高中数学三角函数教案

合集下载

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!三角函数的定义及应用教学教案(优秀4篇)EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?读书破万卷下笔如有神,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,希望朋友们参阅后能够文思泉涌。

数学老师高中备课教案

数学老师高中备课教案

数学老师高中备课教案
教案标题:三角函数的性质与应用
教学目标:
1. 熟练掌握三角函数的基本定义及性质;
2. 能够运用三角函数解决实际问题;
3. 培养学生的数学思维和解决问题的能力。

教学重点:
1. 三角函数的基本定义及性质;
2. 三角函数的应用。

教学难点:
1. 理解三角函数的周期性;
2. 能够灵活运用三角函数解决实际问题。

教学过程:
一、导入(5分钟)
老师通过展示一个与三角函数相关的实际问题引入本节课内容,激发学生的学习兴趣。

二、讲解三角函数的基本定义及性质(15分钟)
1. 介绍正弦函数、余弦函数、正切函数等三角函数的定义;
2. 讲解三角函数的周期性及其性质;
3. 引导学生探讨三角函数的性质,并举例说明。

三、练习与讨论(20分钟)
1. 让学生进行课堂练习,巩固三角函数的基本知识;
2. 学生分组讨论解决实际问题的方法,并举手分享解决思路。

四、应用实践(15分钟)
1. 给学生布置一道综合应用题,要求学生利用所学知识解答;
2. 学生在小组内相互讨论解题方法,思考如何运用三角函数解决实际问题。

五、总结与展望(5分钟)
老师对本节课的教学内容进行总结,并展望下节课的内容,激励学生持续学习。

教学反思:
通过本节课的备课和教学实践,我发现学生在掌握三角函数的基本概念和性质方面存在一定困难,需要加强训练和巩固。

下节课我将安排更多的练习和应用题,加强学生的实践能力和解决问题的能力,确保他们能够熟练掌握三角函数的应用。

三角函数教案优秀3篇

三角函数教案优秀3篇

三角函数教案优秀3篇角函数教学设计篇一教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。

锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。

研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。

本章内容与已学#39;相似三角形#39;#39;勾股定理#39;等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。

学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。

难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。

至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。

第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。

过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力。

情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。

重难点:1.重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实。

2.难点与关键:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。

高中数学教案《三角函数的概念》

高中数学教案《三角函数的概念》

教学计划:《三角函数的概念》一、教学目标1.知识与技能:o学生能够准确理解三角函数(正弦、余弦、正切)的基本定义,并能识别其在直角三角形中的表示。

o学生能够掌握三角函数值与角度之间的对应关系,理解三角函数是周期函数的特点。

o学生能够运用三角函数的基本性质进行简单的计算与推导。

2.过程与方法:o通过观察、比较和归纳,引导学生从实际情境中抽象出三角函数的概念。

o借助图像直观展示三角函数的周期性,培养学生的数形结合能力。

o通过小组讨论和合作学习,促进学生之间的交流与合作,共同探索三角函数的性质。

3.情感态度与价值观:o激发学生对数学学习的兴趣,感受数学与生活的紧密联系。

o培养学生的探究精神和创新思维,鼓励他们勇于提出问题并尝试解决。

o引导学生认识到数学在解决实际问题中的重要性,增强应用数学的意识。

二、教学重点和难点●重点:三角函数(正弦、余弦、正切)的定义、图像及基本性质。

●难点:理解三角函数值与角度之间的对应关系,以及三角函数周期性的概念。

三、教学过程1. 导入新课(5分钟)●生活实例引入:通过展示如钟摆运动、海浪波动等自然界中的周期性现象,引导学生思考这些现象背后的数学规律,从而引出三角函数的概念。

●复习旧知:回顾直角三角形的相关知识,如勾股定理、锐角与钝角的定义,为学习三角函数做好铺垫。

●明确目标:简要介绍本节课的学习目标,即掌握三角函数的基本概念、图像及基本性质。

2. 讲授新知(15分钟)●定义讲解:详细讲解正弦、余弦、正切三种三角函数在直角三角形中的定义,强调它们与边长的比例关系。

●图像展示:利用多媒体设备展示三种三角函数的图像,引导学生观察图像特征,如正弦、余弦函数的周期性,正切函数的间断性等。

●性质归纳:结合图像,引导学生归纳出三角函数的基本性质,如定义域、值域、奇偶性、单调性等。

3. 互动探究(10分钟)●小组讨论:将学生分成若干小组,每组分配一个探究任务,如“探究正弦函数在哪些区间内是增函数?”、“尝试用三角函数表示一个圆上某点的坐标”。

高中数学新教材第六章教案

高中数学新教材第六章教案

高中数学新教材第六章教案
主题:三角函数
一、教学目标
1. 了解三角函数的概念和性质。

2. 掌握正弦函数、余弦函数、正切函数的定义和图象。

3. 能够运用三角函数解决实际问题。

二、教学重点与难点
1. 三角函数的定义和性质。

2. 三角函数的图象和性质。

3. 运用三角函数解决实际问题的能力。

三、教学准备
1. 教师准备课件、教学实验材料等。

2. 学生复习相关知识,做好课前预习。

四、教学步骤
1. 引入
通过一个实际生活中的例子介绍三角函数的概念,引导学生思考三角函数的应用场景。

2. 概念讲解
讲解三角函数的定义和性质,包括正弦函数、余弦函数、正切函数的定义和周期性,周期、相位等概念。

3. 图象分析
介绍正弦函数、余弦函数、正切函数的图象,讲解图象的特点和变化规律。

4. 练习训练
通过练习题训练学生对三角函数的掌握程度,加深对概念和性质的理解。

5. 实际问题解决
引导学生通过实际问题运用三角函数解决,培养学生解决问题的能力。

6. 总结
总结本节课的重点内容,强化学生对三角函数的理解和掌握。

五、作业布置
布置相关练习作业,巩固本节课所学内容。

六、教学反思
教师可以根据学生的学习情况和反馈对本节课进行评估和反思,不断完善教学内容和方式。

人教版高中数学《三角函数》全部教案

人教版高中数学《三角函数》全部教案

第四章三角函数教材:角的概念的推广目的:要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

过程:一、提出课题:“三角函数”回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。

相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。

二、角的概念的推广1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”2.讲解:“旋转”形成角(P4)突出“旋转”注意:“顶点”“始边”“终边”“始边”往往合于x轴正半轴3.“正角”与“负角”——这是由旋转的方向所决定的。

