三角形五心及其性质.

合集下载

三角形五心性质

三角形五心性质

三角形五心性质三角形的五心定理一、三角形五心定义内心是三角形的三内角平分线交点.也是三角形内切圆的圆心.重心是三角形的三条中线的交点. (重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)外心是三角形的三边的垂直平分线的交点. 三角形外接圆的圆心.垂心是三角形的三条高的交点旁心是三角形一内角平分线和另外两顶点处的外角平分线的交点 . 三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心二、三角形五心性质内心: 1、直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一.2、若O是ABC∠2(A∠为=BOC∠∆的外心,则A锐角或直角)或A3600(A∠为钝=∠2BOC∠-角).4、外心到三顶点的距离相等.垂心:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆.2、三角形外心O、重心G和垂心H三点共线,且2:1OG.(此直线称为三角形的欧拉:=GH线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍.4、垂心分每条高线的两部分乘积相等.=OA⋅⋅=⋅OBOAOBOCOC旁心: 1、每个三角形都有三个旁心.2、旁心到三边的距离相等.注:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。

三、三角形五心性质证明垂心:已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB .证明:连接DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB重心:三角形的重心到顶点的距离是它到对边中点距离的两倍.证明:如图:△ABC中D为BC中点,E为AC中点,F为AB中点,G为△ABC重心做BG中点H,GC中点I∴HI为△GBC的中位线∴HI//BC,且 2HI=BC同理:FE是△ABC中位线∴FE//BC,且 2FE=BC∴FE//HI,且 FE=HI∴四边形FHIE是平行四边形∴HG=GE又H为BG的中点∴HG=BH∴HG=BH=GE∴2GE=BG∴三角形的重心到顶点的距离是它到对边中点距离的两倍四、有关三角形五心的诗歌三角形五心歌(重外垂内旁)三角形有五颗心,重外垂内和旁心,五心性质很重要,认真掌握莫记混.重心三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,重心分割中线段,数段之比听分晓;长短之比二比一,灵活运用掌握好.外心三角形有六元素,三个内角有三边.作三边的中垂线,三线相交共一点.此点定义为外心,用它可作外接圆.内心外心莫记混,内切外接是关键.垂心三角形上作三高,三高必于垂心交.高线分割三角形,出现直角三对整,直角三角形有十二,构成六对相似形,四点共圆图中有,细心分析可找清.内心三角对应三顶点,角角都有平分线,三线相交定共点,叫做“内心”有根源;点至三边均等距,可作三角形内切圆,此圆圆心称“内心”,如此定义理当然.五心性质别记混,做起题来真是好.五心的性质三角形的五心有许多重要性质,它们之间也有很密切的联系,如:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等;(2)三角形的外心到三顶点的距离相等;(3)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心;(4)三角形的内心、旁心到三边距离相等;(5)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;(6)三角形的外心是它的中点三角形的垂心;(7)三角形的重心也是它的中点三角形的重心;(8)三角形的中点三角形的外心也是其垂足三角形的外心.(9)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍.下面是更为详细的性质:1、垂心三角形三边上的高的交点称为三角形的垂心。

