二倍角公式教学设计整理版
《6.2二倍角公式》教学设计教学反思-2023-2024学年中职数学高教版21拓展模块一上册
《二倍角公式》教学设计方案(第一课时)一、教学目标1. 掌握二倍角公式的概念和基本形式。
2. 能够运用二倍角公式进行简单的三角函数计算。
3. 培养数学思维和问题解决能力。
二、教学重难点1. 教学重点:理解二倍角公式的推导过程及实际应用。
2. 教学难点:灵活运用二倍角公式解决复杂的三角函数问题。
三、教学准备1. 准备教学素材:包括PPT、图片、例题等。
2. 制定教学计划:根据学生水平和教材内容,合理安排教学内容和时间。
3. 准备数学工具:准备计算器,以便学生计算和验算。
4. 提醒学生:提前预习,准备好笔记本和笔,积极参与课堂讨论。
四、教学过程:本节课是《二倍角公式》教学设计方案(第一课时)的主要部分,主要分为以下几个环节:1. 导入环节:首先,我会引导学生回顾什么是二倍角,让学生明白二倍角是在一个角的基础上再乘以2得到的。
这个过程可以通过简单的问答形式进行,让学生通过回忆旧知识来为新知识的理解做好准备。
2. 探索新知:接下来,我会引导学生探索二倍角公式。
首先,我会给出一些简单的练习题,让学生通过自己的思考和计算来验证二倍角公式的正确性。
在这个过程中,我会鼓励学生提出自己的疑问和困惑,并给予及时的解答。
3. 讲解和演示:在学生探索新知的过程中,我会适时进行讲解和演示。
我会详细解释二倍角公式的数学原理,并通过图形和图表等形式来帮助学生更好地理解。
同时,我也会展示一些相关的公式应用实例,让学生了解二倍角公式在实际问题中的应用。
4. 实践活动:为了进一步巩固学生对二倍角公式的理解和应用,我会设计一些实践活动。
例如,让学生自己探索三倍角、四倍角等其他倍角公式,或者让学生应用二倍角公式解决一些实际问题。
这些实践活动可以帮助学生将理论知识转化为实际应用能力。
5. 反馈与评价:最后,我会收集学生的反馈,了解学生对本节课的掌握情况。
同时,我也会根据学生的表现和反馈来调整教学策略,以提高教学效果。
教学设计方案(第二课时)一、教学目标1. 理解二倍角公式的推导过程,掌握其基本应用。
(完整版)《二倍角的正弦、余弦、正切公式》教案
《二倍角的正弦、余弦、正切公式》教学设计高一A 组 韩慧芳年级:高一 科目:数学 内容:二倍角的正弦、余弦、正切公式 课型:新课一、教学目标1、知识目标:(1)在理解两角和的正弦、余弦和正切公式的基础上,能够推导二倍角的正弦、余弦和正切公式,并能运用这些公式解决简单的三角函数问题.(2)通过公式的应用(正用、逆用、变形用),使学生掌握有关化简技巧,提高分析、解决问题的能力。
2、能力目标:通过二倍角公式的推导,了解知识之间的内在联系,完善知识结构,培养逻辑推理能力。
3、情感目标:通过二倍角公式的推导,感受二倍角公式是和角公式的特例,进一步体会从一般化归为特殊的基本数学思想。
在运用二倍角公式的过程中体会换元的数学思想。
二、教学重难点、关键1、教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角的正弦、余弦和正切公式2、教学难点:二倍角的理解及其正用、逆用、变形用.3、关键:二倍角的理解三、学法指导学法:研讨式教学四、教学设想:1、问题情境复习回顾两角和的正弦、余弦、正切公式()sin sin cos cos sin αβαβαβ+=+;()cos cos cos sin sin αβαβαβ+=-;()tan tan tan 1tan tan αβαβαβ++=-. 思考:在这些和角公式中,如果令βα=,会有怎样的结果呢?2、建构数学公式推导:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-;思考:把上述关于cos2α的式子能否变成只含有sin α或cos α的式子呢?22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-;22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-.以上这些公式都叫做倍角公式,从形式上看,倍角公式给出了αα与2的三角函数之间的关系。
《二倍角公式》 教学设计
《二倍角公式》教学设计一、教学目标1、知识与技能目标学生能够理解和掌握二倍角的正弦、余弦、正切公式,能熟练运用公式进行求值、化简和证明。
2、过程与方法目标通过公式的推导过程,培养学生的逻辑推理能力和数学思维能力;通过公式的应用,提高学生的运算能力和分析问题、解决问题的能力。
3、情感态度与价值观目标激发学生对数学的兴趣,培养学生勇于探索、创新的精神,让学生体会数学知识之间的内在联系,感受数学的美。
二、教学重难点1、教学重点二倍角公式的推导及应用。
2、教学难点二倍角公式的灵活运用,尤其是角的变换和函数名称的变换。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过复习两角和与差的正弦、余弦、正切公式,引导学生思考:如果两角相等,会得到怎样的公式呢?从而引出二倍角公式。
2、公式推导(1)引导学生从两角和的正弦公式\(\sin(\alpha +\beta) =\sin\alpha\cos\beta +\cos\alpha\sin\beta\)出发,当\(\alpha =\beta\)时,得到\(\sin 2\alpha = 2\sin\alpha\cos\alpha\)。
