苏州大学2020届高考考前指导卷(附加)

合集下载

江苏省2020年高考名师押题信息卷 数学试题+附加题+答案+全解全析2020.6.29

江苏省2020年高考名师押题信息卷 数学试题+附加题+答案+全解全析2020.6.29

江苏省2020年高考名师押题信息卷数 学2020.6.29Ⅰ卷一. 填空题:本大题共14小题,每小题5分共计70分1.设集合A ={x |(x +1)(x ﹣2)<0},集合B ={x |1<x <3},则A ∪B =__________.2.i 是虚数单位,则|2+i 1−i|的值为__________. 3.若执行如图所示的算法流程图,则输出的结果是__________.4.(如图是一组样本数据的频率分布直方图,则依据图形中的数据,可以估计总体的平均数与中位数分别是__________5.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为__________.6.已知cos 6πα⎛⎫-= ⎪⎝⎭,则sin 26πα⎛⎫+= ⎪⎝⎭_____________.7.设S n 是等比数列{a n }的前n 项的和,S 3,S 9,S 6成等差数列,则a 2+a 5a 8的值为__________.8.在平面直角坐标系xoy 中,若双曲线22221(0,0)x y a b a b-=>>的一条准线与两条渐近线恰能围成一个等边三角形,则该双曲线的离心率为______.9.在平面直角坐标系xOy 中,已知A ,B 两点在圆x 2+y 2=1上,若直线x +y −√6=0上存在点C ,使△ABC 是边长为1的等边三角形,则点C 的横坐标是__________.10.如图,是一个四棱锥的平面展开图,其中间是边长为2的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为__________.11.已知函数f (x )=x 2﹣2x +3a ,g (x )=2x−1.若对∀x 1∈[0,3],总∃x 2∈[2,3],使得f (x 1)≤g (x 2)成立,则实数a 的取值集合为__________. 12.在ABC ∆中,3,2,AB AC D ==为边BC 上一点.若25,3AB AD AC AD ⋅=⋅=-u u u v u u u v u u u v u u u v ,则AB AC ⋅u u u v u u u v 的值为_________.13.已知向量()1,3a =v ,(),1b x y =-v 且//a b v v ,若实数,x y 均为正数,则31x y+最小值是______ 14.已知f (x )是R 上的偶函数,且f(x)={3x ,0≤x <1(13)x +1,x ≥1,若关于x 的方程f 2(x )﹣mf (x )=0有三个不相等的实数根,则m 的取值范围__________.二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15. (本小题满分14分)已知函数()221()cos sin cos ()2f x x x x x x R =+-∈. (1)求()f x 的单调递增区间.(2)在ΔABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若f (A )=1,c =10,cosB =17,求ΔABC 的中线AD 的长.16. (本小题满分14分)如图,在四棱锥P ﹣ABCD 中,四边形ABCD 为平行四边形,∠BAP =∠CDP =90°,E 为PC 中点. (Ⅰ)求证:AP ∥平面EBD ;(Ⅱ)若△P AD 是正三角形,且P A =AB .(i )当点M 在线段P A 上什么位置时,有DM ⊥平面P AB ;(ii )在(i )的条件下,点N 在线段PB 什么位置时,有平面DMN ⊥平面PBC .17. (本小题满分14分) 如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的下顶点为B ,点,M N 是椭圆上异于点B 的动点,直线,BM BN 分别与x 轴交于点,P Q ,且点Q 是线段OP 的中点.当点N 运动到点处时,点Q 的坐标为(,0)3. (1)求椭圆C 的标准方程;(2)设直线MN 交y 轴于点D ,当点,M N 均在y 轴右侧,且2DN NM =u u u v u u u u v时,求直线BM 的方程.。

苏州大学2020届高三考前指导卷

苏州大学2020届高三考前指导卷

苏州大学2020届高三考前指导卷1、若()i b i i a +=+3,其中R b a ∈,,i 是虚数单位,则=-b a 。

2、已知集合{}Zx x x x A ∈≤-=,042,(){}A x x y y B ∈+==,1log 2,则=B A 。

3.右面茎叶图表示的是甲,乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为4、若某算法流程图如右图所示,则输出的n 值是 。

5、双曲线C :1422=-my x (m >0)的离心率等于2,则该双曲线渐近线的斜率是 。

6.设等比数列{}n a 的前n 项和为n S ,若0852=+a a ,则35S S 的值为7.已知(),,sin R x x x f ∈=()x g 的图像与()x f 的图像关于点⎪⎭⎫⎝⎛0,4π对称,则在区间[]π2,0上满足()()x g x f ≤的x 的取值范围是8.已知322322=+,833833=+,15441544=+, ,若ta t a 66=+。

(t a ,均为正整数且t a ,互质)类比以上等式,可推测t a ,的值,则=+t a 9.过直线x y l 2:=上一点P 做圆()()5443M 22=-+-y x :的两条切线21,l l ,A ,B 为 切点,当直线21,l l 关于直线l 对称时,则=∠APB10、已知函数()62-=x x f ,若a <b <0,且()()b f a f =,则b a 2的最小值是 。

11、点()00,y x P 是曲线C :xy 1=(x >0)上的一个动点,曲线C 在点P 处的切线与x 轴、y 周分别交与B A ,两点,点O 是坐标原点。

给出三个命题:①PB PA =;②OAB ∆的面积为定值;③ 曲线C 上存在两点N M ,,使得OMN ∆为等腰直角三角形。

其中真命题的个数是 。

12在AB C ∆中,F E ,分别是边AB AC ,的中点,且AC AB 23=,若t CFBE<恒成立,则t 的最小值为13、对于函数()x f y =,若存在区间[]b a ,,当∈x []b a ,时,()x f 的值域为[]kb ka ,(k >0),则称()x f y =为k 倍值函数。

2020年6月苏州大学2020届高三高考考前指导卷(一)数学附加题及答案

2020年6月苏州大学2020届高三高考考前指导卷(一)数学附加题及答案

1 绝密★启用前
江苏省苏州大学2020届高三高考考前指导卷(一)
数学Ⅱ(附加题)
2020年6月
21.【选做题】本题包括A 、B 、C 三小题,请选定其中两题......,并在相应的答题区域内作答............
,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .选修4 - 2:矩阵与变换(本小题满分10分)
在平面直角坐标系xOy 中,设点(5)P x ,在矩阵M 1234⎡⎤=⎢⎥⎣⎦
对应的变换下得到点(2)Q y y -,,求1x y -⎡⎤⎢⎥⎣⎦
M .
B .选修4 - 4:坐标系与参数方程(本小题满分10分)
在直角坐标系xOy 中,以坐标原点O 为极点,以x 轴非负半轴为极轴,建立极坐标系,直线l
的极坐标方程为sin()4ρθπ-=曲线C 的参数方程为2cos 3()sin 22x y ααα
=-+⎧ππ⎨=⎩,≤≤,求l 与曲线C 交点的直角坐标.
C .选修4 - 5:不等式选讲(本小题满分10分)
已知00x y >>,,且满足2211274x y x y +++=,求1534x y
-的最小值.。