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形五心定理(三角形的重心, 外心, 垂心, 内心和旁心称之为三角形的五心)三角形五心定理是指三角形重心定理, 外心定理, 垂心定理, 内心定理, 旁心定理的总称.之马矢奏春创作一、二、三角形重心定理三角形的三条边的中线交于一点.该点叫做三角形的重心.三中线交于一点可用燕尾定理证明, 十分简单.(重心原是一个物理概念, 对等厚度的质量均匀的三角形薄片, 其重心恰为此三角形三条中线的交点, 重心因而得名)重心的性质:1、重心到极点的距离与重心到对边中点的距离之比为2∶1.2、重心和三角形3个极点组成的3个三角形面积相等.即重心到三条边的距离与三条边的长成反比.3、重心到三角形3个极点距离的平方和最小.4、在平面直角坐标系中, 重心的坐标是极点坐标的算术平均, 即其重心坐标为((X1+X2+X3)/3, (Y1+Y2+Y3)/3.二、三角形外心定理三角形外接圆的圆心, 叫做三角形的外心.外心的性质:1、三角形的三条边的垂直平分线交于一点, 该点即为该三角形外心.2、若O是△ABC的外心, 则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角).3、当三角形为锐角三角形时, 外心在三角形内部;当三角形为钝角三角形时, 外心在三角形外部;当三角形为直角三角形时, 外心在斜边上, 与斜边的中点重合.4、计算外心的坐标应先计算下列临时变量:d1, d2, d3分别是三角形三个极点连向另外两个极点向量的点乘.c1=d2d3,c2=d1d3, c3=d1d2;c=c1+c2+c3.重心坐标:( (c2+c3)/2c,(c1+c3)/2c, (c1+c2)/2c ).5、外心到三极点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点, 该点叫做三角形的垂心.垂心的性质:1、三角形三个极点, 三个垂足, 垂心这7个点可以获得6个四点圆.2、三角形外心O、重心G和垂心H三点共线, 且OG∶GH=1∶2.(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一极点距离为此三角形外心到此极点对边距离的2倍.4、垂心分每条高线的两部份乘积相等.定理证明已知:ΔABC中, AD、BE是两条高, AD、BE交于点O, 连接CO 并延长交AB于点F , 求证:CF⊥AB证明:连接DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE 又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB因此, 垂心定理成立!四、三角形内心定理三角形内切圆的圆心, 叫做三角形的内心.内心的性质:1、三角形的三条内角平分线交于一点.该点即为三角形的内心.2、直角三角形的内心到边的距离即是两直角边的和减去斜边的差的二分之一.3、P为ΔABC所在平面上任意一点, 点I是ΔABC内心的充要条件是:向量PI=(a×向量PA+b×向量PB+c×向量PC)/(a+b+c).4、O为三角形的内心, A、B、C分别为三角形的三个极点, 延长AO交BC边于N, 则有AO:ON=AB:BN=AC:CN=(AB+AC):BC五、三角形旁心定理三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心, 叫做三角形的旁心.旁心的性质:1、三角形一内角平分线和另外两极点处的外角平分线交于一点, 该点即为三角形的旁心.2、每个三角形都有三个旁心.3、旁心到三边的距离相等.如图, 点M就是△ABC的一个旁心.三角形任意两角的外角平分线和第三个角的内角平分线的交点.一个三角形有三个旁心, 而且一定在三角形外.附:三角形的中心:只有正三角形才有中心, 这时重心, 内心, 外心, 垂心, 四心合一.有关三角形五心的诗歌三角形五心歌(重外垂内旁)三角形有五颗心, 重外垂内和旁心, 五心性质很重要, 认真掌握莫记混.重心三条中线定相交, 交点位置真奇巧, 交点命名为“重心”, 重心性质要明了,重心分割中线段, 数段之比听分晓;长短之比二比一, 灵活运用掌握好.外心三角形有六元素, 三个内角有三边.作三边的中垂线, 三线相交共一点.此点界说为外心, 用它可作外接圆.内心外心莫记混, 内切外接是关键.垂心三角形上作三高, 三高必于垂心交.高线分割三角形, 呈现直角三对整,直角三角形有十二, 构成六对相似形, 四点共圆图中有, 细心分析可找清.内心三角对应三极点, 角角都有平分线, 三线相交定共点, 叫做“内心”有根源;点至三边均等距, 可作三角形内切圆, 此圆圆心称“内心”, 如此界说理固然.。

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形五心定理(三角形的重心,外心,垂心,心坎和旁心称之为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,心坎定理,旁心定理的总称.一、三角形重心定理三角形的三条边的中线交于一点.该点叫做三角形的重心.三中线交于一点可用燕尾定理证实,十分简略.(重心原是一个物理概念,对于等厚度的质量平均的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1.重心到极点的距离与重心到对边中点的距离之比为2∶1.2.重心和三角形3个极点构成的3个三角形面积相等.即重心到三条边的距离与三条边的长成反比.3.重心到三角形3个极点距离的平方和最小.4.在平面直角坐标系中,重心的坐标是极点坐标的算术平均,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3.二.三角形外心定理三角形外接圆的圆心,叫做三角形的外心.外心的性质:1.三角形的三条边的垂直等分线交于一点,该点即为该三角形外心.2.若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角).3.当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合.4.盘算外心的坐标应先盘算下列暂时变量:d1,d2,d3分离是三角形三个极点连向别的两个极点向量的点乘.c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3.重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c ).5.外心到三极点的距离相等三.三角形垂心定理三角形的三条高(地点直线)交于一点,该点叫做三角形的垂心.垂心的性质:1.三角形三个极点,三个垂足,垂心这7个点可以得到6个四点圆.2.三角形外心O.重心G和垂心H三点共线,且OG∶GH=1∶2.(此直线称为三角形的欧拉线(Euler line))3.垂心到三角形一极点距离为此三角形外心到此极点对边距离的2倍.4.垂心分每条高线的两部分乘积相等.定理证实已知:ΔABC中,AD.BE是两条高,AD.BE交于点O,衔接CO并延伸交AB于点F ,求证:CF⊥AB证实:衔接DE ∵∠ADB=∠AEB=90度∴A.B.D.E四点共圆∴∠ADE=∠ABE∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE 又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB是以,垂心定理成立!四.三角形心坎定理三角形内切圆的圆心,叫做三角形的心坎.心坎的性质:1.三角形的三条内角等分线交于一点.该点即为三角形的心坎.2.直角三角形的心坎到边的距离等于两直角边的和减去斜边的差的二分之一.3.P为ΔABC地点平面上随意率性一点,点I是ΔABC心坎的充要前提是:向量PI=(a×向量PA+b×向量PB+c×向量PC)/(a+b+c).4.O为三角形的心坎,A.B.C分离为三角形的三个极点,延伸AO 交BC边于N,则有AO:ON=AB:BN=AC:CN=(AB+AC):BC五.三角形旁心定理三角形的旁切圆(与三角形的一边和其他双方的延伸线相切的圆)的圆心,叫做三角形的旁心.旁心的性质:1.三角形一内角等分线和别的两极点处的外角等分线交于一点,该点即为三角形的旁心.2.每个三角形都有三个旁心.3.旁心到三边的距离相等.如图,点M就是△ABC的一个旁心.三角形随意率性两角的外角等分线和第三个角的内角等分线的交点.一个三角形有三个旁心,并且必定在三角形外.附:三角形的中间:只有正三角形才有中间,这时重心,心坎,外心,垂心,四心合一.有关三角形五心的诗歌三角形五心歌(重外垂内旁)三角形有五颗心,重外垂内和旁心, 五心性质很主要,卖力控制莫记混.重心三条中线定订交,交点地位真奇巧, 交点定名为“重心”,重心性质要清楚明了,重心朋分中线段,数段之比听分晓; 长短之比二比一,灵巧应用控制好.外心三角形有六元素,三个内角有三边.作三边的中垂线,三线订交共一点.此点界说为外心,用它可作外接圆.心坎外心莫记混,内切外接是症结.垂心三角形上作三高,三高必于垂心交.高线朋分三角形,消失直角三对整,直角三角形有十二,构成六对类似形, 四点共圆图中有,仔细剖析可找清.内心三角对应三极点,角角都有等分线, 三线订交定共点,叫做“心坎”有根源;点至三边均等距,可作三角形内切圆, 此圆圆心称“心坎”,如斯界说应当然.。