记法:角α或α∠可以简记成α4.由于用“旋转”定义角之后,角的范围大大地扩大了。

1︒角有正负之分如:α=210︒β=-150︒γ=-660︒2︒角可以任意大实例:体操动作:旋转2周(360︒×2=720︒)3周(360︒×3=1080︒)3︒还有零角一条射线,没有旋转三、关于“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)例如:30︒390︒-330︒是第Ⅰ象限角300︒-60︒是第Ⅳ象限角585︒1180︒是第Ⅲ象限角-2000︒是第Ⅱ象限角等四、关于终边相同的角1.观察:390︒,-330︒角,它们的终边都与30︒角的终边相同2.终边相同的角都可以表示成一个0︒到360︒的角与)(Z k k ∈个周角的和 390︒=30︒+360︒ )1(=k-330︒=30︒-360︒ )1(-=k 30︒=30︒+0×360︒)0(=k1470︒=30︒+4×360︒ )4(=k-1770︒=30︒-5×360︒ )5(-=k3.所有与α终边相同的角连同α在内可以构成一个集合 {}Z k k S ∈⋅+==,360| αββ即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和 4.例一 (P5 略) 五、小结: 1︒ 角的概念的推广用“旋转”定义角 角的范围的扩大 2︒“象限角”与“终边相同的角” 六、作业: P7 练习1、2、3、4习题1.4 1教材:弧度制目的:要求学生掌握弧度制的定义,学会弧度制与角度制互化,并进而建立角的集合与实数集R 一一对应关系的概念。

高中数学必修五教案模板

高中数学必修五教案模板

高中数学必修五教案模板
教案主题:三角函数
教学目标:学生能够理解三角函数的定义及其性质,能够熟练应用三角函数解决实际问题。

教学重点:三角函数的定义,正弦函数、余弦函数、正切函数的图像,三角函数的性质。

教学难点:三角函数的周期性及应用问题的解决。

教学准备:
1. 教材:高中数学必修五教材
2. 教具:黑板、彩色粉笔、教学PPT
3. 教学资源:练习题、实例题
教学过程:
一、导入(5分钟)
引导学生回顾之前学习的三角函数的基本概念,并提出本节课的学习目标。

二、讲解三角函数的定义(15分钟)
1. 正弦函数、余弦函数、正切函数的定义及其图像
2. 介绍三角函数的周期性及性质
三、练习与讨论(20分钟)
1. 让学生进行相关的练习,加深对三角函数的理解
2. 引导学生讨论三角函数在实际问题中的应用
四、总结与拓展(10分钟)
1. 总结本节课的重点内容
2. 引导学生思考如何将三角函数的知识应用到实际生活中
五、作业布置(5分钟)
布置相关练习题,要求学生能够熟练掌握三角函数的定义及其性质,能够独立解决相关问题。

教学反思:
本节课通过讲解三角函数的定义及其性质,帮助学生建立起对三角函数的基本认识,并引导他们应用所学知识解决实际问题。

但在教学中,可以加强对于实际问题的引导,让学生更好地理解三角函数的应用。

高中数学三角公式教案模板

高中数学三角公式教案模板

高中数学三角公式教案模板
一、学习目标:
1. 熟练掌握正弦、余弦、正切以及其倒数的定义和性质。

2. 能够运用三角函数的基本性质解决实际问题。

3. 能够独立推导三角函数的和差角公式。

二、教学重点:
1. 正弦、余弦、正切的定义和性质。

2. 三角函数的和差角公式。

三、教学难点:
1. 三角函数的和差角公式的推导和运用。

2. 解决实际问题时如何运用三角函数的性质。

四、教学过程:
1. 复习:让学生回顾之前学过的正弦、余弦、正切的定义和性质,并小结重点知识点。

2. 授课:介绍三角函数的和差角公式,包括正弦、余弦、正切的和差角公式,讲解推导过程和应用方法。

3. 练习:布置一些练习题,让学生巩固所学知识,并在课上进行讲解和解析。

4. 拓展:引导学生思考如何应用三角函数的性质解决实际问题,让学生进行相关综合应用题的训练。

5. 总结:对本节课的重点知识进行总结,并对下节课内容进行预告。

五、作业布置:
1. 完成课堂练习题。

2. 自主搜索相关三角函数的例题来进行练习。

3. 预习下节课内容。

六、教学资源准备:
1. 教材课本。

2. 黑板、彩色粉笔。

3. 练习题及答案。

七、教学反思:
通过本节课的教学,发现学生在理解和应用三角函数的性质方面存在着一定的困难,需要进一步加强练习和讲解。

下节课将更加注重对练习和实际问题的训练。

高中数学第22课教案

高中数学第22课教案

高中数学第22课教案
一、教学目标
1. 知道正弦、余弦、正切三角函数的周期性和奇偶性。

2. 掌握正弦、余弦、正切三角函数的图像特点。

3. 掌握利用三角函数的性质解题。

二、教学重点
1. 正弦、余弦、正切三角函数的周期性和奇偶性。

2. 正弦、余弦、正切三角函数的图像特点。

三、教学难点
1. 利用三角函数的性质解题。

四、教学准备
1. 教材、课件。

2. 黑板、彩色粉笔。

3. 试题纸、学生纸。

五、教学过程
1. 引入:通过一个实际生活中的例子引入三角函数的周期性和奇偶性的概念,引导学生了解三角函数的概念。

2. 讲解:通过讲解正弦、余弦、正切三角函数的周期性和奇偶性,让学生掌握这些函数的基本特点。

3. 练习:让学生分组进行练习,练习解题过程中运用三角函数的性质。

4. 总结:总结本节课的重点难点,强调三角函数的性质在解题中的应用。

5. 作业:布置相关作业,督促学生掌握三角函数的性质及解题方法。

六、板书设计
1. 正弦函数:周期性、奇函数。

2. 余弦函数:周期性、偶函数。

3. 正切函数:周期性。

七、教学反思
本节课主要针对三角函数的性质展开教学,通过实际例子引入,让学生了解三角函数的概念;通过讲解和练习,让学生掌握正弦、余弦、正切函数的周期性和奇偶性,以及运用这些性质解题的方法。

