第五章 对流传热的理论基础
V4-第五章-对流传热的理论基础-2014
单位时间热对流传递到微元体的净热量: 1 + 2
t t Q对流 c p u v dxdy y x
Q导热 + Q对流 = U热力学能
单位时间导入导出的净热量: 单位时间热力学能的增量:
2t 2t Q导热 2 dxdy+ 2 dxdy x y
t y
y 0
h
t
t y
y 0
λ:流体导热系数; ∂t/∂y: 贴壁流体层的温度梯度 注意与导热问题第三类边界条件的区别
例5-1: 热边界层中特定位置x处的温度分布由下式给出 , t ( y) A By Cy 2 其中 A,B,C为常数。试求相应的局部换热系数hx的表达式。 分析:计算hx的公式主要有:对流换热微分方程式和努塞尔数准则。根据 本例条件,应该采用对流换热微分方程式计算。 解:
惯性力 体积力 压力梯度 粘性力
能量守恒方程:热力学第一定律 Q=∆E+W
[导入与导出的净热量] + [热对流传递的净热量] + [内热源发热量]
= [总能量的增量] + [对外膨胀功]
Q — Q导热 Q对流 Q内热源
E — U 热力学能 U K(动能)
假设: 无内热源,低速流动,流体不对外作功
1. 流动边界层及其厚度的定义
普朗特 实验发现:流体近壁面流动时基于粘性力的速度梯度 主要存在于近壁面的薄层,主流区速度梯度很小。
yx
du dy
速度边界层的定义 固壁表面附近流体速度剧烈变化的薄层称为速度边界 层 ,速度边界层外的主流区速度梯度视为零。
Ludwig Prandtl 1875-1953
Q导热 + Q对流 = U热力学能
对流传热的理论基础与工程计算
力大小 ❖ 体积热容越大,表明单位体积流体携带并转移
热量的能力越强
❖ 水和空气冷却能力的对比 ❖ ——常温下:水的体积热容量约等于4175kJ
/(m3·℃),空气仅为1.21 kJ/(m3·℃),两者 差数千倍! ❖ ——一般用水作为冷却介质
❖ (2)导热系数 ❖ 对流换热过程中也包含有流体导热的作用 ❖ 流体导热系数的大小会直接影响流体内部的热
量传递过程和温度分布状态 ❖ 特别是对紧贴固体壁面的那部分流体来说,导
热系数更是起着关键的作用
❖ 紧贴固体壁面的流体相对于壁面来说是静止的 ❖ 显然,导热系数越大,对流换热过程越强烈
❖ 仍以水和空气作比较,常温下水的导热系数比 空气高大约二十几倍
为Re
Re ulc ulc
❖ 确定流态的实验(雷诺试验)
❖ 层流—流体只沿着与流道轴心平行的流线流动 ,或者说在轴线或沿表面方向上作规则的缓慢 分层运动,仅有非常微弱的横向(指和流速垂 直的方向)混合
❖ 湍流—流线处于不规则的状态,除了存在纵向 (流动方向)速度外,在流动截面上也存在横 向速度。流体内部存在强烈的涡旋运动,处于 充分的混合算
❖ 热对流——流体(气体或液体)中温度不同各 部分发生相互混合的宏观运动引起的热量传递 现象,以流体整体作为研究对象
❖ 热对流的机理 ❖ ——(1)流体分子间微观的导热作用 ❖ ——(2)流体微团间宏观的对流作用
❖ 对流传热——相对运动的流体与其温度不同的 壁面接触时,流体与壁面之间的热量传递过程
❖ 粘度越大的流体,分子间的约束力就越强,相同流速 下越不容易发展成湍流状态
❖ 高粘度的油类较多地处于层流状态,表面传热系数一 般比较小
《传热学》第5章_对流传热的理论基础分析
动量守恒定律
能量守恒定律
t t t 2t 2t u v 2 2 x y c p x y
12
第5章 对流传热的理论基础
2. 定解条件 (1)规定边界上流体的温度分布(第一类边界条件)
(2)给定边界上加热或冷却流体的热流密度(第二类边界条件)
1
第5章 对流传热的理论基础
5.1 对流传热概说
5.1.1 对流传热的影响因素
影响流动的因素和影响流体中热量传递的因素包括:
1. 流体流动的成因:强制对流or自然对流 2. 流体有无相变:流体显热or相变热
3. 流体的流动状态:层流or湍流,后者较大
4. 换热表面的几何因素:形状、大小、相对位置、换热表面状态 5. 流体的物理性质:密度、粘度、导热系数等等
(2) 稳态的对流问题,非稳态项消失,公式(5-6a)可以改写为:
2t 2t 对流项为速度矢量与温度梯度的点积 c p U gradt x 2 y 2 (3) 如果流体中有内热源,那么直接在(5-6)右端添加内热源项:
2 2 2 u v u v x, y 2 y y x x
第5章 对流传热的理论基础
复习:
对流传热:流体经过固体表面时流体与固体间的热量交换。
对流传热的表达形式——牛顿冷却公式:
Ahtm
t m 是流体与固体表面间的平均温差,总取正值。
关键点:表面传热系数h的定义式,没有揭示表面传热系数与影响它的 各物理量之间的内在联系。 主要内容:(1) 对流传热过程的物理本质 (2) 对流传热的数学描述方法 (3) 分析解的应用 关键点:(1) 掌握各种数学表达式所反映的物理意义 (2) 理解对流传热过程的物理本质
第五章 对流换热概述
在x方向上流入的净热量
2t 2 dxdy y
u t ucptdy c p u dx t dx dy x x u t u t ucp tdy c p dy ut tdx udx dxdx x x x x u t u t c p t dxdy c p u dxdy c p dxdxdy x x x x
二、对流传热的基本公式 ( h 的确定方式)
q ht
W m2 Leabharlann qA hAt无滑移边界条件
W
t A y
y 0
令上两式相等则有
t Ah t A y
t h t y
y 0
则
y 0
§5-2
一、假设条件
对流换热问题的数学描述
为简化分析,对于常见影响对流换热问题的主要因素,做如 下假设: (1) 流动是二维的; (2) 流体为不可压缩的牛顿流体; (3) 流体物性为常数,无内热源; (4) 流速不高,忽略粘性耗散(摩擦损失) ; (5) 流体为连续性介质
v ~ 01 y
导数的数量级由因变量与自变量的数量级确定,所以
u ~ 01 x
a~02 的数量级为1,
这样可以对微分方程组进行简化(数量级一致)
u v 0 x y
1 1
2u 2u u u p u v 2 x y x x y 2
§5-3 边界层分析及边界层微分方程组
一.边界层的概念
1. 流动(速度)边界层: 靠近壁面处流体速度发生显著变化的薄层 边界层的厚度(boundary layer thickness): 达到主流速度的99%处至固体壁面的垂直距离
第5章对流传热的理论基础资料
由于粘性作用,流体流速在靠近壁面处随离壁面的距离的缩短而逐渐 降低;在贴壁处被滞止,处于无滑移状态。
从 y = 0、u = 0 开始,u 随着 y 方向离壁面距离的增加而迅速增ห้องสมุดไป่ตู้大;经过厚度为 的薄层,u 接近主流速度 u
体物性为常数、无内热源;(4)粘性耗散产生的耗散热(高速气
体的流动除外)可以忽略不计。
2.微元体能量收支平衡的分析
二维、常物性、无内热源的能量微分方程:
c
p
(
t
u
t x
v t ) y
( 2t
x 2
+ 2t ) y 2
扩散项:导热引起的扩散作用
非稳态项:控制 对流项:流体流进与流出控制
容积中,流体温 容积净带走的热量
第5章 对流传热的理论基础
5.1 对流传热概说 5.2 对流传热问题的数学描写 5.3 边界层型对流传热问题的数学描写 5.4 流体外掠平板传热层流分析解及比拟理论
第5章 对流传热的理论基础
1
5.1.1 对流传热的影响因素 对流换热是流体的导热和对流两种基本传热方式共同作用的结果。
其影响因素主要有以下五个方面:(1)流体流动的起因; (2)流体有无相 变;(3)流体的 流动状态; (4)换热表面的几何因素; (5)流体的热物理性质。
那么,如何从流体中的温度分布来进一步得到表面传热系数呢? 表面传热系数h与流体温度场间的关系:
第5章 对流传热的理论基础
4
当粘性流体在壁面上流动时,由于粘性的作用,在靠近壁面的地方 流速逐渐减小,而在贴壁处流体将被滞止而处于无滑移状态。
《传热学》课程教学大纲-蔡琦琳
《传热学》课程教学大纲一、课程基本信息二、课程目标(-)总体目标:《传热学》是研究由温差引起的热能传递规律的科学,是建筑环境与能源应用工程专业的一门基础课程和学位课程。
在制冷、热能动力、机械制造、航空航天、化工、材料加工、冶金、电子与电气和建筑工程等生产技术领域中存在大量的传热问题,课程旨在使学生掌握传热的基本概念、基本原理和计算方法,使学生对热量传递这一普遍存在的现象有理性的认识,并能熟练运用基础知识来思考、分析和解决实际传热问题。
