微波网络基础
微波技术原理 第4章 微波网络基础
7. 互易网络和无损网络的散射矩阵的性质
根据广义散射矩阵的定义得到:
(1) 互易网络的 [z]为对称矩阵,即 [z ]=[z ]T 。 可见,互易网络的散射矩阵是对称矩阵 [S]=[S]T 。
(2) 无损网络各端口的总输入能量等于总输出能量。
第4章 微波网络基础
微波系统中除了传输线外,还有各种各样的微波 元件或接头等非均匀区域。因为这些非均匀区域的形 状不规则,在其中的微波传输规律很复杂。因此,要 想通过求解麦克斯韦方程组得出其中的传输规律是不 可能的。
实际上,我们并不需要知道微波在其中的传输规 律,而只需知道这些非均匀区与外电路连接的端口特 性。所以通常将其等效为一个网络,称为微波网络。
微波网络的端口及其参考面举例
对于单模传输系统,微波网络的端口数 = 被等效区 域与外电路的接口数目 = 参考面的数目。
§4.3 微波网络的端口特性参量
1. 阻抗矩阵和导纳矩阵
V
2
I-2
V+2 I+2
I-3 V-3 I+3 V+3
I+1
V+1
I-1
V-1
I-N
I+N
V-N
V+N
2. 微波网络的互易性
从无耗网络的各个端口输入的总能量为 0。
互易网络的阻抗矩阵是对称的,因此,既互易又
无耗的网络满足:
(实部为0)
这说明,互易无耗网络的阻抗矩阵元为纯电抗。
例1 求下图的两端口网络的Z参量
ZA
ZB
端口1,V1
ZC
V2,端口2
根据定义:
微波技术基础期末复习题
《微波技术基础》期末复习题第2章 传输线理论1. 微波的频率范围和波长范围频率范围 300MHz ~ 3000 GHz 波长范围 1.0 m ~ 0.1mm ;2. 微波的特点⑴ 拟光性和拟声性;⑵ 频率高、频带宽、信息量大;⑶ 穿透性强;⑷ 微波沿直线传播;3. 传输线的特性参数⑴ 特性阻抗的概念和表达公式特性阻抗=传输线上行波的电压/传输线上行波的电流 1101R j L Z G j C ⑵ 传输线的传播常数传播常数 j γαβ=+的意义,包括对幅度和相位的影响。
4. 传输线的分布参数:⑴ 分布参数阻抗的概念和定义⑵ 传输线分布参数阻抗具有的特性()()()in V d Z d I d =00ch sh sh ch L L L L V d I Z d V d I d Z γγγγ+=+000th th L L Z Z d Z Z Z d γγ+=+① 传输线上任意一点 d 的阻抗与该点的位置d 和负载阻抗Z L 有关; ② d 点的阻抗可看成由该点向负载看去的输入阻抗;③ 传输线段具有阻抗变换作用;由公式 ()in Z d 000th th L L Z Z d Z Z Z dγγ+=+ 可以看到这一点。
④ 无损线的阻抗呈周期性变化,具有λ/4的变换性和 λ/2重复性; ⑤ 微波频率下,传输线上的电压和电流缺乏明确的物理意义,不能直接测量;⑶ 反射参量① 反射系数的概念、定义和轨迹;② 对无损线,其反射系数的轨迹?;③ 阻抗与反射系数的关系;in ()1()()()1()V d d Z d I d d 01()1()d Z d ⑷ 驻波参量① 传输线上驻波形成的原因?② 为什么要提出驻波参量?③ 阻抗与驻波参量的关系;5. 无耗传输线的概念和无耗工作状态分析⑴ 行波状态的条件、特性分析和特点;⑵ 全反射状态的条件、特性分析和特点;⑶ 行驻波状态的条件、特性分析和特点;6. 有耗传输线的特点、损耗对导行波的主要影响和次要影响7. 引入史密斯圆图的意义、圆图的构成;8. 阻抗匹配的概念、重要性9. 阻抗匹配的方式及解决的问题⑴ 负载 — 传输线的匹配⑵ 信号源 — 传输线的匹配⑶ 信号源的共轭匹配10. 负载阻抗匹配方法⑴ λ/4阻抗匹配器⑵ 并联支节调配器⑶ 串联支节调配器第3章 规则金属波导1. 矩形波导的结构特点、主要应用场合;2. 矩形波导中可同时存在无穷多种TE 和TM 导模;3. TE 和TM 导模的条件;TE 导模的条件:00(,,)(,)0j z z z z E H x y z H x y e β-==≠TE 导模的条件:00(,,)(,)0j z z z z H E x y z E x y e β-==≠4. 关于矩形波导的5个特点;5. 掌握矩形波导TE 10模的场结构,并在此基础上掌握TE m0模的场结构;6. 管壁电流的概念;7. 管壁电流的大小和方向;8. 矩形波导的传输特性(导模的传输条件与截止);9. 圆形波导主模TE11模的场结构。
