第四章 概率统计模型

合集下载

最新第四章-概率统计模型

最新第四章-概率统计模型
■商家根据自己的实际情况对消费者进行额外补 偿,如店铺优惠券、现有商品5折销售等;
■对于未发货的“超卖”订单,支持进行全额退 款;
■对于所有“超卖”订单,买家都可获得商品价 格30%、最多500元的天猫积分。其中,最后一条是 天猫首次就“超卖”明确表示赔付。
4.2 机票超售(overbook )策略
n
G ( n ) E ( S ( n ) ) [ ( a b ) r ( b c ) ( n r ) ] f( r ) ( a b ) n f( r )
r 0
r n 1
求 n 使 G(n) 最大
n=E(R) ???
变限积分求导公式
b( y)
F(y) f (x, y)dx a( y)
算例
若每份报纸的购进价为0.75元,售出价为 1元,退回 价为0.6元,需求量服从均值500份,均方差50份的 正 态分布,报童每天应购进多少份报纸才能使平均收入
最高?
P P P 11 2Pa b 2 b c 101 .70 5 .70.6 55 3 P 18 5, P28 3
P1P(Rx)=85P(R55000x5500)085,
F '(y) f (b(y), y)b(y) f (a(y), y)a(y)
b( y)
a(y) fy (x, y)dx
求解
为简化计算
将r视为连续变量 f (r)p(r)(概率密度
G ( n ) 0 n [ a b ( ) r ( b c ) n ( r ) p ( r ] ) d n ( a r b ) n ( r ) d p
Monte Carlo模拟
若明天需求量依赖于气温T, R=500+-|T-20|, N(0,50^2), U(5,15), 与独立 Matlab程序(明天T=5)求得n0=371(近似). a=1;b=0.75;c=0.6; T=5; N=1000; e=normrnd(0,50,1,N); d=unifrnd(5,15,1,N); R=500+e-d*abs(T-20); S0=0;for n=100:800, S=mean(((a-b)*R-(b-c)*(n-R)).*(R<=n)+(a-b)*n*(R>n)); if S>S0, S0=S;n0=n;end; end;n0,S0

数学建模第四章 概率统计模型.ppt

数学建模第四章 概率统计模型.ppt
在这里,小说使用“快乐”“强壮”“勇敢” 这样三个形容词是否有深意?
答:①“快乐、强壮、勇敢”原指一个人乐 观,身体强健,能从容面对困难。这里写出这些 身体强壮的人平素貌似快乐和勇敢,实则在关键 时刻缺乏挑战困难、拯救族群的勇气,(内容角 度)②这与后来他们在遇到困难后的恐惧和伤心 形成鲜明对比。(结构和情节角度)
英雄!
作品主题是由作者和读者共同创造的!
小说主 读者的人
题的基 本把握 补充
多元化、 个性化的 主题解读 和感悟
没有伟大的人物出现的民族,是世 界上最可怜的生物之群;有了伟大的人 物,而不 知拥护,爱戴,崇仰的国家, 是没有希望的奴隶之邦。因鲁迅的一死, 使人自觉出了民 族的尚可以有为,也 因鲁迅之一死,使人家看出了中国还是 奴隶性很浓厚的半绝望的国 家。
《伊则吉尔老婆子》是高尔基早期浪漫主义代表 作。
“ 读伟大的小说,捧起前 与放下后你已判若两人”
为什么小说有如此大的作用? 主要是因为伟大的小说有着博大 深邃的思想内涵、深刻的主题, 它能丰富我们的思想情感,提升 我们的人生境界。
小说主题哪里去找?
1.故事情节 2.人物分析 3.环境描写
一、情节:写了哪几个场景,试加以概 括。
1.族人陷于困境,彷徨失措,丹柯挺身而出 引导鼓舞族人。
2.族人途中遭险,围攻诋毁,丹柯不计得失, 拯救族人。
3.丹柯抓开胸膛,高举心脏,引领大家走出 困境,燃烧的心最后化为草原上蓝色火星。
故事在一开头就为丹柯的出现拉开了序幕:一群 生活在草原上,快乐、强壮、勇敢的人被另一凶残的 种族赶到不宜生存的林子深处去了,惟一的出路是穿 越森林到另一片草原上寻找生机。
提示:悲剧将人生中有价值的东西毁灭给 人看。(鲁迅)

交通工程学--概率统计模型 ppt课件

交通工程学--概率统计模型 ppt课件

T Qet
t 1
(6)小于时间 t的间隔数目为
N 1 1Q 1 e t
车头间隔数目计算
4.2 概率统计模型
t (7)小于 时间的间隔总的时间
T 1 1 31 6 e t 0 t 1 0
(8)小于时间 t的间隔总的时间在一个小时内占的比率 T11 1ett1
3600
(9)小于 t 时间的间隔的平均时间
4.2 概率统计模型
4.2.2 连续型分布
4.2 概率统计模型
4.2.2 连续型分布
4.2 概率统计模型
4.2.2 连续型分布
4.2 概率统计模型
4.2.2 连续型分布
4.2 概率统计模型
车头间隔数目计算
车头间隔是连续的,可认为服从负指数分布。 设小时交通量为 Q(辆/h), Q/3600
§4.2 概率统计模型
Prof. Cao
4.2 概率统计模型
4.2 概率统计模型
◆基本概念
1)交通流分布:交通流的到达特性或在物理空间上的存 在特性; 2)离散型分布(也称计数分布):在一段固定长度的时 间内到达某场所的交通数量的波动性; 3)连续型分布(时间间隔分布、速度分布等):在一段 固定长度的时间内到达某场所交通的间隔时间的统计分布; 4)研究交通分布的意义:预测交通流的到达规律(到达 数及到达时间间隔),为确定设施规模、信号配时、安全 对策提供依据。
4.2 概率统计模型
4.2.1 离散型分布
■车辆的到达具有随机性
■ 描述对象: ■ 在一定的时间间隔内到达的车辆数, ■ 在一定长度的路段上分布的车辆数。
4.2 概率统计模型
4.2.1 离散型分布
■ 1.泊松分布:
■适用条件:车辆(或人)的到达是随机的,相互间的 影响微弱,也不受外界因素干扰,具体表现在交通流密度 不大;

概率统计数学模型

概率统计数学模型

概率统计数学模型在数学领域,概率统计是一个非常重要的分支,它涉及到各种随机现象的数学描述和统计分析。

概率统计数学模型则是这些分析的基础,它能够准确地描述和预测各种随机现象的结果。

一、概率统计数学模型的基本概念概率统计数学模型是建立在随机试验基础上的数据分析方法。

在概率论中,随机试验的结果通常被视为不可预测的,但可以通过概率分布来描述它们。

而统计方法则是对数据进行收集、整理、分析和推断的方法,它依赖于概率论的知识。

二、概率统计数学模型的应用概率统计数学模型在各个领域都有广泛的应用,例如在金融领域中,它可以帮助我们预测股票价格的波动;在医学领域中,它可以帮助我们理解疾病的传播方式;在工程领域中,它可以帮助我们优化设计方案。