(二)课程目标:本课程旨在使学生掌握热量传递的三种基本方式及其物理机制,掌握传热基础理论与计算方法;掌握传热学的基本实验,具备分析工程传热问题的能力,能够解决增强传热、削弱传热和温度控制等工程传热问题;了解传热学的前沿知识及其在科学技术领域的应用,培养学生分析问题和解决问题的能力,以及团队合作意识。
课程目标1:系统深入学习,掌握传热基础理论与计算方法。
1.1 掌握传热的基本概念、理论、机理及影响因素;1.2 掌握热传导、热对流和热辐射三种传热模式的基本公式,能够进行各种工况下传热量的计算,并能对工程传热问题进行描述和分析。
课程目标2:掌握传热实验,应用传热学知识,解决工程传热问题。
2.1 掌握传热学中的实验研究方法,使学生对热量传递这一普遍存在的现象有理性的认识。
2.2 根据所学传热理论和实验知识,熟练掌握增强或削弱热能传递过程的方法,能够在工程应用中对热能有效利用、热力设备效率的提高、节能降耗技术等问题从传热学角度进行思考、分析和解决问题。
课程目标3:培养学生的自主学习意识、团队合作能力、口头和书面表达能力,探索传热学前沿科学知识。
3.1 通过课堂分组讨论等方式培养团队合作意识、沟通交流能力和对工程问题进行清清晰表达的能力;3.2 通过课外文献调研并撰写课程报告,提升文献查阅能力和书面表达能力。
(H)课程目标与毕业要求、课程内容的对应关系三、教学内容第一章结论1 .教学目标(1)了解传热的定义;了解传热学的研究内容及其在生活和工程中的应用;(2)掌握热量传递的三种基本方式及其物理机理;(3)掌握傅里叶定律、牛顿冷却定律及斯忒藩定律,并能应用这三个定律分析基础传热问题;(4)了解传热过程的特点以及电.热模拟的作用和意义;(5)掌握热流密度、热阻和综合传热系数的计算方法。
传热学5
分析 解法
采用数学分析求解的方法。
传热学 Heat Transfer
2.如何从获得的温度场来计算h 无论是分析解法还是数值法首先获得都是温度场, 如何由T→h? t q 由傅里叶定律 w y
y 0
牛顿冷却公式
q w qc
qc h t w t
y
主流区
u∞
d 5 .0 离开前缘x处的边界层厚度 x Re x
局部表面传热系数
1/ 2 1/ 3 hx 0.332 Re x Pr x hx x 0.332 Re x1/ 2 Pr 1/ 3 Nu x 努塞尔数
(特征数方程,关联式)
u x 雷诺数: Re x 5 Re Re 5 10 关联式适用范围: c
25/42
传热学 Heat Transfer
1.数量级分析方法的基本思想 分析比较方程中等号两侧各项的数量级大小,在 同一侧内保留数量级大的项而舍去数量级小的项 2.实施方法 ①列出所研究问题中几何变量及物理变量的数量 级的大小,一般以1表示数量级大的物理量的量级。 以Δ表示小的数量级 ②导数中导数的数量级由自变量及因变量的数量 级代入获得
2t t t 2t c p u x v y x 2 y 2
28/42
传热学 Heat Transfer
5.4流体外掠平板传热层流 分析解及比拟理论
29/42
传热学 Heat Transfer
一、外掠等温平板层流流动下对流换热问 题的分析解
u v 0 x y
u u u p 2u 2u ( u v ) Fx ( 2 2 ) x y x x y v v v p 2v 2v ( u v ) Fy ( 2 2 ) x y y x y
第五章-传热学
h
' h,x
' h,y
cpuxtvytdxdy
8
单位时间内微元体热力学能的增加为
dU
d
cp
t
dxdy
于是根据微元体的能量守恒
h
dU
d
可得
2t x2
2t y2
dxdy
cpuxtvytdxdy
cp
t
dxdy
cptux tvy ttu xv y
2t x2
2t y2
2
20
cp
uxt
v t y
=
2t x2
2t y2
1
11 1
1
2
1 1
1
2
对流换热微分方程组简化为
h t tw tf y w
u v 0 x y
简化方程组只有4个方
程,但仍含有h、u、v、 p、t 等5个未知量,方
程组不封闭。如何求解?
uuxvuy1ddpxy2u2
u t x
v t y
26
第六节 相似理论基础
相似原理指导下的实验研究仍然是解决复杂对流换 热问题的可靠方法。
相似原理回答三个问题: (1)如何安排实验? (2)如何整理实验数据? (3)如何推广应用实验研究结果?