三角形的五心

三角形的五心

三角形的五心重心定义:三角形三条中线的交点叫做三角形重心。

性质:(1)设三角形重心为O,BC边中点为D,则有AO = 2 OD。

(2)三角形的重心与三顶点的连线所构成的三个三角形面积相等;(3)重心坐标为三顶点坐标平均值。

(4)以三角形的重心将三角形支起,三角形会保持平衡。

外心定义:三角形三边的垂直平分线的交点,称为三角形外心。

性质:(1)外心到三顶点距离相等。

(2)过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心即三角形外心,这个三角形叫做这个圆的内接三角形。

(3)三角形有且只有一个外接圆。

内心定义:三角形内心为三角形三条内角平分线的交点。

性质:(1)与三角形各边都相切的圆叫做三角形的内切圆。

(2)内切圆的圆心即是三角形内心。

(3)内心到三角形三边距离相等,这个三角形叫做圆的外切三角形。

(4)三角形有且只有一个内切圆。

垂心定义:三角形三边上的三条高线所在直线的交点,称为三角形垂心。

性质:(1)锐角三角形的垂心在三角形内;直角三角形的垂心在直角的顶点;钝角三角形的垂心在三角形外.。

(2)三角形只有一个垂心。

旁心定义:(1)与三角形的一边及其他两边的延长线都相切的圆叫做三角形的旁切圆,旁切圆的圆心叫做三角形旁心。

(2)三角形的一条内角平分线与其他两个角的外角平分线交于一点,即三角形的旁心。

性质:(1)旁心到三角形一边及其他两边延长线的距离相等。

(2)三角形有三个旁切圆,三个旁心。

这三个旁心到三角形三条边的延长线的距离相等。

五心的性质:三角形的五心有许多重要性质,它们之间也有很密切的联系,如:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等;(2)三角形的外心到三顶点的距离相等;(3)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心;(4)三角形的内心、旁心到三边距离相等;(5)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;(6)三角形的外心是它的中点三角形的垂心;(7)三角形的重心也是它的中点三角形的重心;(8)三角形的中点三角形的外心也是其垂足三角形的外心.(9)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍.详细性质垂心三角形三边上的高的交点称为三角形的垂心。

三角形的五“心”及其性质

三角形的五“心”及其性质

三角形的五“心”及其性质
三角形的五心是指三角形内部的五个特殊点,包括重心、外心、内心、垂心和旁心。

1. 重心:三角形三个顶点与其对边的中点连接所交于一点,这个点被
称为重心。

重心到三角形三边的距离相等,重心将三角形划分为三个
面积相等的小三角形。

2. 外心:三角形三个顶点的垂直平分线相交于一点,这个点被称为外心。

外心是三角形外接圆圆心,即三角形三个顶点与外心的连线的长
度相等。

3. 内心:三角形三个顶点的角平分线相交于一点,这个点被称为内心。

内心是三角形内切圆圆心,即三角形三条边与内心的连线的垂直距离
相等。

4. 垂心:三角形三个顶点的高的延长线相交于一点,这个点被称为垂心。

垂心是三角形三条高的交点,即垂心到三角形三个顶点所在的直
线距离相等。

5. 旁心:三角形的旁心有三个,分别对应三条边。

旁心是指三角形的
外切圆圆心,即三角形的一条边外边的一条角的角平分线与另外两条
边延长线的交点。

这些五心有一些重要的性质:
- 重心是三角形的重要重心之一,它将三角形分成三个面积相等的小三
角形。

- 外心是三角形外接圆圆心,外接圆的直径是三角形的边长,外心到三
个顶点的距离相等。

- 内心是三角形内切圆圆心,内接圆与三个边相切,内心到三个边的距
离相等。

- 垂心是三角形三条高的交点,垂心到三个顶点所在的直线距离相等。

- 旁心是三角形外切圆圆心,外切圆与三条边相切,旁心到相对应的边
的距离相等。

三角形五心定理

三角形五心定理

三角形五心定理
三角形五心定理是关于三角形的重要性质,分别对应重心定理、外心定理、内心定理、旁心定理和重内心定理等。

重心定理:三角形的三条中线交于一点,这点到三边的距离相等;外心定理:三角形三条边的垂直平分线交于一点,这点到三个顶点的距离相等;
内心定理:三角形的三条内角平分线交于一点,这点到三边的距离相等;
旁心定理:三角形一内角平分线和另外两顶点处的外角平分线交于一点,这点到三边的距离相等。

