【典型题】数学高考一模试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【典型题】数学高考一模试卷及答案
一、选择题
1.已知回归直线方程中斜率的估计值为1.23,样本点的中心()4,5,则回归直线方程为( )
A . 1.2308ˆ.0y
x =+ B .0.0813ˆ.2y
x =+ C . 1.234ˆy
x =+ D . 1.235ˆy
x =+ 2.()22
x x e e f x x x --=+-的部分图象大致是( )
A .
B .
C .
D .
3.已知2a i
b i i
+=+ ,,a b ∈R ,其中i 为虚数单位,则+a b =( ) A .-1
B .1
C .2
D .3
4.设集合(){}
2log 10M x x =-<,集合{
}
2N x x =≥-,则M N ⋃=( ) A .{}
22x x -≤<
B .{}
2x x ≥-
C .{}2x x <
D .{}
12x x ≤<
5.如图所示的组合体,其结构特征是( )
A .由两个圆锥组合成的
B .由两个圆柱组合成的
C .由一个棱锥和一个棱柱组合成的
D .由一个圆锥和一个圆柱组合成的
6.若以连续掷两颗骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 落在圆
229x y +=内的概率为( )
A .
536
B .
29
C .
16
D .
19
7.如果
4
2
π
π
α<<
,那么下列不等式成立的是( )
A .sin cos tan ααα<<
B .tan sin cos ααα<<
C .cos sin tan ααα<<
D .cos tan sin ααα<<
8.一动圆的圆心在抛物线2
8y x =上,且动圆恒与直线20x +=相切,则此动圆必过定点( ) A .(4,0)
B .(2,0)
C .(0,2)
D .(0,0)
9.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有( ) A .20种
B .30种
C .40种
D .60种
10.一个几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是一个等腰直角三角形,则该几何体的外接球的表面积为( )
A .
43
π B .
83
π C .
163
π
D .
203
π
11.已知函数()3sin 2cos 2[0,]2
f x x x m π
=+-在上有两个零点,则m 的取值范围是
A .(1,2)
B .[1,2)
C .(1,2]
D .[l,2] 12.若实数满足约束条件
,则的最大值是( )
A .
B .1
C .10
D .12
二、填空题
13.i 是虚数单位,若复数()()12i a i -+是纯虚数,则实数a 的值为 .
14.在ABC 中,60A =︒,1b =3sin sin sin a b c
A B C
________.
15.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,3c =,2C B =,则
ABC 的面积为______.
16.已知函数sin(2)()22y x ϕϕππ
=+-<<的图象关于直线3
x π=对称,则ϕ的值是________.
17.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则
a =__________.
18.设复数1(z i i =--虚数单位),z 的共轭复数为z ,则()1z z -⋅=________. 19.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________. 20.设函数2
1()ln 2
f x x ax bx =--,若1x =是()f x 的极大值点,则a 取值范围为_______________.
三、解答题
21.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照
分成9组,制成了如图所示的频率分布直方图.
(1)求直方图的的值;
(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月用水量的中位数.
22.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.
()1设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; ()2设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期
望.
23.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.
(I )求红队至少两名队员获胜的概率;
(II )用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ. 24.已知函数1(1)f x m x x =---+. (1)当5m =时,求不等式()2f x >的解集;