(2)同理,从两角和的余弦公式\(\cos(\alpha +\beta) =\cos\alpha\cos\beta \sin\alpha\sin\beta\),当\(\alpha =\beta\)时,得到\(\cos 2\alpha =\cos^2\alpha \sin^2\alpha\),再利用同角三角函数的基本关系\(\sin^2\alpha +\cos^2\alpha = 1\),进一步得到\(\cos 2\alpha = 2\cos^2\alpha 1\)和\(\cos 2\alpha = 12\sin^2\alpha\)。
(3)从两角和的正切公式\(\tan(\alpha +\beta) =\frac{\tan\alpha +\tan\beta}{1 \tan\alpha\tan\beta}\),当\(\alpha =\beta\)时,得到\(\tan 2\alpha =\frac{2\tan\alpha}{1 \tan^2\alpha}\)。
二倍角公式教学设计整理版
二倍角公式教学设计整理版【教学设计整理版】二倍角公式的教学设计教学目标:1.理解二倍角的概念和性质;2.掌握二倍角的计算方法;3.能够灵活运用二倍角公式解决实际问题。
教学重点:1.二倍角概念的理解;2.二倍角公式的掌握;3.实际问题的解决能力。
教学难点:1.灵活运用二倍角公式解决实际问题;2.将角度问题转化为二倍角公式求解。
教具准备:1. PowerPoint课件;2.白板、白板笔。
教学过程:Step 1 引入新知识(5分钟)1.引导学生回顾正弦定理和余弦定理的内容。
2.提问:在解决三角函数问题中,有没有一些特殊的角度,比如原来的角度的两倍?3.导入二倍角的概念,并与学生共同探讨二倍角的性质。
Step 2 二倍角公式的推导(10分钟)1. 在白板上写出正弦和余弦函数的定义式:$sin\theta =\frac{a}{c}$, $cos\theta = \frac{b}{c}$。
2.提问:如何将正弦和余弦函数的角度变为原来的两倍?3. 导出正弦函数的二倍角公式:$sin2\theta = 2sin\thetacos\theta$。
4.提问:如何将余弦函数的角度变为原来的两倍?5. 导出余弦函数的二倍角公式:$cos2\theta = cos^2\theta -sin^2\theta$ 或 $cos2\theta = 2cos^2\theta - 1$。
Step 3 二倍角公式的运用(15分钟)1.使用示例和图像演示二倍角公式的计算过程,引导学生掌握二倍角公式的具体运用方法。
2.解答学生提出的相关问题,并进行再次强调和巩固。
Step 4 实际问题的解决(20分钟)1.准备一些和角度有关的实际问题,让学生运用二倍角公式进行求解。
2.学生个人或小组合作解决问题,鼓励他们灵活运用二倍角公式并进行推理推导。
Step 5 拓展与应用(15分钟)1.引导学生思考:二倍角公式可以用于什么实际问题的求解中?2.探究二倍角公式在几何图形中的运用。
二倍角的正弦余弦正切公式教学设计
二倍角的正弦余弦正切公式教学设计一、教学目标:1.理解二倍角的概念及其在三角函数中的应用。
2.掌握二倍角的正弦、余弦、正切公式。
3.能够灵活运用二倍角公式解决相关的三角函数题目。
二、教学重点:1.二倍角的概念及应用。
2.二倍角的正弦、余弦、正切公式。
三、教学难点:1.理解并应用二倍角公式解决复杂的三角函数问题。
四、教学过程:Step 1:导入引入(10分钟)1.利用平时学过的知识,复习一下三角函数的基本概念和公式,引导学生回忆起正弦、余弦、正切的定义。
2.提问:二倍角是什么?它在三角函数中有什么应用?Step 2:引出二倍角公式(15分钟)1.导入:给学生出示一道题目:已知角A的正弦值是0.5,求角2A 的正弦值。
学生尝试解答,引导他们思考角2A和角A之间的关系。
2.引导发现:令角2A为B,可知2A=B,角A=A/23. 定义:将A/2称为角A的二倍角(denote:2A)。
4.解题思路:利用三角函数的定义,将角A的正弦值解析成二倍角的正弦值,然后求解。
Step 3:二倍角正弦公式的推导和应用(25分钟)1. 推导:由三角函数的定义,我们可以得到正弦的二倍角公式:sin(2A)=2sinAcosA。
通过几何分析和三角函数的性质,可以推导出该公式。
2.例题:给学生出示几道题目,要求用二倍角公式计算正弦的值。
让学生在计算过程中理解公式的应用和意义。
3.错题讲解:对学生在计算过程中容易出错的题目进行整理和讲解,加深学生对二倍角公式的理解和应用能力。
Step 4:二倍角余弦公式的推导和应用(25分钟)1. 推导:利用三角函数的关系,可以推导出余弦的二倍角公式:cos(2A)=cos2A-2sin²A。
2.例题:给学生出示几道题目,要求用二倍角公式计算余弦的值。
让学生在计算过程中理解公式的应用和意义。
3.错题讲解:对学生在计算过程中容易出错的题目进行整理和讲解,加深学生对二倍角公式的理解和应用能力。
二倍角公式教学设计
二倍角公式教学设计教学设计:二倍角公式一、教学目标1.理解二倍角的概念。
2.掌握正弦、余弦和正切的二倍角公式。
3.能够应用二倍角公式解决实际问题。
二、教学重点1.二倍角概念的理解。
2.正弦、余弦和正切的二倍角公式的掌握和应用。
三、教学难点1.正弦、余弦和正切的二倍角公式的推导。
2.二倍角的应用。
四、教学方法1.情景导入法:例举二倍角的实际应用场景,激发学生的兴趣。
2.讲授法:以黑板、白板或电子屏幕为媒介,向学生介绍二倍角的概念和公式的推导。
3.分组合作法:组织学生分小组合作解决问题,通过讨论和合作来提高理解和应用能力。
4.巩固与评价:设计练习题,巩固学生对二倍角的理解和应用。
五、教学过程Step 1 情景导入(5分钟)老师给学生提出一个问题:“在打篮球时,如果你了解对方投篮动作的周期性,是否有助于你防守?为什么?”引导学生思考二倍角的实际应用。