江苏高三数学20套数学附加题

江苏高三数学20套数学附加题

实战演练·高三数学附加分20套江苏省普通高等学校招生考试高三模拟测试卷(一)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,AB 、CD 是半径为1的圆O 的两条弦,它们相交于AB 的中点P ,若PC =98,OP =12,求PD 的长.B. (选修4-2:矩阵与变换)已知曲线C :xy =1,若矩阵M =⎣⎢⎡⎦⎥⎤22-222222对应的变换将曲线C 变为曲线C′,求曲线C′的方程.C. (选修4-4:坐标系与参数方程)在极坐标系中,圆C 的方程为 ρ=2acos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数).若直线l 与圆C 相切,求实数a 的值.D. (选修4-5:不等式选讲)已知x 1、x 2、x 3为正实数,若x 1+x 2+x 3=1,求证:x 22x 1+x 23x 2+x 21x 3≥1.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知点A(1,2)在抛物线Γ:y 2=2px 上.(1) 若△ABC 的三个顶点都在抛物线Γ上,记三边AB 、BC 、CA 所在直线的斜率分别为k 1、k 2、k 3,求1k 1-1k 2+1k 3的值; (2) 若四边形ABCD 的四个顶点都在抛物线Γ上,记四边AB 、BC 、CD 、DA 所在直线的斜率分别为k 1、k 2、k 3、k 4,求1k 1-1k 2+1k 3-1k 4的值.23. 设m 是给定的正整数,有序数组(a 1,a 2,a 3,…,a 2m )中a i =2或-2(1≤i ≤2m).(1) 求满足“对任意的k(k ∈N *,1≤k ≤m),都有a 2k -1a 2k=-1”的有序数组(a 1,a 2,a 3,…,a 2m )的个数A ;(2) 若对任意的k 、l(k 、l ∈N *,1≤k ≤l ≤m),都有| i =2k -12la i |≤4成立,求满足“存在k(k ∈N *,1≤k ≤m),使得a 2k -1a 2k≠-1”的有序数组(a 1,a 2,a 3,…,a 2m )的个数B.江苏省普通高等学校招生考试高三模拟测试卷(二)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)在△ABC 中,已知CM 是∠ACB 的平分线,△AMC 的外接圆交BC 于点N ,且BN =2AM.求证:AB =2AC.B. (选修4-2:矩阵与变换)设二阶矩阵A 、B 满足A -1=⎣⎢⎡⎦⎥⎤1 23 4,(BA )-1=⎣⎢⎡⎦⎥⎤1 00 1,求B -1.C. (选修4-4:坐标系与参数方程)在极坐标系中,已知曲线C :ρ=2sin θ,过极点O 的直线l 与曲线C 交于A 、B 两点,且AB =3,求直线l 的方程.D. (选修4-5:不等式选讲)已知x、y、z均为正数,求证:xyz+yzx+zxy≥1x+1y+1z.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,设P1,P2,…,P6为单位圆上逆时针均匀分布的六个点.现任选其中三个不同点构成一个三角形,记该三角形的面积为随机变量S.(1) 求S=32的概率;(2) 求S的分布列及数学期望E(S).23.记1,2,…,n满足下列性质T的排列a1,a2,…,a n的个数为f(n)(n≥2,n∈N*).性质T:排列a1,a2,…,a n中有且只有一个a i>a i+1(i∈{1,2,…,n-1}).(1) 求f(3);(2) 求f(n).江苏省普通高等学校招生考试高三模拟测试卷(三)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,MN 为两圆的公共弦,一条直线与两圆及公共弦依次交于A 、B 、C 、D 、E ,求证:AB·CD =BC·DE.B. (选修4-2:矩阵与变换)已知a 、b ∈R ,若M =⎣⎢⎡⎦⎥⎤-1a b 3所对应的变换T M 把直线2x -y =3变换成自身,试求实数a 、b.C. (选修4-4:坐标系与参数方程)在极坐标系中,求点M ⎝⎛⎭⎫2,π6关于直线θ=π4的对称点N 的极坐标,并求MN 的长.D. (选修4-5:不等式选讲)已知x 、y 、z 均为正数.求证:x yz +y zx +z xy ≥1x +1y +1z.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在空间直角坐标系Oxyz 中,正四棱锥PABCD 的侧棱长与底边长都为32,点M 、N 分别在PA 、BD 上,且PM PA =BN BD =13. (1) 求证:MN ⊥AD ;(2) 求MN 与平面PAD 所成角的正弦值.23.设ξ为随机变量,从棱长为1的正方体ABCDA 1B 1C 1D 1的八个顶点中任取四个点,当四点共面时,ξ=0,当四点不共面时,ξ的值为四点组成的四面体的体积.(1) 求概率P(ξ=0);(2) 求ξ的分布列,并求其数学期望E(ξ).江苏省普通高等学校招生考试高三模拟测试卷(四)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A、B、C、D四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,锐角三角形ABC的角平分线AD的延长线交它的外接圆于点E,若△ABC面积S=34AD·AE,求∠BAC的大小.B. (选修4-2:矩阵与变换)求使等式⎣⎢⎡⎦⎥⎤1234=⎣⎢⎡⎦⎥⎤1002M⎣⎢⎡⎦⎥⎤100-1成立的矩阵M.C. (选修4-4:坐标系与参数方程)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,如图,曲线C与x轴交于O、B两点,P是曲线C在x轴上方图象上任意一点,连结OP并延长至M,使PM=PB,当P变化时,求动点M轨迹的长度.D. (选修4-5:不等式选讲)已知a、b、c均为正数,且a+2b+4c=3.求1a+1+1b+1+1c+1的最小值,并指出取得最小值时a、b、c的值.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知过一个凸多边形的不相邻的两个端点的连线段称为该凸多边形的对角线.(1) 分别求出凸四边形、凸五边形、凸六边形的对角线的条数;(2) 猜想凸n边形的对角线条数f(n),并用数学归纳法证明.23.从集合M={1,2,3,4,5,6,7,8,9}中任取三个元素构成子集{a,b,c}.(1) 求a、b、c中任意两数之差的绝对值均不小于2的概率;(2) 记a、b、c三个数中相邻自然数的组数为ξ(如集合{3,4,5}中3和4相邻,4和5相邻,ξ=2),求随机变量ξ的分布列及其数学期望E(ξ).江苏省普通高等学校招生考试高三模拟测试卷(五)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,等腰梯形ABCD 内接于圆O ,AB ∥CD.过点A 作圆O 的切线交CD 的延长线于点E.求证:∠DAE =∠BAC.B. (选修4-2:矩阵与变换)已知直线l :ax -y =0在矩阵A =⎣⎢⎡⎦⎥⎤0 112对应的变换作用下得到直线l′,若直线l′过点(1,1),求实数a 的值.C. (选修4-4:坐标系与参数方程)在极坐标系中,已知点P ⎝⎛⎭⎫23,π6,直线l :ρcos ⎝⎛⎭⎫θ+π4=22,求点P 到直线l 的距离.D. (选修4-5:不等式选讲)已知x≥1,y≥1,求证:x2y+xy2+1≤x2y2+x+y.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在三棱锥PABC中,已知平面PAB⊥平面ABC,AC⊥BC,AC=BC=2a,点O、D分别是AB、PB的中点,PO⊥AB,连结CD.(1) 若PA=2a,求异面直线PA与CD所成角的余弦值的大小;(2) 若二面角APBC的余弦值的大小为55,求PA.23. 设集合A、B是非空集合M的两个不同子集,满足:A不是B的子集,且B也不是A的子集.(1) 若M={a1,a2,a3,a4},直接写出所有不同的有序集合对(A,B)的个数;(2) 若M={a1,a2,a3,…,a n},求所有不同的有序集合对(A,B)的个数.江苏省普通高等学校招生考试高三模拟测试卷(六)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,已知AB 是圆O 的直径,圆O 交BC 于点D ,过点D 作圆O 的切线DE 交AC 于点E ,且DE ⊥AC.求证:AC =2OD.B. (选修4-2:矩阵与变换)已知矩阵⎣⎢⎡⎦⎥⎤x 32 1的一个特征值为4,求另一个特征值及其对应的一个特征向量.C. (选修4-4:坐标系与参数方程)求经过极坐标为O(0,0)、A ⎝⎛⎭⎫6,π2、B ⎝⎛⎭⎫62,π4三点的圆的直角坐标方程.D. (选修4-5:不等式选讲)已知正数a 、b 、c 满足abc =1,求(a +2)(b +2)(c +2)的最小值.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知曲线C :y 2=2x -4.(1) 求曲线C 在点A(3,2)处的切线方程; (2) 过原点O 作直线l 与曲线C 交于A 、B 两不同点,求线段AB 的中点M 的轨迹方程.23已知数列{a n }满足a 1=23,a n +1·(1+a n )=1.(1) 试计算a 2,a 3,a 4,a 5的值;(2) 猜想|a n +1-a n |与115⎝⎛⎭⎫25n -1(其中n ∈N *)的大小关系,并证明你的猜想.江苏省普通高等学校招生考试高三模拟测试卷(七)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,AB 是圆O 的一条直径,C 、D 是圆O 上不同于A 、B 的两点,过B 作圆O 的切线与AD 的延长线相交于点M ,AD 与BC 相交于N 点,BN =BM.求证:(1) ∠NBD =∠DBM ;(2) AM 是∠BAC 的角平分线.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤2n m 1的一个特征根为λ=2,它对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤12.(1) 求m 与n 的值;(2) 求A -1.C. (选修4-4:坐标系与参数方程)已知在平面直角坐标系xOy 中,圆M 的参数方程为⎩⎨⎧x =532+2cos θ,y =72+2sin θ(θ为参数),以Ox 轴为极轴,O 为极点建立极坐标系,在该极坐标系下,圆N 是以点⎝⎛⎭⎫3,π3为圆心,且过点⎝⎛⎭⎫2,π2的圆.(1) 求圆M 及圆N 在平面直角坐标系xOy 下的直角坐标方程; (2) 求圆M 上任一点P 与圆N 上任一点Q 之间距离的最小值.D. (选修4-5:不等式选讲)已知:a +b +c =1,a 、b 、c>0.求证: (1) abc ≤127;(2) a 2+b 2+c 2≥3abc.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知直线l :y =2x -4与抛物线C :y 2=4x 相交于A 、B 两点,T(t ,0)(t>0且t ≠2)为x 轴上任意一点,连结AT 、BT 并延长与抛物线C 分别相交于A 1、B 1.(1) 设A 1B 1斜率为k ,求证:k·t 为定值;(2) 设直线AB 、A 1B 1与x 轴分别交于M 、N ,令S △ATM =S 1,S △BTM =S 2,S △B 1TN =S 3,S △A 1TN =S 4,若S 1、S 2、S 3、S 4构成等比数列,求t 的值.23如图,在三棱柱ABCA 1B 1C 1中,底面△ABC 为直角三角形,∠ACB =π2,顶点C 1在底面△ABC 内的射影是点B ,且AC =BC =BC 1=3,点T 是平面ABC 1内一点.(1) 若T 是△ABC 1的重心,求直线A 1T 与平面ABC 1所成的角;(2) 是否存在点T ,使TB 1=TC 且平面TA 1C 1⊥平面ACC 1A 1?若存在,求出线段TC 的长度;若不存在,说明理由.江苏省普通高等学校招生考试高三模拟测试卷(八)数学附加分(满分40分,考试时间30分钟)21. (本小题满分10分)已知二阶矩阵M 有特征值λ=5,属于特征值λ=5的一个特征向量是e =⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换为(-2,4),求矩阵M .22. (本小题满分10分)已知直线l 的极坐标方程是ρcos ⎝⎛⎭⎫θ+π4=42,圆M 的参数方程是⎩⎨⎧x =1+2cos θ,y =-1+2sin θ(θ是参数).(1) 将直线的极坐标方程化为普通方程; (2) 求圆上的点到直线l 上点距离的最小值.23. (本小题满分10分)如图,在底面边长为1,侧棱长为2的正四棱柱ABCDA 1B 1C 1D 1中,P 是侧棱CC 1上的一点,CP =m.(1) 若m =1,求异面直线AP 与BD 1所成角的余弦;(2) 是否存在实数m ,使直线AP 与平面AB 1D 1所成角的正弦值是13若存在,请求出m的值;若不存在,请说明理由.24. (本小题满分10分)在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次.在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投三次.某同学在A 处的命中率为p ,在B 处的命中率为q.该同学选择先在A 处投一球,以后都在B 处投,用X 表示该同学投篮训练结束后所得的总分,其分布列为X 0 2 3 4 5 Pp 1p 2p 3p 4p 5(1) 若p =0.25,p 1=0.03,求该同学用上述方式投篮得分是5分的概率;(2) 若该同学在B 处连续投篮3次,投中一次得2分,用Y 表示该同学投篮结束后所得的总分.若p<23q ,试比较E(X)与E(Y)的大小.江苏省普通高等学校招生考试高三模拟测试卷(九)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,锐角△ABC 的内心为D ,过点A 作直线BD 的垂线,垂足为F ,点E 为内切圆D 与边AC 的切点.若∠C =50°,求∠DEF 的度数.B. (选修4-2:矩阵与变换)设矩阵M =⎣⎢⎡⎦⎥⎤a 00 b (其中a >0,b >0),若曲线C :x 2+y 2=1在矩阵M 所对应的变换作用下得到曲线C′:x 24+y 2=1,求a +b 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l 的参数方程是⎩⎨⎧x =22t ,y =22t +42(t 为参数),以O 为极点,x 轴正半轴为极轴的极坐标系中,圆C 的极坐标方程为ρ=2cos ⎝⎛⎭⎫θ+π4.由直线l 上的点向圆C 引切线,求切线长的最小值.D. (选修4-5:不等式选讲)已知a 、b 、c 均为正数,求证:a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2≥6 3.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 某品牌汽车4S 店经销A 、B 、C 三种排量的汽车,其中A 、B 、C 三种排量的汽车依次有5、4、3款不同车型.某单位计划购买3辆不同车型的汽车,且购买每款车型等可能.(1) 求该单位购买的3辆汽车均为B 种排量汽车的概率;(2) 记该单位购买的3辆汽车的排量种数为X ,求X 的分布列及数学期望.23. 已知点A(-1,0),F(1,0),动点P 满足AP →·AF →=2|FP →|.(1) 求动点P 的轨迹C 的方程;(2) 在直线l :y =2x +2上取一点Q ,过点Q 作轨迹C 的两条切线,切点分别为M 、N ,问:是否存在点Q ,使得直线MN ∥l ?若存在,求出点Q 的坐标;若不存在,请说明理由.江苏省普通高等学校招生考试高三模拟测试卷(十)数学附加分(满分40分,考试时间30分钟)21. (本小题满分10分)已知矩阵M =⎣⎢⎡⎦⎥⎤2 32 1,求矩阵M 的特征值,并任选择一个特征值,求其对应的特征向量.22.(本小题满分10分)在极坐标系中,已知圆C 的圆心坐标为C ⎝⎛⎭⎫2,π3,半径R =2,试判断圆C 是否通过极点,并求圆C 的极坐标方程.23. (本小题满分10分)如图,已知四棱锥SABCD的底面是边长为4的正方形,顶点S在底面上的射影O落在正方形ABCD内,且O到AB、AD的距离分别是2、1.又P是SC的中点,E是BC上一点,CE=1,SO=3,过O在底面内分别作AB、BC垂线Ox、Oy,分别以Ox、Oy、OS为x、y、z轴建立空间直角坐标系.(1) 求平面PDE的一个法向量;(2) 问在棱SA上是否存在一点Q,使直线BQ∥平面PDE?若存在,请给出点Q在棱SA上的位置;若不存在,请说明理由.24.(本小题满分10分)已知抛物线C:x2=4y,在直线y=-1上任取一点M,过M作抛物线C的两条切线MA、MB.(1) 求证:直线AB过一个定点,并求出这个定点;(2) 当弦AB中点的纵坐标为2时,求△ABM的外接圆的方程.江苏省普通高等学校招生考试高三模拟测试卷(十一)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,△ABC 为圆的内接三角形,AB =AC ,BD 为圆的弦,且BD ∥AC.过点A 作圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F.(1) 求证:四边形ACBE 为平行四边形; (2) 若AE =6,BD =5,求线段CF 的长.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤ 1 a -1 b 的一个特征值为2,其对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤21.(1) 求矩阵A ;(2) 若A ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b ,求x 、y 的值.C. (选修4-4:坐标系与参数方程)在极坐标系中,求曲线ρ=2cos θ关于直线θ=π4(ρ∈R )对称的曲线的极坐标方程.D. (选修4-5:不等式选讲)已知x、y∈R,且|x+y|≤16,|x-y|≤14,求证:|x+5y|≤1.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 某中学有4位学生申请A、B、C三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.(1) 求恰有2人申请A大学的概率;(2) 求被申请大学的个数X的概率分布列与数学期望E(X).23.设f(n)是定义在N*上的增函数,f(4)=5,且满足:①任意n∈N*,有f(n)∈Z;②任意m、n∈N*,有f(m)f(n)=f(mn)+f(m+n-1).(1) 求f(1),f(2),f(3)的值;(2) 求f(n)的表达式.江苏省普通高等学校招生考试高三模拟测试卷(十二)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,圆O 为四边形ABCD 的外接圆,且AB =AD ,E 是CB 延长线上一点,直线EA 与圆O 相切.求证:CD AB =ABBE.B. (选修4-2:矩阵与变换)已知矩阵M =⎣⎢⎡⎦⎥⎤1 22 1,β=⎣⎢⎡⎦⎥⎤17,计算M 6β.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,圆的参数方程为⎩⎪⎨⎪⎧x =2+2cos α,y =2sin α(α为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系.求:(1) 圆的普通方程; (2) 圆的极坐标方程.D. (选修4-5:不等式选讲)已知函数f(x)=|x +1|+|x -2|-|a 2-2a|.若函数f(x)的图象恒在x 轴上方,求实数a 的取值范围.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 甲、乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为23,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.(1) 求甲同学至少有4次投中的概率;(2) 求乙同学投篮次数ξ的分布列和数学期望.23.设S n =C 0n -C 1n -1+C 2n -2-…+(-1)m C m n -m ,m 、n ∈N *且m <n ,其中当n 为偶数时,m =n2;当n 为奇数时,m =n -12. (1) 证明:当n ∈N *,n ≥2时,S n +1=S n -S n -1;(2) 记S =12 014C 02 014-12 013C 12 013+12 012C 22 012-12 011C 32 011+…-11 007C 1 0071 007,求S 的值.江苏省普通高等学校招生考试高三模拟测试卷(十三)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,△ABC 内接于圆O ,D 为弦BC 上的一点,过D 作直线DP ∥CA ,交AB 于点E ,交圆O 在A 点处的切线于点P.求证:△PAE ∽△BDE.B. (选修4-2:矩阵与变换)已知二阶矩阵M 有特征值λ=1及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤ 1-1且M ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤31,求矩阵M .C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,设动点P 、Q 都在曲线C :⎩⎪⎨⎪⎧x =1+2cos θ,y =2sin θ(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ 的中点M 与定点A(1,0)间的距离为d ,求d 的取值范围.D. (选修4-5:不等式选讲)已知:a ≥2,x ∈R .求证:|x -1+a|+|x -a|≥3.【必做题】 第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 在长方体ABCDA 1B 1C 1D 1中,AD =AA 1=12AB ,点E 是棱AB 上一点且AEEB =λ.(1) 证明:D 1E ⊥A 1D ;(2) 若二面角D 1ECD 的大小为π4,求λ的值.23. 设数列{a n }共有n(n ≥3,n ∈N )项,且a 1=a n =1,对每个i(1≤i ≤n -1,i ∈N ),均有a i +1a i ∈⎩⎨⎧⎭⎬⎫12,1,2. (1) 当n =3时,写出满足条件的所有数列{a n }(不必写出过程);(2) 当n =8时,求满足条件的数列{a n }的个数.江苏省普通高等学校招生考试高三模拟测试卷(十四)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)已知圆O 的内接△ABC 中,D 为BC 上一点,且△ADC 为正三角形,点E 为BC 的延长线上一点,AE 为圆O 的切线,求证:CD 2=BD ·EC.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤a k 0 1(k ≠0)的一个特征向量为α=⎣⎢⎡⎦⎥⎤ k -1,A 的逆矩阵A -1对应的变换将点(3,1)变为点(1,1).求实数a 、k 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知M 是椭圆x 24+y 212=1上在第一象限的点,A(2,0)、B(0,23)是椭圆两个顶点,求四边形OAMB 面积的最大值.D. (选修4-5:不等式选讲)已知a 、b 、c ∈R ,a 2+2b 2+3c 2=6,求a +b +c 的最大值.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在正四棱锥PABCD 中,PA =AB =2,点M 、N 分别在线段PA 和BD 上,BN =13BD.(1) 若PM =13PA ,求证:MN ⊥AD ;(2) 若二面角MBDA 的大小为π4,求线段MN 的长度.23. 已知非空有限实数集S 的所有非空子集依次记为S 1,S 2,S 3,…,集合S k 中所有元素的平均值记为b k .将所有b k 组成数组T :b 1,b 2,b 3,…,数组T 中所有数的平均值记为m(T).(1) 若S ={1,2},求m(T);(2) 若S ={a 1,a 2,…,a n }(n ∈N *,n ≥2),求m(T).江苏省普通高等学校招生考试高三模拟测试卷(十五)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,△ABC 中,∠ACB =90°,以边AC 上的点O 为圆心,OA 为半径作圆,与边AB 、AC 分别交于点E 、F ,EC 与圆O 交于点D ,连结AD 并延长交BC 于P ,已知AE =EB =4,AD =5,求AP 的长.B. (选修4-2:矩阵与变换)已知点M(3,-1)绕原点逆时针旋转90°后,且在矩阵⎣⎢⎡⎦⎥⎤a 02b 对应的变换作用下,得到点N(3,5),求a 、b 的值.C. (选修4-4:坐标系与参数方程)如图,在极坐标系中,设极径为ρ(ρ>0),极角为θ(0≤θ<2π).圆A 的极坐标方程为ρ=2cos θ,点C 在极轴的上方,∠AOC =π6.△OPQ 是以OQ 为斜边的等腰直角三角形,若C为OP 的中点,求点Q 的极坐标.D. (选修4-5:不等式选讲)已知不等式|a-2|≤x2+2y2+3z2对满足x+y+z=1的一切实数x、y、z都成立,求实数a的取值范围.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在空间直角坐标系Axyz中,已知斜四棱柱ABCDA1B1C1D1的底面是边长为3的正方形,点B、D、B1分别在x、y、z轴上,B1A=3,P是侧棱B1B上的一点,BP=2PB1.(1) 写出点C1、P、D1的坐标;(2) 设直线C1E⊥平面D1PC,E在平面ABCD内,求点E的坐标.23.如图,圆周上有n个固定点,分别为A1,A2,…,A n(n∈N*,n≥2),在每一个点上分别标上1,2,3中的某一个数字,但相邻的两个数字不相同,记所有的标法总数为a n.(1) 写出a2,a3,a4的值;(2) 写出a n的表达式,并用数学归纳法证明.江苏省普通高等学校招生考试高三模拟测试卷(十六)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,圆O 的两弦AB 和CD 交于点E ,EF ∥CB ,EF 交AD 的延长线于点F.求证:△DEF ∽△EAF.B. (选修4-2:矩阵与变换)若矩阵M =⎣⎢⎡⎦⎥⎤a 0-1 2把直线l :x +y -2=0变换为另一条直线l′:x +y -4=0,试求实数a 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,直线l 经过点P(0,1),曲线C 的方程为x 2+y 2-2x =0,若直线l 与曲线C 相交于A 、B 两点,求PA·PB 的值.D. (选修4-5:不等式选讲)已知x >0,y >0,a ∈R ,b ∈R .求证:⎝ ⎛⎭⎪⎫ax +by x +y 2≤a 2x +b 2y x +y .【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 在平面直角坐标系xOy 中,已知定点F(1,0),点P 在y 轴上运动,点M 在x 轴上,点N 为平面内的动点,且满足PM →·PF →=0,PM →+PN →=0.(1) 求动点N 的轨迹C 的方程;(2) 设点Q 是直线l :x =-1上任意一点,过点Q 作轨迹C 的两条切线QS 、QT ,切点分别为S 、T ,设切线QS 、QT 的斜率分别为k 1、k 2,直线QF 的斜率为k 0,求证:k 1+k 2=2k 0.23.各项均为正数的数列{x n }对一切n ∈N *均满足x n +1x n +1<2.证明:(1) x n <x n +1; (2) 1-1n<x n <1.江苏省普通高等学校招生考试高三模拟测试卷(十七)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修41:几何证明选讲)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC =CD ,过C 作圆O 的切线交AD 于E.若AB =10,ED =3,求BC 的长.B. (选修42:矩阵与变换) 已知直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤2301对应的变换作用下变为直线l′:x +by =1.(1) 求实数a 、b 的值;(2) 若点P(x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标.C. (选修44:坐标系与参数方程)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cost ,y =2sint (t 为参数),曲线C 在点(1,3)处的切线为l.以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求l 的极坐标方程.D. (选修45:不等式选讲)设x 、y 、z ∈R ,且满足:x 2+y 2+z 2=1,x +2y +3z =14,求证:x +y +z =3147.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 一批产品需要进行质量检验,质检部门规定的检验方案是:先从这批产品中任取3件作检验,若3件产品都是合格品,则通过检验;若有2件产品是合格品,则再从这批产品中任取1件作检验,这1件产品是合格品才能通过检验,否则不能通过检验,也不再抽检;若少于2件是合格品,则不能通过检验,也不再抽检.假设这批产品的合格率为80%,且各件产品是否为合格品相互独立.(1) 求这批产品通过检验的概率;(2) 已知每件产品检验费为125元,并且所抽取的产品都要检验,记这批产品的检验费为ξ元,求ξ的概率分布及数学期望.23.已知数列{a n }和{b n }的通项公式分别为a n =3n -19,b n =2n .将{a n }与{b n }中的公共项按照从小到大的顺序排列构成一个新数列记为{c n }.(1) 试写出c 1,c 2,c 3,c 4的值,并由此归纳数列{c n }的通项公式; (2) 证明你在(1)所猜想的结论.江苏省普通高等学校招生考试高三模拟测试卷(十八)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,圆O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为圆O 上一点,AE =AC ,DE 交AB 于点F.求证:△PDF ∽△POC.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤1 2c d (c 、d 为实数).若矩阵A 属于特征值2,3的一个特征向量分别为⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤11,求矩阵A 的逆矩阵A -1.C. (选修4-4:坐标系与参数方程) 在极坐标系中,已知圆A 的圆心为(4,0),半径为4,点M 为圆A 上异于极点O 的动点,求弦OM 中点的轨迹的极坐标方程.D. (选修4-5:不等式选讲)已知x、y、z∈R,且x+2y+3z+8=0.求证:(x-1)2+(y+2)2+(z-3)2≥14.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在直三棱柱ABCA1B1C1中,已知CA=CB=1,AA1=2,∠BCA=90°.(1) 求异面直线BA1与CB1夹角的余弦值;(2) 求二面角BAB1C平面角的余弦值.23.在数列{a n}中,已知a1=20,a2=30,a n+1=3a n-a n-1(n∈N*,n≥2).(1) 当n=2,3时,分别求a2n-a n-1a n+1的值,并判断a2n-a n-1a n+1(n≥2)是否为定值,然后给出证明;(2) 求出所有的正整数n,使得5a n+1a n+1为完全平方数.江苏省普通高等学校招生考试高三模拟测试卷(十九)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,设AB 、CD 是圆O 的两条弦,直线AB 是线段CD 的垂直平分线.已知AB =6,CD =25,求线段AC 的长度.B. (选修4-2:矩阵与变换)设矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,矩阵A 属于特征值λ1=-1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤ 1-1,属于特征值λ2=4的一个特征向量为α2=⎣⎢⎡⎦⎥⎤32,求ad -bc 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.设点A 、B 分别在曲线C 1:⎩⎪⎨⎪⎧x =3+cos θ,y =4+sin θ(θ为参数)和曲线C 2:ρ=1上,求线段AB 的最小值.。

江苏省苏州大学高考指导测试 (二)(数学)

江苏省苏州大学高考指导测试 (二)(数学)