旁心又叫作外心,可利用重内心定理证明;
重内心定理:三角形的重心是三边上的力的三等分交点,内心是三个顶点对它的张力的中心。

三角形的五心性质

三角形的五心性质

三角形的五心性质内心是三条角平分线的交点,它到三边的距离相等。

外心是三条边垂直平分线的交点,它到三个顶点的距离相等。

重心是三条中线的交点,它到顶点的距离是它到对边中点距离的2倍。

垂心是三条高的交点,它能构成很多直角三角形相似。

重心和三顶点的连线所构成的三个三角形面积相等;外心到三顶点的距离相等;垂心与三顶点这四点中,任一点是其余三点构成的三角形的垂心;内心到三边距离相等;重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍,该点叫做三角形的重心。

外心定理:三角形的三边的垂直平分线交于一点,该点叫做三角形的外心。

垂心定理:三角形的三条高交于一点,该点叫做三角形的垂心。

内心定理:三角形的三内角平分线交于一点,该点叫做三角形的内心。

重心到顶点的距离与重心到对边中点的距离之比为2:1。

重心和三角形3个顶点组成的3个三角形面积相等。

重心到三角形3个顶点距离的平方和最小。

在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/3. 三角形内心的性质设⊿BC的内切圆为☉I(r),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.1、三角形的三条角平分线交于一点,该点即为三角形的内心.2、三角形的内心到三边的距离相等,都等于内切圆半径r.3、r=S/p.4、在Rt△ABC 中,∠C=90°,r=(a+b-c)/2.5、∠BIC=90°+A/2.6、点O是平面ABC上任意一点,点I是⊿ABC内心的充要条件是:a(向量OA)+b(向量OB)+c(向量OC)=向量0.7、点O是平面ABC上任意一点,点I是⊿ABC内心的充要条件是:向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c).8、⊿ABC中,A(x1,y1),B(x2,y2),C(x3,y3),那么⊿ABC内心I的坐标是:(ax1/(a+b+c)+bx2/(a+b+c)+cx3/(a+b+c),ay1/(a+b+c)+by2/(a+b+c)+cy3/(a+b+c)).9、(欧拉定理)⊿ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI^2=R^2-2Rr.10、(内角平分线分三边长度关系)⊿ABC中,0为内心,∠A 、∠B、∠C的内角平分线分别交BC、AC、AB于Q、P、R,则BQ/QC=c/b, CP/PA=a/c, BR/RA=a/b.三角形外心的性质设⊿ABC的外接圆为☉G(R),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.1、三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心. 2、锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心在斜边上,与斜边中点重合. 3、GA=GB=GC=R. 3、∠BGC=2∠A,或∠BGC=2(180°-∠A). 4、R=abc/4S⊿ABC. 5、点G是平面ABC上一点,那么点G是⊿ABC外心的充要条件是:(向量GA+向量GB)·向量AB= (向量GB+向量GC)·向量BC=(向量GC+向量GA)·向量CA=向量0. 6、点G是平面ABC上一点,点P是平面ABC上任意一点,那么点G是⊿ABC 外心的充要条件是:向量PG=((tanB+tanC)向量PA+(tanC+tanA)向量PB+(tanA+tanB)向量PC)/2(tanA+tanB+tanC). 7、点G是平面ABC上一点,点P是平面ABC上任意一点,那么点G是⊿ABC外心的充要条件是:向量PG=(cosA/2sinBsinC)向量PA+(cosB/2sinCsinA)向量PB+(cosC/2sinAsinB)向量PC. 8、设d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

三角形五心定律及性质

三角形五心定律及性质

三角形五心定律及性质
三角形的重心,外心,垂心,内心和旁心这五心称之为三角形的五心。

三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。

三角形五心是三角形的重要相关点,五心定理具体如下:
重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍。

该点叫做三角形的重心。

外心定理:三角形的三边的垂直平分线交于一点。

该点叫做三角形的外心。

垂心定理:三角形的三条高交于一点。

该点叫做三角形的垂心。

内心定理:三角形的三内角平分线交于一点。

该点叫做三角形的内心。

旁心定理:三角形一内角平分线和另外两顶点处的外角平分线交于一点。

该点叫做三角形的旁心。

三角形有三个旁心。

另有三角形的中心,但只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。

三角形五心性质归纳总结

三角形五心性质归纳总结

三角形的“五心”性质归纳总结任何三角形都有五心,分别是重心、垂心、外心、内心、旁心。

我们可以用14个字便能准确快捷地区分并记住五心,“中重、高垂、垂直平分外、分内、外分旁”,最后一字为三角形的某种心,前三种为边上的某种线,后两种为三角形内角或外角的平分线。