通过板书设计和总结,加深学生对本课内容的理解和记忆。

希望学生能在课后认真完成作业,巩固所学知识。

三角函数的教案设计

三角函数的教案设计

三角函数的教案设计一、教学目标:1. 了解三角函数的定义和性质,理解正弦、余弦、正切函数在单位圆上的表示方法。

2. 学会用三角函数解决实际问题,提高学生的数学应用能力。

3. 培养学生的逻辑思维能力和团队协作能力。

二、教学内容:1. 三角函数的定义与性质2. 三角函数在单位圆上的表示方法3. 三角函数的图像与性质4. 三角函数的应用5. 复习巩固知识点三、教学方法:1. 采用讲授法,讲解三角函数的定义、性质和图像。

2. 利用多媒体辅助教学,展示三角函数的图像,增强学生的直观感受。

3. 案例分析法,通过实际问题,引导学生运用三角函数解决问题。

4. 小组讨论法,培养学生的团队协作能力和逻辑思维能力。

四、教学步骤:1. 引入新课,讲解三角函数的定义与性质。

2. 利用单位圆,讲解三角函数在单位圆上的表示方法。

3. 引导学生观察三角函数的图像,总结性质。

4. 结合实际问题,让学生运用三角函数解决问题。

5. 组织小组讨论,总结知识点。

五、课后作业:1. 复习本节课所学知识点,整理笔记。

2. 完成课后习题,巩固基础知识。

3. 选择一个实际问题,运用三角函数解决,并将解题过程写成报告。

4. 准备下一节课的预习内容。

六、教学评估:1. 课堂问答:通过提问,了解学生对三角函数定义和性质的理解程度。

2. 课后习题:检查学生对基础知识的掌握情况。

3. 实际问题解决:评估学生运用三角函数解决实际问题的能力。

4. 小组讨论:观察学生在团队合作中的表现,了解其逻辑思维和沟通表达能力。

七、教学资源:1. 教材:提供三角函数的相关理论知识。

2. 多媒体课件:展示三角函数的图像,增强学生的直观感受。

3. 实际问题案例:用于引导学生运用三角函数解决实际问题。

4. 小组讨论工具:如白板、便签纸等,方便学生进行讨论。

八、教学注意事项:1. 注重基础知识的学习,为学生后续学习打下坚实基础。

2. 引导学生积极参与课堂活动,提高其数学素养。

3. 关注学生的个体差异,因材施教,给予不同程度的学生适当的指导。

高三数学三角函数复习教案

高三数学三角函数复习教案

高三数学三角函数复习教案函数的知识是高中里面比较重要的知识,教师需要好的教案来教诲学生,今天作者在这里整理了一些高三数学三角函数复习教案,我们一起来看看吧!高三数学三角函数复习教案1“函数的单调性”教案【教学目标】【知识目标】:使学生从形与数两方面知道函数单调性的概念,学会利用函数图像知道和研究函数的性质,初步掌控利用函数图象和单调性定义判定、证明函数单调性的方法.【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生视察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.【德育目标】通过知识的探究进程培养学生仔细视察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特别到一样,从感性到理性的认知进程.【教学重点】函数单调性的概念、判定及证明. 函数的单调性是学生第一次接触用严格的逻辑语言证明函数的性质,并在今后解决初等函数的性质、求函数的值域、不等式及比较两个数的大小等方面有广泛的实际运用,【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 由于判定或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判定或证明函数的单调性是本节课的难点.【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用以下(1)函数的单调性起着承前启后的作用。

一方面,初中数学的许多内容在解决函数的某些问题中得到了充分运用,函数的单调性与前一节内容函数的概念和图像知识的延续有密切的联系;函数的单调性一节中的知识是它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础。

(2)函数的单调性是培养学生数学能力的良好题材,这节课通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准肯定义,明确指出函数的增减性是相对于某个区间来说的。