江苏省苏州大学高考指导测试 (二)(数学)考生注意:1.本试卷共4页,包括(第1题—第12题)、(第13题—第17题)两部分。

本试卷满分150分,考试时间1。

2.答将填空题答案和解答题的解答过程写在答题卷上,在本试卷上答题无效。

3.答题前,务必将自己的姓名、学校、准考证号写在答卷纸的规定位置。

一、填空题(本大题共14小题,每小题5分,共90分。

请把答案填写在答题卡相应位置上) 1. 若2(31)i 25i a a a -+-=+,其中i 是虚数单位,则实数a 的值为 ▲ .2. 在平面直角坐标系xOy 中,“方程22113x y k k +=--表示焦点在x 轴上的双曲线”的充要条件是“实数k ∈ ▲ ”.3. 某地区在连续7天中,新增某种流感的数据分别为4,2,1,0,0,0,0,则这组数据的方差s 2= ▲ . 4. 已知角α是锐角,求sin α+3cos α的取值范围 ▲ .5. 设m ,n 是两条不同的直线,α,β,γ是两个不同的平面,有下列四个命题:①⎩⎨⎧α∥ββ∥γ⇒α∥γ; ②⎩⎨⎧α⊥βm ∥α⇒m ⊥β; ③⎩⎨⎧m ⊥αm ∥β⇒α⊥β; ④⎩⎨⎧m ∥n n ⊂α⇒m ∥α.其中真命题的是 ▲ (填上所有真命题的序号).6. 将A ,B ,C ,D 四个人平均分成两组,则“A ,B 两人恰好在同一组”的概率为 ▲ .7. 右图是一个算法的流程图,最后输出的n = ▲ .8. 设S n 表示等差数列{a n }的前n 项和,已知a 5=3a 3,则95S S = ▲ .9. 已知函数()f x 是定义在(0,)+∞上的单调增函数,当n *∈N 时,()f n *∈N ,若[()]3f f n n =,则f (5)的值等于 ▲ .10. 已知f (x )=x 3-3x ,过A (1,m )可作曲线y =f (x )的三条切线,则m 的取值范围是 ▲ .11. 已知D 是由不等式组⎩⎨⎧x -2y ≥0,x +3y ≥0所确定的平面区域,则圆x 2+y 2=4 围成的区域与区域D 的公共部分的面积为 ▲ .12. 在平面直角坐标系xOy 中,设直线l :10kx y -+=与圆C :224x y +=相交于A 、B 两点,以OA ,OB 为邻边作□OAMB,若FC点M 在圆C 上,则实数k = ▲ .13. 在正六边形ABCDEF 中,AB =1,AP xAB y AF =+,则x +y 的取值范围是 ▲ .14. 将所有3的幂,或者是若干个3的幂之和,由小到大依次排列成数列1,3,4,9,10,12,13,…,则此数列的 第100项为 ▲ .二、解答题(本大题共6小题,共90分.解答题应写出文字说明、证明过程或演算步骤)15. (本小题满分14分) 已知向量m =(a ,cos2x ),n =(1+sin2x ,3),x ∈R ,记f (x )=m ⋅n .若y =f (x )的图象经过点(π4,2 ). (1)求实数a 的值;(2)设x ∈[-π4,π4],求f (x )的最大值和最小值;(3)将y =f (x )的图象向右平移π12,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到y =g (x )的图象,求y =g (x )的单调递减区间. 16.(本小题满分14分)在四棱锥P -ABCD 中,∠ABC =∠ACD =90°,∠BAC =∠CAD =60°,PA ⊥平面ABCD ,E 为PD 的中点,PA =2AB =2.(Ⅰ)求四棱锥P -ABCD 的体积V ;(Ⅱ)若F 为PC 的中点,求证PC ⊥平面AEF ; (Ⅲ)求证CE ∥平面PAB .17.(本小题满分15分)某企业有两个生产车间分别在A ,B 两个位置,A 车间有100名员工,B 车间有400名员工,现要在公路AC 上找一点D ,修一条公路BD ,并在D 处建一个食堂,使得所有员工均在此食堂用餐,已知A ,B ,C 中任意两点间的距离均有1km ,设∠BDC =α,所有员工从车间到食堂步行的总路程为S . (1)写出S 关于α的函数表达式,并指出α的取值范围; (2)问食堂D 建在距离A 多远时,可使总路程S 最少?PA BCDEF18.(本小题满分15分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0),直线l 过点A (a ,0)和B (0,b ).(1)以AB 为直径作圆M ,连接MO 并延长,与椭圆C 的第三象限部分交于N ,若直线NB 是圆M 的切线,求椭圆的离心率;(2)已知三点D (4,0),E (0,3),G (4,3),若圆M 与△DEG 恰有一个公共点,求椭圆方程.19.(本小题满分16分)已知数列{}n a 的前n 项和n S 满足:(1)1n n aS a a =--(a 为常数,且0,1a a ≠≠). (1)求{}n a 的通项公式; (2)设21=+nn nS b a ,若数列{}n b 为等比数列,求a 的值; (3)在满足条件(2)的情形下,设111211n n n c a a +=-++-(),数列{}n c 的前n 项和为T n . 求证:13n T <.本小题满分16分)已知关于x 的函数f (x )=x 2+2ax +b (其中a ,b ∈R ). (1)求函数|f (x )|的单调区间;(2)对于一切a∈[0,1],若存在实数m,使得1|()|4f m≤与1|(1)|4f m ≤能同时成立,求b-a的取值范围.参考答案1.2.2.3.4.(1,2]4-2若函数tan y x ω=在区间π(,π)2上单调递增,则实数ω的取值范围是________.13(0,][1,]22⋃.5.①③6.137. 100. 8.275 9. 8 10.(-3,-2). 11.π2. 12. 0. 12-2在直角坐标平面内,点A (1,2)到直线l 的距离为1,且点B (4,1)到直线l 的距离为2,则这样的直线l 最多的条数为_________.4. 13.无13—2已知|a |=2,|b |=3,|c |=4,且a +b +c =0 ,则向量a 与b 的夹角的余弦值= .13-3在Rt △ABC 中,∠A =90°,AB =AC =2,点D 为AC 中点,点E 满足13BE BC =,则AE BD ⋅=__________.13-4设点O 为△ABC 的外心,AB =13,AC =12,则BC AO ⋅=_____. 14. 981. 二、解答题 15. 16. 无17.(1)在△BCD 中,∵sin 60sin sin(120)BD BC CDαα==︒︒-,∴2sin BD α=,sin(120)sin CD αα︒-=.则sin(120)1sin AD αα︒-=-.S=sin(120)2400100[1]sin sin ααα︒-⋅+⋅-=cos 450sin αα--.其中π3≤α≤2π3. (2)2sin sin (cos 4)cos sin S ααααα-⋅--'=-CA=214cos sin αα-.令S '=0,得1cos 4α=. 当1cos 4α>时,S '<0,S 是α的单调减函数; 当1cos 4α<时,S '>0,S 是α的单调增函数. ∴当1cos 4α=时,S 取得最小值.此时,sin α=,1sin sin(120)12211sin sin 2AD ααααα+︒-=-=-=-=11122=-(答) 18已知椭圆C :x 2a 2+y 2b2=1(a >b >0),直线l 过点A (a ,0)和B (0,b ).(1)以AB 为直径作圆M ,连接MO 并延长,与椭圆C 的第三象限部分交于N ,若直线NB 是圆M 的切线,求椭圆的离心率;(2)已知三点D (4,0),E (0,3),G (4,3),若圆M 与△DEG 恰有一个公共点,求椭圆方程.数列问题19-1解 (1)11(1),1-=-aS a a ∴1,=a a 当2n ≥时,11,11n n n n n a aa S S a a a a --=-=---1nn a a a -=,即{}n a 是等比数列.∴1n n n a a a a -=⋅=; (2)由(1)知,2(1)(31)211(1)n n n n n aa a a a ab a a a ⋅----=+=-, 若{}n b 为等比数列,则有2213,b b b =而21232323223,,,a a a b b b a a +++===故22232322()3a a a a a +++=⋅, 解得13a =,再将13a =代入得3n n b =成立,所以13a =.(3)证明:由(2)知1()3n n a =,所以11111332111131311()1()33n n n n n n n c +++==+-+----+-1113131n n +=-+-,由111111,313313n n n n ++<>+-得111111,313133n n n n ++-<-+- 所以11133n n n c +-<,从而122231*********())33333333n n n n n T c c c ++=+++--++-=-<+(<13.函数问题已知关于x 的函数f (x )=x 2+2ax +b (其中a ,b ∈R ). (1)求函数|f (x )|的单调区间;(2)对于一切a ∈[0,1],若存在实数m ,使得1|()|4f m ≤与1|(1)|4f m +≤能同时成立,求b -a 的取值范围.。