中重:三角形三边中线的交点,为三角形的重心;在三角形的内部;此点到顶点的距离是到对边中点距离的2倍。

高垂:三角形三边高线的交点,为三角形的垂心;锐角三角形垂心在内部,直角三角形在直角顶点,钝角三角形在外部。

垂直平分外:三角形三边垂直平分线的交点,为三角形的外心;锐角三角形的外心在内部,直角三角形在斜边中点,钝角三角形在外部;此点为△外接圆的圆心,到三顶点的距离相等,这个距离叫外接圆半径R.分内:三角形三内角平分线的交点,为三角形的内心;在三角形的内部,此点为三角形内切圆的圆心,到三边的距离相等,此距离为内切圆半径r.重心、垂心、外心、内心均只有唯一的一点,作图时只需作出二线,第三线一定过此点。

外分旁:三角形相邻二外角的平分线的交点,为三角形的旁心。

任何三角形都有三颗旁心,且不相邻的内角平分线过旁心,旁心到三边的距离相等。

到三角形三边距离相等的点共有四点,内心及旁心。

在初中阶段外心、内心我们经常在圆部分接触和应用,一定要掌握它们的特性,重心、旁心、垂心偶尔接触只需了解。

等腰三角形的重心、垂心、外心、内心及其中一颗旁心在同一直线上即底边的高线上。

等边三角形是最完美的三角形,因而前四心及一颗旁心合一,外接圆半径R 为内切圆半径r 的2倍,R=33a (a 为边长)(∠OAD=30°,∴R=2r,高为23a,则,R=33a ,r=63a )直角三角形的外接圆半径为斜边的一半(2C ),内切圆半径为21(a+b-c ),c 为斜边的长。

如图 S=21AC ·BC=21r (AC+BC+AB ) ∴r=AB BC AC BC AC ++⋅.=c b a ab ++ =22)(b a b a ab+++=21(a+b-c ) 例1. 已知等边三角形ABC 是⊙O 的内接三角形,若⊙O 的半径为8cm 时,求△ABC 的内切圆面积。

冀教版-数学-八年级上册-三角形的五心及其性质

冀教版-数学-八年级上册-三角形的五心及其性质

初中-数学-打印版
三角形的五心及其性质
一、三角形的五心
1. 内心:指三条内角平分线相交的点,在三角形中只有一点,到三角形三边的距离相等,以这点为圆心,到一边的距离为半径,作的圆与三边相切.
2. 旁心:指三角形两条外角平分线与另外一条内角平分线的交点.在三角形中有四个,到三角形三边所在直线的距离相等,以这点为圆心,到一边所在直线的距离为半径,作的圆与三边所在直线相切.
3. 重心:指三条中线相交的点,在三角形中只有一点,是每条中线的三等分点.
4. 垂心:指三条高线相交的点,在三角形中只有一点.锐角三角形垂心在三角形内,直角三角形垂心在直角顶点,钝角三角形垂心在三角形外.
5. 外心:指三边中垂线(垂直平分线)相交的点,在三角形中只有一点.锐角三角形外心在三角形内,直角三角形外心在斜边中点,钝角三角形外心在三角形外.
二、“五心”的性质
1.三角形的重心与三顶点的连线所构成的三个三角形面积相等.
2.三角形的外心到三顶点的距离相等.
3.三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心.
4.三角形的内心、旁心到三边距离相等.
5.三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心.
6.三角形的外心是它的中点三角形的垂心.
7.三角形的重心也是它的中点三角形的重心.
8.三角形的中点三角形的外心也是其垂足三角形的外心.
9.三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍.
初中-数学-打印版。

三角形的五心

三角形的五心

三角形的中心,重心,垂心,内心,外心。

五心的定义和性质是什么如果你知道了三角形的重心,垂心,内心,外心,那么对以等边三角形,这四心是合一的,也叫中心,中心具有所有四心的性质。

需要补充的是三角形还有一个旁心,通常把三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

一、三角形重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

重心位置:于三角形内部三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。

二、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的位置:于锐角三角形内部,直角三角形的两只角边交点,钝角三角形的外部。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。

(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

定理证明已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F ,求证:CF ⊥AB证明:连接DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE∵∠EAO=∠DAC ∠AEO=∠ADC∴ΔAEO∽ΔADC∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB因此,垂心定理成立!三、三角形内心定理三角形内切圆的圆心,叫做三角形的内心。

三角形的重心、垂心、内心、外心

三角形的重心、垂心、内心、外心

三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。

一、三角形重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。

(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

定理证明已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB证明:连接DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE ∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC ∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE 又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB 因此,垂心定理成立!四、三角形内心定理三角形内切圆的圆心,叫做三角形的内心。

平面几何竞赛之三角形的“五心”