一、 相似原理的主要内容
1.物理现象相似的定义 2.物理现象相似的性质 3.相似特征数之间的关系 4.物理现象相似的条件
三、解的函数形式——特征数关联式
特征数是由一些物理量组成的无量纲数,例如毕 渥数Bi和付里叶数Fo。对流换热的解也可以表示成 特征数函数的形式,称为特征数关联式。
通过对流换热微分方程的无量纲化可以导出与对 流换热有关的特征数。
传热学考研题库【章节题库】(对流传热的理论基础)【圣才出品】
越大,粘性的影响传递的越远,速度边界层越厚,分母则表征了热扩散的能力。因此,两者
相比,基本上可以反映边界层的相对厚度。
2.温度同为 20℃的空气和水,假设流动速度相同,当你把两只手分别放到水和空气中, 为什么感觉却不一样?
答:把手放在相同温度的水和空气中感觉不一样的原因: (1)尽管水和空气的流速和温度相同,由于水的密度越为空气的 1000 倍,而动力粘 度则相差不多,在相同的特征尺度下,所当将手放入水中的以雷诺数要远大于放入空气中的 雷诺数,因此,放入水中的努赛尔数大; (2)另一方面,又由于水的导热系数大于空气的导热系数,所以,当将手放入水中时 的对流换热系数远远大于放入空气中的对流换热系数,因此,感觉却不一样。
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 5 章 对流传热的理论基础
一、判断题 1.对流换热系数只与流体掠过固体壁面的速度有关。 【答案】错
2.对于对流换热,如果流体的温度高于壁面温度,流体总是被冷却。 【答案】错
3.在对流换热问题中,流体的温度高于壁面温度时,流体不一定被冷却。 【答案】错
3.对于流体外掠平板的流动,试利用数量级分析的方法,说明边界层内垂直于平板的 速度与平行于平板的速度相比是个小量。
答:边界层内垂直于平板的速度与平行于平板的速度相比是个小量的原因:
设流体的来流速度为 u ,平板的长度为 L,边界层厚度为 ,由边界层理论知 L 。
2 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
7.冬天,在相同的室外温度条件下,为什么骑摩托车比步行时感到更冷些,一般要戴 皮手套和护膝?
答:在相同的室外温度条件下骑摩托车比步行时感到更冷些的原因: (1)因为强制对流换热强度与流体壁面之间的相对速度有关,相对速度越大,对流换 热越强。与步行相比,骑摩托车时相对速度较大,对流换热强度大些,因此人体会散失较多 的热量从而感到更冷些; (2)皮手套和护膝,由于透气性差、导热系数小,增加了传热热阻,降低了散热量, 从而起到保护作用。
第五章对流传热分析
第五章对流换热分析通过本章的学习,读者应熟练掌握对流换热的机理及其影响因素,边界层概念及其应用,以及在相似理论指导下的实验研究方法,进一步提出针对具体换热过程的强化传热措施。
5.1 内容提要及要求5.1.1 对流换热概述1.定义及特性对流换热指流体与固体壁直接接触时所发生的热量传递过程。
在对流换热过程中,流体内部的导热与对流同时起作用。
牛顿冷却公式q h(t w t f ) 是计算对流换热量的基本公式,但它仅仅是对流换热表面传热系数h 的定义式。
研究对流换热的目的是揭示表面传热系数与影响对流换热过程相关因素之间的内在关系,并能定量计算不同形式对流换热问题的表面传热系数及对流换热量。
2.影响对流换热的因素(1)流动的起因:流体因各部分温度不同而引起密度差异所产生的流动称为自然对流,而流体因外力作用所产生的流动称为受迫对流,通常其表面传热系数较高。
(2)流动的状态:流体在壁面上流动存在着层流和紊流两种流态。
(3)流体的热物理性质:流态的热物性主要指比热容、导热系数、密度、粘度等,它们因种类、温度、压力而变化。
(4)流体的相变:冷凝和沸腾是两种最常见的相变换热。
(5)换热表面几何因素:换热表面的形状、大小、相对位置及表面粗糙度直接影响着流体和壁面之间的对流换热。
综上所述,可知表面传热系数是如下参数的函数h f u, t w , t f , , c p , ,,, l这说明表征对流换热的表面传热系数是一个复杂的过程量,不同的换热过程可能千差万别。
3.分析求解对流换热问题分析求解对流换热问题的实质是获得流体内的温度分布和速度分布,尤其是近壁处流体内的温度分布和速度分布,因为在对流换热问题中“流动与换热是密不可分”的。
同时,分析求解的前提是给出正确地描述问题的数学模型。
在已知流体内的温度分布后,可按如下的对流换热微分方程获得壁面局部的表面传热系数由上式可有h xtt x yW/(m 2 K)w,x其中为过余温度,h xxyW/(m 2 K)w,x对流换热问题的边界条件有两类,第一类为壁温边界条件,即壁温分布为已知,待求的是流体的壁面法向温度梯度;第二类为热流边界条件,即已知壁面热流密度,待求的是壁温。
第5章对流传热的理论基础
能量守恒方程
cp( t u x t v y t)( x 2 2 t+ y 2 t2)