2020年江苏省高考数学附加题专项7套含答案

2020年江苏省高考数学附加题专项7套含答案

专题一请同学从下面所给的三题中选定两题作答【题目1】 选修4-2:矩阵与变换设矩阵A =⎣⎡⎦⎤m 00 n ,若矩阵A 的属于特征值1的一个特征向量为⎣⎡⎦⎤10,属于特征值2的一个特征向量为⎣⎡⎦⎤01,求矩阵A .【题目2】 选修4-4:坐标系与参数方程已知直线l :⎩⎨⎧x =1+t ,y =-t (t 为参数)与圆C :⎩⎨⎧x =2cos θ,y =m +2sin θ(θ为参数)相交于A ,B 两点,m 为常数. (1)当m =0时,求线段AB 的长;【题目1】 甲、乙两人投篮命中的概率分别为23与12,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后甲、乙两人进球数的差的绝对值,求ξ的分布列和数学期望E (ξ).解 (1)比赛结束后甲的进球数比乙的进球数多1个有以下几种情况:甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球.所以比赛结束后甲的进球数比乙的进球数多1个的概率为【题目2】 在(1+x +x 2)n =D 0n +D 1n x +D 2n x 2+…+D r n x r +…+D 2n -1n x 2n -1+D 2n n x 2n 的展开式中,把D 0n ,D 1n ,D 2n,…,D 2n n 叫做三项式系数. (1)当n =2时,写出三项式系数D 02,D 12,D 22,D 32,D 42的值;(2)类比二项式系数性质C m n +1=C m -1n +C m n (1≤m ≤n ,m ∈N ,n ∈N ),给出一个关于三项式系数 .专题二请同学从下面所给的三题中选定两题作答【题目1】 选修4-2:矩阵与变换已知曲线C :y 2=12x ,在矩阵M =⎣⎡⎦⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =⎣⎡⎦⎤0 11 0对应的变换作用下得到曲线C 2,求曲线C 2的方程.【题目2】 选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,圆的参数方程为⎩⎨⎧x =2+2cos α,y =2sin α(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.求: (1)圆的普通方程;(2)圆的极坐标方程.必做部分【题目1】如图,在多面体ABCDEF中,ABCD为正方形,ED⊥平面ABCD,FB∥ED,且AD=DE=2BF=2.(1)求证:AC⊥EF;(2)求二面角C-EF-D的大小.【题目2】已知k,m∈N*,若存在互不相等的正整数a1,a2,…,a m,使得a1a2,a2a3,…,a m-1a m,a m a1同时小于k,则记f(k)为满足条件的m的最大值.(1)求f(6)的值;(2)对于给定的正整数n (n >1),(ⅰ)当n (n +2)<k ≤(n +1)(n +2)时,求f (k )的解析式;(ⅱ)当n (n +1)<k ≤n (n +2)时,求f (k )的解析式.专题三请同学从下面所给的三题中选定两题作答【题目1】 选修4-2:矩阵与变换设二阶矩阵A ,B 满足A -1=⎣⎡⎦⎤1 23 4,(BA )-1=⎣⎡⎦⎤1 00 1,求B -1.【题目2】 选修4-4:坐标系与参数方程在极坐标系中,已知曲线C :ρ=2sin θ,过极点O 的直线l 与曲线C 交于A ,B 两点,且AB =3,求直线l 的方程.必做部分【题目1】某校高一、高二两个年级进行乒乓球对抗赛,每个年级选出3名学生组成代表队,比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,但不能参加两盘单打比赛.若每盘比赛中高一、高二获胜的概率分别为37,4 7.(1)按比赛规则,高一年级代表队可以派出多少种不同的出场阵容?(2)若单打获胜得2分,双打获胜得3分,求高一年级得分ξ的概率分布列和数学期望.【题目2】 已知抛物线C :x 2=2py (p >0)过点(2,1),直线l 过点P (0,-1)与抛物线C 交于A ,B 两点.点A 关于y 轴的对称点为A ′,连接A ′B .(1)求抛物线C 的标准方程;(2)问直线A ′B 是否过定点?若是,求出定点坐标;若不是,请说明理由. 专题4请同学从下面给的三题中选定两题作答【题目1】 选修4-2:矩阵与变换已知矩阵A =⎣⎡⎦⎤1 2c d (c ,d 为实数).若矩阵A 属于特征值2,3的一个特征向量分别为⎣⎡⎦⎤21,⎣⎡⎦⎤11,求矩阵A 的逆矩阵A -1.【题目2】 选修4-4:坐标系与参数方程已知直线l 的极坐标方程为ρsin ()θ-π3=3,曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),设点P 是曲线C 上的任意一点,求P 到直线l 的距离的最大值.必做部分【题目1】 如图,在直三棱柱ABC -A 1B 1C 1中,已知CA =CB =1,AA 1=2,∠BCA =90°.(1)求异面直线BA 1与CB 1夹角的余弦值;(2)求二面角B-AB1-C平面角的余弦值.【题目2】在数列{a n}中,已知a1=20,a2=30,a n+1=3a n-a n-1(n∈N*,n≥2).(1)当n=2,3时,分别求a2n-a n-1a n+1的值,并判断a2n-a n-1a n+1(n≥2)是否为定值,然后给出证明;(2)求出所有的正整数n,使得5a n+1a n+1为完全平方数.专题五2.(2018·江苏省盐城中学调研)已知矩阵M =⎣⎡⎦⎤0 ab 0满足:Ma i =λi a i ,其中λi (i =1,2)是互不相等的实常数,a i (i =1,2)是非零的平面列向量,λ1=1,a 2=⎣⎡⎦⎤11,求矩阵M .3.(2018·苏州、南通等六市模拟)在极坐标系中,求以点P ()2,π3为圆心且与直线l: ρsin ()θ-π3=2相切的圆的极坐标方程.5.已知点A(1,2)在抛物线F:y2=2px上.(1)若△ABC的三个顶点都在抛物线F上,记三边AB,BC,CA所在直线的斜率分别为k1,k2,k3, 求1k1-1k2+1k3的值;(2)若四边形ABCD的四个顶点都在抛物线F上,记四边AB,BC,CD,DA所在直线的斜率分别为k1,k2,k3,k4,求1k1-1k2+1k3-1k4的值.6.已知f n (x )=C 0n x n -C 1n (x -1)n +…+(-1)k C k n (x -k )n +…+(-1)n C n n (x -n )n ,其中x ∈R ,n ∈N *,k ∈N ,k ≤n .(1)试求f 1(x ),f 2(x ),f 3(x )的值;(2)试猜测f n (x )关于n 的表达式,并证明你的结论. .专题六2.(2018·苏州、南通等六市模拟)在平面直角坐标系xOy 中,已知A ()0,0,B ()3,0,C ()2,2.设变换T 1, T 2对应的矩阵分别为M =⎣⎡⎦⎤1 02, N =⎣⎡⎦⎤2 00 1,求对△ABC 依次实施变换T 1, T 2后所得图形的面积.3.已知两个动点P ,Q 分别在两条直线l 1:y =x 和l 2:y =-x 上运动,且它们的横坐标分别为角θ的正弦,余弦,θ∈[0,π],记OM →=OP →+OQ →,求动点M 的轨迹的普通方程.5.甲、乙两人轮流投篮,每人每次投一次篮,先投中者获胜,投篮进行到有人获胜或每人都已投球3次时结束.设甲每次投篮命中的概率为25,乙每次投篮命中的概率为23,且各次投篮互不影响.现由甲先投.(1)求甲获胜的概率;(2)求投篮结束时甲的投篮次数X的概率分布与数学期望.6.设n 个正数a 1,a 2,…,a n 满足a 1≤a 2≤…≤a n (n ∈N *且n ≥3). (1)当n =3时,证明:a 1a 2a 3+a 2a 3a 1+a 3a 1a 2≥a 1+a 2+a 3;(2)当n =4时,不等式a 1a 2a 3+a 2a 3a 4+a 3a 4a 1+a 4a 1a 2≥a 1+a 2+a 3+a 4也成立,请你将其推广到n (n ∈N *且n ≥3)个正数a 1,a 2,…,a n 的情形,归纳出一般性的结论并用数学归纳法证明.专题七2.若二阶矩阵M 满足⎣⎢⎡⎦⎥⎤-2122-1M =⎣⎡⎦⎤-3 0 4-1,求曲线4x 2+4xy +y 2-12x +12y =0在矩阵M 所对应的变换作用下得到的曲线的方程.3.已知直线的极坐标方程为ρsin ()θ+π4=22,圆M 的参数方程为⎩⎨⎧x =2cos θ,y =-2+2sin θ(其中θ为参数).(1)将直线的极坐标方程化为直角坐标方程; (2)求圆M 上的点到直线的距离的最小值.5.如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =2,AB ⊥AC ,M 是棱BC 的中点,点P 在线段A 1B 上.(1)若P 是线段A 1B 的中点,求直线MP 与直线AC 所成角的大小;(2)若N 是CC 1的中点,直线A 1B 与平面PMN 所成角的正弦值为77,求线段BP 的长度.6.已知()1+12xn展开式的各项依次记为a 1(x ),a 2(x ),a 3(x ),…,a n(x ),an +1(x ).设F (x )=a 1(x )+2a 2(x )+3a 3(x )+…+na n (x )+(n +1)·a n +1(x ).(1)若a 1(x ),a 2(x ),a 3(x )的系数依次成等差数列,求n 的值; (2)求证:对任意x 1,x 2∈[0,2],恒有|F (x 1)-F (x 2)|≤2n -1(n +2)-1专题一请同学从下面所给的三题中选定两题作答 【题目1】 选修4-2:矩阵与变换设矩阵A =⎣⎡⎦⎤m 0n ,若矩阵A 的属于特征值1的一个特征向量为⎣⎡⎦⎤10,属于特征值2的一个特征向量为⎣⎡⎦⎤01,求矩阵A .解 由题意得⎣⎡⎦⎤m 00 n ⎣⎡⎦⎤10=1⎣⎡⎦⎤10,⎣⎡⎦⎤m 00 n ⎣⎡⎦⎤01=2⎣⎡⎦⎤01,所以⎩⎨⎧m =1,n =2,故A =⎣⎡⎦⎤1 00 2. 【题目2】 选修4-4:坐标系与参数方程已知直线l :⎩⎨⎧x =1+t ,y =-t (t 为参数)与圆C :⎩⎨⎧x =2cos θ,y =m +2sin θ(θ为参数)相交于A ,B 两点,m 为常数.(1)当m =0时,求线段AB 的长;(2)当圆C 上恰有三点到直线的距离为1时,求m 的值. 解 (1)直线l :x +y -1=0,曲线C :x 2+y 2=4,圆心到直线的距离d =12,故AB =2r 2-d 2=14. (2)圆C 的直角坐标方程为x 2+(y -m )2=4,直线l :x +y -1=0,由题意,知圆心到直线的距离d =|m -1|2=1,∴m =1± 2. 必做部分【题目1】 甲、乙两人投篮命中的概率分别为23与12,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后甲、乙两人进球数的差的绝对值,求ξ的分布列和数学期望E (ξ). 解 (1)比赛结束后甲的进球数比乙的进球数多1个有以下几种情况: 甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球. 所以比赛结束后甲的进球数比乙的进球数多1个的概率为P =C 13×23×()132×()123+C 23×()232×()13×C 13×()123+C 33×()233×C 23×()123=1136.(2)ξ的取值为0,1,2,3,则P(ξ=0)=()133×()123+C13×23×()132×C13×()123+C23×()232×13×C23×()123+()233×()123=724,P(ξ=1)=()133×C13×()123+C13×23×()132×()123+C13×23×()132×C23×()123+C23×()232×13×C13×()123+C23×()232×13×()123+()233×C23×()123=1124,P(ξ=2)=()133×C23×()123+C23×()232×13×()123+C13×23×()132×()123+()233×C13×()123=524,P(ξ=3)=()133×()123+()233×()123=124,所以ξ的分布列为所以数学期望E(ξ)=0×724+1×1124+2×524+3×124=1.【题目2】在(1+x+x2)n=D0n+D1n x+D2n x2+…+D r n x r+…+D2n-1n x2n-1+D2n n x2n的展开式中,把D0n,D1n,D2n,…,D2n n叫做三项式系数.(1)当n=2时,写出三项式系数D02,D12,D22,D32,D42的值;(2)类比二项式系数性质C m n+1=C m-1n+C m n(1≤m≤n,m∈N,n∈N),给出一个关于三项式系数D m+1n+1(1≤m≤2n-1,m∈N,n∈N)的相似性质,并予以证明.解(1)因为(1+x+x2)2=1+2x+3x2+2x3+x4,所以D02=1,D12=2,D22=3,D32=2,D42=1.(2)类比二项式系数性质C m n+1=C m-1n+C m n(1≤m≤n,m∈N,n∈N),三项式系数有如下性质:D m+1n+1=D m-1n+D m n+D m+1n(1≤m≤2n-1).证明如下:因为(1+x+x2)n+1=(1+x+x2)·(1+x+x2)n,所以(1+x +x 2)n +1=(1+x +x 2)·(D 0n +D 1n x +D 2n x 2+…+D 2n -1n x 2n -1+D 2n nx 2n ). 上式左边x m+1的系数为D m +1n +1,上式右边xm+1的系数为D m +1n +D m n +D m -1n ,于是D m +1n +1=D m -1n +D m n +D m +1n (1≤m ≤2n -1).专题二请同学从下面所给的三题中选定两题作答 【题目1】 选修4-2:矩阵与变换已知曲线C :y 2=12x ,在矩阵M =⎣⎡⎦⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =⎣⎡⎦⎤0 11 0对应的变换作用下得到曲线C 2,求曲线C 2的方程. 解 设A =NM ,则A =⎣⎡⎦⎤0 110⎣⎡⎦⎤1-2=⎣⎡⎦⎤0 -210,设P (x ′,y ′)是曲线C 上任一点,在两次变换下,在曲线C 2上对应的点为P (x ,y ),则⎣⎡⎦⎤xy =⎣⎡⎦⎤0 -21 0⎣⎡⎦⎤x ′y ′=⎣⎡⎦⎤-2y ′ x ′,即⎩⎨⎧x =-2y ′,y =x ′,∴⎩⎨⎧x ′=y ,y ′=-12x . 又点P (x ′,y ′)在曲线C :y 2=12x 上,∴()-12x2=12y ,即x 2=2y . 【题目2】 选修4-4:坐标系与参数方程 在平面直角坐标系xOy 中,圆的参数方程为⎩⎨⎧x =2+2cos α,y =2sin α(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.求: (1)圆的普通方程; (2)圆的极坐标方程.解 (1)根据sin 2α+cos 2α=1,得(x -2)2+y 2=4cos 2α+4sin 2α, 所以圆的普通方程为(x -2)2+y 2=4.(2)把⎩⎨⎧x =ρcos θ,y =ρsin θ代入圆的普通方程得圆的极坐标方程为ρ=4cos θ.必做部分【题目1】 如图,在多面体ABCDEF 中,ABCD 为正方形,ED ⊥平面ABCD ,FB ∥ED ,且AD =DE =2BF =2.(1)求证:AC ⊥EF ;(2)求二面角C -EF -D 的大小.(1)证明 连接BD ,∵FB ∥ED ,∴F ,B ,E ,D 共面,∵ED ⊥平面ABCD ,AC 平面ABCD ,∴ED ⊥AC ,又ABCD 为正方形, ∴BD ⊥AC ,而ED ∩DB =D ,ED ,DB 平面DBFE ,∴AC ⊥平面DBFE ,而EF平面DBFE ,∴AC ⊥EF .(2)解 如图建立空间直角坐标系.则A (2,0,0),B (2,2,0),C (0,2,0),F (2,2,1),E (0,0,2), 由(1)知AC →为平面DBFE 的法向量,即AC →=(-2,2,0),又CE →=(0,-2,2),CF →=(2,0,1),设平面CEF 的法向量为n =(x ,y ,z ), 则有⎩⎪⎨⎪⎧CE →·n =0,CF →·n =0,即⎩⎨⎧-2y +2z =0,2x +z =0,取z =1,则x =-12,y =1,∴n =()-12,1,1.设二面角C -EF -D 的大小为θ,则cos 〈n ,AC →〉=n ·AC →|n ||AC →|=1+232×22=22,又二面角C -EF -D 为锐角,所以θ=π4.【题目2】 已知k ,m ∈N *,若存在互不相等的正整数a 1,a 2,…,a m ,使得a 1a 2,a 2a 3,…,a m -1a m ,a m a 1同时小于k ,则记f (k )为满足条件的m 的最大值. (1)求f (6)的值;(2)对于给定的正整数n (n >1),(ⅰ)当n (n +2)<k ≤(n +1)(n +2)时,求f (k )的解析式; (ⅱ)当n (n +1)<k ≤n (n +2)时,求f (k )的解析式. 解 (1)由题意,取a 1=1,a 2=2,a 1a 2<6,满足题意, 若a 3≥3,则必有a 2a 3≥6,不满足题意,综上所述,m 的最大值为2,即f (6)=2. (2)由题意,当n (n +1)<k ≤(n +1)(n +2)时,设A 1={1,2,…,n },A 2={n +1,n +2,n +3,…}, 显然,a i ,a i +1∈A 1时,满足a i a i +1≤n (n -1)<n (n +1)<k ,所以从集合A 1中选出的a i 至多有n 个,a j ,a j +1∈A 2时,a j a j +1≥(n +1)(n +2)≥k ,不符合题意, 所以从集合A 2中选出的a j 必不相邻, 又因为从集合A 1中选出的a i 至多有n 个,所以从集合A 2中选出的a j 至多有n 个,放置于从集合A 1中选出的a i 之间, 所以f (k )≤2n .(ⅰ)当n (n +2)<k ≤(n +1)(n +2)时,取一串数a i 为:1,2n ,2,2n -1,3,2n -2,…,n -1,n +2,n ,n +1,或写成a i =⎩⎪⎨⎪⎧i +12,i 为奇数,2n +1-i2,i 为偶数(1≤i ≤2n ),此时a i a i +1≤n (n +2)<k (1≤i ≤2n -1),a 2n a 1=n +1<k ,满足题意,所以f (k )=2n . (ⅱ)当n (n +1)<k ≤n (n +2)时,从A 1中选出的n 个a i :1,2,…,n ,考虑数n 的两侧的空位,填入集合A 2的两个数a p ,a q ,不妨设na p >na q ,则na p ≥n (n +2)≥k ,与题意不符, 所以f (k )≤2n -1,取一串数a i 为1,2n -1,2,2n -2,3,2n -3,…,n -2,n +2,n -1,n +1,n 或写成a i =⎩⎪⎨⎪⎧i +12,i 为奇数,2n -i 2,i 为偶数(1≤i ≤2n-1),此时a i a i +1≤n (n +1)<k (1≤i ≤2n -2),a 2n -1a 1=n <k ,满足题意, 所以f (k )=2n -1.专题三请同学从下面所给的三题中选定两题作答 【题目1】 选修4-2:矩阵与变换 设二阶矩阵A ,B 满足A -1=⎣⎡⎦⎤1 234,(BA )-1=⎣⎡⎦⎤1 01,求B -1.解 设B -1=⎣⎡⎦⎤a bcd ,因为(BA )-1=A -1B -1,所以⎣⎡⎦⎤1 01=⎣⎡⎦⎤1 23 4⎣⎡⎦⎤a b c d , 即⎩⎪⎨⎪⎧a +2c =1,b +2d =0,3a +4c =0,3b +4d =1,解得⎩⎪⎨⎪⎧a =-2,b =1,c =32,d =-12,所以B-1=⎣⎢⎡⎦⎥⎤-2 132 -12.【题目2】 选修4-4:坐标系与参数方程在极坐标系中,已知曲线C :ρ=2sin θ,过极点O 的直线l 与曲线C 交于A ,B 两点,且AB =3,求直线l 的方程.解 设直线l 的方程为θ=θ0(ρ∈R ),A (0,0),B (ρ1,θ0),则AB =|ρ1-0|=|2sin θ0|.又AB =3,故sin θ0=±32. 解得θ0=π3+2k π或θ0=-π3+2k π,k ∈Z .所以直线l 的方程为θ=π3或θ=2π3(ρ∈R ).【题目3】 选修4-5:不等式选讲 已知a ≥0,b ≥0,求证:a 6+b 6≥ab (a 4+b 4).证明 ∵a 6+b 6-ab (a 4+b 4)=a 5(a -b )-(a -b )b 5=(a -b )(a 5-b 5). 又a ≥0,b ≥0,当a -b ≥0时,a 5-b 5≥0; 当a -b <0时,a 5-b 5<0,即(a -b )(a 5-b 5)≥0, 所以a 6+b 6-ab (a 4+b 4)≥0,即a 6+b 6≥ab (a 4+b 4).必做部分【题目1】 某校高一、高二两个年级进行乒乓球对抗赛,每个年级选出3名学生组成代表队,比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,但不能参加两盘单打比赛.若每盘比赛中高一、高二获胜的概率分别为37,47.(1)按比赛规则,高一年级代表队可以派出多少种不同的出场阵容?(2)若单打获胜得2分,双打获胜得3分,求高一年级得分ξ的概率分布列和数学期望.解 (1)先安排参加单打的队员有A 23种方法,再安排参加双打的队员有C 12种方法,所以,高一年级代表队出场共有A 23C 12=12种不同的阵容.(2)ξ的取值可能是0,2,3,4,5,7. P (ξ=0)=()1-373=64343,P (ξ=2)=C 12×37×()1-372=96343, P (ξ=3)=()1-372×37=48343,P (ξ=4)=()372×()1-37=36343,P (ξ=5)=C 12×37×()1-37×37=72343,P (ξ=7)=()373=27343, ξ的概率分布列为所以E (ξ)=0×64343+2×96343+3×48343+4×36343+5×72343+7×27343=3.【题目2】 已知抛物线C :x 2=2py (p >0)过点(2,1),直线l 过点P (0,-1)与抛物线C 交于A ,B 两点.点A 关于y 轴的对称点为A ′,连接A ′B .(1)求抛物线C 的标准方程;(2)问直线A ′B 是否过定点?若是,求出定点坐标;若不是,请说明理由. 解 (1)将点(2,1)代入抛物线C 的方程得p =2, 所以抛物线C 的标准方程为x 2=4y .(2)设直线l 的方程为y =kx -1,又设A (x 1,y 1),B (x 2,y 2),则A ′(-x 1,y 1),由⎩⎨⎧y =14x 2,y =kx -1得x 2-4kx +4=0,则Δ=16k 2-16>0, x 1=2k -2k 2-1,x 2=2k +2k 2-1, 所以k A ′B =y 2-y 1x 2-(-x 1)=x 224-x 214x 1+x 2=x 2-x 14,于是直线A ′B 的方程为y -x 224=x 2-x 14(x -x 2),所以y =x 2-x 14(x -x 2)+x 224=k 2-1x +1,当x =0时,y =1,所以直线A ′B 过定点(0,1).专题4请同学从下面给的三题中选定两题作答 【题目1】 选修4-2:矩阵与变换 已知矩阵A =⎣⎡⎦⎤1 2cd (c ,d 为实数).若矩阵A 属于特征值2,3的一个特征向量分别为⎣⎡⎦⎤21,⎣⎡⎦⎤11,求矩阵A 的逆矩阵A -1.解 由题意知⎣⎡⎦⎤1 2cd ⎣⎡⎦⎤21=⎣⎡⎦⎤ 42c +d =2⎣⎡⎦⎤21,⎣⎡⎦⎤1 2c d ⎣⎡⎦⎤11=⎣⎡⎦⎤ 3c +d =3⎣⎡⎦⎤11,所以⎩⎨⎧2c +d =2,c +d =3,解得⎩⎨⎧c =-1,d =4.