平面几何竞赛之三角形的“五心”
5、旁心:与三角形一条边和外切,又与另两边的延长线相切的圆叫做 三角形的旁切圆.一个三角形有三个旁切圆,旁切圆的圆心简称三角形 的旁心.每一个旁心到三边的距离都相等.
〖例5〗如图,圆O1与圆O2和⊿ABC的三边所在的三条直线都相切,E、 F、G、H为切点,直线EG与FH相交于点P,求证:PA⊥BC.(1996全国联赛 题)
证明:.
⑵ 如图,设为的内心,且、、分别为、、的外心, 证明:与有相同的外心.
⑶ 已知是的内心,、、的延长线分别交的外接圆于、、. 求证:.
⑷ 已知一等腰三角形的外接圆半径为,内切圆半径为, 证明:两圆心的距离为.
2【解析】 ⑴ 连接、、、、、.
因为,,, 所以、、相交于一点,即为的内心, 则,,. 在中,因为,所以. 同理可证,.
平面几何竞赛之三角形的“五心”
一、基本概念
1、内心:与三角形所有边相切的圆叫做此三角形的内切圆,其圆心叫 做此三角形的内心.内心是三角形三条内角平分线的交点.三角形的内心 在三角形内部.
内心有以下常用的性质: 性质1:设I是⊿ABC内一点,I为⊿ABC内心的充要条件是:I到三角形三 边的距离相等. 证明:
练习 【练习1】如图,已知点是的内心,延长交的外接圆于点,交于点.求 证:是、的比例中项.
1【解析】 连接.因为是的内心,所以,. 所以,. 所以,于是.因为,所以.又因为,所以,所以.所以,即是、 的比例中项.
点评:本题用三角形内心的性质先证明,再证明. 已知三角形的内心,通常连接内心和顶点,得角相等.本题很明 显,这个命题的逆命题也成立. 【练习2】⑴ 如图,在中,、,的平分线分别交外接圆于点、、.
将这三个式子相加并整理, 得…① 因为,,, 所以 …②
⑵ 作的外接圆,延长交圆心于, 连接、. 因为是的内心,所以. 从而为的外心.

初中几何三角形五心及定理性质课件.doc

初中几何三角形五心及定理性质课件.doc

初中几何三角形五心定律及性质三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的 3 个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形 3 个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3 )/3,(Y1+Y2+Y3 )/3)。

5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。

外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。

2、若O 是△ABC 的外心,则∠BOC=2 ∠A(∠A 为锐角或直角)或∠BOC=36°0 -2∠A(∠A 为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

5、外心到三顶点的距离相等垂心定理图1 图2三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7 个点可以得到 6 个四点圆。

2、三角形外心O、重心G 和垂心H 三点共线,且OG︰GH=1 ︰2。

(此直线称为三角形的欧拉线(Euler line ))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的 2 倍。

4、垂心分每条高线的两部分乘积相等。

推论:1. 若 D 、 E 、 F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。

三角形五心性质[]

三角形五心性质[]

三角形的五心定理一、三角形五心定义内心是二角形的二内角平分线交点.也是二角形内切圆的圆心.重心是三角形的三条中线的交点.(重心原是一个物理概念,对于等厚度的质量均匀的 三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)文档来自于网络搜索 外心是三角形的三边的垂直平分线的交点.三角形外接圆的圆心. 垂心是三角形的三条高的交点旁心是三角形一内角平分线和另外两顶点处的外角平分线的交点.三角形的旁切圆 (与三角形的一边和其他两边的延长线相切的圆)的圆心 文档来自于网络搜索二、三角形五心性质 内心:1、直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一2、P 为AABC 所在平面上任意一点,点 0是A ABC 内心的充要条件是:向量— (ax PA + bx PB +c x PC)a +b +c3、O 为三角形的内心, A 、B 、C 分别为三角形的三个顶点,延长AO 交BC 边于 N ,则有 AO : ON = AB : BN =AC :CN =(AB + AC): BC . 重心:1、重心到顶点的距离与重心到对边中点的距离之比为 2、重心和三角形3个顶点组成的3个三角形面积相等.即重心到三条边的距离与三 条边的长成反比.3、重心到三角形3个顶点距离的平方和最小4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为 (X 1 + X 2 + X 3 y 1 + y 2 + y 3)3 3外心:1、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心 在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合 档来自于网络搜索2、若0是 MBC 的外心,则N BOC=2NA (N A 为锐角或直角)或N BOC =360°-2N A (N A 为钝角).向另外两个顶点向量的点乘。

c^ d 2d 3, c^d 1d 3, c^ = d 1d 2 ;c = ci +c 2+c 3. 重心坐标:(°十°3 c '十c3 G + c2).文档来自于网络搜索2c ' 2c ' 2c2 : 1.3、计算外心的坐标应先计算下列临时变量:d i , d 2 , d 3分别是三角形三个顶点连4、外心到三顶点的距离相等垂心:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆.2、三角形外心0、重心G和垂心H三点共线,且OG:GH =1:2.(此直线称为三角形的欧拉线(Eulerline ))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的4、垂心分每条高线的两部分乘积相等.OA OB =OB OC =OC OA旁心:1、每个三角形都有三个旁心2、旁心到三边的距离相等注:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。