*
7
2.定解条件 包括初始时刻的条件以及边界上与速度、压力及温度等有关的条件。以能量守恒方
程为例,边界条件包括: 1)第一类边界条件。 规定边界上流体的温度分布。 (2)第二类边界条件 规定边界上加热或冷却流体的热流密度。 由于获得表面传热系数是求解对流换热问题的最终目的,因此,一般来说,求解对流换 热问题没有第三类边界条件。
10m/s。求离平板前缘320mm处的流动边界层和热边界层的厚度。
假设:流动处于稳态。
计算:空气的物性参数按板表面温度和空气温度的平均值30℃确定。 30℃时空气的 v1 610 6m 2/s, P r0.701
Re ul 100.32 2105 属于层流 v 16106
于是,流动边界层的度厚为
11
临界雷诺数:Rec
Rec
惯性力 粘性力
uxc
平板:
uxc
R c 2 e 1 5 ~ 3 0 1 6 ;0 取 R c 5 e 1 50
湍流边界层:
粘性底层(层流底层):紧靠壁面处,粘滞力会占绝对优势,使粘附于壁的一极薄
层仍然会保持层流特征,具有最大的速度梯度。
3.流动边界层内的动量方程
边界层)。 (2)流动边பைடு நூலகம்层的厚度
视接近主流速度的程度而定。 通常规定达到主流速度的0.99处的y值为流动边界层的厚度,记为
。
(3)边界层厚度与壁面尺寸l相比是个很小的量,远不只小于一个数量级。
10
2. 流动边界层内的流态 边界层内流动状态分层流与湍流;湍流边界层内紧靠壁面处仍有极薄层保持层流状
态,称层流底层。
第5章对流换热
相同原理研究支配相同系统旳性质以及怎样用模型 试验处理实际问题旳一门科学,是进行模型试验旳 根据。但不是一种独立旳科学措施,只是试验和分 析研究旳辅助措施。
相同原理应用举例:汽车、飞机风洞试验
风洞试验旳基本原理是相对性原理和相同性原理。 根据相对性原理,汽车、飞机在静止空气中飞行所
8)量纲分析法——π定理
π定理旳内容:任一物理过程涉及有n个有量纲旳 物理量,如果选择其中旳r个作为基本物理量 ,则这一物理过程可由n个物理量构成旳n-r个 无量纲量所构成旳关系式描述。因这些无量纲 数是用π表示旳,故称为π定理。以数学形式可 表示如下。
设个物理量为x1、x2…… xn,则这一物理 过程可表达为一般函数关系式
0.034 0.0276
64.19W (m2 K )
准数 准数旳形式 准数旳物理涵义
Nu 努 赛 尔 特Nusselt
Nu=h·lc/λf
反应对流传热旳强弱 程度
Re 雷 诺 Reynolds
Re
lu
lu
流体流动形态和湍动 程度
Pr 普 兰 德 Prandtl
Pr cp
流体旳物理性质对对 流传热旳影响
热边界层厚度δt由流体中垂直于壁面上 旳温度 分布决定旳,与热扩散率α有关。
如果tW t 则热边界层不存在
5.1.2 相同原理
1、基本概念 1)同一类物理现象:用相同形式和相同内容旳微分
方程所描述旳物理量。 2)物理相同现象:同一类物理现象中,但凡相同旳
现象,在空间相应旳点上和时间相应旳瞬间,其 各相应旳物理量分别成一定旳百分比。
式中 h —平均对流传热系数,W/(m2K); u —流体旳特征流速,m/s; d —管道直径,m; λ—导热系数 ρ —流体密度 cp —定压比热容 η — 动力粘度系数
传热学第五章对流传热的理论基础
实验数据如何整理(整理成什么样函数关系) 强制对流:Nu f (Re,Pr); Nux f ( x' , Re,Pr)
自然对流换热:Nu f (Gr, Pr) 混合对流换热:Nu f (Re, Gr, Pr)
Nu — 待定特征数 (含有待求的 h)
Re,Pr,Gr — 已定特征数
特征关联式的具体函数形式、定性温度、特征长度等的确 定需要通过理论分析,同时又具有一定的经验性。
2
流体流过固体表面时,。。。
普朗特边界层理论:粘性流体流过固体表面时,粘滞性 起作用的区域仅仅局限在靠近壁面的薄层内。
3
2. 对流传热系数
u∞ ; t ∞
tw
由傅里叶定律:
q t y w
W m2
对流传热的定义式: q ht h tw t [W/m2 ]
在边界层不脱落的前提下:
q ht = t y w
x为当前点与板前缘的距离。 Pr=
a
1
1
hx x
0.332
u x
2
a
3
Nux 0.332Re1x 2 Pr1 3
上述理论解与实验值吻合。
注意:层流
18
2. 对于外掠平板层流分析解的几个讨论
(1)局部对流传热系数,平均对流传热系数
局部对流传热系数
Nux
hx x
11
0.332Rex 2 Pr 3
第五章 对流传热的理论基础
1
5.1 对流传热概述
1. 对流传热的定义、研究对象
流体流过固体表面时,流体与固体之间的热量传递。
工程上约定的计算习惯:
若tw t,Φ hA(tw t ) W 若tw t,Φ hA(t tw ) W
第五章 对流传热的理论基础
机理:既有导热,又有热对流。(为什么?)