所以A =⎣⎡⎦⎤1 2-1 4,所以A -1=⎣⎢⎢⎡⎦⎥⎥⎤23-131616.【题目2】 选修4-4:坐标系与参数方程已知直线l 的极坐标方程为ρsin ()θ-π3=3,曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),设点P 是曲线C 上的任意一点,求P 到直线l 的距离的最大值.解 由ρsin ()θ-π3=3,可得ρ⎝⎛⎭⎫12sin θ-32cos θ=3.所以y -3x =6,即3x -y +6=0,由⎩⎨⎧x =2cos θ,y =2sin θ得x 2+y 2=4,圆的半径为r =2,所以圆心到直线l 的距离d =62=3,所以P 到直线l 的距离的最大值为d +r =5.【题目3】 选修4-5:不等式选讲已知x ,y ,z ∈R ,且x +2y +3z +8=0.求证:(x -1)2+(y +2)2+(z -3)2≥14. 证明 因为[(x -1)2+(y +2)2+(z -3)2](12+22+32)≥[(x -1)+2(y +2)+3(z -3)]2 =(x +2y +3z -6)2=142,当且仅当x -11=y +22=z -33,即x =z =0,y =-4时,取等号, 所以(x -1)2+(y +2)2+(z -3)2≥14.必做部分【题目1】 如图,在直三棱柱ABC -A 1B 1C 1中,已知CA =CB =1,AA 1=2,∠BCA =90°.(1)求异面直线BA 1与CB 1夹角的余弦值; (2)求二面角B -AB 1-C 平面角的余弦值.解 如图,以{CA →,CB →,CC 1→}为正交基底,建立空间直角坐标系C -xyz ,则A (1,0,0),B (0,1,0),A 1(1,0,2),B 1(0,1,2),所以CB 1→=(0,1,2),AB →=(-1,1,0),AB 1→=(-1,1,2),BA 1→=(1,-1,2). (1)因为cos 〈CB 1→,BA 1→〉=CB 1→·BA 1→|CB 1→||BA 1→|=35×6=3010,所以异面直线BA 1与CB 1夹角的余弦值为3010. (2)设平面CAB 1的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·AB 1→=0,m ·CB 1→=0,即⎩⎨⎧-x +y +2z =0,y +2z =0,取平面CAB 1的一个法向量为m =(0,2,-1);设平面BAB 1的法向量为n =(r ,s ,t ),则⎩⎪⎨⎪⎧n ·AB 1→=0,n ·AB →=0,即⎩⎨⎧-r +s +2t =0,-r +s =0,取平面BAB 1的一个法向量为n =(1,1,0),则cos 〈m ,n 〉=m·n|m ||n |=25×2=105,易知二面角B -AB 1-C 为锐角,所以二面角B -AB 1-C 平面角的余弦值为105. 【题目2】 在数列{a n }中,已知a 1=20,a 2=30,a n +1=3a n -a n -1(n ∈N *,n ≥2).(1)当n =2,3时,分别求a 2n -a n -1a n +1的值,并判断a 2n -a n -1a n +1(n ≥2)是否为定值,然后给出证明;(2)求出所有的正整数n ,使得5a n +1a n +1为完全平方数.解 (1)由已知得a 3=70,a 4=180.所以当n =2时,a 2n -a n -1a n +1=-500;当n =3时,a 2n -a n -1a n +1=-500.猜想:a 2n-a n -1a n +1=-500(n ≥2). 下面用数学归纳法证明: ①当n =2时,结论成立.②假设当n =k (k ≥2,k ∈N *)时,结论成立,即a 2k -a k -1a k +1=-500. 将a k +1=3a k -a k -1代入上式,可得a 2k -3a k a k +1+a 2k +1=-500.则当n =k +1时,a 2k +1-a k a k +2=a 2k +1-a k (3a k +1-a k )=a 2k +1-3a k a k +1+a 2k =-500.故当n =k +1结论成立,根据①②可得a 2n -a n -1a n +1=-500(n ≥2)成立. (2)将a n -1=3a n -a n +1代入a 2n -a n -1a n +1=-500,得a 2n +1-3a n a n +1+a 2n =-500,则5a n +1a n =(a n +1+a n )2+500,5a n a n +1+1=(a n +1+a n )2+501, 设5a n +1a n +1=t 2(t ∈N *),则t 2-(a n +1+a n )2=501,即[t -(a n +1+a n )](t +a n +1+a n )=501, 又a n +1+a n ∈N ,且501=1×501=3×167, 故⎩⎨⎧a n +1+a n -t =-1,a n +1+a n +t =501或⎩⎨⎧a n +1+a n -t =-3,a n +1+a n +t =167, 所以⎩⎨⎧t =251,a n +1+a n =250或⎩⎨⎧t =85,a n +1+a n =82,由a n +1+a n =250解得n =3;由a n +1+a n =82得n 无整数解,所以当n =3时,满足条件.专题五2.(2018·江苏省盐城中学调研)已知矩阵M =⎣⎡⎦⎤0 ab 0满足:Ma i =λi a i ,其中λi (i =1,2)是互不相等的实常数,a i (i =1,2)是非零的平面列向量,λ1=1,a 2=⎣⎡⎦⎤11,求矩阵M .解由题意,λ1,λ2是方程f (λ)=⎪⎪⎪⎪⎪⎪ λ-a -bλ=λ2-ab =0的两根. 因为λ1=1,所以ab =1.又因为Ma 2=λ2a 2,所以⎣⎡⎦⎤0 a b 0 ⎣⎡⎦⎤11=λ2⎣⎡⎦⎤11,从而⎩⎨⎧a =λ2,b =λ2,所以λ22=ab =1.因为λ1≠λ2,所以λ2=-1,从而a =b =-1,故矩阵M =⎣⎢⎡⎦⎥⎤ 0 -1-10. 3.(2018·苏州、南通等六市模拟)在极坐标系中,求以点P ()2,π3为圆心且与直线l: ρsin ()θ-π3=2相切的圆的极坐标方程.解 以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系xOy .则点P 的直角坐标为()1,3.将直线l: ρsin ()θ-π3=2的方程变形为: ρsin θcos π3-ρcos θsin π3=2,化为普通方程得3x -y +4=0.∴P ()1,3到直线l: 3x -y +4=0的距离为4()32+()-12=2.∴所求圆的普通方程为()x -12+()y -32=4,化为极坐标方程得ρ=4sin ()θ+π6.4.已知实数x >0,y >0,z >0,证明:()1x +2y +3z ()x 2+y 4+z 6≥92. 证明 因为x >0,y >0,z >0, 所以1x +2y +3z 3≥36xyz ,x 2+y 4+z 63≥ 3xyz 48, 所以()1x +2y +3z()x 2+y 4+z 6≥92. 当且仅当x ∶y ∶z =1∶2∶3时,等号成立. 5.已知点A (1,2)在抛物线F :y 2=2px 上.(1)若△ABC 的三个顶点都在抛物线F 上,记三边AB ,BC ,CA 所在直线的斜率分别为k 1,k 2,k 3, 求1k 1-1k 2+1k 3的值;(2)若四边形ABCD 的四个顶点都在抛物线F 上,记四边AB ,BC ,CD ,DA 所在直线的斜率分别为k 1,k 2,k 3,k 4,求1k 1-1k 2+1k 3-1k 4的值. 解 (1)由点A (1,2)在抛物线F 上,得p =2, ∴抛物线F :y 2=4x , 设B ()y 214,y 1,C ()y 224,y 2, ∴1k 1-1k 2+1k 3=y 214-1y 1-2-y 224-y 214y 2-y 1+1-y 2242-y 2=y 1+24-y 2+y 14+2+y 24=1. (2)另设D ()y 234,y 3,则1k 1-1k 2+1k 3-1k 4=y 1+24-y 2+y 14+y 3+y 24-2+y 34=0.6.已知f n (x )=C 0n x n -C 1n (x -1)n +…+(-1)k C k n (x -k )n +…+(-1)n C n n (x -n )n ,其中x ∈R ,n ∈N *,k ∈N ,k ≤n .(1)试求f 1(x ),f 2(x ),f 3(x )的值;(2)试猜测f n (x )关于n 的表达式,并证明你的结论.解 (1)f 1(x )=C 01x -C 11(x -1)=1,f 2(x )=C 02x 2-C 12(x -1)2+C 22(x -2)2=x 2-2(x -1)2+(x -2)2=2,f 3(x )=C 03x 3-C 13(x -1)3+C 23(x -2)3-C 33(x -3)3=x 3-3(x -1)3+3(x -2)3-(x -3)3=6.(2)猜测f n (x )=n !,n ∈N *. 以下用数学归纳法证明.①当n =1时,f 1(x )=1,等式成立.②假设当n =m (m ≥1,m ∈N *)时,等式成立,即f m (x )=∑k =0m(-1)k C k m(x -k )m =m !. 当n =m +1时,则f m +1(x )=∑k =0m +1(-1)k C k m +1·(x -k )m +1. 因为C k m +1=C k m +C k -1m ,k C k m +1=(m +1)·C k -1m,其中k =1,2,…,m , 且C 0m +1=C 0m ,C m +1m +1=C m m , 所以f m +1(x )=∑k =0m +1(-1)k C k m +1(x -k )m +1=x ∑k =0m +1(-1)k C k m +1(x -k )m-∑k =0m +1(-1)k k C km +1(x -k )m=x ∑k =0m(-1)k C k m(x -k )m +x ∑k =1m +1(-1)k C k -1m(x -k )m -(m +1)∑k =1m +1(-1)k C k-1m (x -k )m =x ·m !+(-x +m +1)∑k =0m(-1)k C k m ·[(x -1)-k ]m =x ·m !+(-x +m +1)·m!=(m +1)·m !=(m +1)!. 即当n =m +1时,等式也成立. 由①②可知,对n ∈N *,均有f n (x )=n !.专题六2.(2018·苏州、南通等六市模拟)在平面直角坐标系xOy 中,已知A ()0,0,B ()3,0,C ()2,2.设变换T 1, T 2对应的矩阵分别为M =⎣⎡⎦⎤1 02, N =⎣⎡⎦⎤2 00 1,求对△ABC 依次实施变换T 1, T 2后所得图形的面积.解 依题意,依次实施变换T 1, T 2所对应的矩阵NM = ⎣⎡⎦⎤2 01 ⎣⎡⎦⎤1 00 2=⎣⎡⎦⎤2 00 2.则⎣⎡⎦⎤2 02 ⎣⎡⎦⎤00=⎣⎡⎦⎤00, ⎣⎡⎦⎤2 00 2 ⎣⎡⎦⎤30=⎣⎡⎦⎤60,⎣⎡⎦⎤2 00 2 ⎣⎡⎦⎤22=⎣⎡⎦⎤44.∴A ()0,0,B ()3,0,C ()2,2分别变为点A ′()0,0,B ′()6,0,C ′()4,4. ∴所得图形的面积为12×6×4=12.3.已知两个动点P ,Q 分别在两条直线l 1:y =x 和l 2:y =-x 上运动,且它们的横坐标分别为角θ的正弦,余弦,θ∈[0,π],记OM →=OP →+OQ →,求动点M 的轨迹的普通方程.解设M (x ,y ),则⎩⎨⎧x =sin θ+cos θ,y =sin θ-cos θ,两式平方相加得x 2+y 2=2.又x =2sin ()θ+π4,y =2sin ()θ-π4, θ∈[0,π], 所以x ∈[-1,2],y ∈[-1,2].所以动点M 轨迹的普通方程为x 2+y 2=2(x ,y ∈[-1,2]).4.(2018·江苏省盐城中学质检)已知a >0,b >0,证明:(a 2+b 2+ab )(ab 2+a 2b +1)≥9a 2b 2.证明 因为a >0,b >0,所以a 2+b 2+ab ≥33a 2·b 2·ab =3ab >0,ab 2+a 2b +1≥33ab 2·a 2b ·1=3ab >0, 所以(a 2+b 2+ab )(ab 2+a 2b +1)≥9a 2b 2.5.甲、乙两人轮流投篮,每人每次投一次篮,先投中者获胜,投篮进行到有人获胜或每人都已投球3次时结束.设甲每次投篮命中的概率为25,乙每次投篮命中的概率为23,且各次投篮互不影响.现由甲先投.(1)求甲获胜的概率;(2)求投篮结束时甲的投篮次数X 的概率分布与数学期望.解 (1)设甲第i 次投中获胜的事件为A 1(i =1,2,3),则A 1,A 2,A 3彼此互斥. 甲获胜的事件为A 1+A 2+A 3. P (A 1)=25,P (A 2)=35×13×25=225,P (A 3)=()352×()132×25=2125. 所以P (A 1+A 2+A 3)=P (A 1)+P (A 2)+P (A 3)=25+225+2125=62125.(2)X 的所有可能取值为1,2,3. 则P (X =1)=25+35×23=45,P (X =2)=225+35×13×35×23=425,P (X =3)=()352×()132×1=125. 即X 的概率分布为所以数学期望E (X )=1×45+2×425+3×125=3125.6.设n 个正数a 1,a 2,…,a n 满足a 1≤a 2≤…≤a n (n ∈N *且n ≥3). (1)当n =3时,证明:a 1a 2a 3+a 2a 3a 1+a 3a 1a 2≥a 1+a 2+a 3;(2)当n =4时,不等式a 1a 2a 3+a 2a 3a 4+a 3a 4a 1+a 4a 1a 2≥a 1+a 2+a 3+a 4也成立,请你将其推广到n (n ∈N *且n ≥3)个正数a 1,a 2,…,a n 的情形,归纳出一般性的结论并用数学归纳法证明. 证明 (1)因为a n (n ∈N *且n ≥3)均为正实数,左—右=12()a 1a 3a 2+a 1a 2a 3-2a 1+12()a 2a 3a 1+a 1a 2a 3-2a 2+12()a 2a 3a 1+a 1a 3a 2-2a 3≥12⎝⎛⎭⎫2a 1a 3a 2×a 1a 2a 3-2a 1+12⎝⎛⎭⎫2a 2a 3a 1×a 1a 2a 3-2a 2+12⎝⎛⎭⎫2a 2a 3a 1×a 1a 3a 2-2a 3=0, 所以原不等式a 2a 3a 1+a 1a 3a 2+a 1a 2a 3≥a 1+a 2+a 3成立. (2)归纳的不等式为:a 1a 2a 3+a 2a 3a 4+…+a n -2a n -1a n +a n -1a n a 1+a n a 1a 2≥a 1+a 2+…+a n (n ∈N *且n ≥3). 记F n =a 1a 2a 3+a 2a 3a 4+…+a n -2a n -1a n +a n -1a n a 1+a n a 1a 2-(a 1+a 2+…+a n ), 当n =3(n ∈N *)时,由(1)知,不等式成立; 假设当n =k (k ∈N *且k ≥3)时,不等式成立,即F k =a 1a 2a 3+a 2a 3a 4+…+a k -2a k -1a k +a k -1a k a 1+a k a 1a 2-(a 1+a 2+…+a k )≥0. 则当n =k +1时,F k +1=a 1a 2a 3+a 2a 3a 4+…+a k -2a k -1a k +a k -1a k a k +1+a k a k +1a 1+a k +1a 1a 2-(a 1+a 2+…+a k +a k +1) =F k +a k -1a k a k +1+a k a k +1a 1+a k +1a 1a 2-a k -1a k a 1-a k a 1a 2-a k +1=F k +a k -1a k ⎝⎛⎭⎫1ak +1-1a 1+a k +1()a k a 1-1+a 1a 2(a k +1-a k )≥0+a 2k ⎝⎛⎭⎫1a k +1-1a 1+a k +1()a k a 1-1+a 1a k (a k +1-a k )=(a k +1-a k )⎝ ⎛⎭⎪⎫a k a 1+a 1a k -a k +1+a k a k +1, 因为a k +1≥a k ,a k a 1+a 1a k ≥2,a k +1+a k a k +1≤a k +1+a k +1a k +1=2,所以F k +1≥0,所以当n =k +1时,不等式成立.综上所述,不等式a 1a 2a 3+a 2a 3a 4+…+a n -2a n -1a n +a n -1a n a 1+a n a 1a 2≥a 1+a 2+…+a n (n ∈N *且n ≥3)成立.专题七2.若二阶矩阵M 满足⎣⎢⎡⎦⎥⎤-2122-1M =⎣⎡⎦⎤-3 0 4-1,求曲线4x 2+4xy +y 2-12x +12y =0在矩阵M 所对应的变换作用下得到的曲线的方程.解记矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤-2122 -1,det(A )=(-2)×(-1)-2×12=1≠0,故A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 -12-2 -2,所以M =A -1⎣⎢⎡⎦⎥⎤-30 4 -1=⎣⎢⎢⎡⎦⎥⎥⎤-1-12-2-2 ⎣⎢⎡⎦⎥⎤-30 4-1=⎣⎢⎢⎡⎦⎥⎥⎤ 112-22,即矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤ 112-2 2.设曲线4x 2+4xy +y 2-12x +12y =0上任意一点P (x ,y )在矩阵M 对应的变换作用下得到点P ′(x ′,y ′).所以⎣⎡⎦⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤ 112-22 ⎣⎡⎦⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ x +12y -2x +2y , 所以⎩⎪⎨⎪⎧x ′=x +12y ,y ′=-2x +2y ,所以⎩⎨⎧x =4x ′-y ′6,y =2x ′+y ′3,又点P (x ,y )在曲线4x 2+4xy +y 2-12x +12y =0上,代入整理得2x ′2+3y ′=0, 由点P (x ,y )的任意性可知,所求曲线的方程为2x 2+3y =0.3.已知直线的极坐标方程为ρsin ()θ+π4=22,圆M 的参数方程为⎩⎨⎧x =2cos θ,y =-2+2sin θ(其中θ为参数).(1)将直线的极坐标方程化为直角坐标方程; (2)求圆M 上的点到直线的距离的最小值. 解 (1)极点为直角坐标原点O ,ρsin ()θ+π4=ρ⎝⎛⎭⎫22sin θ+22cos θ=22,∴ρsin θ+ρcos θ=1,其直角坐标方程为x +y -1=0.(2)将圆的参数方程化为普通方程为x 2+(y +2)2=4,圆心为M (0,-2),∴点M 到直线的距离为d =|0-2-1|2=32=322,∴圆上的点到直线距离的最小值为32-42.4.已知函数f (x )=|x +m |+|x -2|(m >0)的最小值为4,正实数a ,b 满足1a +1b = 3.求证:1a 2+2b2≥m .证明 易知|x +m |+|x -2|≥|(x +m )-(x -2)|=|m +2|, 故由f (x )的最小值为4得|m +2|=4,又m >0,所以m =2. 又()1a 2+2b 2⎣⎡⎦⎤12+⎝⎛⎭⎫122≥⎝⎛⎭⎫1a ×1+2b ×122=3,当且仅当a =32,b =3时等号成立,故1a 2+2b2≥2=m ,即结论成立. 5.如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =2,AB ⊥AC ,M 是棱BC 的中点,点P 在线段A 1B 上.(1)若P 是线段A 1B 的中点,求直线MP 与直线AC 所成角的大小;(2)若N 是CC 1的中点,直线A 1B 与平面PMN 所成角的正弦值为77,求线段BP 的长度. 解 分别以AB ,AC ,AA 1所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (0,2,0),A 1(0,0,2),M (1,1,0).(1)若P 是线段A 1B 的中点,则P (1,0,1),MP →=(0,-1,1),AC →=(0,2,0). 所以cos 〈MP →,AC →〉=MP →·AC →||MP →·||AC→=-22.又〈MP →,AC →〉∈[0,π],所以〈MP →,AC →〉=3π4.所以直线MP 与直线AC 所成的角的大小为π4.(2)由N (0,2,1),得MN →=(-1,1,1). 设P (x ,y ,z ),BP →=λBA 1,0≤λ≤1,则(x -2,y ,z )=λ(-2,0,2),所以⎩⎨⎧x =2-2λ,y =0,z =2λ,所以P (2-2λ,0,2λ),所以MP →=(1-2λ,-1,2λ). 设平面PMN 的法向量n =(x 1,y 1,z 1), 则n ⊥MN →,n ⊥MP →,所以⎩⎨⎧-x 1+y 1+z 1=0,(1-2λ)x 1-y 1+2λz 1=0,取n =()1+12λ,12λ,1.因为BA 1=(-2,0,2),设直线A 1B 与平面PMN 所成的角为θ.由sin θ=||cos 〈n ,BA 1〉=|n ·BA 1|||n ·||BA 1=⎪⎪⎪⎪(-2)×()1+12λ+2()1+12λ2+()12λ2+1·22=77,得λ=14(舍负). 所以BP →=14BA 1,所以BP =14BA 1=22.6.已知()1+12xn展开式的各项依次记为a 1(x ),a 2(x ),a 3(x ),…,a n(x ),an +1(x ).设F (x )=a 1(x )+2a 2(x )+3a 3(x )+…+na n (x )+(n +1)·a n +1(x ).(1)若a 1(x ),a 2(x ),a 3(x )的系数依次成等差数列,求n 的值; (2)求证:对任意x 1,x 2∈[0,2],恒有|F (x 1)-F (x 2)|≤2n -1(n +2)-1. (1)解 依题意a k (x )=C k -1n ()12x k -1,k =1,2,3,…,n +1,a 1(x ),a 2(x ),a 3(x )的系数依次为C 0n ·()12=1,C 1n ·12=n 2,C 2n ·()122=n (n -1)8, 所以2×n2=1+n (n -1)8,解得n =8或n =1(舍去).(2)证明 F (x )=a 1(x )+2a 2(x )+3a 3(x )+…+na n (x )+(n +1)a n +1(x )=C 0n +2C 1n ()12x +3C 2n()12x 2+…+n C n -1n()12x n -1+(n +1)C n n ()12x n,F (2)=C 0n +2C 1n +3C 2n +…+n C n -1n +(n +1)C nn ,设S n =C 0n +2C 1n +3C 2n +…+n C n -1n +(n +1)C n n ,则S n =(n +1)C n n +n C n -1n +…+3C 2n +2C 1n +C 0n ,考虑到C k n =C n -k n ,将以上两式相加得2S n =(n +2)(C 0n +C 1n +C 2n +…+C n -1n +C n n ),所以S n =2n -1(n +2),又当x ∈[0,2]时,F ′(x )>0恒成立,从而F (x )是[0,2]上的单调递增函数, 所以对任意x 1,x 2∈[0,2],|F (x 1)-F (x 2)|≤F (2)-F (0)=2n -1(n +2)-1。