Step 2 概念介绍(10分钟)通过PPT或黑板,给学生呈现二倍角的概念和定义,解释二倍角的意义和作用。
让学生明白二倍角是原角的两倍大小。
Step 3 推导正弦的二倍角公式(15分钟)1.老师给学生出示一个正弦曲线图,解释正弦的周期性和对称性。
2.将角度分为两种情况:一种是原角在第一象限,另一种是原角在第二,三,四象限。
3.根据正弦的周期性,推导出正弦的二倍角公式。
Step 4 推导余弦的二倍角公式(15分钟)1.向学生出示余弦曲线图,解释余弦的周期性和对称性。
2.将角度分为两种情况:一种是原角在第一象限,另一种是原角在第二,三,四象限。
3.根据余弦的周期性,推导出余弦的二倍角公式。
Step 5 推导正切的二倍角公式(15分钟)1.向学生出示正切曲线图,解释正切的周期性。
2.将角度分为两种情况:一种是原角在第一象限,另一种是原角在第二,四象限。
3.根据正切的周期性,推导出正切的二倍角公式。
Step 6 实例演练(20分钟)1.学生分小组解决二倍角公式的实际问题,如计算太阳高度角,计算炮弹的射程等。
二倍角正弦、余弦、正切公式教案
二倍角正弦、余弦、正切公式教案一、教学目标:1. 让学生掌握二倍角正弦、余弦、正切公式的推导过程。
2. 使学生能够灵活运用二倍角正弦、余弦、正切公式解决相关问题。
3. 培养学生的逻辑思维能力和运算能力。
二、教学内容:1. 二倍角正弦公式:sin2α= 2sinαcosα2. 二倍角余弦公式:cos2α= cos^2αsin^2α= 2cos^2α1 = 1 2sin^2α3. 二倍角正切公式:tan2α= (tanα+ tan(α+π))/(1 tanαtan(α+π)) = (tanα+ tanα)/(1 tan^2α) = 2tanα/(1 tan^2α)三、教学重点与难点:1. 教学重点:二倍角正弦、余弦、正切公式的推导过程及应用。
2. 教学难点:二倍角正切公式的推导过程及应用。
四、教学方法:1. 采用讲解法,引导学生理解二倍角正弦、余弦、正切公式的推导过程。
2. 运用例题,让学生在实践中掌握二倍角正弦、余弦、正切公式的应用。
3. 组织小组讨论,培养学生合作学习的能力。
五、教学步骤:1. 导入新课,回顾一倍角正弦、余弦、正切公式。
2. 引导学生利用已知公式,推导二倍角正弦、余弦、正切公式。
3. 通过例题,演示二倍角正弦、余弦、正切公式的应用。
4. 组织学生进行练习,巩固所学知识。
六、课后作业:(1)已知sinα= 1/2,求sin2α的值。
(2)已知cosα= √2/2,求cos2α的值。
(3)已知tanα= 1,求tan2α的值。
七、教学反思:在教学过程中,要注意引导学生掌握二倍角正弦、余弦、正切公式的推导过程,培养学生逻辑思维能力和运算能力。
针对不同学生的学习情况,给予适当的辅导,提高教学质量。
注重培养学生的合作学习意识,提高课堂参与度。
六、教学拓展:1. 引导学生探讨二倍角公式的推广,例如三倍角、四倍角公式。
2. 分析二倍角公式在实际问题中的应用,如测量、导航等领域。
七、课堂小结:2. 强调二倍角公式在解决实际问题中的重要性。
二倍角公式教案
二倍角公式教案教案标题:二倍角公式教案教案目标:1. 理解二倍角的概念和性质。
2. 掌握二倍角公式的推导和运用。
3. 能够解决与二倍角相关的几何和三角函数问题。
教学资源:1. 教材:包含二倍角概念和公式的数学教科书。
2. 白板、彩色粉笔或白板标记笔。
3. 幻灯片或投影仪,用于展示相关图形和公式。
教学步骤:引入(5分钟):1. 利用一个简单的几何问题引起学生对二倍角的兴趣,例如:一个角的度数是30°,那么它的二倍角是多少度?2. 引导学生思考并讨论,从而引出二倍角的概念。
讲解(15分钟):1. 在白板上绘制一个角θ,并标记其顶点为O,边为OA。
2. 解释二倍角的定义:二倍角是指通过将角θ旋转一周得到的角,记作2θ。
3. 引导学生思考并讨论,通过旋转角θ一周后,边OA的位置和方向发生了什么变化?角度发生了什么变化?4. 讲解二倍角公式的推导过程:根据三角函数的定义,利用三角函数的和差公式,推导出cos2θ和sin2θ的表达式。
示范(10分钟):1. 利用幻灯片或投影仪展示二倍角公式的推导过程,并强调每一步的理由和推理。
2. 通过几个具体的例子,演示如何利用二倍角公式计算cos2θ和sin2θ的值。
练习(15分钟):1. 分发练习题,要求学生利用二倍角公式计算给定角度的cos2θ和sin2θ的值。
2. 监督学生的练习过程,及时解答他们的问题,并给予指导。
3. 鼓励学生互相合作,讨论解题方法和答案。
总结(5分钟):1. 总结二倍角公式的推导过程和应用方法。
2. 强调二倍角在几何和三角函数中的重要性。
3. 鼓励学生在课后继续练习和探索二倍角的相关问题。
拓展练习(可作为课后作业):1. 给定一个角度θ,计算cos3θ和sin3θ的值。
2. 探究二倍角公式在解决三角方程和几何问题中的应用。
教学评估:1. 在课堂上观察学生的参与度和理解程度。
2. 检查学生在练习题中的答案和解题过程。
3. 针对学生的表现,给予反馈和指导。
二倍角公式教案定稿版
二倍角公式教案精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】二倍角的正弦、余弦、正切公式一、教学目标:1.学会利用S(α+β)C(α+β)T(α+β)推导出sin2α,cos2α,tan2α. 知道各公式间的内在联系,认识整个公式体系的生成过程,从而培养逻辑推理能力。
2、记住并能正确运用二倍角公式进行求值、化简、证明;通过综合运用公式,掌握基本方法,提高分析问题、解决问题的能力。