6
对流传热概说
对流传热的换热量用牛顿冷却公式计算。对单位面积有:
q ht
对于面积为A的接触面有:
Ah t m
式中:h——表面传热系数,也称对流换热系数,单位是W/m2· K。 A——与流体接触的物体壁面面积。 Δtm——换热面A上流体与固体表面的平均温差,永远为正值。
23
对流传热概说
h
t t y
y0
(5-4)
这两种边界条件问题的共同点就是要解出流体内的温度分布, 即流体的温度场。 第三类边界条件表达式:
t h tw t f n w
(2-17)
式(5-4)中,对流换热系数h为待求量,第三类边界条件 式(2-17)中对流换热系数h和流体温度tf为已知量。
热力学能的增量为:
t d ,其
t U c p dxdy d
33
对流传热问题的数学描写
(3)以x方向为例,在d τ时间内,由x处的截面进入微元
体的焓为:
H x c p utdyd
而在相同的d τ时间内,由x+dx处截面流出微元体的焓为
u t H x dx c p u dx t dx dyd x x
30
对流传热问题的数学描写
简化后的微元体能量平衡方程为:
U (qm )out hout (qm ) in hin
式中: ; Φ——通过界面由外界导入微元体的净热流量; qm——质量流量;
h ——流体的比焓;
U——微元体的热力学能;
31
对流传热问题的数学描写
(1)通过界面由外界导入微元体的净热流量Φ:(见2.2节推导)
河海大学传热学--第五章对流传热的理论基础PPT课件
34 18.07.2020 4:47 杨祥花
• 例1
河海大学常州校区热能与动力工程系—传热学
35 18.07.2020 4:47 杨祥花
§5-3 边界层型对流传热问题的数学描写
边界层概念:当粘性流体流过物体表面时,会形成速度梯
度很大的流动边界层;当壁面与流体间有温差时,也会产
生温度梯度很大的温度边界层(或称热边界层)
综合:对流换热微分方程组
u v 0 x y
( u u u x v u y) F x p x( x 2 u 2 y 2 u 2)
v v v
p 2 v 2 v
( u x v y) F y y( x2 y2)
tu x tv y tcp( x2t2 y2t2)
hx
第五章 对流传热 的理论基础
河海大学常州校区热能与动力工程系—传热学
1 18.07.2020 4:47 杨祥花
标题添加
点击此处输入相 关文本内容
前言
点击此处输入 相关文本内容
标题添加
点击此处输入相 关文本内容
河海大学常州校区热能与动力工程系—传热学
点击此处输入 相关文本内容
2 18.07.2020 4:47 杨祥花
???xtdyx???ytdxy1单位时间以导热的方式进入流体微元的单位时间以导热的方式进入流体微元的净热流量导热为河海大学常州校区热能与动力工程系传热学2018年1月3日5时2分杨祥花???????xdxxxtdxdydxxxx???????ydyyytdydxdyyyy22???xxdxtdxdyx22???yydytdxdyy2222导热????ttdxdyxy河海大学常州校区热能与动力工程系传热学2018年1月3日5时2分杨祥花2单位时间以对流方式进入元体的净热流对流为xpctudyypctvdx?xxdx???xxdxx???pcutdydxx?yydy???yydyy???pcvtdxdyy对流??????ppcutdycvtdxdxdyxy??????pputvtcdxdycdxdyxy???????????????pttuvcuvttdxdyxyxy
第5章-对流传热的理论基础与工程计算[2]
壁面形状 与位置 垂直平壁 或圆柱 水平圆柱
流动情况
特征长度 壁面高度
C
0.59 0.10
n
1/4 1/3 0.188 1/4 1/3
适用范围 GrPr
104 ~ 109
109 ~ 1013
102 ~ 104 104 ~ 107 107 ~ 1012
圆柱外径
d
0.85 0.48 0.125
水平热壁 上面或水 平冷壁下 面 水平热壁 下面或水 平冷壁上 面