江苏省苏州大学高考数学考前指导卷试题(一)苏教版

江苏省苏州大学高考数学考前指导卷试题(一)苏教版

苏州大学2014届高考考前指导卷(1)一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.已知集合A ={x |x >5},集合B ={x |x <a },若A I B={x |5<x <6},则实数a 的值为 .2.设(1+2i)2=a +b i(,a b ∈R ),则ab = .3.若函数f (x )=sin(x +φ)(0<φ<π)是偶函数,则φ= .4.已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为 .5.从3位男生1位女生中任选两人,恰好是一男一女的概率是________.6.已知函数2()a y x a x=+∈R 在1x =处的切线与直线210x y -+=平行,则a =________. 7.图1是某学生的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为A 1,A 2,…,A 14.图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是________.8.已知等差数列{a n }的公差不为零,a 1+a 2+a 5>13,且a 1,a 2,a 5成等比数列,则a 1的取值范围为 .9.在△ABC 中,若AB =1,3,||||AC AB AC BC =+=u u u r u u u r u u u r ,则BA →·BC →|BC →|= .10.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a =8,b =10,△ABC 的面积为203,则△ABC 的最大角的正切值是________.11.已知三棱锥P ABC -的底面是边长为3的正三角形,其三条侧棱的长分别为3,4,5,则该三棱锥P ABC -的体积为 .12.已知函数f (x )=|x 2+2x -1|,若a <b <-1,且f (a )=f (b ),则ab +a +b 的取值范围是 .13.已知实数b a ,分别满足15323=+-a a a ,55323=+-b b b , 则b a +的值为 .14.已知A ,B ,C 是平面上任意三点,BC =a ,CA =b ,AB =c ,则y =ca +b +b c的最小值是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2a cos B =c cos B +b cos C .(1)求角B 的大小;(2)设向量m =(cos A ,cos 2A ),n =(12,-5),求当m·n 取最大值时,tan C 的值.16.如图,在四棱锥P - ABCD 中,已知AB =1,BC = 2,CD = 4,AB ∥CD ,BC ⊥CD ,平面PAB ⊥平面ABCD ,PA ⊥AB . (1)求证:BD ⊥平面PAC ;(2)已知点F 在棱PD 上,且PB ∥平面FAC ,求DF :FP .17.某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y (单位:万元)随投资收益x (单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%. (1)若建立函数y =f (x )模型制定奖励方案,试用数学语言表述该公司对奖励函数f (x )模型的基本要求,并分析函数y =x150+2是否符合公司要求的奖励函数模型,并说明原因;A B C D F P(2)若该公司采用模型函数y =10x -3ax +2作为奖励函数模型,试确定最小的正整数a 的值.18.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别是12,F F ,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴、短轴端点外的任一点,过点P 作直线l ,使得l 与椭圆C 有且只有一个公共点,设l 与y 轴的交点为A ,过点P 作与l 垂直的直线m ,设m 与y 轴的交点为B ,求证:△PAB 的外接圆经过定点.19.已知函数f (x )=ax +ln x ,g (x )=e x.(1)当a ≤0时,求f (x )的单调区间;(2)若不等式g (x )<x -mx有解,求实数m 的取值范围.20.已知无穷数列{a n }的各项均为正整数,S n 为数列{a n }的前n 项和.(1)若数列{a n }是等差数列,且对任意正整数n 都有33()n n S S 成立,求数列{a n }的通项公式;(2)对任意正整数n ,从集合{a 1,a 2,…,a n }中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与a 1,a 2,…,a n 一起恰好是1至S n 全体正整数组成的集合. (ⅰ)求a 1,a 2的值;(ⅱ)求数列{a n }的通项公式.苏州大学2014届高考考前指导卷(1)参考答案一、填空题1.6 2.12 3.π2 4.x 220-y 25=1 5.126.07.108.(1, +∞) 9.12 10.533或- 3 11.1112.(-1,1) 13.214.2-12二、解答题15.(1)由题意,2sin A cos B =sin C cos B +cos C sin B ,所以2sin A cos B =sin(B +C )=sin(π-A )=sin A .因为0<A <π,所以sin A ≠0.所以cos B =22.因为0<B <π,所以B =π4. (2)因为m·n =12cos A -5cos 2A ,所以m·n =-10cos 2A +12cos A +5=-10⎝⎛⎭⎪⎫cos A -352+435.所以当cos A =35时,m·n 取最大值.此时sin A =45(0<A <π2),于是tan A =43.所以tan C =-tan(A +B )=-tan A +tan B1-tan A tan B=7.16.证明(1)∵平面PAB ⊥平面ABCD ,平面PAB I 平面ABCD = AB , PA ⊥AB ,PA ⊂平面PAB ,∴ PA ⊥平面ABCD .∵BD ⊂平面ABCD ,∴PA ⊥BD .连结AC BD O =I ,∵AB = 1,BC = 2,CD = 4, ∴12AB BC BC CD ==. ∵AB ∥CD ,BC ⊥CD ,∴Rt ABC ∆∽Rt BCD ∆. ∴BDC ACB ∠=∠.∴90ACB CBD BDC CBD ∠+∠=∠+∠=︒. 则AC ⊥BD .∵AC PA A =I ,∴BD ⊥平面PAC .(2)∵PB //平面FAC ,PB ⊂平面PBD ,平面PBD I 平面FAC= FO ,∴FO ∥PB ,∴DF DOPF OB=. 又∵AB //CD ,且14BO AB OD CD ==,∴DF :FP=4:1. 17.(1)设奖励函数模型为y =f (x ),按公司对函数模型的基本要求,函数y =f (x )满足:当x ∈[10,1 000]时,①f (x )在定义域[10,1 000]上是增函数;②f (x )≤9恒成立;③f (x )≤x5恒成立.对于函数模型f (x )=x150+2.当x ∈[10,1 000]时,f (x )是增函数,f (x )max =f (1 000)=1 000150+2=203+2<9,所以f (x )≤9恒成立.但x =10时,f (10)=115+2>105,即f (x )≤x5不恒成立,故该函数模型不符合公司要求.(2)对于函数模型f (x )=10x -3a x +2,即f (x )=10-3a +20x +2,当3a +20>0,即a >-203时递增;要使f (x )≤9对x ∈[10,1 000]恒成立,即f (1 000)≤9,3a +18≥1 000,a ≥9823;要使f (x )≤x 5对x ∈[10,1 000]恒成立,即10x -3a x +2≤x 5,x 2-48x +15a ≥0恒成立,所以a ≥1925.综上所述,a ≥9823,所以满足条件的最小的正整数a 的值为328.18.(1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程22221x y a b +=,得y =±2b a .由题意知22b aP FDCBA O=1,即a =2b 2,又e =ca=32, 所以a =2,b =1. 所以椭圆C 的方程为2214x y +=.(2)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立0022,1,4y kx y kx x y =+-⎧⎪⎨+=⎪⎩ 整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0.由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又220014x y +=,所以16y 20k 2+8x 0y 0k +x 20=0,故k =-4x y . 所以直线l 方程为0014x xy y +=,令x =0,解得点A 01(0,)y ,又直线m 方程为00043y y x y x =-,令x=0,解得点B 0(0,3)y -, △PAB 的外接圆方程为以AB 为直径的圆方程,即2001()(3)0x y y y y +-+=.整理得:220013(3)0x y y y y +-+-=,分别令2230,0,x y y ⎧+-=⎨=⎩ 解得圆过定点(.19.(1)f (x )的定义域是(0,+∞),f ′(x )=a +1x(x >0),1°当a =0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增;2°当a <0时,由f ′(x )=0,解得x =-1a,则当x ∈⎝ ⎛⎭⎪⎫0,-1a 时,f ′(x )>0,f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫-1a ,+∞时,f ′(x )<0,f (x )单调递减,综上所述:当a =0时,f (x )在(0,+∞)上单调递增,当a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-1a 上单调递增,在⎝ ⎛⎭⎪⎫-1a ,+∞上单调递减.(2)由题意:e x<x -m x有解,即e x x <x -m 有解,因此只需m <x -e xx ,x ∈(0,+∞)有解即可,设h (x )=x -e xx ,h ′(x )=1-e xx -ex2x=1-e x⎝ ⎛⎭⎪⎫x +12x ,因为x +12x≥212=2>1,且x ∈(0,+∞)时e x>1, 所以1-e x⎝⎛⎭⎪⎫x +12x <0,即h ′(x )<0.故h (x )在(0,+∞)上单调递减,∴h (x )<h (0)=0,故m <0.20.(1)设无穷等差数列{a n }的公差为d ,因为33()n n S S =对任意正整数n 都成立,所以分别取n =1,n =2时,则有:⎩⎪⎨⎪⎧a 1=a 31,8a 1+28d =2a 1+d 3.因为数列{a n }的各项均为正整数,所以d ≥0. 可得a 1=1,d =0或d =2.当a 1=1,d =0时,a n =1,33()n n S S =成立;当a 1=1,d =2时,S n =n 2,所以33()n n S S =.因此,共有2个无穷等差数列满足条件,通项公式为a n =1或a n =2n -1. (2)(ⅰ)记A n ={1,2,…,S n },显然a 1=S 1=1.对于S 2=a 1+a 2=1+a 2,有A 2={1,2,…,S n }={1,a 2,1+a 2,|1-a 2|}={1,2,3,4},故1+a 2=4,所以a 2=3. (ⅱ)由题意可知,集合{a 1,a 2,…,a n }按上述规则,共产生S n 个正整数.而集合{a 1,a 2,…,a n ,a n +1}按上述规则产生的S n +1个正整数中,除1,2,…,S n 这S n 个正整数外,还有a n +1,a n +1+i ,|a n +1-i |(i =1,2,…,S n ),共2S n +1个数. 所以,S n +1=S n +(2S n +1)=3S n +1.又S n +1+12=3⎝ ⎛⎭⎪⎫S n +12,所以S n =⎝⎛⎭⎪⎫S 1+12·13n --12=12·3n -12.当n ≥2时,a n =S n -S n -1=12·3n -12-⎝ ⎛⎭⎪⎫12·13n --12=13n -,而a 1=1也满足a n =13n -.所以,数列{a n }的通项公式是a n =13n -.。

苏州大学高考指导测试 (一) 【试卷版】

苏州大学高考指导测试 (一) 【试卷版】

苏州大学2010届高考指导测试 (一)高 三 数 学(正题) 2010. 5考生注意:1.本试卷共4页,包括(第1题—第12题)、(第13题—第17题)两部分。

本试卷满分150分,考试时间120分钟。

2.答将填空题答案和解答题的解答过程写在答题卷上,在本试卷上答题无效。

3.答题前,务必将自己的姓名、学校、准考证号写在答卷纸的规定位置。

一、填空题(本大题共14小题,每小题5分,共90分。

请把答案填写在答题卡相应位置上) 1. 已知i 是虚数单位,计算复数242i(1i)++= 2. 渐近线为y =±2x 且过点(2,6)的双曲线方程为 . 3. 若样本a 1,a 2,a 3的方差是2,则样本2a 1+3,2a 2+3,2a 3+3的方差是 .4. 已知13tan tan 2x x -=,则tan 2x = .5. 如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为棱AA 1,AB ,CC 1的中点,给出下列3对线段所在直线:①D 1E 与BG ; ②D 1E 与C 1F ;③A 1C 与C 1F .其中,是异面直线的对数共 有 对6. 用红、黄两种颜色随机地给正四面体的四个顶点染色,则“有同一个面上的三个顶点同色”的概率等于______. 7. 右图是一个算法的流程图,最后输出的n =高三数学 第1页 共4页8. 设正数数列{}n a 的前n 项之和为n b ,数列{}n b 的前n 项之和为n c ,且1n n b c +=,则|c 100-a 100|= .9. 已知cos π3=12,cos π5cos 2π5=14,cos π7cos 2π7cos 3π7=18,…,根据这些结果,猜想出的一般结论是10. 已知f (x )=x 3-3x ,过A (1,m )可作曲线y =f (x )的三条切线,则m 的取值范围是 .11. 已知D 是由不等式组⎩⎨⎧x -2y ≥0,x +3y ≥0所确定的平面区域,则圆x 2+y 2=4 围成的区域与区域D的公共部分的面积为 .12. 过圆x 2+y 2=1上一点P 作圆的切线与x 轴和y 轴分别交于A ,B 两点,O 是坐标原点,则OA +8·OB 的最小值是 .13. 在□ABCD 中,已知AB =2,AD =1,∠DAC =60°,点M为AB 的中点,点P 在BC 与CD 上运动(包括端点),则AP DM ⋅的取值范围是 .14. 已知正数x ,y 满足(1+x )(1+2y )=2,则4xy +1xy的最小值是 .二、解答题(本大题共6小题,共90分.解答题应写出文字说明、证明过程或演算步骤)15. (本小题满分14分) 已知函数x x x x x x f cos sin sin 3)3sin(cos 2)(2+-+=π已知m =(35,45-),n =(cos α,sin α),|32|-m n =3,求:(1)|3|+m n 的值;(2)向量32=-a m n 与3=+b m n 的夹角θ的余弦值. 16.(本小题满分14分)已知△ABC 为正三角形,EC ⊥平面ABC ,DB ⊥平面ABC ,且EC , DB 在平面ABC 的同侧,CE =CA =2BD =2.(1)求证平面CAE ⊥平面DAE ; (2)求:点B 到平面ADE 的距离.BC DA 1 AB 1C 1D1 ( 第5 题 )EGF PM DBA CDEB结束 开始 P ← 0 n ← 1P ←1(1)P n n ++n ← n +1 输出n YN ( 第 7 题 )P <0.99高三数学 第2页 共4页17.(本小题满分15分)如图,A ,B ,C 是三个汽车站,AC ,BE 是直线型公路.已知AB =120 km ,∠BAC =75°,∠ABC =45°.有一辆车(称甲车)以每小时96(km )的速度往返于车站A ,C 之间,到达车站后停留10分钟;另有一辆车(称乙车)以每小时120(km )的速度从车站B 开往另一个城市E ,途经车站C ,并在车站C 也停留10分钟.已知早上8点时甲车从车站A 、乙车从车站B 同时开出.(1)计算A ,C 两站距离,及B ,C 两站距离;(2)若甲、乙两车上各有一名旅客需要交换到对方汽车上,问能否在车站C 处利用停留时间交换. (3)求10点时甲、乙两车的距离.2 1.4≈3 1.7≈6 2.4≈11110.5)18.(本小题满分15分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右准线l 的方程为x 432.(1)求椭圆C 的方程;(2)过定点B (1,0)作直线l 与椭圆C 相交于P ,Q (异于A 1,A 2)两点,设直线P A 1与直线QA 2相交于点M (2x 0,y 0).①试用x 0,y 0表示点P ,Q 的坐标; ②求证:点M 始终在一条定直线上.高三数学 第3页 共4页19.(本小题满分16分)已知无穷数列{a n }中,a 1,a 2,…,a m 是首项为10,公差为-2的等差数列;a m +1,a m +2,…,a 2m 是首项为12,公比为12的等比数列(其中 m ≥3,m ∈N *),并对任意的n ∈N *,均有a n +2m =a n 成立.(1)当m =12时,求a 2010;(2)若a 52=1128,试求m 的值; (3)判断是否存在m (m ≥3,m ∈N *),使得S 128m +3≥2010成立?若存在,试求出m 的值;若不存在,请说明理由.20.(本小题满分16分)设函数f (x )=||2x xa a + (其中常数a >0,且a ≠1). (1)当a =10时,解关于x 的方程f (x )=m (其中常数m >22);(2)若函数f (x )在(-∞,2]上的最小值是一个与a 无关的常数,求实数a 的取值范围.ECBA2A 1 yxMQPO B A高三数学 第4页 共4页苏州大学2010届高考指导测试 (一)1.1-2i . 2. 221205y x -= 3.(无) 4. 43- 5.2. 6. 58. 7.100.8. 1. 9.π2ππ1cos cos cos 2121212n n n n n =+++. 10.(-3,-2). 11. π2. 12. 5 13. [12-,1]. 14. 12.二、解答题15.解(1)|m |=1,|n |=1,由|32|-m n =3, 得|32|-m n 2=9,∴2291249-⋅+=m m n n .则13⋅=m n . 则|3|+m n 2=229612+⋅+=m m n n ,∴|3|+m n =23 (2)∵22(32)(3)9326⋅=-⋅+=-⋅-=a b m n m n m m n n , ∴cos θ=3||||323⋅==⋅⨯a b a b . 16. (无)17.(1)在△ABC 中,∠ACB =60°.∵sin 60sin 75sin 45AB BC AC==︒︒︒, ∴2120120sin 45240696(km)sin 603AC ︒===≈︒,62120120sin 754602206132(km)sin 603BC +︒===≈︒. (2)甲车从车站A 开到车站C 约用时间为96196=(小时)=60(分钟),即9点到C 站,至9点零10分开出.乙车从车站B 开到车站C 约用时间为1321.1120=(小时)=66(分钟),即9点零6分到站,9点零16分开出.则两名旅客可在9点零6分到10分这段时间内交换到对方汽车上.(3)10点时甲车离开C 站的距离为509680(km)60⨯=,乙车离开C 站的距离为4412088(km)60⨯=,两车的距离等于22808828088cos608100121110+-⨯⨯⨯︒+- =8111810.584(km)≈⨯=.18.解(1)由2222431,a c b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩得224,1.a b ⎧=⎪⎨=⎪⎩ ∴椭圆C 的方程为2214x y +=;(2)A 1(-2,0),A 2(2,0),方程为MA 1的方程为:00(2)22y y x x =++, 即00222x x y y +=-.代入2214x y +=,得22001(1)1x y y y +-+=,即2200200(1)2(1)[1]0x x y y y y +++-=.∴0020202(1)(1)1P x y y x y +=++=0022002(1)(1)x y x y +++, 则00022000222(1)2(1)P x x y x y x y ++=⋅-++=2022004(1)2(1)x x y +-++.即P (2022004(1)2(1)x x y +-++,0022002(1)(1)x y x y +++). 同理MA 2的方程为00(2)22y y x x =--, 即00222x x y y -=+.代入2214x y +=,得22001(1)1x y y y -++=,即2200200(1)2(1)[1]0x x y y y y --++=. ∴002022(1)(1)1Q x y y x y --=-+=0022002(1)(1)x y x y ---+. 则00022000222(1)2(1)Q x x y x y x y ---=⋅+-+=2022004(1)2(1)x x y --+-+. 即Q (2022004(1)2(1)x x y --+-+,0022002(1)(1)x y x y ---+). ∵P ,Q ,B 三点共线,∴PB QB k k =,即11Q PP Q y y x x =--. ∴0000222200002200222200002(1)2(1)(1)(1)4(1)4(1)2121(1)(1)x y x y x y x y x x x y x y +--++-+=+----+-++-+.即000022220000(1)(1)(1)33(1)x y x y x y x y +--=+---+.由题意,00y ≠,∴002222000011(1)33(1)x x x y x y +-=+---. 2222000000003(1)(1)(1)(1)(1)3(1)x x x y x x x y +--+=-+--.∴22000(24)(1)0x x y -+-=.则0240x -=或22001x y +=.若22001x y +=,即2200(2)14x y +=,则P ,Q ,M 为同一点,不合题意.∴0240x -=,点M 始终在定直线4x =上. 数列问题19.解(1)m =12时,数列的周期为24.∵2010=24×83+18,而a 18是等比数列中的项, ∴a 2010=a 18=a 12+6=611()264=.(2)设a m +k 是第一个周期中等比数列中的第k 项,则a m +k =1()2k .∵711()1282=,∴等比数列中至少有7项,即m ≥7,则一个周期中至少有14项. ∴a 52最多是第三个周期中的项. 若a 52是第一个周期中的项,则a 52=a m +7=1128. ∴m =52-7=45; 若a 52是第二个周期中的项,则a 52=a 3m +7=1128.∴3m =45,m =15; 若a 52是第三个周期中的项,则a 52=a 5m +7=1128.∴5m =45,m =9; 综上,m =45,或15,或9.(3)2m 是此数列的周期, ∴S 128m +3表示64个周期及等差数列的前3项之和. ∴S 2m 最大时,S 128m +3最大.∵S 2m =2211[1()](1)11112512210(2)111()12224212m m mm m m m m m --+⨯-+=-++-=--+--,当m =6时,S 2m =31-164=633064; 当m ≤5时,S 2m <633064; 当m ≤7时,S 2m <211125(7)24--+=29<633064. ∴当m =6时,S 2m 取得最大值,则S 128m +3取得最大值为64×633064+24=2007. 由此可知,不存在m (m ≥3,m ∈N *),使得S 128m +3≥2010成立. 函数问题20. 解 (1)f (x )=210,0,103,0.10xxxx x ⎧+⎪⎪⎨⎪<⎪⎩≥① 当x <0时,f (x )=310x>3.因为m >22. 则当22<m ≤3时,方程f (x )=m 无解; 当m >3,由10x =3m ,得x =lg 3m .② 当x ≥0时,10x ≥1.由f (x )=m 得10x +210x =m , ∴(10x )2-m 10x +2=0. 因为m >22,判别式∆=m 2-8>0,解得10x=m ±m 2-82.因为m >22,所以m +m 2-82>2>1.所以由10x=m +m 2-82,解得x =lg m +m 2-82.令m -m 2-82=1,得m =3.所以当m >3时,m -m 2-82=4m +m 2-8<43+32-8=1,当22<m ≤3时,m -m 2-82=4m +m 2-8>43+32-8=1,解得x =lg m -m 2-82.综上,当m >3时,方程f (x )=m 有两解x =lg 3m 和x =lg m +m 2-82;当22<m ≤3时,方程f (x )=m 有两解x =lg m ±m 2-82.(2) (Ⅰ)若0<a <1,当x <0时,0<f (x )=3a x <3; 当0≤x ≤2时,f (x )=a x +2a x .令t =a x ,则t ∈[a 2,1],g (t )=t +2t 在[a 2,1]上单调递减,所以当t =1,即x =0时f (x )取得最小值为3. 当t =a 2时,f (x )取得最大值为222a a +. 此时f (x )在(-∞,2]上的值域是(0,222a a +],没有最小值. (Ⅱ)若a >1,当x <0时,f (x )=3ax >3;当0≤x ≤2时f (x )=a x +2a x .令t =a x ,g (t )=t +2t,则t ∈[1,a 2].① 若a 22g (t )=t +2t在[1,a 2]上单调递减,所以当t =a 2即x =2时f (x )取最小值a 2+2a2,最小值与a 有关;② a 22g (t )=t +2t 在[1,2]上单调递减,在[2,a 2]上单调递增,所以当t =2即x =log a 2时f (x )取最小值22,最小值与a 无关. 综上所述,当a 42f (x )在(-∞,2]上的最小值与a 无关.。