二、教学重难点:二倍角的公式的推导及灵活应用,倍角的相对性三、教学方法:讨论式教学+练习五、教学过程1 复习引入前面我们学习了和(差)角公式,现在请一位同学们回答一下和角公式的内容:sin(α+β)=cos(α+β)=tan(α+β)=计算三角函数值时,有些情况中,只用加或减不能满足要求,比如,角α,我们要求它的二倍,三倍,即2α,3α,等等,该如何求呢?今天我们就先来学习二倍角的相关公式。
2 公式推导在上面的和角公式中,若令β=α,会得到怎样的结果呢?请同学们阅读课本132页——133页,并填写课本中的空白框。
(让学生做5分钟)(1)提问:sin2α=sin (α+α)= sin αcos α+cos αsin α= 2sin αcos αcos2α=cos (α+α)= cos αcos α-sin αsin α= cos 2α-sin 2αtan2α= tan (α+α)=tanα+ tanα1-tanαtanα =2tanα1-tan 2α 整理得:sin2α=2sin αcos αcos2α= cos 2α-sin 2αtan2α= 2tanα1-tan 2α (2)提问:对于cos2α= cos 2α- sin 2α,还有没有其他的形式利用公式sin2α+ cos2α=1变形可得:cos2α = cos2α-sin2α=cos2α-(1-cos2α)=2cos2α-1cos2α = cos2α-sin2α=(1-sin2α)-sin2α =1-2sin2α因此:cos2α = cos2α-sin2α=2cos2α-1=1-2sin2α注意:1、要使tan2α= 2tanα1-tan2α有意义,α须满足α∈﹛α∣α≠ kπ+ π2,且α≠k2π+ π4﹜2、这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去。
二倍角公式教案范文
二倍角公式教案范文一、教学目标1.理解和掌握二倍角公式的定义和计算方法。
2.学会应用二倍角公式解决实际问题。
3.培养学生的逻辑思维能力和数学计算能力。
4.提高学生解决问题的能力和创新精神。
二、教学重点1.掌握二倍角公式的定义和相关性质。
2.理解二倍角公式的应用场景。
三、教学难点1.学会应用二倍角公式解决实际问题。
2.培养学生的逻辑思维能力和数学计算能力。
四、教学准备1.教师准备:教案、学生习题集、多媒体设备。
2.学生准备:课前预习相关知识。
五、教学过程Step 1 引入与导入(10分钟)1.讲解引入:二倍角公式是解决三角函数问题的重要工具,能够将角度与三角函数的关系进行合理的转换。
2.反问导入:在我们学习过的三角函数中,是否有与之相关的倍角公式呢?让学生回顾一下。
Step 2 二倍角公式的定义与证明(20分钟)1.当0°≤θ≤90°时,定义二倍角公式如下:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ)/(1 - tan^2θ)请学生反问和思考这些定义是如何得出的,然后进行讲解。
2. 证明:以sin2θ = 2sinθcosθ为例,通过画图,运用三角恒等变化式,可以推导出sin2θ = 2sinθcosθ的等式。
其它两个公式的证明也可以通过类似的方法完成。
Step 3 二倍角公式的应用(30分钟)1. 在解决问题中,我们可以通过二倍角公式将复杂的问题转化为简单的问题。
例如,可以用用cos2θ来计算cosθ的值。
2.请学生选做实例,进行实际的计算,解决具体问题。
Step 4 总结与归纳(10分钟)1.总结二倍角公式的定义和证明方法。
2.请学生进行总结和复述,以加深对二倍角公式的理解。
六、巩固与拓展1.布置课后作业:要求学生完成相关题目,巩固和拓展所学知识。
2.提出拓展问题:学生可以尝试推导三倍角、四倍角等多倍角的公式。
二倍角公式教案_
二倍角公式教案_教学目标:1.理解并掌握二倍角公式的概念及推导方法。
2.掌握二倍角公式在求解三角函数值、三角方程及三角恒等式中的应用方法。
3.培养学生的逻辑思维能力和解决实际问题的能力。
教学准备:1.教材:包括二倍角公式的定义和推导过程。
2.同步练习题:用来巩固学生对二倍角公式的理解和应用能力。
3.计算器:用于快速验证计算结果。
教学过程:Step 1:导入教师可以通过引入实际问题或生活中的例子,激发学生对二倍角公式的兴趣,了解学习该公式的重要性。
例如,两个人在玩激光游戏,他们相互瞄准对方,经过观察,你发现当一个人的激光光束成一定角度射中另一个人时,另一个人的光束也会射中他。
请问这两个角度之间有什么关系?Step 2:讲解教师通过讲解二倍角公式的定义和推导过程,帮助学生理解公式的含义和推导思路。
sin(2θ) = 2sinθcosθcos(2θ) = cos²θ - sin²θtan(2θ) = (2tanθ) / (1 - tan²θ)首先,我们可以利用三角函数的和差公式去推导。
例如,对于sin(2θ),根据和差公式,我们可以将它表示为:sin(2θ) = sin(θ + θ) = sinθcosθ + cosθsinθ =2sinθcosθ同样的方法,可以推导cos(2θ)和tan(2θ)的公式。
Step 3:示例运用教师通过示例问题,让学生将二倍角公式应用到实际问题中,加深他们对公式的理解和记忆。
示例一:已知sinθ = 3/5,求sin(2θ)的值。
解:根据二倍角公式sin(2θ) = 2sinθcosθ代入已知条件,得到sin(2θ) = 2(3/5)(4/5) = 24/25示例二:已知tanθ = 1/3,求tan(2θ)的值。