三、概率统计数学模型的建立过程建立概率统计数学模型通常包括以下几个步骤:1、确定研究问题:首先需要明确研究的问题是什么,以及我们想要从中获得什么样的信息。

2、设计随机试验:针对研究问题,设计合适的随机试验,以便收集数据。

3、收集数据:通过试验或调查等方式收集数据,并确保数据的准确性和可靠性。

4、分析数据:利用统计分析方法对收集到的数据进行处理和分析,提取有用的信息。

5、建立模型:根据分析结果,建立合适的概率统计模型,以描述数据的分布规律和预测未来的趋势。

6、验证模型:对建立的模型进行验证,确保其准确性和适用性。

7、应用模型:将建立的模型应用于实际问题的解决和预测中。

概率统计数学模型是处理和分析随机现象的重要工具,它在各个领域都有广泛的应用前景。

通过建立合适的概率统计模型,我们可以更好地理解和预测各种随机现象的结果,从而为实际问题的解决提供有力的支持。

概率统计数学模型在投资决策中的应用在投资决策的制定过程中,准确理解和应用概率统计数学模型是至关重要的。

概率统计数学模型为投资者提供了定量分析工具,帮助他们更准确地预测投资结果,从而做出更合理的决策。

一、概率模型的应用概率模型在投资决策中的应用广泛。

概率统计模型

概率统计模型
来自-46000 -38000
-50000
对决策D,因为采取应急措施的数学期望为-50800,正常施工的期望即为-50000 显然,应采取决策为正常施工。
同理,对决策C,应采取应急措施进行施工,即C的期望值为-19800
提前加班
阴雨 0.4
-19800
(0.5)
-14900
应急
-19800
A
正常速度 B
为:E(B)=0×0.4+(-19800) ×0.5+(-50000) ×0.1=-14900
提前加班
阴雨 0.4
-19800
(0.5)
-14900
应急
-19800
A
正常速度 B
0.5 风暴
C
E
(0.3)
(0.2)
正常施工
台风 0.1
-
应急
-50000
-50800
F
D 正常施工
最后结论:
-18000 0 -24000
应急
减少误工3天(0.2) F
减少误工4天(0.1)
-54000 -46000 -38000
D 正常施工
-50000
提前加班
阴雨 0.4
-19800
(0.5)
应急
E
(0.3) (0.2)
A
正常速度 B
0.5 风暴
C
正常施工
台风 0.1
应急
-50800
F
-18000 0 -24000
-18000 -12000
方案或策略:参谋人员为决策者提供的各种可行计划和谋 略.
风险决策的基本要素
内容包括:决策者、方案、准则、状态、结果

多元线性回归分析模型

多元线性回归分析模型

教学目标
教学重点
教学难点
Linear regression analysis Multivariate regression analysis 双语教学 decision analysis 内容、 安排 Decision rule Decision tree
教学手段、 采用多媒体教学的形式。以电子课件为主,粉笔黑板相结合为辅,使学生能够 措施 充分利用课堂有效的时间了解尽可能多的相关知识,并结合启发式教学. 作业、 后记 教 学 过 程 及 教 学 设 计
§4.1 多元线性回归分析 一.问题提出 水泥凝固时放出热量问题: 某种水泥在凝固时放出的热是 y ( J / g ) 与水泥中 下列 4 种化学成分有关。
备注
x1 : 3CaO ⋅ Al 2 O3 的成分(%) x 2 : 3CaO ⋅ SiO2 的成分(%) x3 : 4CaO ⋅ Al 2 O3 ⋅ Fe3O3 的成分(%) x 4 : 2CaO ⋅ SiO2 的Байду номын сангаас分(%)
在现实生活中,变量与变量之间经常存在一定的关系,一般来说,变量之间的关 系可以分为两大类,一类是确定性的关系,这种关系通常用函数来表示。例如,已知 圆的半径 r ,那么圆的面积 S 与半径 r 的关系就可用函数关系:
S = πr 2 来表示,这
时如果取定了 r 的值, S 的值就会完全确定了。另一类是非确定性关系,例如,人的 体重与身高之间的关系就是非确定性关系,一般来说,身高越高,体重越大,但是身 高相同的人体重往往是不相同的。再如,钢材的强度与钢材中含某种元素的含量,纤 维的拉伸倍数与强度,降雨量、气温、施肥量与农作物的产量等均属于这种关系。变 量之间的这种非确定性关系通常称为相关关系。 二.多元线性回归分析模型 为了研究方便,我们考虑一个变量受其他变量影响时,把这变量称为因变量,记 为 Y ,其他变量称为自变量,记为 X ,这时相关关系可记作 回归分析 就是数理统计 中研究相关关 系的一种数学 方法,它就是通 过大量的试验

概率统计模型决策模型教学课件

概率统计模型决策模型教学课件

THANKS FOR WATCHING
感谢您的观看
过程能力分析
通过概率统计模型分析生产过程中的能力指数,评估生产 过程的稳定性和可靠性,为生产计划的制定提供依据。
故障模式分析
使用概率统计模型对生产过程中出现的故障模式进行分析 ,找出故障原因和解决方法,提高生产效率和产品质量。
在医疗诊断中的应用
疾病预测
基于大数据和概率统计模型,可以对患者的疾病风险进行预测和分 析,为医生提供更加准确的诊断依据。
不确定决策模型
不确定决策模型的概述
不确定决策模型是指在决策过程中,各种因素的发生概率是未知的,决策者需要 根据历史数据和经验进行推断。
不确定决策模型的应用场景
不确定ห้องสมุดไป่ตู้策模型广泛应用于风险管理、预测等领域,如天气预报、市场预测等。
基于偏好关系的决策模型
基于偏好关系的决策模型的概述
基于偏好关系的决策模型是指在决策过程中,决策者根据自身偏好进行决策,这些偏好关系可以用数学模型表示 。
02
概率统计模型在科学、工程、医 学等领域有广泛的应用,为决策 提供科学依据。
概率统计模型的基本概念
01
02
03
04
随机试验
指可能出现不同结果的事件, 且每个结果的出现具有不确定
性。
随机事件
指随机试验中可能出现的观察 结果,如扔硬币的正面或反面

概率
指随机事件发生的可能性,用 介于0和1之间的实数表示。
平均数
所有变量值的和除以变量值的 个数,反映变量的集中趋势。
标准差
衡量变量值离散程度的指标, 反映变量的波动大小。
推论性统计模型
参数估计
根据样本数据推断总体参数的方法, 如点估计和区间估计。

《概率统计模型》课件

《概率统计模型》课件
回归分析在市场预测中的应用还包括价 格分析、消费者行为分析等方面。
在市场营销领域,回归分析可以用于预 测产品需求、销售量、市场份额等方面 。
通过回归分析,企业可以了解市场趋势 ,制定有针对性的营销策略,提高市场 竞争力。
THANKS FOR WATCHING
感谢您的观看
03
统计方法在医学领域的应用还包括疾病预测、诊断和治疗效果评估等 方面。
04
统计方法在医学领域的应用有助于提高医学研究的准确性和可靠性。
回归分析在市场预测中的应用
回归分析是一种常用的统计分析方法, 用于探索变量之间的关系,并对未来趋 势进行预测。
回归分析在市场预测中的应用有助于企 业做出科学合理的决策,提高市场占有 率和盈利能力。
详细描述
时间序列分析涉及对按时间顺序排列的数据 进行统计处理,以揭示其内在的规律和特性 。这种方法广泛应用于金融、气象、医学等 领域,用于预测未来趋势和进行决策分析。
06 案例研究
概率论在金融中的应用
概率论在金融领域中有着 广泛的应用,如风险评估 、投资组合优化、期权定 价等。
概率论在金融领域的应用 还包括信用评级、保险精 算、风险管理等方面。
描述随机变量取值的平均水平和分散程度。
常见的随机变量分布
二项分布、泊松分布、正态分布等。
02 统计推断
参数估计
参数估计的概念
参数估计是用样本信息来估计总体参 数的过程,是统计推断的重要内容之 一。
点估计
点估计是指用一个单一的数值来估计 总体参数,常用的方法有矩估计和极 大似然估计。
区间估计
区间估计是指用一个区间范围来估计 总体参数,常用的方法有置信区间和 预测区间。
假设检验的步骤

《交通工程学》课程笔记

《交通工程学》课程笔记

《交通工程学》课程笔记第一章:交通工程学概述一、交通工程学概念1. 定义:交通工程学是研究道路交通系统的规划、设计、建设、运营、管理与维护的学科。

它旨在通过科学的方法和技术手段,实现交通系统的安全、高效、环保、经济和舒适。

2. 目的:交通工程学的主要目的是提高交通系统的整体性能,包括提高出行效率、减少交通事故、加快通行速度、降低运输成本、减小环境影响、节约能源等。

3. 研究内容:- 交通流的特性、规律和控制方法- 道路的设计、建设与维护- 交通规划与组织- 交通信号控制与智能化管理- 交通安全分析与事故预防- 交通环境与能源消耗二、交通工程学发展历程1. 起源:交通工程学起源于20世纪初,随着汽车数量的增加和道路网的扩展,逐渐从道路工程中分离出来。

2. 发展阶段:- 早期阶段(20世纪初至50年代):主要关注道路建设与维护,解决马车与早期汽车的交通问题。

- 发展阶段(20世纪50年代至80年代):汽车时代的到来,交通工程学开始关注交通流理论、道路通行能力、交通安全等。

- 现代阶段(20世纪80年代至今):交通工程学的研究领域不断拓展,包括交通规划、交通控制、交通管理、智能交通系统等。

第二章:交通系统的特性一、引言交通系统是一个由多种元素交织而成的复杂网络,包括人、车辆、道路和环境等。

二、驾驶人的交通特性1. 驾驶员的生理特性- 视觉特性:- 视野范围:驾驶员在不转动头部的情况下所能看到的空间范围。

- 视力:驾驶员对物体细节的辨识能力,包括远视力和夜视力。

- 色觉:驾驶员对颜色的辨识能力,尤其是交通信号灯的颜色。

- 暗适应:驾驶员在光线暗淡条件下的视力适应能力。

- 视觉疲劳:长时间驾驶导致的视觉疲劳现象及其影响。

- 听觉特性:- 听力范围:驾驶员对不同频率声音的听觉敏感度。

- 声音识别:驾驶员对各种声音来源的辨识能力。

- 噪声影响:交通噪声对驾驶员注意力和判断力的影响。

- 反应特性:- 反应时间:从驾驶员感知到刺激到做出反应的时间间隔。

第四章概率统计模型

第四章概率统计模型

第四章 概率统计模型本章的目的不是系统地介绍概率论和统计分析的内容,而是利用概率论和统计分析的知识建立和分析实际问题,从而建立数学模型。

§4.1 古典随机模型 一、古典概型设E 是随机试验,Ω是E 的样本空间,若○1Ω只含有有限个基本事件——有限性; ○2每个基本事件发生的可能性相同——等可能性。

则称E 为古典概型。

在古典概型中,如果事件A 是由全部n 个基本事件中的某m 个基本事件复合而成的,则事件A 的概率可用下式来计算:nm A P =)(例1 配对问题某人先写了n 封投向不同地址的信,在写n 个标有这n 个地址的信封,然后随意的在每个信封内装入一封信。

试求信与地址配对的个数的数学期望。

解:用i A 表示“第i 封信与地址配对”这一事件,则)(110i ni A P q ⋃=-=为求)(1i ni A P ⋃=,可利用一般加法公式)()1()()()()(2113211n n nk j i k j inj i j ini ii ni A A A P A A AP A AP A P A P -=<<=<==-+++-=∑∑∑来计算。

第i 封信可装入n 个信封,恰好和地址配对的概率nA P i 1)(=,故1)(1=∑=ni iA P如i A 出现,第j 封信共有n -1个信封可以选择,故,111)()()(,11)(-⋅==-=n n A A P A P A A P n A A P ij i j i i j从而,!21)1(/)(22=-=∑=<n n C A A P n nj i j i类似地可得到!1)(,!31)2)(1(/)(2133n A A A P n n n C A A A P n n nk j i k j i ==--=∑=<<于是∑∑==-=-=--=-=nk nk kk i ni k k A P q 1110!)1(!)1(1)(1q 0与n 有关,如记q 0=q 0(n),则利用q 0不难求出q r 。

概率统计模型讲座PPT

概率统计模型讲座PPT
i=1+floor(rand(1,1)*n);

x(i)=1; %第i层有人下
end
s1=sum(x); %该次模拟中总共要下的人数
s=s+s1; %累加各次模拟中要下的人数
end
eq=s/N %模拟平均值输出
ei=n*(1-(1-1/n)^r) %理论值输出
二、聪明的保险公司
人寿保险问题
假设有2500个同一年龄段同一社会阶层的人参 加某保险公司的人寿保险。根据以前的统计资料, 在一年里每个人死亡的概率为0.0001.每个参加保 险的人一年付给保险公司120元保险费,而在死亡 时其家属从保险公司领取20000元,那么,
基尼(Gini)系数
在洛伦兹曲线的基础上,意大利统计学家基尼 于1992年在他发表的有关收入集中指数的研究中 提出了基尼系数。源自 g1 2

1 0
L(x)dx
1
12
L(x)dx
1
0
2
评价
纵观以上洛伦兹曲线得到的过程,只用到 数理统计中极其平常而简单的数据处理的基础 知识,但却解决了“收入分配公平程度分析” 这样的大问题。由此可见,往往不是我们所学 的知识没用,而是我们没有运用知识的意识, 没有深入理解知识的本质,也没有抓住问题的 本质。而数学建模正是在用数学知识解决问题 的过程中把对知识的运用和对问题的挖掘同时 发挥到极致!
组号
户数累积百分比 组内收入 收入累积 收入累积百分比
1(1~6户)
20%
10680
10680
14.99%
2 (7~12户)
40%
11840
22520
31.61%
3(13~18户)
60%

概率统计模型决策模型教学课件

概率统计模型决策模型教学课件

金融领域应用
风险评估与管理
概率统计模型用于评估金融风险,如股票价格波动、 信用风险等,帮助投资者制定风险管理策略。
投资组合优化
决策模型可以帮助投资者优化投资组合,实现风险和 收益的平衡。
保险精算
概率统计模型用于精算保险费和赔付概率,为保险公 司提供科学决策依据。
医学领域应用
疾病预测与预防
基于概率统计模型的疾病预测可以帮助医生 制定预防措施,降低发病率。
2
参数估计
讲解参数估计的基本原理和方法,包括 最大似然估计和最小二乘法等,通过实 例演示如何使用参数估计对未知参数进 行估计和误差分析。
3
假设检验
介绍假设检验的基本原理和常见假设检 验方法(如Z检验、t检验、卡方检验等 ),通过实例演示如何使用假设检验对 数据进行分析和推断。
决策模型案例
线性规划
介绍线性规划的基本原理和求解方法,通过实例演示如何使用线性规划解决资源分配和 生产计划等问题。
主成分分析模型
总结词
主成分分析模型是一种降维技术,通过找到数据的主要成分 来减少变量的数量。
详细描述
主成分分析模型通过将原始变量转换为新的正交变量(主成 分),使得新的变量能够最大程度地保留原始数据的变异信 息,同时减少变量的数量。该模型适用于处理高维数据集。
04
常用决策模型
决策树模型
01
决策树模型是一种常用的分类和回归方法,通过树状图的形式 展示决策过程。
决策树
讲解决策树的基本原理和构建方法,通过实例演示如何使用决策树解决分类和回归问题 ,并讨论如何评估和优化决策树的性能。
贝叶斯网络
介绍贝叶斯网络的基本原理和构建方法,通过实例演示如何使用贝叶斯网络进行概率推 理和决策分析,并讨论如何处理不确定性和不完整性。

交通工程学-第4章-道路交通流理论

交通工程学-第4章-道路交通流理论

连续流设施
间断流设施
无外部因素导致周期性中断。 高速公路、限制出入的一般公路路
段。
由于外部设备导致交通流周期性中断。 一般道路交叉口。
6
4.1 交通流特性
二、连续流特征(Characteristics of Uninterrupted Flow)
7
4.1 交通流特性
二、连续流特征(Characteristics of Uninterrupted Flow)
4
0.1954 0.6289
P(k8) 0.95
具有95%置信度的来车数不多于8辆。
32
4.2 概论统计模型
2、二项分布 ➢ ⑴ 基本公式
P (k)C n kpk(1p)nk
式中:
P(k)—在计数间隔t 内到达k 辆车的概率; λ—平均到车率(辆/s);
t —每个计数间隔持续的时间(s);
n—正整数 ;
计算机技术
交通规划 交通控制 交通工程设施设计
4
4.1 交通流特性
交通流定性和定量的特征称为交通流特性。它可用交通流 量、速度和交通密度三个基本参数来描述。
一、交通设施种类(Types of Facilities)
1、连续流设施:指在该设施下无外部因素而导致交通流周期性中断 的设施。
➢ (Uninterrupted-flow facilities are those on which no external factors cause periodic interruption to the traffic stream.)
p—二项分布参数, pt/n。
均值M和方差D分别为: :
33
4.2 概论统计模型
2、二项分布

概率统计模型 ppt课件

概率统计模型 ppt课件
如果水果店现已有n百千克水果,那么再进1百 千克水果,从而就存有n+1百千克水果。
2020/4/13
信息工程大学 韩中庚
7
1、初等概率模型
问题1:水果店的合理进货模型
首先给出以下两个概念:
边际利润(Marginal Profit):由所增加的1个
单位水果带来的纯利润,记为MP。
边际损失(Marginal Loss):由所增加的1个
1、初等概率模型
问题1:水果店的合理进货模型
某时令水果店每售出一百千克水果,可以获得 利润250元,若当天进货不能出售出去,则每一 百斤将损失325元。该水果店根据预测分析,每 天的需求量和对应的概率值如下表:
水果需求量/百千克 0
1
相应的概率值 0.05 0.1
2
3
4
5
6 78
0.1 0.25 0.2 0.15 0.05 0.05 0.05
损失,即不考虑缺货所带来的损失。 (2)水果店的纯利润为卖出水果后所获利润与
因未卖出的水果所带来的损失部分之差。
2020/4/13
信息工程大学 韩中庚
2
1、初等概率模型
问题1:水果店的合理进货模型
模型的建立与求解 :利用概率知识及经济学中边际 分析的方法,综合分析讨论这个问题。
不妨记需求量为随机变量 ,则需求量的期望值 为 E( ) 3.65 。
E () 0 .0 5 ( 6 5 0 ) 0 .1 ( 7 5 ) 0 .1 5 0 0 0 .2 5 5 0 0 0 .2 5 0 0
0 .1 5 5 0 0 0 .0 5 5 0 0 0 .0 5 5 0 0 0 .0 5 5 0 0 3 8 5
2020/4/13

概率统计模型(数学建模)

概率统计模型(数学建模)
一周期内通过的钩子数 m 增加一倍,可使“效率”E 降低 一倍。(可理解为相反意义的效率)
思考: 如何改进模型使“效率”降低?
考虑通过增加钩子数来使效率降低的方法:
在原来放置一只钩子处放置的两只钩子成为一个钩对。一
周期内通过 m 个钩对,任一钩对被任意工人触到的概率
p 1/ m ,不被触到的概率 q 1 p,于是任一钩对为空的概率
工人生产周期相同,但由于各种因素的影响,经过相 当长的时间后,他们生产完一件产品的时刻会不一致, 认为是随机的,并在一个生产周期内任一时刻的可能 性一样。
由上分析,传送系统长期运转的效率等价于一周期的效 率,而一周期的效率可以用它在一周期内能带走的产品 数与一周期内生产的全部产品数之比来描述。
2 模型假设

r
Gn
n
0
a
b
r
b
c
n
r
pr
dr
n
a
b
npr
dr
计算
dG dn
a
bnpn
n
0
b
cprdr
a
bnpn
n
a
b
pr
dr
b
c n 0
pr dr
a
b n
pr dr
令 dG 0 ,得到 dn
n
0
n
pr dr pr dr
a b
b c
使报童日平均收入达到最大的购进量 n 应满足上式。
因为
0
pr dr
统计模型
如果由于客观事物内部规律的复杂性及人们认识程度的限 制,无法分析实际对象内在的因果关系,建立合乎机理规 律的模型,那么通常要搜集大量的数据,基于对数据的统 计分析建立模型,这就是本章还要讨论的用途非常广泛的 一类随机模型—统计回归模型。

概率统计模型

概率统计模型

第五章 概率统计模型本章重点: 初等概率模型 随机性决策模型 随机型存储模型 排队模型复习要求:1.会建立简单的初等概率模型。

2.掌握随机性决策模型的建立与求解方法,了解随机性存储模型。

3.了解排队模型,会用排队模型中的简单结论求解相关问题。

一、初等概率模型初等概率模型主要介绍了可靠性模型、传染病流行估计、常染色体遗传模型等三类问题,下面复习遗传模型1.问题分析所谓常染色体遗传,是指后代从每个亲体的基因中各继承一个基因从而形成自己的基因型.如果所考虑的遗传特征是由两个基因A 和B 控制的,那么就有三种可能的基因型:AA ,AB 和BB .例如,金鱼草是由两个遗传基因决定它开花的颜色,AA 型开红花,AB 型的开粉花,而BB 型的开白花.这里的AA 型和AB 型表示了同一外部特征(红色),则人们认为基因A 支配基因B ,也说成基因B 对于A 是隐性的.当一个亲体的基因型为AB ,另一个亲体的基因型为BB ,那么后代便可从BB 型中得到基因B ,从AB 型中得到A 或B ,且是等可能性地得到.问题:某植物园中一种植物的基因型为AA ,AB 和BB .现计划采用AA 型植物与每种基因型植物相结合的方案培育植物后代,试预测,若干年后,这种植物的任一代的三种基因型分布情况.2.模型假设(1)按问题分析,后代从上一代亲体中继承基因A 或B 是等可能的,即有双亲体基因型的所有可能结合使其后代形成每种基因型的概率分布情况如表5-1.表5-1(2) 以n n b a ,和n c 分别表示第n 代植物中基因型为AA ,AB 和BB 的植物总数的百分率,)(n x 表示第n 代植物的基因型分布,即有,)(⎪⎪⎪⎭⎫ ⎝⎛=nnn n c b a x,2,1,0=n (5 .1) 特别当n =0时,Tc b a x),,(000)0(=表示植物基因型的初始分布(培育开始时所选取各种基因型分布),显然有.1000=++c b a3.模型建立注意到原问题是采用AA 型与每种基因型相结合,因此这里只考虑遗传分布表的前三列. 首先考虑第n 代中的AA 型,按上表所给数据,第n 代AA 型所占百分率为1110211---⋅+⋅+⋅=n n n n c b a a即第n-1代的AA 与AA 型结合全部进入第n 代的AA 型,第n -1代的AB 型与AA 型结合只有一半进入第n 代AA 型,第n -1代的BB 型与AA 型结合没有一个成为AA 型而进入第n 代AA 型,故有1121--+=n n n b a a (5 .2)同理,第n 代的AB 型和BB 型所占有比率分别为1121--+=n n n c b b (5 .3)0=n c (5 .4)将(5.2)、(5.3)、(5.4) 式联立,并用矩阵形式表示,得到,)1()(-=n n Mxx,2,1( =n (5 .5)其中⎪⎪⎪⎭⎫ ⎝⎛=00012/1002/11M 利用(5 .5)进行递推,便可获得第n 代基因型分布的数学模型)0()2(2)1()(xM xM Mxxn n n n ====-- (5 .6)(5.6)式明确表示了历代基因型分布均可由初始分布)0(x 与矩阵M 确定.4.模型求解这里的关键是计算n M .为计算简便,将M 对角化,即求出可逆阵P ,使Λ=-MP P 1,即有1-Λ=PP M从而可计算 1-Λ=P P Mn n),2,1( =n其中Λ为对角阵,其对角元素为M 的特征值,P 为M 的特征值所对应的特征向量.分别为,11=λ 212=λ,03=λ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=121,011,001321p p p故有1100210111,0211-=⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎭⎫⎝⎛=ΛP P 即得⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=1002101110211100210111nnM⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=--0021210211211111n nn n于是 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛=--00011)(0021212112111c b a c b a x n n n nn n n n 或写为⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=--=--0)21()21()21()21(101010n n n n n n nc c b b c b a 由上式可见,当∞→n 时,有0,0,1→→→n n n c b a即当繁殖代数很大时,所培育出的植物基本上呈现的是AA 型,AB 型的极少,BB 型不存在.5.模型分析(1)完全类似地,可以选用AB 型和BB 型植物与每一个其它基因型植物相结合从而给出类似的结果.特别是将具有相同基因植物相结合,并利用前表的第1、4、6列数据使用类似模型及解法而得到以下结果:000021,0,,21b c c b b a a n n n +→→+→这就是说,如果用基因型相同的植物培育后代,在极限情形下,后代仅具有基因AA 与BB ,而AB 消失了.(2)本例巧妙地利用了矩阵来表示概率分布,从而充分利用特征值与特征向量,通过对角化方法解决了矩阵n 次幂的计算问题,可算得上高等代数方法应用于解决实际的一个范例.例2 血友病也是一种遗传疾病,得这种病的人由于体内没有能力生产血凝块因子而不能使出血停止.很有意思的是,虽然男人及女人都会得这种病,但只有女人才有通过遗传传递这种缺损的能力.若已知某时刻的男人和女人的比例为1:1.2,试建立一个预测这种遗传疾病逐代扩散的数学模型.解 假设有α%的人患有血友病,并假设下一代与上一代虽人数可能不等,但所生男女比例一样.基于这样一个假设,不妨设下一代男女与上一代相同,设初始第一代男女分别占总人数的比例占总人数的比例为 a 0,b 0,由题设,a 0:b 0=1:1.2.注意到只有女人遗传血友病,由此,第一代将有%210αb 个女人及%210αb 个男人有血友病,血友病占总人数的百分比为%2.22.1%0001αα=+=b a b c同理,第二代将有%21210αb ⋅个女人及%21210αb ⋅个男人有血友病,血友病占总人数的百分比为 %2.22.121%210002αα⋅=+=b a b c依次类推,第n 代将有%)21(0αb n个女人及%)21(0αb n个男人有血友病,血友病占总人数的百分比为%2.22.1)21(%)21(10001αα⋅=+=--n n n b a b c令∞→n ,则0→n c .二、随机性决策模型决策是人们在政治、经济、军事和日常生活等多方面普遍存在的一种选择方案的行为. 决策按环境而言,可以分为确定型,不确定型和风险型,其中风险型决策的决策类型是最常见的,.所谓风险型决策是指在作出决策时,往往有某些随机性的因素影响,而决策者对于这些因素的了解不足,但是对各种因素发生的概率已知或者可估算出来,因此这种决策因存在一定的风险.1.风险决策模型的基本要素(1) 决策者 进行决策的个人、委员会或某个组织.在问题比较重大和严肃时,通常应以后者形式出现.(2) 方案或策略 参谋人员为决策者提供的各种可行计划和谋略. 如渔民要决定出海打鱼与否便是两个方案或称两个策略.(3) 准则 衡量所选方案正确性的标准.作为风险型决策,采用的比较多的准则是期望效益值准则,也即根据每个方案的数学期望值作出判断.对收益讲,期望效益值越大的方案越好;反之对于损失来讲,期望效益值越小的方案越好.(4) 事件或状态 不为决策者可控制的客观存在的且将发生的自然状态称为状态(事件),如下小雨,下大雨和下暴雨即为三个事件或称三种状态,均为人所不可控因素.(5) 结果 某事件(状态)发生带来的收益或损失值. 2.风险决策方法(1)利用树形图法表示决策过程具有直观简便的特点,将其称为决策树的方法. (2) 充分利用灵敏度分析(即优化后分析)方法对决策结果作进一步的推广和分析. 其中的决策树概念先以一实例说明如下:例3 某渔船要对下个月是否出海打鱼作出决策.如果出海后是好天,可获收益5000元,若出海后天气变坏,将损失2000元;若不出海,无论天气好坏都要承担1000元损失费.据预测下月好天的概率为0.6,天气变坏的概率为0.4,应如何选择最佳方案?这里使用决策树方法进行决策. 先来说明决策树的画法 .先画一方块“囗”称为决策结点,由决策结点向右引出若干条直线表示不同的策略(方案)--称为策略分枝,策略分枝的右端画一个圆圈“○”称为状态结点,由它引出表示不同状态及其发生的概率的分枝称为概率分枝,最后在概率分枝的终点画“△”符号表示这一分枝的最终结果的效益值(期望值),正值表收益,负值表示损失.本例对应的决策树如图5-1.图5-1值得指出的是,画决策树是从左向右画出,画的过程中将各种已知数据标于相应的位置上. 但在决策树上进行决策计算却是从右向左进行的:先计算最右端每个状态结点的期望值. 由于本例仅有两个从决策结点A 发出的状态结点——称为一级决策问题,故只需利用结果点效益值计算各状态结点的期望效益值即可. 当有两级以上决策时则需从右向左逐级计算.2200)4.0()2000(6.05000=⨯-+⨯=-X将此结果标记在状态结点B 的上方.同理,将不出海的效益值作为随机变量,可算得期望值为-1000,将其标记在结点C 的上方,便得到图5-2.图5-2比较这两个值,显然出海收益的数学期望值大.从而剪去不出海决策枝(见图5-2)而选择出海作为最终决策,效益期望值为2200元. 实际中常会遇到多阶段决策.例4 假设有一笔1000万元的资金于依次三年年初分别用于工程A 和B 的投资.每年初如果投资工程A ,则年末以0.4的概率回收本利2000万元或以0.6的概率分文不收;如果投资工程B ,则年末以0.1的概率回收2000万元或以0.9的概率回收1000万元.假定每年只允许投资一次,每次只投1000万元;试确定第3年末期望资金总数为最大的投资策略. 解 建立决策树(如图3).图3在投资A 的决策树中,第一年投资A ,第二年投资B ,第三年投资B 的期望值最大. 在投资B 的决策树中(只在A 的决策树中②节点中的0.4,0.6分别换成0.1,0.9即可),可算得第一年投资B ,第二年投资B ,第三年投资B 的期望值是两个决策树中的最大者.三、随机型存储模型存储问题的数学模型涉及以下的主要经济变量:1.需求量:某种物资在单位时间内的需求量,以D 表示,如年需求量、月需求量、日需求量.需求量有时是常量,而在许多情况下则是随机变量,这时它的变化规律应当是能够掌握的.对需求量进行科学地预测和估计是解决存储问题的重要依据.2.批量:为补充存储而供应一批物资的数量称为批量,以Q 表示.由外部订货供应的批量称为订货批量;由内部生产供应的批量称为生产批量.3. 货点;为补充存储而发生订货时的存储水平,以R 表示.4.备运期:发生订货的时间与实际收到订货入库的时间的间隔.5.存储费:保管存货的费用,包括存储所占用资金的利息、仓库和场地费用、物资的存储损耗2000 0 20001000 2000 4000 4000 3000 1000 30003000 2000费用、物资的税金、保险费用等,以1C表示.6.订货费:为补充存储而订货所支付的费用,包括准备和发出订货单的费用、货物的堆放和装运的费用等,以K表示.7.缺货损失费:发生需求时,存储不能提供而引起的费用,包括利润的损失、信誉的损失、停工待料的损失以及没有履行交货合同的罚款等,以2C表示.存储费、订货费和缺货损失费构成了库存的总费用,即总费用=存储费+订货费+缺货损失费. 使总费用最小是建立和求解存储模型的主要目标.为实现该目标,需要确定批量和订货点,这就是所谓存储决策.批量与订货点即决策变量.因而存储模型的主要形式有:总费用=f(批量)或总费用=f(批量,订货点),即F=f(Q)或F=f(Q,R).为了更具体理解随机性存储模型,先来看一个具体实例.例5 考察报童问题.报童每日早晨从报社以每份报纸0.30元的批发价购得当日的日报,然后以每份0.45元的零售价售出.若卖不完,则每份报纸的积压损失费为0.30元;若不够卖,则缺一份报纸造成潜在损失的缺货损失费为0.15元.该报童对以往的销量作了连续一个月的统计,其记录如表5-2所示.表5-2那么,报童每日应订多少份报纸,才能使总损失费最小?假定报童每日订报Q份,并设当日需求量为D,则当DQ≥时,积压损失费为)(30.0DQF-=;当DQ<时,缺货损失费为)(15.0QDF-=.于是可以将报童订报的决策与相应的总费用如表5-3所示表5-32.1元.下面建立这一报童问题模型的数学解析式,用求极值的方法求解最小损失总费用.设平均总费用为)(QTF,则∑∑≤>-+-=QD QDDPQDDPDQQTF)()(15.0)()(30.0)(.(5.41)为求使)(QTF最小的Q值,解下列不等式组:⎪⎩⎪⎨⎧≤+-≤--.0)()(0)()(d Q TF Q TF d Q TF Q TF 其中 ,10|}{|min =-=≠D Q d DQ 且 }.160,150,140,130,120{=∈±S d Q上式等价于⎪⎩⎪⎨⎧≥-≤-∑∑∑∑≤>-≤->QD Q D d Q D d Q D D P D P D P D P .0)(15.0)(30.00)(15.0)(30.0即⎪⎩⎪⎨⎧≥-⋅+≤-⋅+∑∑≤-≤Q D dQ D D P D P .015.0)()15.030.0(015.0)()15.030.0( 故∑∑≤-≤≤≤QD dQ D D P D P ).(31)( (5.7)亦即).()120(3333.0)()120(Q P P d Q P P ++≤≤-++由于 130,35.0)130()120(15.0)120(==+=Q P P P 因此且. 可以看到,上述结果与通过列表得到的结果是一致的.报童问题是一个离散型问题.若考虑相应的连续型问题,则类似于(5.7)式的总费用公式为⎰⎰+∞---=QQx d x P Q x x d x P x Q Q TF 0).()()(15.0)()()(30.0)(这里,)(x P 为一定时期内销售量的概率密度.为求总费用的最小值,令.0)(=dQQ dTF得⎰=-+Qx d x P 0.015.0)()()15.030.0(于是.31)()(*⎰=Qx d x P问题的关键成为如何从这个积分等式中求出*Q ,其求法通常用迭代法利用求极值的数学方法求解存储模型,这是解决存储问题的主要思路.尤其对于连续型存储模型,用求极值的方法求解模型就显得更为有效和更为重要.存储问题中的随机性主要由以下两个因素产生;第一,对物资的需求量经常发生随机波动;第二,订货的到达时间经常发生随机性的提前或推迟.下面将给出需求不确定的随机性存储模型.(一)允许缺货情形由于需求量是随机的,所以,可考虑其平均需求量,而且不允许缺货也只是指在一定置信度下的不允许缺货.设D 为年平均需求,则类似于确定性存储的EOQ 模型,可得到相应的最佳批量*Q 如下:.21*C KD Q =(5.8)这里,K 为一次定购费,1C 为该种物资一个单位存储一年的费用.为在一定置信度下对不缺货提供安全保证,可将安全库存量加到正常存货中以提供所希望达到的服务水平(即不缺货的概率).这时,有βσ+=l R . (5.9)式中,R 为订货点,σ和l 分别为备运期内的销售量L 的均值与均方差,β为安全库存系数,βσ为安全库存量.安全库存系数β即为给定置信度α-1下的上100α百分位点,其值满足等式αβ=>)(X P ,可通过查概率分布表得到.因此,订货策略为,当备运期大于零时,若存储量降低到R ,则以*Q 为订货量进行订货. 例6. 设某公司订购一种备件,一次订货费为60元,年平均需求量为500件,每件年存储费为40元,备运期8天,备运期中的销售量服从均值为15、均方差为2的正态分布.为使不缺货的概率达到99.9%且总费用最小,问订货点是多少,每次订多少件?注意到 D=500件/年,K=60元,1C =40元,则3940500602*≈⨯⨯=Q 件.根据不缺货的概率达到99.9%,查正态分布表得β=3,订货点为212315=⨯+=R 件.故订货点为21件,每次订货39件. (二)允许缺货情形设1,,C K D 同前,2C 为单位缺货损失费,并设存储量降到R 时订货,订货数量为Q ,备运期中的需求量x 服从密度为)(x f 的分布函数)(x F ,则在缺货要补的情况下,订货刚到之前的平均存储量(平均最小存储量)与订货刚到之后的平均存储量(平均最大存储量)分别为⎰⎰-+-RRdx x f x R Q dx x f x R 0)()()()(与,则年平均存储量为⎰-+Rdx x f x R Q 0)()(2.年平均存储费为 ⎪⎭⎫⎝⎛-+⎰Rdx x f x R Q C 01)()(2.年平均订货费为KD/Q.当备运期中的需求量超过订货点R 时,就发生缺货,因此,缺货量的均值为⎰∞-Rdx x f R x )()(.故年平均缺货损失费为⎰∞-Rdx x f R x QD C )()(2.于是年总费用),(Q R TF 为⎰⎰∞-+⎪⎭⎫⎝⎛-++=RRdx x f R x QD C dx x f x R Q C Q KDQ R TF .)()()()(2),(201 (5.10)为求),(Q R TF 的最小值,令⎰⎰∞=-=∂∂RRdx x f QD C dx x f C RQ R TF 0210)()(),(. (5.11)可得⎰-=RDC Q C dx x f 0211)(. (5.12)由(5.12)得12)()(2C dx x f R x C K D Q R ⎪⎭⎫ ⎝⎛-+=⎰∞.故解得最佳批量*Q 与订货点*R 满足如下方程组:{}())14.5()13.5()](1[)(21)(1221⎪⎪⎩⎪⎪⎨⎧--+=-=⎰∞C R F R dx x xf C KD Q DC Q C R F R最佳批量*Q 和订货点*R 可按以下步骤解出:(1)取112C KD Q =;(2) 将1Q Q =代入(5.13)求R 1; (3) 将R =1R 代入(5.14)求2Q ; (4) 将2Q 代入(5.13)。

§4.3最佳订票问题

§4.3最佳订票问题
作业、后记
教学过程及教学设计备注源自§4.3最佳订票问题一.问题提出
在激烈的市场竞争中,航空公司为争取更多的客源而开展的一个优质服务项目是预订票业务。公司承诺,预先订购机票的乘客如果未能按时前来登机,可以乘坐下一班飞机或退票,无需附加任何费用。当然也可以订票时只订座,登机时才付款,这两种办法对于下面的讨论是等价的。
312 0.6810 0.2796
313 0.6864 0.4028
314 0.6917 0.5314
315 0.6971 0.6525
316 0.7024 0.7566
317 0.7078 0.8388
318 0.7132 0.8890
319 0.7185 0.9399
320 0.7239 0.9661
for m=305:325
sm=0;
p=0;
for k=0;m-305
pp=(prod(m-k+1:m)/prod(1:k))*0.03^k*0.97^(m-k);
p=p+pp;
sm=sm+(m-k-300)*pp/prod(1:k);
end
Es=(1/180)*[0.97*m-1.1*sm]-1;
五、问题的进一步讨论
对于问题在的第二个问题,可将乘客分为两类,一类如商人可采用较高的票价,另一类乘客,比如上下班的雇员或游客。可设 张预订票中有 张折扣票,折扣票价为 ,但若不按时前来登机,责任自负。然后做出合理的简化假设,可建立类似的模型,计算并分析结果。注意这里多了两个参数 和 。
:已预订票的乘客不能前来登机乘客数,即迟到的乘客数,它是一个随机变量;
:已预订票的 个乘客中有 个乘客不能按时前来登机的概率;
:每位乘客迟到的概率;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题的推广
现实情况:每天的需求并不完全是随机的,如 周末或重大事件期间销量会上升,天气不好时 销量会下降。 解决途径一:利用历史数据; 解决途径二:利用时间序列分析方法; 解决途径三:利用Monte Carlo数值模拟。
Monte Carlo模拟
若明天需求量依赖于气温T, R=500+-|T-20|, N(0,50^2), U(5,15), 与独立 Matlab程序(明天T=5)求得n0=371(近似). a=1;b=0.75;c=0.6; T=5; N=1000; e=normrnd(0,50,1,N); d=unifrnd(5,15,1,N); R=500+e-d*abs(T-20); S0=0;for n=100:800, S=mean(((a-b)*R-(b-c)*(n-R)).*(R<=n)+(a-b)*n*(R>n)); if S>S0, S0=S;n0=n;end; end;n0,S0
mnx ( x mp ) 2 exp( )dx 2mpq 2 mpq mq n t mpq 2 t2 exp( )dt 2
mq n mpq
模型求解
令dE(S)/dm=0得
1 pq z qg ( g b)q (t )dt ( g b) t (t )dt 0 2 m
第四章
概率统计模型
4.1 报童的诀窍(随机分布)
4.2 机票超售策略(随机模拟)
4.3 牙膏的销售量(多元线性回归)
4.4 教学评估(逐步回归)
4.5 Logistic回归
4.6 统计聚类
确定性因素和随机性因素
确定性是理想化的,随机性是现实中必然存在的 1. 随机因素可以忽略 2. 随机因素影响可以简单 地以平均值的作用出现 3. 随机因素影响必须考虑 确定性模型
z
z
0 t (t )dt t (t )dt 0.4
1 pq z t (t )dt 0 第 3项 2 m g ( z ) g b n=300, p=0.05, b/g=0.2, 计算得 m=319
思考:还可以 对第3项做更精 细的估计,从 而得到更高精 度结果。
k 0
qmg r ( g b)
(m n k ) p
k
(q=1-p).
求m使E(S(m))最大
模型求解
方法一:数值模拟(实际计算适用)
对m=n, n+1, n+2, …., 计算E(S(m)), 求得最优m 注意到最优解与r无关 Matlab程序
n=300;p=0.05;q=1-p;g=1000;b=200; m=n+1; for k=0:(m-n-1) P(k+1)=nchoosek(m,k)*p^k*q^(m-k); end ES=q*m*g-(g+b)*(m-n-(0:(m-n-1)))*P'
考虑不同客源的模型
第一类顾客(no show概率大):后付费,高票价。 第二类顾客:先付费,低票价。设打折,打折 票t张,第二类顾客no show概率=0. no show K~B(m-t, p)
模型求解
方法二:模型近似化简(理论上比较漂亮)
当m很大, K~B(m,p)近似N(mp, mpq) q=1-p.
E ( S (m)) qmg r ( g b) qmg r ( g b) qmg r ( g b)
mn mn
(m n x:Monte Carlo模拟(不求数学期望,从最原始 的随机数开始模拟,忽略r)
clear;n=300;p=0.05;g=1000;b=200; for i=0:50; m=n+i; K=binornd(m,p,1,10000); ES(i+1)=mean(g*(m-K).*(m-K<=n)+(n*g-b*(m-K-n)).*(mK>n)); end [maxES,id]=max(ES) m=n+id %计算结果m=321
n r 0 r n 1
G(n) E (S (n)) [(a b)r (b c)(n r )] f (r )
(a b)nf (r )

求 n 使 G(n) 最大
n=E(R) ???
变限积分求导公式
F ( y)
b( y ) a( y)
f ( x, y )dx
0 n
n
n
d 2G 又 (c a) p(n) 0,所以确实为极大值点。 2 dn
结果解释
n
p ( r ) dr a b p ( r ) dr b c
0 n
n
p(r )dr P , p(r )dr P
0 1 n

2
P a b 1 取 n使 P2 bc
a-b ~售出一份赚的钱
b-c ~退回一份赔的钱
p
P1 0
P2 n r
通常,a-b>b-c, R接近正态分布,n>E(R)
为什么用随机分布模型?
需求R是随机的 由于收入是需求的非线性函数,日平均收入 ES(n)不是简单地由日平均需求E(R)决定
G(n) E (S (n)) [(a b)r (b c)(n r )] f (r )
模型求解
ES0=ES-1; while ES>ES0 m=m+1;ES0=ES; for k=0:(m-n-1) P(k+1)=nchoosek(m,k)*p^k*q^(m-k); end ES=q*m*g-(g+b)*(m-n-(0:(m-n-1)))*P'; end m,ES0 %计算结果m=321(但计算有溢出警告)
4.2 机票超售(overbook )策略
2013-10-21 《北京晚报》:三天前,徐先生网上 为朋友订购了大新华航空公司于昨天下午3点55 分从北京飞往哈尔滨的机票。昨天下午,朋友两 点多就来到了机场,却在换登机牌时被工作人员 告知,登机牌已经换完,飞机上“满座”,已无 空位置。“为什么我买了票却不让我上去?”由 于着急赶时间,徐先生的朋友急切地与工作人员 交涉,结果被告知,“很多航班都会这样售票, 防止有人买票后临时有事退票或改签,导致飞机 坐不满人,浪费资源。”
2013阿里巴巴双11成交350 亿,9小时超过美国“网络 星期一”全天 ! 天猫方面承认“双11”当天因流量巨大,导致其系统商 品库存数据与商家的前后台数据对接不准,确有少 部分订单出现“超卖”。为此,天猫在致歉的同时 给出3条补救意见―― ■商家根据自己的实际情况对消费者进行额外补 偿,如店铺优惠券、现有商品5折销售等; ■对于未发货的“超卖”订单,支持进行全额退 款; ■对于所有“超卖”订单,买家都可获得商品价 格30%、最多500元的天猫积分。其中,最后一条是 天猫首次就“超卖”明确表示赔付。
随机性模型
4.1
报童的诀窍
假设《新民晚报》 平均每天零售 500份,报亭每 天应该预定多 少份?
4.1 报童的诀窍
报童售报: a (零售价) > b(购进价) > c(退回价)
问 售出一份赚 a-b;退回一份赔 b-c 题
购进太多卖不完退回赔钱
每天购进多少份可使收入最大?
分 购进太少不够销售赚钱少 析
基本模型
利润
订票数m, 容量n, no-show人数 K~B(m,p)
到来(on-show)人数m-K
(m K ) g r mK n S K n)b m K n ng r (m m m 期望利润 p 1, kp mp
E ( S (m))
F '( y ) f (b( y ), y )b( y ) f (a ( y ), y )a( y )
b( y ) a( y)
f y ( x, y )dx
为简化计算
求解
n
将r视为连续变量
f (r ) p(r ) (概率密度)

G(n) 0 [( a b)r (b c)( n r )] p(r )dr n (a b)np(r )dr
9.6 机票超售(overbook )策略
问题分析:
订票的乘客可能不来登机(no-show); 只按容量订票可能会出现很多空位从而损失利润; 超额订票可能导致乘客不能登机(deny-boarding, DB )而赔偿; 找一个最佳订票数量
模型假设
飞机容量n, 机票价格g, 固定飞行成本r; 订票限额m>=n, 乘客是否到来随机独立,每个 乘客no-show的概率p; no-show数K~B(m,p) 每位DB无须付机票费,且赔偿b.
应根据需求确定购进量 每天需求量是随机的
存在一个合 适的购进量
每天收入是随机的
优化问题的目标函数应是长期的日平均收入 等于每天收入的数学期望
准 备 建 模
随机因素的主要来源——每天需求量 为 R ,概率 P(R=r)=f(r), r=0,1,2… • 设每天购进 n 份(不随机),日平均收入为 G(n) • 已知售出一份赚 a-b;退回一份赔 b-c, 日收入为 (a b) R (b c)(n R), R n S (n) (a b)n Rn
m n 1 k 0 m n 1 k 0
(ng r (m n k )b) p
m n 1 k 0

k 0
k

k
k 0 m
k

k mn

k
((m k ) g r ) pk
m k
(ng r (m n k )b (m k ) g r ) p ((m k ) g r ) p
相关文档
最新文档