江苏省苏州大学2020届高三数学考前指导试题(含解析)

江苏省苏州大学2020届高三数学考前指导试题(含解析)
2020年江苏省苏州大学高考数学考前指导试卷
一、填空题:(本大题共14小题,每小题5分,共70分)
1.已知集合A={﹣1,0,2},B={2,a2},若BA,则实数a的值为.
2.已知(2﹣i)(m+2i)=10,i是虚数单位,则实数m的值为.
3.一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层
中每个个体被抽到的概率都为,则总体中的个体数为.
4.已知双曲线的离心率为,则b=.
5.如图是一个算法流程图,则输出的k值是
6.若a,b∈{0,1,2},则函数f(x)=ax2+2x+b有零点的概率为.
7.设变量x,y满足约束条件,则目标函数z=2x+y的最小值为.
8.九章算术》商功章有题:一圆柱形谷仓,高1丈3尺寸,容纳谷2000斛(1丈=10尺,
定值,则=.
12.若a>0,b>0,且
,若对于直线3x+y﹣4=0上任意一点P,恒为
,则a+2b的最小值为.
13.已知函数,若f(x1)=f(x2)=f(x3)(x1<x2<x3),则的
取Байду номын сангаас范围为.
14.在△ABC中,若3sinC=2sinB,点E,F分别是AC,AB的中点,则
的取值范围为.
1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面周长约为丈.
9.等比数列{an}的前n项和为Sn,公比q≠1,若,则q的值为.
10.已知圆C:(x﹣1)2+(y﹣a)2=16,若直线ax+y﹣2=0与圆C相交于AB两点,且CA⊥CB,
则实数a的值是.
11.设点A(1,2),非零向量

【附加15套高考模拟试卷】苏州大学2020届高考数学考前指导卷【1】含答案

【附加15套高考模拟试卷】苏州大学2020届高考数学考前指导卷【1】含答案

苏州大学2020届高考数学考前指导卷【1】一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在三棱锥S ABC -中,底面ABC △是直角三角形,其斜边4AB =,SC ⊥平面ABC ,且3SC =,则三棱锥的外接球的表面积为( ) A .25π B .20π C .16π D .13π2.数列{}n a 的前n 项和为n S ,24,n n S a n N *=-∈,则n a =( )A .12n + B .2n C .12n - D .22n -3.已知双曲线C :22221x y a b-=(0a >,0b >),1F ,2F 分别为其左、右焦点,O 为坐标原点,若点2F 关于渐近线的对称点恰好落在以1F 为圆心,1OF 为半径的圆上,则双曲线C 的离心率是( ) A .2 B .3 C .2D .34.在ABC ∆中,角A ,B ,C 对应边分别为a ,b ,c ,已知三个向量(,cos)2A m a =r,(,cos )2B n b =r,(,cos )2C p c =r共线,则ABC ∆形状为( )A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形5.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221x y +≤,若将军从点(2,0)A 处出发,河岸线所在直线方程为3x y +=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )A .101-B .221-C .22D .106.下列图象中,可能是函数()(e e )()a x x f x x a -=+∈Z 的图象的是( )A .B .C .D .7.已知平面向量a r 与b r 的夹角为23π,若(3,1)a =-r,2213a b -=r r ,则b r ( )A .3B .4C .3D .28.已知椭圆22:143x y C +=的左、右焦点分别为1F 、2F ,过2F 且斜率为1的直线l 交椭圆C 于A 、B 两点,则1F AB ∆的内切圆半径为( )A .2B .22C .32D .429.当动点P 在正方体1111ABCD A B C D -的体对角线1A C 上运动时,异面直线BP 与1AD 所成角的取值范围是( )A .,64ππ⎡⎤⎢⎥⎣⎦ B .,63ππ⎡⎤⎢⎥⎣⎦ C .,43ππ⎡⎤⎢⎥⎣⎦ D .,32ππ⎡⎫⎪⎢⎣⎭ 10.设()f x 为定义在R 上的奇函数,当0x ≥时,()2(xf x m m =+为常数),则 ()1f -= ( )A .3B .1C .1-D .3-11.将函数()4cos 2f x x π⎛⎫=⎪⎝⎭和直线()1g x x =-的所有交点从左到右依次记为1A ,2A ,…,5A ,若P 点坐标为(0,3),则125...PA PA PA +++=u u u r u u u u r u u u r( )A .0B .2C .6D .1012.某几何体的三视图如图所示,则该几何体的表面积为( )A .240B .220C .200D .260二、填空题:本题共4小题,每小题5分,共20分。

江苏省苏州市2020届高三数学考前指导卷(二)含附加题 含答案解析

江苏省苏州市2020届高三数学考前指导卷(二)含附加题 含答案解析
A.选修 4—2:矩阵与变换
已知矩阵
A=
1 0 0 2

B
=
ห้องสมุดไป่ตู้
1 2
01
,若直线l依次经过变换
TA , TB
后 得 到 直 线 l ˊ:
2x + y − 2 = 0 ,求直线l的方程.
B.选修 4—4:坐标系与参数方程
已知直线l的参数方程为
x
=
2
+
1 2
t
(t 为参数),点 P(1,2)在直线l上.
7.已知an 为等差数列, Sn 为其前 n 项和,若 a2 + 5 = 2a5 ,则 S15 的值是________.
8.圆柱形容器的内壁底面半径是 10cm,有一个实心铁球浸没于容器的水中,若取出这个铁
1
球,测得容器的水面下降了 5 cm ,则这个铁球的表面积为________ cm2 . 3
江苏省苏州市 2020 届高三考前指导卷(二)
数学Ⅰ试题
一、填空题:不需要写出解答过程,请把答案直接填在答题卡相应位置上.
1.已知集合 A = x x 1 , B = 1, 2,3 ,则 A B = ________.
2.已知复数 z = 2 + i (其中 i 为虚数单位),若 z = a + bi (a,b R) ,则 ab 的值为________.
x
(1)求函数 f ( x) 的单调区间;
(2)若函数 f ( x) 在定义域内有两个零点,求 a 的取值范围;
( ) (3)若对任意 x (0, +) ,不等式 m( xln x +1) + (e −1) x≥ 2x − x2 ex 恒成立,求 m 的取值

2020年江苏高考数学试卷及答案(含附加题)

2020年江苏高考数学试卷及答案(含附加题)

2020年江苏高考数学试卷及答案(含附加题)一、填空题:本大题共14小题,每题5分,共计70分,请把答案填写在答题卡相应位置上。

1.已知集合{}1,0,1,2A =-,{}0,2,3B =,则A B = __________。

2.已知i 是虚数单位,则复数()()12z i i =+-的实部是__________。

3.已知一组数据4,2a,3-a,5,6的平均数为4,则a 的值是__________。

4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是。

5.右图是一个算法流程图,若输出y的值为-2,则输入x的值为。

6.在平面直角坐标系xOy中22y =,若双曲线()222105x y a a -=>的一条渐近线方程为52y x =,则该双曲线的离心率是。

7.已知()y f x =是奇函数,当0x >时,23()f x x =,则(8)f -的值是。

8.已知22sin +=43πα(),则sin 2α的值是。

9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是3cm 。

10.将函数3sin 24y x π⎛⎫=+ ⎪⎝⎭的图像向右平移6π个单位长度,则平移后的图像与y 轴最近的对称轴方程是。

11.设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列,已知数列{}+n n a b 的前项和()221n n S n n n N *=-+-∈,则d q +的值是。

12.已知22451(,)x y y x y R +=∈,则22x y +的最小值是。

13.在△ABC 中,4AB =,=3AC ,∠=90BAC °,D 在边AC 上,延长AD P 到,使得=9AP ,若32PA mPB m PC ⎛⎫=+- ⎪⎝⎭(m 为常数),则CD 的长度是。

2020苏大指导卷

2020苏大指导卷
的值是 ▲ .
(第 6 题图)
8.圆柱形容器的内壁底面半径是10 cm ,有一个实心铁球浸没于
容器的水中,若取出这个铁球,测得容器的水面下降了 5 cm , 3
则这个铁球的表面积为 ▲ cm2 .
(第 6 题图)
1
9.若直线 y kx 1与曲线 y x 相切,则实数 k 的值为 ▲ .
10.计算:
高三数学练习卷(一)
数学 Ⅰ 试题
2020.6
注意事项
在答题前请认真阅读本注意事项及各题答题要求 1. 本试卷共 4 页,包含填空题(第 1 题 第 14 题)、解答题(第 15 题 第 20 题).本卷满分 160
分,考试时间为 120 分钟.考试结束后,请将答题卡交回. 2. 答题前,请您务必将自己的姓名、调研序列号用 0.5 毫米黑色墨水的签字笔填写在答题卡的规定
都成立,则称数列{cn} 为“ t 倍等阶差数列”.已知数列{an} 为“t 倍等阶差数列”.
(1)若
a1
0 ,a2
Hale Waihona Puke 1 2,a31 ,求实数 t
的值;
(2)在(1)的条件下,设 bn a2n1 a2n1 (n N* ) .
①求数列{bn} 的通项公式;
②设数列{ 1 } 的前 bnbn1
n
项和为
(第 17 题图)
18.(本小题满分 16 分)
如图,点 F
为椭圆
C
x2 :
a2
y2 b2
1
(a
b 0) 的左焦点,点 A,B 分别为椭圆 C 的右顶
点和上顶点,点 P( 2 , 6 ) 在椭圆 C 上,且满足 OP∥AB . 2
(1)求椭圆 C 的方程; (2)过定点 T (m ,0) (| m | 2) 且与 x 轴不重合的直线 l 交椭圆 C 于 M ,N 两点,直线

江苏省苏州大学2020届高考考前指导卷数学试题 含解析

江苏省苏州大学2020届高考考前指导卷数学试题 含解析
序所组成的不同数列,其所有项和分别为 T1 ,T2 ,求{an} 是 P 数列时 a 与 q 所满足的条件,并证明命题“若 a 0 且 T1 = T2 ,则{an} 不是 P 数列”.
8.已知函数 f (x) = xcos x ,则 f (x) 在点 ( ,f ()) 处的切线的斜率为 ▲ .
22
9.已知
Sn
是等比数列{an} 前
n
项的和,若公比
q
=
2
,则
a1
+
a3 S6
+
a5
的值是


开始
S←4
i←3
S←S+2i i←i+2
i≤10 Y N
输出 S 结束 (第 6 题图)
10.已知 2 sin = cos( + ) ,则 tan( − ) 的值是 ▲ .
△ABC 的内角 A,B ,C 的对边分别为 a ,b,c ,且 a = 1, 3 cosC = csin A .
(1)求 C ; (2)若 b = 3 , D 是 AB 上的点, CD 平分 ACB ,求 △ACD 的面积.
16.(本小题满分 14 分)
如图,在四棱锥 P − ABCD 中,底面 ABCD 是矩形,点 E 在棱 PC 上(异于点 P ,C ),平面 ABE 与棱 PD 交于
14.已知 D 是 △ABC 边 AC 上一点,且 CD = 3AD ,BD = 2 ,cos ABC = 1 ,则 3AB + BC 的最大值为
4
▲.
二、解答题:本大题共 6 小题,共计 90 分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演 算步骤.
15.(本小题满分 14 分)

苏州大学2020届高考考前指导卷(答案)

苏州大学2020届高考考前指导卷(答案)