解:根据二倍角公式tan(2θ) = (2tanθ) / (1 - tan²θ)代入已知条件,得到tan(2θ) = (2(1/3)) / (1 - (1/3)²) = (2/3) / (8/9) = 3/4Step 4:练习教师提供一些练习题,让学生在课堂上或回家时进行练习。
二倍角公式教案范文
二倍角公式教案范文一、教学目标1.熟练掌握二倍角公式的概念及推导方法2.能够运用二倍角公式解决相关题目3.培养学生的逻辑思维和推理能力4.培养学生的合作意识和团队合作精神二、教学重点与难点1.理解二倍角公式的概念及使用方法2.掌握二倍角公式的推导方法3.运用二倍角公式解决相关题目4.锻炼学生的逻辑思维和推理能力三、教学设计1.导入(5分钟)教师通过展示一个角的图片,并提问:你们知道如何求出这个角的两倍角吗?引出二倍角的概念。
2.介绍二倍角公式(10分钟)教师简要介绍二倍角公式的定义和推导方法,并与学生一起思考如何推导出二倍角公式。
3.推导二倍角公式(20分钟)教师以一个特殊的角为例,引导学生熟悉推导二倍角公式的步骤和方法。
学生根据提示和引导,逐步推导出二倍角公式。
教师提供必要的帮助和解答。
通过学生的互动讨论和集体合作,逐渐理解和掌握推导方法。
4.运用二倍角公式解决问题(25分钟)教师针对不同类型的二倍角问题,提供相关例题并进行解析。
通过学生的思考和讨论,引导学生独立解题,找到问题的突破口。
鼓励学生提出解题思路和方法,并与整个班级合作整理解题方法。
5.进一步拓展(15分钟)教师提供一些拓展性的题目和问题,让学生更深入地思考和应用二倍角公式。
学生可以分组合作解题,展示解题过程和结果。
教师可以帮助学生发现解题中的问题和不足之处,并给予指导和建议。
6.总结与小结(5分钟)教师引导学生进行反思、总结和小结。
学生将自己的收获和体会进行分享。
教师对学生的表现进行评价,并点评一些典型的解题方法和思路。
四、教学辅助材料1.角的图片2.二倍角公式的定义和推导步骤3.二倍角公式的例题4.拓展性题目和问题五、教学评估1.通过学生的实际操作和解题过程,观察学生的理解和掌握情况。
2.监控学生的合作过程和交流情况,评价学生的合作意识和团队精神。
3.基于学生的答案和解题思路,评价学生对二倍角公式的应用能力和逻辑推理能力。
六、教学延伸1.引导学生独立探索其他角的倍角公式2.引导学生探究角的三倍角公式及更大倍数的公式3.引导学生探究其他角的相关公式,如半角公式、求和差化积公式等七、教学反思通过教学,学生可以理解和应用二倍角公式,提高综合分析和问题解决能力,培养学生的合作精神和团队意识。
二倍角公式教案
二倍角的正弦、余弦、正切公式教案一.教学目标:1. 能够根据和角的正弦、余弦、正切导出二倍角的正弦、余弦和正切公式2. 使学生在探究中对数学产生兴趣,发现数学的美 二.学习重点及难点学习重点:倍角公式、半角公式及其推导和应用. 学习难点:倍角公式、半角公式公式的应用.三.过程1.新课导入提出问题:两角和的正弦、余弦和正切公式分别是什么?sin()sin cos cos sin αβαβαβ+=+cos()cos cos sin sin αβαβαβ+=-tan tan tan()1tan tan αβαβαβ++=-思考1:你能利用以上公式推导出?2.自主探讨,小组讨论(1)已知,探究==s i n =s i n c o s +βαααααααβα+令,则上式() (提示:把上式中的换成)sin 2=2sin cos ααα∴(2)已知,探究==cos =cos cos -sin sin βαααααααβα+令,则上式()(提示:把上式中的换成)sin 2,αcos 2,αtan 2α的公式吗sin()sin cos cos sin αβαβαβ+=+sin 2,αcos()cos cos sin sin αβαβαβ+=-cos 2,α()2S α22cos2=cos sin ααα∴-(3)tan tan ==tan =1tan tan ααβαααααβα++-令,则上式()(提示:把上式中的换成)22tan tan 2=1tan ααα∴-思考2:在以上得到的二倍角的余弦公式中,如果要求表达式仅含 的正弦(余弦),那么:怎么得到其表达式? (提示: ) 结论:以上这些公式都叫做倍角公式,倍角公式给出了 的三角函数与 的三角函数之间的关系。
自助餐:公式的变形:()2C α22cos 2cos sin ααα=-α22cos sin 1αα+=22cos 2cos sin ααα=-∴2cos 212sin αα=-2cos 22cos 1αα=-α2α()2C αtan tan tan()tan 21tan tan αβαβααβ++=-已知,探究()2T α2222221sin 2(sin cos )1sin 2(sin cos )1cos 22cos 1cos 22sin 1cos 2cos 21cos 2sin 2αααααααααααααα+=+-=-⎫+=⎪⎬-=⎪⎭+⎫=⎪⎪⎬-⎪=⎪⎭升幂缩角公式降幂扩角公式3.例题 例1.已知sin2 =,求 , ,解:5422131213sin 2=cos =πππααπαα<<<<-=-得:,又,所以,∴sin4 α = 2sin2αcos2α =cos4α =tan4α =2444473.244117173-==⎛⎫-⨯- ⎪⎝⎭自助餐:解法二α51342ππα<<tan 4α的值。
高中数学_二倍角公式教学设计学情分析教材分析课后反思
《二倍角公式》教学设计二倍角公式—学情分析学生在必修4第一章已经学习过三角函数的相关内容,对三角函数有了一定的了解,高中一年级学生正值身心发展的鼎盛时期,智力水平已经有了明显上升,观察具有一定的目的性,系统性,全面性但是欠精确,逻辑思维能力尚属经验型,运算能力有待加强。