1/ 4
小 结
(1)对流换热的影响因素; (2)对流换热的数学模型; (3)边界层概念及其特征,对求解对流换热问题的意义;
(4)对流换热问题解的形式——特征数关联式;
(5)Nu、Re、Pr、Gr表达式及其物理意义; (6)相似原理主要内容及其对解决对流换热问题的指导 意义; (7)单相流体管内强迫对流、外掠壁面、自然对流换热 的特点及其影响因素; (8)会利用特征数关联式计算上述对流换热问题。
Gr
g v tl
2
3 c
浮升力 粘性力
Gr称为格拉晓夫数,在物理上,Gr数是浮升力
/粘滞力比值的一种量度。
Gr数的增大表明浮升力作用的相对增大。 自然对流换热准则方程式为
Nu f (Gr , Pr)
二、大空间自然对流换热的实验关联式
1、恒壁温 工程中广泛使用的是下面的关联式:
0.635W/(m K) h Nuf 91.4 5804W/m 2 K d 0.01m
计算壁面温度
f
计算壁面温度
h dl (tw t f ) um
2
d2
4
' f
cP (t ''f t 'f )
第五章对流传热理论基础
简化
流动
普朗特 速度边界层
类比
对流换热
波尔豪森 热边界层
38
传热学
一、流动边界层
1、流动边界层及其厚度 定义:当流体流过固体壁面时,由于流 体粘性的作用,使得在固体壁面附近存 在速度发生剧烈变化的薄层称为流动 边界层或速度边界层。
实际流动 ≈ 边界层区粘性流动+主流区无粘性理想流动
大空间自然对流 有限空间自然对流
沸腾换热 有相变
凝结换热
大容器沸腾 管内沸腾
管外凝结 管内凝结
14
传热学
六、研究对流传热的方法(确定h的方法)
四种:1)分析法;2)实验法;3)比拟法;4)数值法
适当介绍
重点介绍 一定介绍
不作介绍
1)分析法
解析:二维、楔形流、平板 边界层积分方程(近似解析)
2)实验法
u∞
y δ
0x xc
粘性底层
掠过平板时边界层的形成与发展
湍流核心 缓冲层
41
传热学
层流: 流体做有秩序的分层流动,各层互不干扰,只有分子扩散,
无大微团掺混
湍流: 流体微团掺混,紊乱的不规则脉动
粘性底层 :速度梯度较大、分子扩散—导热
湍流边界层
缓冲层 :导热+对流 湍流核心 :质点脉动强化动量传递,速度变化
换热表面的形状、大小、换热表面与流体运动方向的 相对位置及换热表面的状态(光滑或粗糙)
内部流动对流传热:管内或槽内 外部流动对流传热:外掠平板、圆管、管束
10
传热学
11
传热学
(5) 流体的热物理性质:
热导率 [W (m C)] 比热容 c [J (kg C)]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h A t
只是表面传热系数 h 的一个定义式,它并没 有揭示 h 与影响它的各物理量间的内在关系, 研究对流传热的任务就是要揭示这种内在的
联系,确定计算表面传热系数的表达式。
1 对流传热的定义和性质
对流传热是指流体流经固体表面时流体与固体 表面之间的热量传递现象。
● 对流传热中,导热与对流同时起作用;不是基本 传热方式。 ● 对流传热实例:1) 暖气管道; 2) 电子器件冷却; 3)电风扇
(Phase change( )Condensation) (Boiling)
(4) 换热表面的几何因素:
内部流动对流传热:管内或槽内 外部流动对流传热:外掠平板、圆管、管束
流体的热物理性质: 热导率
[W ( m K ) ]
2 [ m s ]
比热容
c[J( k g K )]
运动粘度
密度 [kg m3] 体胀系数
[ 1K ]
2 [ N s m ] 动力粘度
1 v 1 v Tp Tp
对流传热分类小结
单相对流传热 对流传热 相变对流传热 凝结传热 膜状凝结 沸腾传热 管内沸腾 珠状凝结 大容器沸腾
自然对流 单相 对流 传热 混合对流 强制对流
M ( v ) y M M dy dxdy y y dy y y
单位时间内微元体内流体质量的变化:
( dxdy ) dxdy
微元体内流体质量守恒(单位时间内):