高中数学 任意角的三角函数教案 新人教版必修4-新人教版高一必修4数学教案

高中数学 任意角的三角函数教案 新人教版必修4-新人教版高一必修4数学教案

任意角的三角函数(一)一、教学目标:1、知识与技能〔1〕掌握任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;〔2〕理解任意角的三角函数不同的定义方法;〔3〕了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;〔4〕掌握并能初步运用公式一;〔5〕树立映射观点,正确理解三角函数是以实数为自变量的函数.2、过程与方法初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.3、情态与价值任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值〞来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合〞的对应关系与学生熟悉的一般函数概念中的“数集到数集〞的对应关系有冲突,而且“比值〞需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地说明了正弦、余弦函数中从自变量到函数值之间的对应关系,也说明了这两个函数之间的关系.二、教学重、难点重点: 任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;终边相同的角的同一三角函数值相等〔公式一〕.难点: 任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;三角函数线的正确理解.三、学法与教学用具任意角的三角函数可以有不同的定义方法,本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.说明了正弦、余弦函数中从自变量到函数值之间的对应关系,也说明了这两个函数之间的关系.另外,这样的定义使得三角函数所反映的数与形的关系更加直接,数形结合更加紧密,这就为后续内容的学习带来方便,也使三角函数更加好用了.教学用具:投影机、三角板、圆规、计算器四、教学设想第一课时任意角的三角函数〔一〕提问:锐角O的正弦、余弦、正切怎样表示?借助右图直角三角形,复习回顾.数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?如图,设锐角α的顶点与原点O重合,始边与x轴的正半轴重合,么它的终边在第一象限.在α的终边上任取一点(,)P a b ,它与原点的距离0r =>.过P 作x 轴的垂线,垂足为M ,那么线段OM 的长度为a ,线段MP 的长度为b .那么sin MP bOP rα==;cos OM a OP r α==; tan MP bOM aα==.思考:对于确定的角α,这三个比值是否会随点P 在α的终边上的位置的改变而改变呢?显然,我们可以将点取在使线段OP 的长1r =的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:sin MP b OP α==; cos OM a OP α==; tan MP bOM aα==. 思考:上述锐角α的三角函数值可以用终边上一点的坐标表示.那么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题――任意角的三角函数.【探究新知】1.探究:结合上述锐角α的三角函数值的求法,我们应如何求解任意角的三角函数值呢?显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角求得该角的三角函数值了.所以,我们在此引入单位圆的定义:在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆.2.思考:如何利用单位圆定义任意角的三角函数的定义?如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦(sine),记做sin α,即sin y α=; 〔2〕x 叫做α的余弦(cossine),记做cos α,即cos x α=; 〔3〕y x 叫做α的正切(tangent),记做tan α,即tan (0)yx xα=≠. 注意:当α是锐角时,此定义与初中定义相同〔指出对边,邻边,斜边所在〕;当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点(,)P x y ,从而就必然能够最终算出三角函数值.3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢? 前面我们已经知道,三角函数的值与点P 在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离r =那么sin α=,cos α=,tan yxα=.所以,三角函数是以为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数.4.例题讲评例1.求53π的正弦、余弦和正切值. 例2.角α的终边过点0(3,4)P --,求角α的正弦、余弦和正切值.教材给出这两个例题,主要是帮助理解任意角的三角函数定义.我也可以尝试其他方法:如例2:设3,4,x y =-=-那么5r ==.于是4sin 5y r α==-,3cos 5x r α==-,4tan 3y x α==. 5.巩固练习17P 第1,2,3题6.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:例3.求证:当且仅当不等式组sin 0{tan 0θθ<>成立时,角θ为第三象限角.8.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系? 显然: 终边相同的角的同一三角函数值相等.即有公式一:sin(2)sin k απα+=cos(2)cos k απα+= (其中k Z ∈) tan(2)tan k απα+=9.例题讲评例4.确定以下三角函数值的符号,然后用计算器验证: (1)cos250︒; (2)sin()4π-; (3)tan(672)︒-; (4)tan3π例5.求以下三角函数值:(1)'sin148010︒; (2)9cos4π; (3)11tan()6π- 利用公式一,可以把求任意角的三角函数值, 转化为求0到2π(或0︒到360︒)角的三角函数值. 另外可以直接利用计算器求三角函数值,但要注意角度制的问题. 10.巩固练习17P 第4,5,6,7题11.学习小结(1)本章的三角函数定义与初中时的定义有何异同? (2)你能准确判断三角函数值在各象限内的符号吗? (3)请写出各三角函数的定义域;(4)终边相同的角的同一三角函数值有什么关系?你在解题时会准确熟练应用公式一吗?五、评价设计1.作业:习题1.2 A组第1,2题.2.比较角概念推广以后,三角函数定义的变化.思考公式一的本质是什么?要做到熟练应用.另外,关于三角函数值在各象限的符号要熟练掌握,知道推导方法.第二课时任意角的三角函数〔二〕【复习回顾】1、三角函数的定义;2、 三角函数在各象限角的符号;3、 三角函数在轴上角的值;4、 诱导公式〔一〕:终边相同的角的同一三角函数的值相等;5、 三角函数的定义域.要求:记忆.并指出,三角函数没有定义的地方一定是在轴上角,所以,凡是碰到轴上角时,要结合定义进行分析;并要求在理解的基础上记忆. 【探究新知】1.引入:角是一个图形概念,也是一个数量概念〔弧度数〕.作为角的函数——三角函数是一个数量概念〔比值〕,但它是否也是一个图形概念呢?换句话说,能否用几何方式来表示三角函数呢?2.[边描述边画]以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆〔注意:这个单位长度不一定就是1厘米或1米〕.当角α为第一象限角时,那么其终边与单位圆必有一个交点(,)P x y ,过点P 作PM x ⊥轴交x 轴于点M ,那么请你观察:根据三角函数的定义:|||||sin |MP y α==;|||||cos |OM x α==随着α在第一象限内转动,MP 、OM 是否也跟着变化? 3.思考:〔1〕为了去掉上述等式中的绝对值符号,能否给线段MP 、OM 规定一个适当的方向,使它们的取值与点P 的坐标一致?〔2〕你能借助单位圆,找到一条如MP 、OM 一样的线段来表示角α的正切值吗?我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角α的终边不在坐标轴时,以O 为始点、M 为终点,规定:当线段OM 与x 轴同向时,OM 的方向为正向,且有正值x ;当线段OM 与x 轴反向时,OM 的方向为负向,且有正值x ;其中x 为P 点的横坐标.这样,无论那种情况都有cos OM x α==同理,当角α的终边不在x 轴上时,以M 为始点、P 为终点,规定:当线段MP 与y 轴同向时,MP 的方向为正向,且有正值y ;当线段MP 与y 轴反向 时,MP 的方向为负向,且有正值y ;其中y 为P 点的横坐标.这样,无论那种情况都有sin MP y α==4.像MP OM 、这种被看作带有方向的线段,叫做有向线段〔direct line segment 〕.5.如何用有向线段来表示角α的正切呢?如上图,过点(1,0)A 作单位圆的切线,这条切线必然平行于轴,设它与α的终边交于点T ,请根据正切函数的定义与相似三角形的知识,借助有向线段OA AT 、,我们有tan y AT xα==我们把这三条与单位圆有关的有向线段MP OM AT 、、,分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线.6.探究:〔1〕当角α的终边在第二、第三、第四象限时,你能分别作出它们的正弦线、余弦线和正切线吗?〔2〕当α的终边与x 轴或y 轴重合时,又是怎样的情形呢?7.例题讲解 例1.42ππα<<,试比较,tan ,sin ,cos αααα的大小.处理:师生共同分析解答,目的体会三角函数线的用处和实质. 8.练习19P 第1,2,3,4题9学习小结(1)了解有向线段的概念.(2)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来.(3)体会三角函数线的简单应用. 【评价设计】1. 作业:比较以下各三角函数值的大小(不能使用计算器)(1)sin15︒、tan15︒〔2〕'cos15018︒、cos121︒〔3〕5π、tan 5π2.练习三角函数线的作图.同角三角函数的基本关系一、教学目标: 1、知识与技能(1) 使学生掌握同角三角函数的基本关系;(2)某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;〔5〕牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;〔6〕灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;〔7〕掌握恒等式证明的一般方法.2、过程与方法由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学知识.3、情态与价值通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法.二、教学重、难点重点:公式1cos sin 22=+αα及αααtan cos sin =的推导及运用:〔1〕某任意角的正弦、余弦、正切值中的一个,求其余两个;〔2〕化简三角函数式;〔3〕证明简单的三角恒等式.难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.三、学法与教学用具利用三角函数线的定义, 推导同角三角函数的基本关系式:1cos sin 22=+αα及αααtan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等.教学用具:圆规、三角板、投影四、教学设想【创设情境】与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.【探究新知】 1. 探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗?如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =.由勾股定理由221MP OM +=,因此221x y +=,即22sin cos 1αα+=.根据三角函数的定义,当()2a k k Z ππ≠+∈时,有sin tan cos ααα=.这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切.2. 例题讲评 例6.3sin 5α=-,求cos ,tan αα的值. sin ,cos ,tan ααα三者知一求二,熟练掌握.3. 巩固练习23P 页第1,2,3题4.例题讲评例7.求证:cos 1sin 1sin cos x xx x+=-. 通过本例题,总结证明一个三角恒等式的方法步骤. 5.巩固练习23P 页第4,5题 6.学习小结〔1〕同角三角函数的关系式的前提是“同角〞,因此1cos sin 22≠+βα,γβαcos sin tan ≠. 〔2〕利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.五、评价设计(1) 作业:习题组第10,13题.(2) 熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关 系式;注意三角恒等式的证明方法与步骤.。