三角形五心及其性质

三角形五心及其性质

引言概述:三角形是几何学中最基本、最重要的图形之一,三角形的性质和特点被广泛研究和应用。

其中,三角形的五心是三角形内外最重要的五个点:重心、外心、垂心、内心和旁心。

五心之间的关系和性质对于解决三角形相关问题和证明定理具有重要的作用。

本文将详细介绍三角形的五心及其性质。

正文内容:一、重心1. 三角形的重心是三边中线的交点,也是中位线和高线的交点。

2. 重心到顶点的距离是中点到顶点距离的2/3,是高线的距离的2/3。

3. 重心将三角形分割为六个三角形,其中三个三角形的面积相等。

二、外心1. 三角形的外心是三边垂直平分线的交点,也是三角形的三条角平分线的交点。

2. 外心到顶点的距离等于外心到对边的距离,也等于外心到三角形内切圆的半径。

三、垂心1. 垂心是三边垂直平分线的交点,也是三角形内心和外心连线的中点。

2. 垂心到顶点的距离等于垂心到底边垂足的距离。

四、内心1. 三角形的内心是三边的内切圆的圆心,也是三边角平分线的交点。

2. 内心到三边的距离相等,等于三角形的内切圆的半径。

3. 内心到三角形各顶点的连线所围成的三个小三角形的面积相等。

五、旁心1. 旁心是三边的旁切圆的圆心,也是外角平分线的交点。

2. 旁心到其所在边的距离相等,等于旁切圆的半径。

3. 旁心和顶点之间的连线与三角形所在边垂直。

总结:三角形的五心(重心、外心、垂心、内心和旁心)是三角形内外部最重要的五个点,它们分别有着独特的性质和作用。

通过研究五心之间的关系和性质,可以更深入地理解三角形的结构和性质。

五心的位置和特点对于解决三角形相关问题和证明定理具有重要的作用。

理解和应用五心的性质可以帮助我们更好地理解和应用三角形的定理与性质,从而更好地解决相关问题。

三角形“五心定律”,初中几何必考知识点,值得收藏

三角形“五心定律”,初中几何必考知识点,值得收藏

三角形“五心定律”,初中几何必考知识点,值得收藏三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称;初中三年,数学分数占了很大比列,初一基本都是计算,打好基础,初二开始接触各种几何,对三角形、长方形、正方形、菱形等等都有了更多更深层次的了解;重心定理:三角形的三条边的中线交于一点。

该点叫做三角形的重心。

重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。

5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。

外心定理:三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、外心到三顶点的距离相等垂心定理:三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。

(此直线称为三角形的欧拉线(Euler line))(除正三角形)3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

内心定理:三角形内切圆的圆心,叫做三角形的内心。

内心的性质:1、三角形的三条内角平分线交于一点。

初中几何三角形五心及定理性质

初中几何三角形五心及定理性质

初中几何三角形五心及定理性质
初中几何三角形五心定律及性质
三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称
重心定理
三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为
((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。

5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。

外心定理
第 1 页共 6 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形的三条高的交点叫做三角形的垂心。

三角形垂心的性质设△ABC的三条高为AD、BE、CF,其中D、E、F为垂足,垂心为H,角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.1、锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外.2、三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;3、垂心H关于三边的对称点,均在△ABC的外接圆上。

4、△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AH•HD=BH•HE=CH•HF。

5、H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。

6、△ABC,△ABH,△BCH,△ACH的外接圆是等圆。

7、在非直角三角形中,过H的直线交AB、AC所在直线分别于P、Q,则AB/AP•tanB+AC/AQ•tanC=tanA+tanB+tanC。

8、三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。

9、设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。

10、锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。

11、锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。

12、西姆松定理(西姆松线):从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。

13、设锐角△ABC内有一点T,那么T是垂心的充分必要条件是PB*PC*BC+PB*PA*AB+PA*PC*AC=AB*BC*CA。

垂心的向径定义设点H为锐角三角形ABC的垂心,向量OH=h,向量OA=a,向量OB=b,向量OC=c,则h=(tanA a +tanB b +tanC c)/(tanA+tanB+tanC).垂心坐标的解析解:设三个顶点的坐标分别为(a1,b1)(a2,b2)(a3,b3),那么垂心坐标x=Δx/2/Δ,y=-Δy/2/Δ。

其中,Δ=det([x2-x1,x3-x2,y2-y1,y3-y2]);Δx=det([(x1+x2)*(x2-x1)+(y1+y2)*(y2-y1),y2-y1;(x2+x3)*(x3-x2)+(y2+y3)*(y3-y2),y3-y2]);Δy=det([x3-x2,(y2+y3)*(y3-y2);x3-x1,(y3+y1)*(y3-y1)+(x2-x1)*(x1-x3)]);垂心的向量特征:三角形ABC内一点O,向量OA•OB=OB•OC=OC•OA,则点O是三角形的垂心证明由OA•OB=OB•OC,得OA•OB-OC•OB=0(OA-OC)•OB=0CA•OB=0,即OB垂直于AC边同理由OB•OC=OC•OA,可得OC垂直于AB边由OA•OB=OC•OA,得OA垂直于BC边显然点O是三角形的垂心三角形的重心重心是三角形三边中线的交点,三线交一点可用燕尾定理证明,十分简单。