微波电路及设计的基础知识
微波电路及设计的基础知识1. 微波电路的基本常识2. 微波网络及网络参数3. Smith圆图4. 简单的匹配电路设计5. 微波电路的电脑辅助设计技术及常用的CAD软件6. 常用的微波部件及其主要技术指标7. 微波信道分系统的设计、计算和指标分配8. 测试及测试仪器9. 应用电路举例微波电路及其设计1.概述所谓微波电路,通常是指工作频段的波长在10m~1cm(即30MHz~30GHz)之间的电路。
此外,还有毫米波〔30~300GHz〕及亚毫米波〔150GHz~3000GHz〕等。
实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频〔RF〕电路”等等。
由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多独特的地方。
作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工艺、元器件、以及设计技术等方面,都已经发展得非常成熟,并且应用领域越来越广泛。
另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过了1GHz。
在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路的设计技术也已得到了充分的应用。
以往传统的低频电路和数字电路,与微波电路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。
2.微波电路的基本常识2.1 电路分类2.1.1 按照传输线分类微波电路可以按照传输线的性质分类,如:图1 微带线图2 带状线图3 同轴线图4 波导图5 共面波导2.1.2 按照工艺分类微波混合集成电路:采用别离组件及分布参数电路混合集成。
微波集成电路〔MIC〕:采用管芯及陶瓷基片。
微波单片集成电路〔MMIC〕:采用半导体工艺的微波集成电路。
图6微波混合集成电路例如图7 微波集成电路〔MIC〕例如图8微波单片集成电路〔MMIC〕例如2.1.3 微波电路还可以按照有源电路和无源电路分类。
微波技术基础Chap07
Chap.7 微波网络基础¾微波系统的研究方法•场分析为基础,用路的分析方法将复杂微波系统等效为微波网络o 将均匀波导(传输线)等效为双导线传输线o 微波元件等效为网络¾微波网络的分析与综合•网络分析:已知网络结构,分析网络的外特性•网络综合:根据系统预定的工作特性指标,进行网络结构的设计§7-1 引言¾端口与参考面微波元件通常由不均匀区域(微波结)和n 条均匀波导构成,这些传输线将元件与系统沟通,又为电磁波进出不均匀区提供接口通路,称之为端口;每个端口由两个端子构成。
o 单模:微波元件的电气端口与几何端口数n 相等,n o 多模:电气端口数为各端口传输波型的总和, n ×m参考面(端口面)的选择:o 应远离不均匀区,参考面上只需考虑主模的入射波和反射波o 各参考面T 1、T 2、…,T n 将复杂的微波元件分成两部分:各参考面所包围的不均匀区域参考面外的均匀传输线;¾微波网络的特点微波网络形式与传输模式有关o 微波等效电路及其参量是对于单一工作模式而言的;o 多模传输时,等效为一个N ×m 的多端口网络,各端口传输线为单模传输线;微波网络形式与参考面的选取有关o微波网络的等效电路及其参量只适用于一个窄频带 端口参考面上的等效电压和电流是不唯一的。