高中数学人教A版(2019)必修第一册 5 三角函数的概念 教案

高中数学人教A版(2019)必修第一册 5  三角函数的概念 教案

5.2.1三角函数的概念一、教学目标:1、借助单位园理解任意角的三角函数的定义2、会利用相似关系,由角a 终边上任意一点的坐标得出任意角的正弦,余弦,正切的三角函数的定义。

3、能根据定义理解正弦,余弦,和正切函数在各个象限及坐标轴上的符号,会求一些特殊角的三角函数值4、理解并掌握公式一,并会用公式一进行三角函数式的化简或恒等式的证明。

二、教学重难点教学重点:三角函数的定义教学难点:对三角函数概念的抽象过程及定义的理解.三、情景导入江南水乡,水车在清澈的河流里悠悠转动,缓缓的把水倒进水渠,流向绿油油的田地,流向美丽的大自然,把水车放在坐标系中,点p 为水车上一点,它转动的角度为a,水车的半径为r ,点p 的坐标如何表示?四、预习检查五、教学过程① 在初中我们是如何定义锐角三角函数的?② 在直角坐标系中如何用坐标表示锐角三角函数?1.三角函数的定义前面,我们已经把角的范围扩展到了任意角,并用弧度制来度量角,将角和实数建立一一对应关系.接下来,我们将建立一个数学模型,刻画单位圆上点P 位置变化情况.(以点A 为起点做逆时针方向旋转)191 sin -1050tan 3π︒、()2sin ,cos ,tan Pαααα、已知角 则分别是多少?以单位圆的圆心为原点,以射线OA为x轴的非负半轴,建立直角坐标系.则A(1,0),P(x,y)射线OA从x轴非负半轴开始,绕点O按逆时针方向旋转角α,终止位置为OP.(1)把点P的纵坐标y叫做α的正弦函数,记作sinα,即y=sinα;(2)把点P的横坐标x叫做α的余弦函数,记作cosα,即x=cosα(3)把点P的纵坐标和横坐标的比值y叫做α的正切函数,记作tanα,即xy=tanα(x≠0).x我们把正弦函数、余弦函数和正切函数统称为三角函数.例1、2.同角三角函数的符号一全正、二正弦、三正切、四余弦例2、3.特殊角的三角函数4.诱导公式一终边相同的角的对应三角函数相同.其中k ∈Z做题时,把角同化为(0~2π)即(0°~360°)终边相同的角,简化计算. 例4:求下列三角函数的值。