苏州大学2020届高考考前指导卷参考答案一、填空题:本大题共14小题,每小题5分,共计70分.1.{|12}x x <≤ 2.2 3.280 4.1(0]2,5.2 6.52 7.56 8.π2- 9.1310.12-11.5306612.413.4[1]3-, 14解答与提示:1.{|12}A B x x =<I ≤. 2. 2i (2i)(1i)22i 1i 222a a a az +++-+===+-.因为z 为纯虚数,所以2020a a -=⎧⎨+≠⎩,,解得2a =. 3.由图可知,时速在区间[8090)[110120),,,的频率为(0.010.02)100.3+⨯=,所以时速在区间[90110),的频率为10.3-,所以时速在区间[90,110)的车辆约为4000.7280⨯=辆. 4.由1200x x -⎧⎨>⎩≥,,解得102x <≤,即函数()f x 的定义域为1(0]2,.5.离心率c e a ==2λ=. 6.执行第一次循环105S i ==,;执行第二次循环207S i ==,;执行第三次循环349S i ==,;执行第四次循环5211S i ==,,终止循环.所以52S =.7.记方案一与方案二坐到“3号”车的概率分别为P 1,P 2,三辆车的出车顺序可能为:123,132,213,231,312,321.方案一坐“3号”车可能:132,213,231,所以136P =;方案二坐“3号”车可能:312,321,所以226P =.则该嘉宾坐到“3号”车的概率1256P P P =+=. 8.()cos sin f x x x x '=-,所以在π2x =处的切线的斜率为ππ()22k f '==-.9.2312135616[1()]111(1)131a q a a a q a q S q q-++-===-+-.10.因为π2sin cos()4αα=+,解得1tan 3α=,所以11π13tan()14213α--==-+. 11.如图,10AB =(寸),则5AD =(寸),1CD =(寸),设圆O的半径为x (寸),则(1)OD x =-(寸).在Rt ADO △,由勾股定理可得2225(1)x x +-=,解得13x =(寸),则该木材的体积约为221001316900x 100π=π⨯=π≈53066(立方寸). 12.函数()f x 的图象如右图所示,由题意,30()2f x <<,即319x <<,因为123()()()f x f x f x ==,所以3133()(3)x f x x x =-,令3(1,3)t x =∈,构造函数32()3g t t t =-+,2()36g t t t '=-+,所以当2t =时,max ()(2)4g t g ==,所以31()x f x 的最大值为4.13.设正方形ABCD 的边长为a ,以A 为原点,AB AD ,所在直线为分别为x y ,轴建立平面直角坐标系,则(00)(0)()(0)A B a C a a D a ,,,,,,,.设()P x y ,,因为0CP DP ⋅=u u u r u u u r,所以()()0x a y a x y a --⋅-=,,,即222()()24a a x y a -+-=,设cos 22sin 2a a x a y a θθ⎧=+⎪⎪⎨⎪=+⎪⎩,.又因为()()22a a E a F a ,,,,AP AE AF λμ=+u u u r u u u r u u u r ,所以()()()22a ax y a a λμ=+,,,,即22a x a a y a λμλμ⎧=+⎪⎪⎨⎪=+⎪⎩,,所以2232()[(sin cos )]1sin()33224a a x y a a λμθθθπ+=+=++=++,由P 为正方形ABCD 内部一点(包含边界),可得[2]θ∈ππ,,所以[]444θπ5π9π+∈,,所以2241sin()[1]3433λμθπ+=++∈-,. 14.法一:设AD t =,则3CD t =,4AC t =,在ABD △中,222(2)cos 22t c ADB t +-∠=, 在BDC △中,222(3)(2)cos 223t a BDC t+-∠=⋅,又cos cos ADB BDC ∠=-∠,所以222222(2)(3)(2)22223t c t a tt+-+-=-⋅,解得2221238t c a =+-,①DCBA在ABC △中,2222(4)2cos AC t a c ac B ==+-,即2221162t a c ac =+-,②由①②可得2239322a c ac ++=.所以2222333532(3)(3)(3)()(3)2228a c a c a c a c a c +=+-+-⨯=+≥,即2832(3)5a c ⨯+≤,所以3a c +当且仅当3a c =,即a c =所以3AB BC +. 法二:因为3CD AD =,所以3CD DA =u u u r u u u r,即3()BD BC BA BD -=-u u u r u u u r u u u r u u u r ,整理得到3144BD BA BC =+u u u r u u u r u u u r ,两边平方后有22291316168BD BA BC BA BC =++⋅u u u r u u u r u u u r u u u r u u u r,所以22913216168BA BC BA BC =++⋅u u u r u u u r u u u r u u u r 即2291312||||161684BA BC BA BC =++⋅⨯u uu r u u u r u u u r u u u r ,整理得到223329||||||||2BA BC BA BC =++⋅u u u r u u u r u uu r u u u r ,设||||c BA a BC ==u u u r u u u r ,,所以22239329(3)22c a ac c a ac =++=+-, 因为293333()2222ac a c c a ⋅⋅+=≤,所以222293532(3)(3)(3)(3)288c a ac c a c a c a =+-+-+=+≥,3c a +a c所以3AB BC +. 二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)解:(1)因为1a =sin C c A =cos sin C c A =, ······················ 2分在ABC △中,由正弦定理sin sin a cA C=,所以sin sin a C c A =,cos sin sin A C C A =. ·························································· 4分因为(0)A ∈π,,所以sin 0A ≠sin C C =,因为(0)C ∈π,,所以sin 0C ≠,所以cos 0C ≠,所以tan C = ············· 6分因为(0)C ∈π,,所以3C π=. ······························································ 8分 (2)由(1)知,3ACB π∠=,因为1a =,3b =,所以ABC △的面积13sin sin 223ABC S ab ACB π=∠==△, ························ 10分因为D 是AB 上的点,CD 平分ACB ∠,所以1sin12613sin 26BCD ACD a CD S a S b b CD π⋅⋅===π⋅⋅△△, ···················································· 12分 因为ABC ACD BCD S S S =+△△△,所以3344ACD ABC S S ==△△. ············· 14分 16.(本小题满分14分)证:(1)因为四边形ABCD 是矩形,所以AB CD ∥. ································································· 2分又AB ⊄平面PDC ,CD ⊂平面PDC , 所以AB ∥平面PDC , ··································· 5分 又因为AB ⊂平面ABE ,平面ABE ∩平面PDC EF =, 所以AB EF ∥. ············································ 7分 (2)因为四边形ABCD 是矩形,所以AB ⊥AD . 因为AF ⊥EF ,(1)中已证AB EF ∥,所以AB ⊥AF , ·················································································· 9分 因为AB ⊥AD ,由点E 在棱PC 上(异于点C ), 所以F 点异于点D ,所以AF AD A =I ,又AF AD ,⊂平面P AD ,所以AB ⊥平面P AD , ······································· 12分 又AB ⊂平面ABCD ,所以平面P AD ⊥平面ABCD . ·································· 14分 17.(本小题满分14分) 解:(1)由题意AOC COD θ∠=∠=,设四边形OCDB 的面积为()S θ,因为四边形OCDB 可以分为OCD △和OBD △两部分,所以11()sin sin(2)22OCD OBD S S S OC OD OB OD θθθ=+=⋅+⋅π-△△, ··············· 3分因为1OB OC OD ===,所以1()(sin sin 2)2S θθθ=+.因为020θθ>π->,,所以02θπ<<.所以四边形OCDB 的面积1()(sin sin 2)(0)22S θθθθπ=+∈,,. ······················ 6分(2)由(1)1()(sin sin 2)(0)22S θθθθπ=+∈,,,所以2211()(sin )(sin cos )cos cos sin 22S θθθθθθθ'''=+=+-21(4cos cos 2)2θθ=+-,令()0S θ'=,即24cos cos 20θθ+-=,解得cos θ=或cos θ= 因为02θπ<<,所以存在唯一的0θ,使得0cos θ= ····················· 10分当00θθ<<时,()0S θ'>,()S θ在0(0)θ,单调递增;当02θθπ<<时,()0S θ'<,()S θ在0()2θπ,单调递减, 所以0θθ=时,max 0()()S S θθ=, ·························································· 12分 此时22202cos(2)BD OB OD OB OD θ=+-⋅π-22000112cos 222(2cos 1)4cos θθθ=++=+-=,从而02cos BD θ=(千米). 答:当四边形OCDB 的面积最大时,BD·················· 14分 18.(本小题满分16分)解:(1)因为椭圆22221(0)x y a b a b+=>>的离心率为2,短轴长为2,所以22222b a b c c a⎧⎪=⎪⎪=+⎨⎪⎪=⎪⎩,,解得1a b ==, 所以该椭圆的标准方程为2212x y +=. ···················································· 4分(2)因为点) (0)(0)M m m A >,, 所以直线AM的方程为y x =+,即(4y x =.由2212(4x y y x ⎧+=⎪⎪⎨⎪=⎪⎩,,消去y得2222(4)280m x x m +++-=. ··············· 7分 设00()C x y ,,则202284m m -=+,所以0x =,所以0244my m =+.连接OM ,取OM 的中点R,则)2mR ,, ········································· 10分 连接CR ,因为OC CM =,所以CR OM ⊥.又30OM CR m y k k -==31=-,即42280m m +-=, 因为0m >,所以m = ································································· 13分 所以四边形OBMC的面积114223ABM AOC S S S =-=⨯=△△. ····································································································· 16分19.(本小题满分16分)解:(1)因为2()2ln f x x ax x =-+,所以222() (0)x ax f x x x-+'=>. ··············· 2分 令2()22p x x ax =-+,216a ∆=-,当0∆≤即44a -≤≤时,()0p x ≥,即()0f x '≥, 所以函数()f x 单调递增区间为(0)+∞,.当0∆>即4a <-或4a >时,12x x ==若4a <-,则120x x <<,所以()0p x >,即()0f x '>,所以函数()f x 的单调递增区间为(0)+∞,.若4a >,则210x x >>,由()0f x '>即()0p x >,得10x x <<或2x x >; 由()0f x '<,即()0p x <得12x x x <<.所以函数()f x 的单调递增区间为12(0)()x x +∞,,,;单调递减区间为12()x x ,. 综上,当4a ≤时,函数()f x 的单调递增区间为(0)+∞,,无减区间;当4a >时,函数()f x 的单调递增区间为12(0)()x x +∞,,,,单调递减区间为12()x x ,. ····· 6分 (2)由(1)得222() (0)x ax f x x x-+'=>,若()f x 有两个极值点12x x ,,则12x x ,是方程2220x ax -+=的两个不等正实根, 由(1)知4a >.则1212212ax x x x +=>=,,故1201x x <<<, ···················· 8分 要使12()f x mx >恒成立,只需12()f x m x >恒成立.因为222311111111111221()2ln 222ln 22ln 1f x x ax x x x x x x x x x x x -+--+===--+, ········ 10分令3()22ln (01)h t t t t t t =--+<<,则2()32ln h t t t '=-+, ·························· 12分 当01t <<时,()0h t '<,()h t 为减函数,所以()(1)3h t h >=-. ·················· 14分 由题意,要使12()f x mx >恒成立,只需满足3m -≤.所以实数m 的取值范围(3]-∞-,. ······················································· 16分 20.(本小题满分16分)解:(1)由32n n S =+,可知1123n n n n a S S ++=-=⨯,故1320n n n a S +-=->对一切正整数n 都成立,故{}n a 是P 数列. ················ 3分 (2)由题意知,该数列的前n 项和为(1)2n n n S n d -=-+,11n a nd +=-+, 由数列12310a a a a L ,,,,是P 数列,可知211a S a >=,故公差0d >. 213(1)1022n n d S a n d n +-=-++<对满足19n ≤≤中的每一个正整数n 都成立, 即23(1)1022d n d n -++<对于19n ≤≤都成立. ······································· 6分 由2231(1)1022399(1)1022d d d d ⎧⋅-++<⎪⎪⎨⎪⋅-++<⎪⎩,,可得8027d <<,故d 的取值范围是8(0)27,. ····· 8分(3)若{}n a 是P 数列,则12a S a aq =<=,若0a >,则1q >,又由1n n a S +>对一切正整数n 都成立, 可知11n nq aq a q ->-,即12()n q q-<对一切正整数n 都成立,由1()0n q>,1()(01)n q ∈,,故20q -≤,可得2q ≥.若0a <,则1q <,又由1n n a S +>对一切正整数n 都成立, 可知11nnq aq a q->-,即(2)1n q q -<对一切正整数n 都成立,又当(1]q ∈-∞-,时,(2)1n q q -<当2n =时不成立,故有(01)(2)1q q q ∈⎧⎨-<⎩,,,或2(10)(2)1q q q ∈-⎧⎨-<⎩,,,解得0)(01)q ∈U ,. 所以{}n a 是P 数列时,a 与q 所满足的条件为02a q >⎧⎨⎩,≥,或0(01)0)a q <⎧⎪⎨∈⎪⎩U ,,.12分下面用反证法证明命题“若0a >且12T T =,则{}n a 不是P 数列”. 假设{}n a 是P 数列,由0a >,可知2q ≥且{}n a 中每一项均为正数, 若{}n b 中的每一项都在{}n c 中,则由这两数列是不同数列,可知12T T <, 若{}n c 中的每一项都在{}n b 中,同理可得12T T >. 若{}n b 中至少有一项不在{}n c 中且{}n c 中至少有一项不在{}n b 中,设{}{}n n b c '',是将{}{}n n b c ,中的公共项去掉之后剩余项依次构成的数列,它们的所有项和分别为12T T '',, 不妨设{},{}n n b c ''中的最大项在{}n b '中,设为m a ,则2m ≥, 则21211m m T a a a a T -''+++<L ≤≤,故21T T ''<,所以21T T <,故总有12T T ≠,与12T T =矛盾.故{}n a 不是P 数列. ································· 16分数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两题......,若多做,则按作答的前两题评分.A .选修4 - 2:矩阵与变换(本小题满分10分) 解:依题意1234⎡⎤⎢⎥⎣⎦5x ⎡⎤=⎢⎥⎣⎦2y y -⎡⎤⎢⎥⎣⎦,即102320 x y x y +=-⎧⎨+=⎩,,解得4 8 x y =-⎧⎨=⎩,, ···················· 3分 由逆矩阵公式知,矩阵M 1234⎡⎤=⎢⎥⎣⎦的逆矩阵1213122--⎡⎤⎢⎥=⎢⎥-⎣⎦M , ···················· 7分 所以1x y -⎡⎤⎢⎥⎣⎦M 213122-⎡⎤⎢⎥=⎢⎥-⎣⎦48-⎡⎤⎢⎥⎣⎦1610⎡⎤=⎢⎥-⎣⎦. ··············································· 10分 B .选修4 - 4:坐标系与参数方程(本小题满分10分)解:直线)l ρθθ=:, 所以直线l 的直角坐标方程为20x y -+=. ············································· 3分曲线C 的普通方程为22(2) 1 (32)x y x ++=--≤≤, ································· 6分 2220(2) 1 (32)x y x y x -+=⎧⎨++=-⎩,≤≤-,消去y 整理得22870x x ++=,则22x =--,所以交点坐标为(2)22---. ································· 10分 C .选修4 - 5:不等式选讲(本小题满分10分)解:由00x y >>,,2211274x y x y +++=, 得2215316127444x y x y x y -=+++-27327126444=+-=≥. ································· 6分当且仅当22818x x y y ⎧=⎪⎪⎨⎪=⎪⎩,,即122x y ==,时等号成立.故1534x y-的最小值为6. ··································································· 10分 【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分) 解:设O 是AD 中点,PAD △为正三角形,则PO AD ⊥.因为平面PAD ⊥平面ABCD ,平面PAD I 平面ABCD AD =,PO ⊂平面PAD , 所以PO ABCD ⊥面.又因为2AD AE ==,60DAB ∠=︒, 所以ADE △为正三角形, 所以OE AD ⊥.建立如图所示空间直角坐标系O xyz -,则(00(00)(20)(100)P E C D --,,,,,,,于是(2(0(10PC PE DP =-=-=u u u r u u u r u u u r,,,. ··················· 2分(1)设平面PEC 的法向量为1()x y z =,,n , 由110,0PC PE ⋅=⋅=u u u r u u u rn n ,得一个法向量为1(011)=,,n ,平面EDC 的一个法向量为2(001)=,,n ,所以12cos <>==,n n , 又由图可得二面角P EC D --为锐角,所以二面角P EC D --. ················································ 4分 (2)设 (01)PM PC λλ=u u u u r u u u r ≤≤,则(2)PM λ=--u u u u r,,(12)DM DP PM λ=+=-u u u u r u u u r u u u u r,(0PE =-u u , ················ 6分x所以|cos|||||||DM PEDM PEDM PE⋅<>===u u u u r u u u ru u u u r u u u ru u u u r u u u r,,·················8分解得13λ=或23,所以存在点M为线段PC的三等分点. ···························10分23.(本小题满分10分)解:(1)当2n=时,{0}{1}{2}{02}{012}M=,,,,,,,具有性质P,对应的k分别为01211,,,,,故(2)5f=. ··············································3分(2)设当n t=时,具有性质P的集合M的个数为()f t,则当1n t=+时,(1)()(1)f t f tg t+=++,其中(1)g t+表示1t M+∈时也具有性质P的集合M的个数,下面计算(1)g t+关于t的表达式,此时应有21k t+≥,即12tk+≥,故对n t=分奇偶讨论.①当t为偶数时,1t+为奇数,故应该有22tk+≥,则对每一个k,1t+和21k t--必然属于集合M,且t和2k t-,L,k和k共有1t k+-组数,每一组数中的两个数必然同时属于或不属于集合M,故对每一个k,对应具有性质P的集合M的个数为01111112t k t kt k t k t kC C C+-+-+-+-+-+++=L,所以21222(1)2221221t t tg t-+=++++=⨯-L.·········································5分②当t为奇数时,1t+为偶数,故应该有12tk+≥,同理111222(1)222121t t tg t+-+=++++=-L, ····································7分综上,可得22()221(1)()21ttf t tf tf t t⎧+⨯-⎪+=⎨⎪+-⎩,为偶数,,为奇数,又(2)5f=,由累加法解得212625()425ttt tf tt t+⎧⨯--⎪=⎨⎪⨯--⎩,为偶数,,为奇数,即212625()425nnn nf nn n+⎧⨯--⎪=⎨⎪⨯--⎩,为偶数,,为奇数.·······················································10分。

【附加15套高考模拟试卷】苏州大学2020届高考数学考前指导卷【2】含答案

【附加15套高考模拟试卷】苏州大学2020届高考数学考前指导卷【2】含答案

苏州大学2020届高考数学考前指导卷【2】一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知21log 32a =,4log 5b =,322c =,则a ,b ,c 满足 A .a<b<cB .b<a<cC .c<a<bD .c<b<a 2.设3sin ,0()1,0x x x f x x x -<⎧=⎨+≥⎩,则函数()f x A .有极值 B .有零点 C .是奇函数 D .是增函数3.下列说法正确的是 ( )A .命题“若21x =,则1x =”的否命题是“若21x =,则1x ≠”B .“1x =-”是“2560x x --=”的必要不充分条件C .命题“2,10x R x x ∃∈++<”的否定是“2,10x R x x ∀∈++<”D .命题“若x y =,则sin sin x y =”的逆否命题是真命题。

4.5y A sinx x R 66ππωϕ⎡⎤=+∈-⎢⎥⎣⎦如图是函数()()在区间,上的图象,为了得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的点A .向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 B .向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 C .向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 D .向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变5.已知抛物线C :24x y =的焦点为F ,过点F 的直线l 交抛物线C 于A ,B 两点,其中点A 在第一象限,若弦AB 的长为254,则AF BF =( )A.2或12B.3或13C.4或14D.5或156.已知函数22(1)()xxe xg xe-=,若实数m满足515(log)(log)2(2)g m g m g-≤,则m的取值范围是()A.(0,25]B.[5,25]C.[25,)+∞ D.1[,5]57.已知平面α⊥平面β,lαβ=I,aα⊂,bβ⊂,则“a l⊥”是“a b⊥r r”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知函数()ln ln()f x x a x=+-的图象关于直线1x=对称,则函数()f x的值域为( )A.(0,2)B.[0,)+∞C.(2]-∞D.(,0]-∞9.如图所示为一正方体的平面展开图,在这个正方体中,有下列四个命题:①AF GC⊥;②BD与GC成异面直线且夹角为60o;③//BD MN;④BG与平面ABCD所成的角为45o.其中正确的个数是()A.1B.2C.3D.410.已知()f x是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x-=+.若(1)2f=,则(1)(2)(3) (2018)f f f f++++=()A.50 B.2 C.0 D.-201811.某校从6名教师中选派3名教师去完成4项不同的工作,每人至少完成一项,每项工作由1人完成,其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案种数是()A.252 B.288 C.360 D.21612.函数()sin()f x A x ωϕ=+的部分图象如图中实线所示,图中圆C 与()f x 的图象交于,M N 两点,且M 在y 轴上,则下列说法中正确的是A .函数()f x 的最小正周期是π2B .函数()f x 的图象关于点,034⎛⎫π⎪⎝⎭成中心对称 C .函数()f x 在2(,)36ππ--单调递增 D .函数()f x 的图象向右平移512π后关于原点成中心对称二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏州大学2020届高考考前指导卷
数学Ⅱ(附加题)
21.【选做题】本题包括A 、B 、C 三小题,请选定其中两题......,并在相应的.....答题区域....内作..答.
,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .选修4 2:矩阵与变换(本小题满分10分)
在平面直角坐标系xOy 中,设点(5)P x ,在矩阵M 1234
对应的变换下得到点(2)Q y y ,,求1x y
M .
B .选修4 4:坐标系与参数方程(本小题满分10分)
在直角坐标系xOy 中,以坐标原点O 为极点,以x 轴非负半轴为极轴,建立极坐标
系,直线l 的极坐标方程为sin()4
C 的参数方程为2cos 3()sin 22x y
,≤≤,求l 与曲线C 交点的直角坐标.
C .选修4 5:不等式选讲(本小题满分10分)
已知00x y ,,且满足2211274x y x y ,求1534x y
的最小值.
【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域.......
内作答,解答时应写出文字说明、证明过程或演算步骤.
22.(本小题满分10分)
在四棱锥P ABCD 中,//AB CD ,2224AB CD BC AD ,60DAB ,AE BE ,PAD △为正三角形,且平面PAD 平面ABCD .
(1)求二面角P EC D 的余弦值;
(2)线段PC 上是否存在一点M ,使得异面直线DM 和
PE
指出点M 的位置;若不存在,请说明理由.
23.(本小题满分10分) 已知非空集合M 满足{012}M n ,,,,*(2)n n N ≥,.
若存在非负整数 ()k k n ≤,使得当a M 时,均有2k a M ,则称集合M 具有性质P .记具有性质P 的集合M 的个数为()f n .
(1)求(2)f 的值;
(2)求()f n 的表达式.
(第22题图)。

相关文档
最新文档