¾为了将微波元件等效为微波网络,需解决如下三个问题:确定微波元件的参考面由横向电磁场定义等效电压(即模式电压)、等效电流和等效阻抗,以便将均匀传输线等效为双线传输线确定一组网络参数,建立网络方程,以便将不均匀区域等效为网络§7-1 引言§7-2 波导等效为双线、不均匀性等效为网络二、波导等效为双线传输线 假设:1)模式电压和模式电流分别与横向电场和横向磁场成正比2)波导的传输功率与等效双线的传输功率相等3)波导的波型阻抗与等效双线的特性阻抗相等,则由此导出的模式电压和模式电流的值是确定的,满足传输线方程,可以作为等效双线的等效电压和等效电流。
微波网络理论
2. 互易与非互易网络
若构成网络的媒质与场的传输方向无关,该网络为互易网络。
3. 对称与非对称网络
网络结构具有对称性。
4. 无耗与有耗网络 :Pl =0,不包含有损耗的器件。
5. 有源与无源:直流能量转为微波能量;微波信号频率转化;包含
任何单模传输系统等效为特性阻抗为1的双线。传输线理论中的公式如下:
归一化等效电压:V V V
归一化等效电流:I I I
归一化特性阻抗:Zc
V I
V I
1
有功功率:P
P
P
1 2
Re(VI
*)
入射功率:P
1 2
Re(V
I
*
)
1 2
V
2
反射功率:P
1 2
Re(V
I
*
)
1 2
V
2
反射系数: V V
4.4.1 散射矩阵和散射参量的意义
bn
b1 s11a1 s12a2 L s1nan b2 s21a1 s22a2 L s2nan M
a1 1
b1
Network
bn sn1a1 sn2a2 L snnan
b1 s11 s12 L
b2
s21
s22
L
M M M L
bn
补充内容 微波网络理论
4.1 引言
微波
Ze
网络
Ze
如果我们不关心微波元器件内部的场分布,而只 对其外部特性感兴趣,可将传输系统中不均匀性引 起的端口传输特性的变化归结为等效微波网络。
T (a)
微波 元件
第四章-微波网络基础
其它几种网络参量的互易特性为
A11 A22 A12 A21 1
~~ ~~ A11 A22 A12 A21 1
S12 S21
T11T22 T12T21 1
S1,1 ,S22
第四章 微波网络基础
(二) 对称网络 一个对称网络具有下列特性
Z11 Z22 Y11 Y22
,
其它几种网络参量的对称性为
T12 T21
A11 A22
Z01 Z02
由此可见,一个对称二端口网络的两个参考面上的输 入阻抗、输入导纳以及电压反射系数等参量一一对应 相等
第四章 微波网络基础
(三) 无耗网络
利用复功率定理和矩阵运算可以证明,一个无耗网络的散射矩 阵一定满足“么正性”,即
[S]T [S * ] [1]
按微波元件的功能来分
1.阻抗匹配网络 2.功率分配网络 3.滤波网络 4.波型变换网络
第四章 微波网络基础
(二) 微波网络的性质
(1) 对于无耗网络,网络的全部阻抗参量和导纳参量均为纯虚数,
即有
Zij jX ij
Yij jBij i, j 1,2,,n
(2) 对于可逆网络,则有下列互易特性
Zij Z ji
Z 01 Z 02
第四章 微波网络基础
2. 导纳参量
用T1和T2两个参考面上的电压表示两个参考面上的电流,其网 络方程为
I1
I
2
Y11 Y21
各导纳参量元素定义如下
Y12 U1
Y22
U
2
Y11
I1 U1
U2 0
Y22
I2 U2
U1 0
Y12
I1 U2
U1 0
Y21
第五章 微波网络基础 传输(ABCD)矩阵(转移矩阵)
B1 V2 I D1 2
V2 A2 I C 2 2
B2 V3 D2 I 3
V1 A1 I C 1 1
B1 A2 D1 C2
B2 V3 M个二端口网络级联 [ A] [ A1 ][ A2 ] [ AM ] D2 I 3
I1 D I2
V2 0
2
(端口2短路)
传输矩阵应用
传输矩阵的应用——二端口网络的级联
I1
+ -
I2
V1
I3
A1 B1 C D 1 1
二端口网络1
+ -
V2
A2 B2 C D 2 2
二端口网络2
+ -
V3
V1 A1 I C 1 1
传输矩阵参量计算
变压器:
传输矩阵与阻抗矩阵之间的关系
阻抗矩阵线性方程组
V1 Z11 V Z 2 21
A
B
注意负号意义!