证明过程又是塞瓦定理的特例。

三角形重心已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。

求证:F为AB中点。

证明:根据燕尾定理,S△AOB=S△AOC,又S△AOB=S△BOC,∴S△AOC=S△BOC,再应用燕尾定理即得AF=BF,命题得证。

重心的几条性质:1.重心到顶点的距离与重心到对边中点的距离之比为2:1。

2.重心和三角形3个顶点组成的3个三角形面积相等。

3.重心到三角形3个顶点距离的平方和最小。

4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/35.重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。

证明:刚才证明三线交一时已证。

6.重心是三角形内到三边距离之积最大的点。

其它规则图形的重心注:下面的几何体都是均匀的,线段指细棒,平面图形指薄板。

三角形的重心就是三边中线的交点。

线段的重心就是线段的中点。

平行四边形的重心就是其两条对角线的交点,也是两对对边中点连线的交点。

平行六面体的重心就是其四条对角线的交点,也是六对对棱中点连线的交点,也是四对对面重心连线的交点。

圆的重心就是圆心,球的重心就是球心。

锥体的重心是顶点与底面重心连线的四等分点上最接近底面的一个。

四面体的重心同时也是每个定点与对面重心连线的交点,也是每条棱与对棱中点确定平面的交点。

三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心叫做旁心。

旁心是一个三角形内角平分线与其不相邻的两个外角平分线的交点,它到三角形三边的距离相等。

如图,点M就是△ABC的一个旁心。

三角形任意两角的外角平分线和第三个角的内角平分线的交点。

一个三角形有三个旁心,而且一定在三角形外。

若设O为△ABC的旁心,用向量表示则有aOA=bOB+cOC1、三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点即为三角形的旁心。

2、每个三角形都有三个旁心。

内心是三角形三条内角平分线的交点,即内切圆的圆心。

内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(原理:角平分线上点到角两边距离相等)。

内心定理:三角形的三个内角的角平分线交于一点。

该点叫做三角形的内心。

注意到内心到三边距离相等(为内切圆半径),内心定理其实极易证。

若三边分别为l1,l2,l3,周长为p,则内心的重心坐标为(l1/p,l2/p,l3/p)。

直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。

双曲线上任一支上一点与两焦点组成的三角形的内心在实轴的射影为对应支的顶点。

三角形内心的性质设⊿ABC的内切圆为☉O(半径r),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2。

1、三角形的三条角平分线交于一点,该点即为三角形的内心。

2、三角形的内心到三边的距离相等,都等于内切圆半径r。

3、r=S/p。

证明:S△ABC=S△OAB+S△OAC+S△OBC=(cr+br+ar)/2=rp, 即得结论。

△ABC中,∠C=90°,r=(a+b-c)/2。

5、∠BOC=90°+A/2。

6、点O是平面ABC上任意一点,点O是⊿ABC内心的充要条件是:a(向量OA)+b(向量OB)+c(向量OC)=向量0。

7、点O是平面ABC上任意一点,点I是⊿ABC内心的充要条件是:向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c)。

8、⊿ABC中,A(x1,y1),B(x2,y2),C(x3,y3),那么⊿ABC内心I的坐标是:(ax1/(a+b+c)+bx2/(a+b+c)+cx3/(a+b+c),ay1/(a+b+c)+by2/(a+b+c)+cy3/(a+b+c)。

9、(欧拉定理)⊿ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI^2=R^2-2Rr。

10、(内角平分线分三边长度关系)角平分线分对边与该角的两边成比例。

证明:△ABC中,AD是∠A的角平分线,D在BC上,abc 是角的对边ABC,d=AD。

由于正弦定理b/sinB=c/sinC d=R1sinB=R2sinC,R1是△ABD的外接圆半径,R2是△ACD 的外接圆半径,所以R1/R2=sinC/sinB=c/b.又BD=R1sinBAD,CD=R2sinCAD,∠CAD=∠BAD,所以BD/CD=R1/R2=c/b=AB/AC三角形外接圆的圆心叫做三角形的外心.三角形外接圆的圆心也就是三角形三边中垂线的交点,三角形的三个顶点就在这个外接圆上.三角形外心的性质设⊿ABC的外接圆为☉G(R),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.1:(1)锐角三角形的外心在三角形内;(2)直角三角形的外心在斜边上,与斜边中点重合;(3)钝角三角形的外心在三角形外.2:∠BGC=2∠A,(或∠BGC=2(180°-∠A).3:点G是平面ABC上一点,那么点G是⊿ABC外心的充要条件是:(向量GA+向量GB)·向量AB= (向量GB+向量GC)·向量BC=(向量GC+向量GA)·向量CA=向量0.4:点G是平面ABC上一点,点P是平面ABC上任意一点,那么点G是⊿ABC外心的充要条件是:(1)向量PG=((tanB+tanC)向量PA+(tanC+tanA)向量PB+(tanA+tanB)向量PC)/2(tanA+tanB+tanC).或(2)向量PG=(cosA/2sinBsinC)向量PA+(cosB/2sinCsinA)向量PB+(cosC/2sinAsinB)向量PC.5:三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心.外心到三顶点的距离相等。

6:R=abc/4S⊿ABC.正弦定理:2R=a/sinA=b/sinB=c/sinC。

相关文档
最新文档