在知识储备上,通过前面的学习,对三角函数的知识已有较为全面的认识。
教学要尊重学生自主选择学习内容、学习伙伴、学习方式的权利;要充分发挥学生的积极性和主动性,让学生通过自主学习,理解课文思想内容,并在自学实践中逐步提高理解能力。
结合教材的内容和学生的年龄特点及认识水平,在本堂课的教学中,我指导学生采取多质疑、自主学习、合作探究的方法进行学习。
二倍角公式—教材分析教材的地位和作用:二倍角的正弦、余弦、正切是学生在已经学习了两角和、差的正、余弦和正切的公式的基础上的进一步延伸,推导出倍角公式,是三角函数的重要公式 ,应用这组公式也是本章的重点内容。
在第一章,学生接触了同角三角函数的变换,在本章,学生将利用和角公式推导出倍角公式,从而进行三角恒等变换,从而提升学生的推理能力和逻辑推理能力,从而增强学生做题的灵活性。
二倍角公式评测练习(30分钟独立完成,相信自己)1.2. ()51sin ,sin213αα已知=求()132sin cos , ,sin2 ,sin -cos 324ππαααααα+=<<已知求()123cos(),cos(2)333ππαα+=+已知求8sin cos cos cos .48482412ππππ(1)3.巩固提升:二倍角公式—课后反思二倍角公式是两角和的正弦、余弦及正切公式的推广及特殊化。
进而,公式的推导相当简单,难点在于公式的运用,尤其是逆用及变形运用,对于学生的思维及能力是相当大的挑战。
毕竟,公式本身就是符号的集合,抽象是其主要特征。
当然也正因为其抽象性,才具有广泛的迁移性及应用。
从简到繁,由易到难,层层推进,设计练习系列,遵循学生认知规律,或许能够有效化解难点。
《二倍角公式》 教学设计
《二倍角公式》教学设计一、教学目标1、知识与技能目标学生能够理解并熟练掌握二倍角的正弦、余弦、正切公式,能正确运用二倍角公式进行三角函数的化简、求值和证明。
2、过程与方法目标通过对二倍角公式的推导,培养学生的逻辑推理能力和数学运算能力;通过公式的应用,提高学生分析问题和解决问题的能力。
3、情感态度与价值观目标让学生在探索二倍角公式的过程中,体验数学的严谨性和科学性,激发学生学习数学的兴趣和热情,培养学生勇于创新和敢于挑战的精神。
二、教学重难点1、教学重点二倍角的正弦、余弦、正切公式的推导及应用。
2、教学难点二倍角公式的灵活运用,以及角的倍数关系与三角函数名的变化。
三、教学方法讲授法、启发式教学法、练习法四、教学过程1、复习引入(1)回顾两角和与差的正弦、余弦、正切公式:sin(α ± β) =sinαcosβ ± cosαsinβcos(α ± β) =cosαcosβ ∓ sinαsinβtan(α ± β) =(tanα ± tanβ) /(1 ∓ tanαtanβ)(2)提问:如果令β =α,会得到什么结果?2、公式推导(1)推导二倍角的正弦公式sin2α =sin(α +α) =sinαcosα +cosαsinα =2sinαcosα(2)推导二倍角的余弦公式cos2α =cos(α +α) =cosαcosα sinαsinα =cos²α sin²α再利用同角三角函数的基本关系sin²α +cos²α = 1,得到:cos2α =2cos²α 1 或cos2α =1 2sin²α(3)推导二倍角的正切公式tan2α =tan(α +α) =(tanα +tanα) /(1 tanαtanα) =2tanα /(1 tan²α)3、公式理解(1)引导学生观察二倍角公式的特点,强调公式中的角的倍数关系和三角函数名的变化规律。
二倍角的正弦余弦正切公式教学设计
二倍角的正弦余弦正切公式教学设计教学设计:二倍角的正弦、余弦、正切公式一、教学目标1.掌握二倍角的概念和性质。
2.掌握二倍角的正弦、余弦、正切公式及其推导过程。
3.能够灵活运用二倍角的公式求解相关题目。
二、教学内容1.二倍角的概念和性质。
2.二倍角的正弦、余弦、正切公式及其推导过程。
3.二倍角公式的应用。
三、教学过程步骤一:导入与引入1.导入通过展示一道简单的题目引入二倍角的概念。
例如:已知角α的弧度为π/6,求角2α的弧度。
2.引入引导学生思考,当已知一些角的弧度时,如何求解其二倍角的弧度。
步骤二:二倍角的定义与性质1.定义向学生阐述二倍角的概念:设θ为任意角,则它的二倍角记作2θ。
2.性质向学生介绍二倍角的几个重要性质:(1) 正弦:sin2θ = 2sinθcosθ(2) 余弦:cos2θ = cos²θ - sin²θ(3) 正切:tan2θ = (2tanθ)/(1-tan²θ)步骤三:二倍角公式的推导1.正弦二倍角公式的推导(1)推导思路:利用三角函数的和差化简公式进行推导。
(2)按照推导步骤依次进行:a. sin2θ = sin(θ+θ)b. 根据和差化简公式 sin(A+B) = sinAcosB + cosAsinB,展开得到sin(θ+θ) = sinθcosθ + cosθsinθc. 化简得sin2θ = 2sinθcosθ2.余弦二倍角公式的推导(1)推导思路:同样利用三角函数的和差化简公式进行推导。
(2)按照推导步骤依次进行:a. cos2θ = cos(θ+θ)b. 根据和差化简公式 cos(A+B) = cosAcosB - sinAsinB,展开得到cos(θ+θ) = cos²θ - sin²θc. 化简得cos2θ = cos²θ - sin²θ3.正切二倍角公式的推导(1)推导思路:利用相除消去的方法进行推导。
二倍角公式教学设计整理版
[人教 A 版教学设计]3.1.3 二倍角的正弦、余弦、正切公式一、教学目标:1、培养学生利用化归思想(指将一般化归为特殊)导出倍角公式,了解倍角公式与两 角和公式的内在联系并熟练倍角公式结构 。
2、领会重点与难点,包括倍角公式的形成和公式的变形(突出 2C α 的两种变形)并理解 倍角 的 相对性 。
3、会利用倍角公式进行求值运算、化简,培养学生运算、分析和逻辑推理能力 。
二、重点与难点:1、重点是二倍角的正弦、余弦、正切公式 。
2、难点是倍角公式的形成 及 公式的变形 。
三、教学过程(师生互动):1、公式的导出:(先与学生一起复习两角和的正弦、余弦、正切公式,以达到温故而知新。
)☆ 复习回顾: sin()αβ+= cos()αβ+= tan()αβ+=我们已经学习了和角公式,还掌握了和角公式与差角公式可以互相化归 。
那么,如何把和角公式化归为二倍角公式呢 ? 现在研究二倍角,线索是两角和的正弦、余弦、正切公式,请同学们自己先试一试发现“二倍角” 与 “两角和” 的内在联系 。
让学生领悟到: 2ααα=+☆ 举一例引导化归思想:sin()sin cos cos sin αβαβαβ+=+sin(α+★)sin cos α=★cos sin α+★ ( ★ 表示任意角)当 β 取特殊角 α 时,上述公式表示为: sin()sin cos cos sin αααααα+=+ 即: sin 22sin cos ααα= ,接着依此类推让学生自行动手体会由一般过渡到特殊的化归思想 。
☆ 双向沟通: (请把化归的结果填入下面的式中)sin 2α= 简记: 2()S α cos 2α= 简记: 2()C α tan 2α= (2k παπ≠+且)()42k k Z ππα≠+∈ 简记:2()T α我们发现 22cos 2cos sin ααα=- 公式的右边既有 cos α 也有 sin α ,假设已知sin α 的值,要求 cos 2α 的值,就必然要再求到 cos α 的值,然后再代入公式求解 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[人教 A 版教学设计]3.1.3 二倍角的正弦、余弦、正切公式一、教学目标:1、培养学生利用化归思想(指将一般化归为特殊)导出倍角公式,了解倍角公式与两 角和公式的内在联系并熟练倍角公式结构 。
2、领会重点与难点,包括倍角公式的形成和公式的变形(突出 2C α 的两种变形)并理解 倍角 的 相对性 。
3、会利用倍角公式进行求值运算、化简,培养学生运算、分析和逻辑推理能力 。
二、重点与难点:1、重点是二倍角的正弦、余弦、正切公式 。
2、难点是倍角公式的形成 及 公式的变形 。
三、教学过程(师生互动):1、公式的导出:(先与学生一起复习两角和的正弦、余弦、正切公式,以达到温故而知新。
)☆ 复习回顾: sin()αβ+= cos()αβ+= tan()αβ+=我们已经学习了和角公式,还掌握了和角公式与差角公式可以互相化归 。
那么,如何把和角公式化归为二倍角公式呢 ? 现在研究二倍角,线索是两角和的正弦、余弦、正切公式,请同学们自己先试一试发现“二倍角” 与 “两角和” 的内在联系 。
让学生领悟到: 2ααα=+☆ 举一例引导化归思想:sin()sin cos cos sin αβαβαβ+=+sin(α+★)sin cos α=★cos sin α+★ ( ★ 表示任意角)当 β 取特殊角 α 时,上述公式表示为: sin()sin cos cos sin αααααα+=+ 即: sin 22sin cos ααα= ,接着依此类推让学生自行动手体会由一般过渡到特殊的化归思想 。
☆ 双向沟通: (请把化归的结果填入下面的式中)sin 2α= 简记: 2()S α cos 2α= 简记: 2()C α tan 2α= (2k παπ≠+且)()42k k Z ππα≠+∈ 简记:2()T α我们发现 22cos 2cos sin ααα=- 公式的右边既有 cos α 也有 sin α ,假设已知sin α 的值,要求 cos 2α 的值,就必然要再求到 cos α 的值,然后再代入公式求解 。
如果每次都如此,则会变得工作重复,试问是否可通过公式变形用 cos α 或 sin α 来单 独表示 cos 2α 以达到公式简洁,从而避免重复工作,提高解题速度 。
利用 22sin cos 1αα+= , 公式 2C α 还可以变形为:cos 2α= 或 cos 2α=☆ 阶段小结:倍角公式与两角和公式的内在联系是:令 = (实现一般化归为特殊) 。
上面这些公式都叫做倍角公式 。
有了倍角公式,就可以用单角的三角函数表示二倍 角的三角函数 。
让同学们自己填写公式,是为了使大家学会怎样去发现数学规律,并体 会化归(这里是将一般化归为特殊)这一基本数学思想所起的作用 。
2、公式的运用:☆ 师生互动:教师在黑板上板书且同时启发学生注意公式结构中等号两边角度倍数 的对比、系数的对比、幂次数的对比学生思考并回答问题以达到熟练公式结构的目的 。
注意以下题组的变化:(让学生自己发现变化之处)sin 22sin cos ααα= 22cos 2cos sin ααα=-sin α= cos 4α= sin 2α= cos 6α= sin 4α= cos8α=在以上问题中主要突出的是倍角的相对性,以及公式左右两边的角的变化 。
为了 进一步巩固所学公式与更深入熟练地掌握公式变形,特意由浅入深设计三个梯度的课堂练 习以达到相关目的 。
☆ 梯度一:(熟练公式结构)(1)002sin 6730'cos6730'⋅= (公式的逆用) (2)22cos sin 88ππ-= (公式的逆用)(3)22cos 112π-= (公式的逆用)(4)2012sin 75-= (公式的逆用)(5)0202tan 22.51tan 22.5=- (公式的逆用) ☆ 梯度二:(倍角的相对性) (1) sin2α= sin cos (2) cos3α= 2cos 2sin -(3) sin 3cos3αα⋅= (公式的逆用伴有系数的变化) (4) 4sincos44αα⋅= (公式的逆用伴有系数的变化)(5)20tan 401tan 40=- (公式的逆用伴有系数的变化) (6) 22cos 2sin 2αα-= (公式的逆用)☆ 梯度三:(公式的灵活运用)(1)00sin15sin 75⋅=(分析:先引导学生观察分析正弦的二倍角公式的右边为 sin cos αα⋅ 即一个正弦、 一个余弦,而本题为两个正弦且角度也不同,提醒学生进行思考且注意变形手段,变成角度相同且一个正弦、一个余弦再求值 。
)(2) 000cos 20cos 40cos80⋅⋅=(分析:引导学生观察分析,此题设计的目的是让学生学会构造法与滚雪球法,体会 公式的灵活多变,发现数学美 。
)解:原式 0000000008sin 20cos 20cos 40cos804sin 40cos 40cos808sin 208sin 20⋅⋅⋅⋅⋅==000002sin80cos80sin16018sin 208sin 208⋅===(3)000sin10sin 50sin 70⋅⋅= (此题留为课后练习,让学生进一步思考 。
)☆ 经过三个梯度的训练,学生对公式的结构与公式的应用达到基本熟练之后,下一 步应该提供机会让学生利用倍角公式进行求值运算、化简,以培养学生运算、分析和逻辑 推理能力 ,这也正是本课时的教学目标之一与难点之一 。
3、典型例题: ☆ 例 1、已知 5sin 213α=,42ππα<<,求 sin 4α,cos 4α,tan 4α 的值 ? [分析] 本题求值时,由于运用了公式 22cos 21sin 2αα=-,所以要根据角 2α 的范围确定取哪一个平方根 。
另外,在求 cos 4α 值时,应使用公式的三种等价式中的:2cos 412sin 2αα=- .因为本题在前几节书中类似问题曾在多处出现,故可将详细解题步骤用实物投影展示 给学生,以节约课堂时间 。
解:∵ 5sin 213α=,2(,)2παπ∈ (角的范围目的在于确定cos 2α的正负取值)∴ 12cos 213α==-∴ 120sin 42sin 2cos 2169ααα=⋅=- 2119cos 412sin 2169αα=-= (公式有三种选择,应以方便计算为出发点) sin 4120tan 4cos 4119ααα==-本题结束后,可考虑将原题进行如下一组变换: ☆ 变式 1、已知 12cos 13α= ,(,0)2πα∈-,求 sin 2α,cos 2α,tan 2α 的值 ? ☆ 变式 2、已知 5tan 12α=,3(,)2παπ∈,求 sin 2α,cos 2α,tan 2α 的值 ? (以上题组学生能口述解答方法即可,目的是训练并提高学生灵活选择公式的能力)☆ 例 2、化简= , 3()2ππθ<<. [分析] 本题要化简,则根号里面必须产生某式的平方,启发学生联想到有没有一个 公式右边能产生平方 。
一旦学生联想到余弦的二倍角公式便让其自己动手去完成化简 。
由于有可能学生们选择了公式的三种不同等价式:2222cos cossin 2cos 112sin 2222θθθθθ=-=-=-则产生三种思路与三种解法,但其结果应该是一致的,只不过速度的快慢、解法的简易与 复杂有差异,学生解答后再请其自己叙述其解题思路,并能互相交流、对比以达到优化教 学的效果 ,如若出现另类解法 ,只要不违背数学思想应给予正面鼓励以促进学生积极思 维 。
教师可介绍一种相对理想的解法且板书: 解:∵ 32ππθ<<,则 3224πθπ<<∴ 原式 sin|22θθ====(解答中角度2θ范围的确定目的是去绝对值时正负值的取舍,这也是本题目标训练之 一,即符号看象限 。
)在本题结束后,亦可考虑将原题进行如下一组变换,以加强训练学生灵活选择公式的 意识与能力,也为后面的升幂公式学习打下基础 。
☆ 变式 1、化简= , (23)πθπ<< .☆ 变式 2、化简= , 3()2ππθ<<.☆ 变式 3、化简= , 3(2)2πθπ<< .(此题组留为课后练习,学生继续思考、巩固所学知识从而升华课堂教学 。
)☆ 例 2、在 ABC ∆ 中,4cos 5A =,tan 2B =,求 tan(22)A B + 的值? [分析] 本题是涉及三角形的求值问题,可溯引学生熟练三角形中的三角问题,让数学回归生活、生产实际问题。
难点在于突破角度的限制性,符号确定与公式的正确选择。
解:在 ABC ∆ 中,由 4cos 5A =,0A π<<,得 3sin 5A ===,∴sin 353tan cos 544A A A ==⨯=, ∴22322tan 244tan 231tan 71()4A A A ⨯===-- 又 tan 2B =, 所以 222tan 224tan 21tan 123B B B ⨯===---,于是 tan 2tan 2tan(22)1tan 2tan 2A B A B A B++=- 24444731171()73-==-⨯- (此题还有多种求解方法,学生可继续思考、各抒己见、课内课后可充分交流从而提高课堂教学的有效性 。
)若教师想检验和提高学生的数学思考能力,不防鼓励学生自己动手改变题目的某些已知条件,尝试并且体验编题的乐趣。
☆ 如姊妹题、在 ABC ∆ 中,3sin 5A =,tan 2B =,求 tan(22)A B + 的值?四、小结:让学生自己总结学习心得与体会反思 .五、作业:人教 A 版课本 第 148 页 第 1、2、3、4 题。