《三角函数》教案设计

《三角函数》教案设计

《三角函数》教案设计教案标题:探索三角函数的奥秘教学目标:知识与技能:使学生理解正弦、余弦、正切的基本概念及其在三角形中的应用。

学会利用三角函数解决与角度和边长相关的问题。

过程与方法:通过图形和实例,培养学生观察、归纳和推理的能力。

鼓励学生运用三角函数解决实际问题,提高分析和应用能力。

情感态度与价值观:激发学生对数学的兴趣和好奇心,培养探索精神。

使学生认识到数学在现实生活中的应用价值。

教学内容:三角函数的定义:正弦、余弦、正切。

三角函数的基本性质:周期性、奇偶性、值域等。

三角函数在解三角形中的应用。

教学方法:启发式教学:通过提问和讨论,引导学生自主发现三角函数的性质和规律。

图形辅助教学:利用三角函数图像,帮助学生直观理解函数变化。

案例分析:通过实际问题的分析,培养学生运用知识解决问题的能力。

教学过程:一、导入新课通过现实生活中的例子(如:波动、周期现象等)引出三角函数的概念。

二、新课讲解三角函数定义:结合单位圆和直角三角形,讲解正弦、余弦、正切的定义。

三角函数性质:通过图像和数学推导,探讨三角函数的周期性、奇偶性等性质。

应用举例:展示三角函数在解三角形、物理波动等领域的应用。

三、课堂练习学生独立完成练习题,教师巡视指导,及时解答疑问。

四、小结与作业小结本节课重点内容,布置相关练习题作为课后作业。

教学工具和材料:多媒体课件:包含三角函数图像、定义和性质等内容。

三角板、量角器等绘图工具:帮助学生绘制三角形,直观理解三角函数。

计算器:用于计算三角函数的值。

评估与反馈:通过课堂练习和课后作业,评估学生对三角函数的掌握情况。

收集学生的疑问和反馈,及时调整教学方法和策略。

拓展延伸:鼓励学生探索三角函数在其他领域(如信号处理、图形学等)的应用。

介绍三角函数的历史背景和发展,激发学生对数学文化的兴趣。

高中数学说课稿:《三角函数》5篇

高中数学说课稿:《三角函数》5篇

高中数学说课稿:《三角函数》高中数学说课稿:《三角函数》精选5篇(一)尊敬的各位老师,大家好!我今天将为大家带来一堂关于高中数学的说课,主题是《三角函数》。

首先,我将介绍本节课的教学目标。

本节课的目标主要分为两个方面。

一方面,通过学习三角函数的定义和性质,学生能够掌握三角函数的概念,能够正确计算各种三角函数的值。

另一方面,通过解决实际问题,培养学生运用三角函数解决实际问题的能力。

接下来,我将介绍教学内容和教学方法。

本节课主要包括以下几个方面的内容:三角函数的定义,正弦、余弦、正切等三角函数的计算、特殊角的三角函数值、利用三角函数解决实际问题等。

在教学过程中,我将采用多种教学方法,如讲解、示例演示和练习等。

通过讲解,我将向学生详细解释三角函数的定义和性质,帮助学生理解概念。

通过示例演示,我将给学生展示一些具体的计算过程,帮助学生掌握计算方法。

通过练习,我将让学生运用所学知识解决一些实际问题,提高他们的实际运用能力。

在教学过程中,我将注重培养学生的思维能力和合作能力。

我将通过一些启发式的问题,引导学生思考,提高他们的问题解决能力和创新能力。

同时,我会鼓励学生之间互相合作,通过小组讨论和合作解决问题,培养他们的团队合作精神。

最后,我将介绍评价方式和教学反思。

在评价方面,我将采用多种方式,如课堂练习、小组合作和个人表现等,综合评价学生的学习情况和能力。

在教学反思方面,我将根据学生的反馈和自己的观察,总结优点和不足,进一步改进教学方法,提高教学效果。

通过本节课的学习,学生能够掌握三角函数的概念和计算方法,能够灵活运用三角函数解决实际问题。

同时,通过课堂互动和合作,学生也能够培养自己的思维能力和合作能力。

谢谢大家!高中数学说课稿:《三角函数》精选5篇(二)敬爱的各位领导、同事们,亲爱的同学们:大家好!我是数学老师张老师,今天我将给大家讲解高中数学中的一个重要概念——函数的单调性。

希望通过本节课的学习,大家能够理解函数的单调性,掌握相关的解题方法和技巧。

高中数学必修第一章三角函数完整教案DOC

高中数学必修第一章三角函数完整教案DOC

第一章 三角函数 4-1.1.1任意角(1)教学目标:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

教学重点:理解“正角”“负角”“象限角”“终边相同的角”的含义 教学难点:“旋转”定义角 课标要求:了解任意角的概念 教学过程: 一、引入同学们在初中时,曾初步接触过三角函数,那时的运用仅限于计算一些特殊的三角函数值、研究一些三角形中简单的边角关系等。

三角函数也是高中数学的一个重要内容,在今后的学习中大家会发现三角学有着极其丰富的内容,它能够简单地解决许多数学问题,在中学数学中有着非常广泛的应用。

二、新课1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”师:初中时,我们已学习了0○~360○角的概念,它是如何定义的呢?生:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。

师:如图1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α。

旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点。

师:在体操比赛中我们经常听到这样的术语:“转体720o” (即转体2周),“转体1080o”(即转体3周);再如时钟快了5分钟,现要校正,需将分针怎样旋转?如果慢了5分钟,又该如何校正?生:逆时针旋转300;顺时针旋转300. 师:(1)用扳手拧螺母;(2)跳水运动员身体旋转.说明旋转第二周、第三周……,则形成了更大范围内的角,这些角显然超出了我们已有的认识范围。

本节课将在已掌握~角的范围基础上,重新给出角的定义,并研究这些角的分类及记法. 2.角的概念的推广: (1)定义:一条射线OA 由原来的位置OA ,绕着它的端点O 按一定方向旋转到另一位置OB ,就形成了角α。

高中数学高三三角函数的图象和性质【教案】

高中数学高三三角函数的图象和性质【教案】

高三一轮(理) 3.3 三角函数的图象和性质【教学目标】1.能画出y=sin x,y=cos x,y=tan x的图象,了解函数的周期性2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在区间错误!内的单调性。

【重点难点】1。

教学重点:函数y=sin x,y=cos x,y=tan x的图象和性质; 2.教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】了解理解掌握函数y=sin x,y=cos x,y=tan x的图象和性质√[考纲传真] 1。

能画出y=sin x,y=cos x,y=tan x的图象,了解函数的周期性 2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在区间错误!内的单调性。

真题再现学生通过对高考真题的解决,发现自己对知识的掌握情况。

通过对考纲的解读和分析.让学生明确考试要求,做到有的放矢2.【2014上海】 函数 的最小正周期是________ 【解析】由题意13.(2014·北京)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎢⎡⎦⎥⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎪⎫π2=f ⎝⎛⎭⎪⎪⎫2π3=-f ⎝ ⎛⎭⎪⎪⎫π6,则f (x )的最小正周期为________.典例 (1)(2015·四川)下列函数中,最小正周期为π且图象关于原点对称的函数是( )A.y =cos ⎝⎛⎭⎪⎪⎫2x +π2B.y =sin ⎝⎛⎭⎪⎪⎫2x +π2C.y =sin 2x +cos 2xD.y =sin x +cos x学生通过对高考真题的解决,感受高考题的考察视角。

(2)(2015·课标全国Ⅰ)函数f (x )=cos(ωx +φ)的部分图象 如图所示,则f (x )的单调递减区间为()A.⎝⎛⎭⎪⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎪⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎪⎪⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎪⎪⎫2k -14,2k +34,k ∈Z 由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎪⎫2k -14,2k +34,k ∈Z .故选D.∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,解析 (1)选项A中,y =cos ⎝⎛⎭⎪⎪⎫2x +π2=-sin 2x ,符合题意.6.(2016高考新课标1)已知函数为的零点,为 图像的对称轴, 且在单调,则的最大值为( )数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.知识点3 三角函数的图象和性质y=sin x y=cos x y=tan xR R x≠kπ+错误!,k [-1,1][-1,1]R增区间:错误!,减区间:错误!增区间:[2kπ-π,2kπ],减区间:[2kπ,2kπ+π],递增区间kπ-错误!,kπ+∈Z奇函数偶函数奇函数(kπ,0),k ∈Z 错误!,k∈Zkπ2,0,k∈Z在解题中注意引导学生自主分析和解决问题,教师及时和解题效率.学必求其心得,业必贵于专精。