流入微元体的净质量 = 微元体内流体质量的变化
( u ) ( v ) 即: dxdy dxdy dxdy x y
第五章 对流传热的理论基础
§5-1 对流传热概说
• 自然界普遍存在对流传热,它比导热更复杂。
• 到目前为止,对流传热问题的研究还很不充 分。(a) 某些方面还处在积累实验数据的阶 段;(b) 某些方面研究比较详细,但由于数 学上的困难;使得在工程上可应用的公式大 多数还是经验公式(实验结果)
牛顿公式
自然对流换热增强
综上所述,表面传热系数是众多因素的函数:
h f ( v , t , t , , c , ,,, l ) w f p
6 对流传热的分类: (1) 流动起因
自然对流:流体因各部分温度不同而引起的 密度差异所产生的流动
强制对流:由外力(如:泵、风机、水压头) 作用所产生的流动
§5-2 对流传热问题的数学描写
为便于分析,推导时作下列假设: • • • • 流动是二维的 流体为不可压缩的牛顿型流体 流体物性为常数、无内热源; 粘性耗散产生的耗散热可以忽略不计
1
质量守恒方程(连续性方程)
流体的连续流v动遵循质量守恒定 律 从流场中 (x, y) 处取出边长为 dx、dy 的 微元体(z方向为单位长度),如图所示, 质量流量为M [kg/s]
h 强制 h 自然
(2) 流动状态
h h 湍流 层流
h h 相变 单相
)
层流:整个流场呈一簇互相平行的流线 (Laminar flow
(Turbulent flow) 湍流:流体质点做复杂无规则的运动 (紊流)
(3) 流体有无相变
单相传热: (Single phase heat transfer) 相变传热:凝结、沸腾、升华、凝固、融化等
5 影响表面传热系数 h • 流体流动的起因 • 流体有无相变 • 流体的流动状态 • 换热表面的几何因素 • 流体的物理性质
的因素有以下5 方面
间导热热阻小 ) h(流体内部和流体与壁面
、 c h (单位体积流体能携带更 多能量 )
h (有碍流体流动、不利于 热对流 )
( u ) ( v) 0 y x
对于二维、稳态流动、密度为常数时:
2 对流传热的特点 (1) 导热与对流同时存在的复杂热量传递过 程; (2) 必须有直接接触(流体与壁面)和宏观 运动;也必须有温差; (3) 由于流体的粘性和受壁面摩擦阻力的影 响,紧贴壁面处会形成速度梯度很大的边界 层。
3 对流传热的基本计算式 牛顿冷却式:
Φ hA ( t t ) W w
q ΦA h ( tw tf ) Wm
2
4 表面传热系数(对流传热系数)
2 h Φ ( A ( t t )) W (m C) w
当流体与壁面温度相差1度时、每 单位壁面面积上、单位时间内所传递的 热量
h ——
如何确定h及增强换热的措施是对流传热的 核心问题
研究对流传热的方法: (1)分析法 (2)实验法 (3)比拟法 (4)数值法
层流 大空间自然对流 紊流 层流 有限空间自然对流 紊流
管内强制对流传热 流体横掠管外强制对流传热 流体纵掠平板强制对流传热
7 对流传热过程微分方程式
当粘性流体在壁面上流动时,由于粘性的作用, 在贴壁处被滞止, 处于无滑移状态(即: y=0,
u=0)
在这极薄的贴壁流体层中,热量只能以导热方式
传递
根据傅里叶定律:
t q y
y=0
t y y0 为贴壁处壁面法线方向上的流体温度变化率 为流体的导热系数
将牛顿冷却公式与上式联立,即可得 到对流传热过程微分方程式
t h t y
的温度梯度
y 0
h 取决于流体导热系数、温差和贴壁流体
温度梯度或温度场取决于流体热物性、流动 状况(层流或紊流)、流速的大小及其分布、 表面粗糙度等 温度场取决于流场 速度场和温度场由对流传热微分方程组确定: 质量守恒方程、动量守恒方程、能量守恒方程
分别写出微元体各方向的质量流量分量:
X方向:
M udy x
M x M M dx x dx x x
单位时间内、沿x轴方向流入微元体的净质 量:
M ( u ) x M M dx dxdy x x dx 流入微元体 的净质量: