轴做定轴转动的转动惯量是2221510J mR md ==, 则其绕轴转动的角速度是22/251/10L J md md ω===h h表面最大的线速度是3411311555 6.62610/27.310m/s 249.10910110v d md ω---⨯⨯====⨯⨯⨯⨯⨯h 讨论:该线速度远远大于光速,说明了该自旋是相对论效应的必然结果。

电子自旋就像是电子质量和电荷一样,是电子的固有属性。

17. 解:钠黄双线是从3P3/2和3P1/2两个能级向3S1/2能级跃迁产生的光谱精细结构,对应的两个波长分别是12589.592nm,588.995nm λλ==,两个能级的产生是由于电子自旋和轨道角动量的耦合,且两个能级分别比原有3P 能级高/低B B μ,能级差为2134892231121116.62610 2.99710588.995589.592103.4410J 2.1510eVB E B hv hc μλλ----⎛⎫===- ⎪⎝⎭⎛⎫=⨯⨯⨯⨯-⨯ ⎪⎝⎭=⨯=⨯V V又242.2710J/T 2B ee m μ-==⨯h从而电子受到的磁场为()22243.441018.6T 229.2710B E B μ--⨯===⨯⨯V 三、问答题18. 氢原子中,电子处在原子核的有心力场内作三维运动,根据求解该薛定谔方程,可以得到只有当满足如下三个量子条件时,方程具有解析解: (1) 氢原子中电子能量是量子化的,对应主量子数n ; (2) 氢原子中电子的角动量是量子化的,对应角量子数l ;(3) 电子角动量在空间给定方向的投影是量子化的,对应磁量子数m 。

能级简并是指对于任意能量E n ,有一个主量子数n ,但(n,l,m )的组合总计有n 2个,相应的有n 2个波函数,它描述了电子处于同一能级E n 时的n 2个不同的量子状态,这些状态具有相同的能量E n ,这种情况称为能级的简并。

19. 案例一:反常塞曼效应:银原子束被不均匀磁场分裂成两束。

案例二:碱金属原子光谱中的双线精细结构。

相关文档
最新文档