高中数学必修4《三角函数模型的简单应用》教案

高中数学必修4《三角函数模型的简单应用》教案

高中数学必修4《三角函数模型的简单应用》教案【教学内容】三角函数模型的简单应用【教学目标】1. 了解正弦函数、余弦函数、正切函数的定义和图象;2. 掌握解决几何问题时应用三角函数模型的方法;3. 培养学生从实际问题中抽象出三角函数模型的能力;4. 培养学生的逻辑思维能力和解决问题的能力。

【教学重点】1. 正弦函数、余弦函数、正切函数的定义和图象;2. 解决几何问题时应用三角函数模型的方法。

【教学难点】学生解决实际问题时抽象出三角函数模型的能力。

【教学方法】1. 讲授法:通过讲解三角函数模型的定义和性质,让学生理解三角函数模型的概念和基本思想;2. 举例法:通过讲解几个综合实例,让学生理解应用三角函数模型解决问题的基本方法;3. 练习法:通过练习题,让学生巩固所学知识。

【教学过程】一、引入让学生观察、思考以下两个图象,引出三角函数模型的概念及相关性质。

例1 例2二、讲解1. 什么是三角函数模型三角函数模型是指用正弦函数、余弦函数、正切函数等描述几何问题及物理问题的模型。

正弦函数、余弦函数、正切函数是一种列函数,用于描述三角形的内角与长度之间的关系。

2. 正弦函数、余弦函数、正切函数的图象(1)正弦函数的图象正弦函数是一个以原点 O 为中心,以 y 轴为对称轴,振幅为 1,周期为2π 的奇函数。

(2)余弦函数的图象余弦函数是一个以原点 O 为中心,以 y 轴为对称轴,振幅为 1,周期为2π 的偶函数。

(3)正切函数的图象正切函数的图象是一个无量纲的周期函数,周期为π,无定义域上的最大值和最小值,其图象相对于 y 轴是奇函数。

三、练习例1 解:构造如下图形,已知 $BC=6$ cm,$m\angleB=30^\circ$,求 $AC$ 和 $AB$ 的长度。

(1)分析题意,选用何种三角函数模型。

设 $\angle ABC=\theta$,则有 $\angle BAC=150^\circ -\theta$,观察正弦函数的定义式,选用正弦函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学三角函数教案【篇一:高中数学必修4第一章三角函数完整教案】第一章三角函数4-1.1.1任意角(1)教学目标:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

教学重点:理解“正角”“负角”“象限角”“终边相同的角”的含义教学难点:“旋转”定义角课标要求:了解任意角的概念教学过程:一、引入同学们在初中时,曾初步接触过三角函数,那时的运用仅限于计算一些特殊的三角函数值、研究一些三角形中简单的边角关系等。

三角函数也是高中数学的一个重要内容,在今后的学习中大家会发现三角学有着极其丰富的内容,它能够简单地解决许多数学问题,在中学数学中有着非常广泛的应用。

二、新课1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”师:初中时,我们已学习了0○~360○角的概念,它是如何定义的呢?生:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。

师:如图1,一条射线由原来的位置oa,绕着它的端点o按逆o师:在体操比赛中我们经常听到这样的术语:“转体720” (即转体2周),“转体1080o”(即转体3周);再如时钟快了5分钟,现要校正,需将分针怎样旋转?如果慢了5分钟,又该如何校正?生:逆时针旋转300;顺时针旋转300.师:(1)用扳手拧螺母;(2)跳水运动员身体旋转.说明旋转第二周、第三周??,则形成了更大范围内的角,这些角显然超出了我们已有的认识范围。

本节课将在已掌握角的范围基础上,重新给出角的定义,并研究这些角的分类及记法.2.角的概念的推广:3.正角、负角、零角概念师:为了区别起见,我们把按逆时针方向旋转所形成的角叫正角,如图2中的角为正角,它00等于30与750;我们把按逆时针方向旋转所形成的角叫正角,那么同学们猜猜看,负角怎么规定呢?零角呢?生:按顺时针方向旋转所形成的角叫负角,如果一条射线没有作任何旋转,我们称它形成了一个零角。

4.象限角师:在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念。

同学们已经经过预习,请一位同学回答什么叫:象限角?生:角的顶点与原点重合,角的始边与x轴的非负半轴重合。

那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。

师:很好,从刚才这位同学的回答可以知道,她已经基本理解了“象限角”的概念了。

下面请大家将书上象限角的定义划好,同时思考这么三个问题:1.定义中说:角的始边与x轴的非负半轴重合,如果改为与x轴的正半轴重合行不行,为什么?2.定义中有个小括号,内容是:除端点外,请问课本为什么要加这四个字?3.是不是任意角都可以归结为是象限角,为什么?处理:学生思考片刻后回答,教师适时予以纠正。

答:1.不行,始边包括端点(原点); 2.端点在原点上;3.不是,一些特殊角终边可能落在坐标轴上;如果角的终边落在坐标轴上,就认为这个角不属于任一象限。

师:同学们一定要学会看数学书,特别是一些重要的概念、定理、性质要斟字酌句,每个字都要弄清楚,这样的预习才是有效果的。

师生讨论:好,按照象限角定义,图中的30,390,-330角,都是第一象限角;300,-60角,都是第四象限角;5850角是第三象限角。

师:很好,不过老师还有几事不明,要请教大家:(1)锐角是第一象限角吗?第一象限角是锐角吗?为什么?生:锐角是第一象限角,第一象限角不一定是锐角;师:(2)锐角就是小于900的角吗?生:小于900的角可能是零角或负角,故它不一定是锐角;00师:(3)锐角就是0~90的角吗?学生练习(口答)已知角的顶点与坐标系原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是哪个象限的角?(1)4200;(2)-750;(3)8550;(4)-5100.答:(1)第一象限角;(2)第四象限角;(3)第二象限角;(4)第三象限角.5.终边相同的角的表示法师:观察下列角你有什么发现? 390?-330?30?1470?-1770?生:终边重合.师:请同学们思考为什么?能否再举三个与30角同终边的角?生:图中发现3900,-3300与300相差3600的整数倍,例如,3900=3600+300,-3300=-3600+300;与30角同终边的角还有750,-690等。

师:好!这位同学发现了两个同终边角的特征,即:终边相同的角相差3600的整数倍。

例如:7500=233600+300;-6900=-233600+300。

那么除了这些角之外,与300角终边相同的角还有:333600+300-333600+300000043360+30 00 -43360+30 00, ??,6.例题讲评例1 设e={小于90o的角}f={锐角},g={第一象限的角},,那么有( d).() d.a.例2用集合表示: b. c.(1)各象限的角组成的集合.(2)终边落在(2)在后,得.说明:一个角按顺、逆时针旋转内的角,按顺逆时针旋转例3 (1)如图,终边落在(()后与原来角终边重合,同样一个“区间”)角后,所得“区间”仍与原区间重叠.~中,轴右侧的角可记为,,故,同样把该范围“旋转”轴右侧角的集合为位置,且在=k360o+120o ,k∈z };终边落在内的角的集合是_{-45oo终边落在阴影部分(含边界)的角的集合练习:(1)请用集合表示下列各角.①~间的角②第一象限角③锐角④小于角. oooo解答(1)①;②;③(2)分别写出:①终边落在;④轴负半轴上的角的集合;②终边落在轴上的角的集合;③终边落在第一、三象限角平分线上的角的集合;解答(2)①;②;③;④.说明:第一象限角未必是锐角,小于课本约定它包括例4在(1)~,但不包含.的角不一定是锐角,~间的角,根据间,找出与下列各角终边相同的角,并判定它们是第几象限角;(2);(3).解:(1)∵∴与(2)∵∴与(3)所以与角终边相同的角是终边相同的角是,它是第四象限的角;角终边相同的角是,它是第二象限角.角,它是第三象限的角;总结:草式写在草稿纸上,正的角度除以,按通常除去进行;负的角度除以,商是负数,它的绝对值应比被除数为其相反数时相应的商大1,以使余数为正值.练习:(1)一角为,其终边按逆时针方向旋转三周后的角度数为__.a.c.(3)设则相等的角集合为_b=d,c=e__.三.本课小结本节课我们学习了正角、负角和零角的概念,象限角的概念,要注意如果角的终边在坐标轴上,就认为这个角不属于任何象限,本节课的重点是学习终边相同的角的表示法。

判断一个角么是第几象限角,只要把改写成与角,适合关系:,,那,,oo轴正半轴上, b.轴或轴正半轴上,轴正半轴或,轴上, d.轴正半轴上在第几象限,,则、就是第几象限角,若角与终边相同;若角适合关系:则、终边互为反向延长线.判断一个角所有象限或不同角之间的终边关系,可首先把,这种模式(),然后只要考查的相关它们化为:四.作业: 问题即可.另外,数形结合思想、运动变化观点都是学习本课内容的重要思想方法.4-1.1.1任意角(2)教学目标:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

教学重点:理解“正角”“负角”“象限角”“终边相同的角”的含义教学难点:“旋转”定义角课标要求:了解任意角的概念教学过程:一、复习师:上节课我们学习了角的概念的推广,推广后的角分为正角、负角和零角;另外还学习了象限角的概念,下面请一位同学叙述一下它们的定义。

生:略【篇二:高中数学必修4第一章三角函数完整教案】四、作业:4-1.2.1任意角的三角函数(1)教学目的:知识目标: 1.掌握任意角的三角函数的定义;能力目标:(1)理解并掌握任意角的三角函数的定义;(2)树立映射观点,正确理解三角函数是以实数为自变量的函数;(3)通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。

德育目标:(1)使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式;(2)学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;教学重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。

公式一是本小节的另一个重点。

们的集合形式表示出来.授课类型:新授课教学模式:启发、诱导发现教学. 教具:多媒体、实物投影仪教学过程:一、复习引入:初中锐角的三角函数是如何定义的?在rt△abc中,设a对边为a,b对边为b,c对边为c,锐角a的正弦、余弦、正切依次为sina=aba,cosa=,tana= . ccb角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。

它与原点的距离为r(r==0),那么rryyxxxxyyrrxx(1)比值(6)比值2r无意义; yyxyrxr、、、、、分别是一rxrxyy个确定的实数,所以正弦、余弦、正切、余切、正割、余割是以角为自变量,一比值为函数值的函数,以上六种函数统称为三角函数。

2.三角函数的定义域、值域注意:(1)以后我们在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x轴的非负半轴重合...其余五个符号也是这样. (4)任意角的三角函数的定义与锐角三角函数的定义的联系与区别:锐角三角函数是任意角三角函数的一种特例,它们的基础共建立于相似(直角)三角形的性质,“r”同为正值. 所不同的是,锐角三角函数是以边的比来定义的,任意角的三角函数是以坐标与距离、坐标与坐标、距离与坐标的比来定义的,它也适合锐角三角函数的定义.实质上,由锐角三角函数的定义到任意角的三角函数的定义是由特殊到一般的认识和研究过程.(5)为了便于记忆,我们可以利用两种三角函数定义的一致性,将直角三角形置于平面直角坐标系的第一象限,使一锐角顶点与原点重合,一直角边与x轴的非负半轴重合,利用我们熟悉的锐角三角函数类比记忆. 3.例题分析=,于是rrx2y3rr;. 2例2.求下列各角的六个三角函数值:sin0=0,cos0=1,tan0=0,cot0不存在,sec0=1,csc0不存在。

2220),所以r=a|, x=a,y=2ay =====r5x==r;24.三角函数的符号由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知: y对于第一、二象限为正(y0,r0),对于第三、四象限为负(y0,r0);rx②余弦值对于第一、四象限为正(x0,r0),对于第二、三象限为负(x0,r0);r①正弦值③正切值y对于第一、三象限为正(x,y同号),对于第二、四象限为负(x,y异号). x说明:若终边落在轴线上,则可用定义求出三角函数值。

相关文档
最新文档