Z12 I1 I Z 22 2
I1Z11 Z11 / Z 21 I1Z 21
V1 I1Z11 I 2 Z12 V2 I1Z 21 I 2 Z 22
若网络是互易的, Z12 Z 21
I1 D I2
I 2 Z 22 / Z 21 Z 22 / Z 21 I2 V 0
2
AD BC 1
11
二端口网络
二端口网络——微波电路中最常见
衰减器
移相器 匹配器 滤波器 ……
12
失配损耗 耗散损耗
V1 AV2 BI 2 I1 CV2 DI 2
微波技术与天线复习知识要点
《微波技术与天线》复习知识要点绪论●微波的定义: 微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。
●微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~0.1mm●微波的特点 (要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论●均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关.两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02证明题:(作业题)●均匀无耗传输线的三种传输状态(要会判断)1.行波状态:无反射的传输状态▪匹配负载:负载阻抗等于传输线的特性阻抗▪沿线电压和电流振幅不变▪电压和电流在任意点上同相2.纯驻波状态:全反射状态▪负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数●传输线的三类匹配状态(知道概念)▪负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波.▪源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。
此时,信号源端无反射.▪共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。
共轭匹配的目的就是使负载得到最大功率.●传输线的阻抗匹配(λ/4阻抗变换)(P15和P17)●阻抗圆图的应用(*与实验结合)史密斯圆图是用来分析传输线匹配问题的有效方法。
1.反射系数圆图:Γ(z)=|Γ1|e j(Φ1—2βz)= |Γ1|e jΦΦ1为终端反射系数的幅度,Φ=Φ1—2βz是z处反射系数的幅角.反射系数圆图中任一点与圆心的连线的长度就是与该点相应的传输线上某点处的反射系数的大小。
微波技术基础复习重点
第一章引论微波是指频率从300MHz到3000GHz范围内的电磁波,相应的波长从1m到0.1mm。
包括分米波(300MHz到3000MHz)、厘米波(3G到30G)、毫米波(30G 到300G)和亚毫米波(300G到3000G)。
微波这段电磁谱具有以下重要特点:似光性和似声性、穿透性、信息性和非电离性。
微波的传统应用是雷达和通信。
这是作为信息载体的应用。
微波具有频率高、频带宽和信息量大等特点。
强功率—微波加热弱功率—各种电量和非电量的测量导行系统:用以约束或者引导电磁波能量定向传输的结构导行系统的种类可以按传输的导行波划分为:(1)TEM(transversal Electromagnetic,横电磁波)或准TEM传输线(2)封闭金属波导(矩形或圆形,甚至椭圆或加脊波导)(3)表面波波导(或称开波导)导行波:沿导行系统定向传输的电磁波,简称导波微带、带状线,同轴线传输的导行波的电磁能量约束或限制在导体之间沿轴向传播。
是横电磁波(TEM)或准TEM波即电场或磁场沿即传播方向具有纵向电磁场分量。
开波导将电磁能量约束在波导结构的周围(波导内和波导表面附近)沿轴向传播,其导波为表面波。
导模(guided mode ):即导波的模式,又称为传输模或正规模,是能够沿导行系统独立存在的场型。
特点:(1)在导行系统横截面上的电磁场呈驻波分布,且是完全确定的,与频率以及导行系统上横截面的位置无关。
(2)模是离散的,当工作频率一定时,每个导模具有唯一的传播常数。
(3)导模之间相互正交,互不耦合。
(4)具有截止频率,截止频率和截止波长因导行系统和模式而异。
无纵向磁场的导波(即只有横向截面有磁场分量),称为横磁(TM)波或E波。
无纵向电场的导波(即只有横向截面有电场分量),称为横电(TE)波或H波。
TEM波的电场和磁场均分布在与导波传播方向垂直的横截面内。
第二章传输线理论传输线是以TEM模为导模的方式传递电磁能量或信号的导行系统,其特点是横向尺寸远小于其电磁波的工作波长。
微波有源电路理论分析及设计第一章微波网络基础
目的和意义
01
随着通信技术的不断发展,对微波有 源电路的性能和设计要求也越来越高 。
02
微波有源电路理论分析及设计是实现 高性能微波有源电路的关键,具有重 要的理论和实践意义。
03
通过对微波有源电路的理论分析和设 计,可以深入了解其工作原理和性能 特点,为实际应用提供理论支持和实 践指导。同时,通过不断优化和创新 ,可以提高微波有源电路的性能和设 计水平,推动通信技术的发展和应用 。因此,微波有源电路理论分析及设 计具有重要的理论和实践意义。
详细描述
匹配设计主要关注阻抗匹配,通过调整网络元件的阻抗值,使信号源的输出阻 抗与传输线或负载的输入阻抗相匹配,从而减少信号反射和能量损失。常用的 匹配方法包括串联匹配、并联匹配和混合匹配等。
微波网络的滤波器设计
总结词
滤波器设计用于提取或抑制特定频率范围的信号,是微波网络中常见的应用之一 。
详细描述
01
导纳分析法是一种通过测量微 波网络的导纳来分析其性能的 方法。
02
导纳分析法可以用于确定微波 网络的导纳特性、传输特性和 稳定性等参数。
03
导纳分析法通常使用导纳分析 仪进行测量,需要测量微波网 络的导纳,并计算反射系数和 传输系数等参数。
微波网络的传输线分析法
传输线分析法是一种通过分析 微波传输线的传播特性和分布 参数来分析其性能的方法。
稳定性是描述微波网络在输入 信号变化时输出信号是否稳定
的特性。
线性度是指微波网络在输入信 号在一定范围内变化时,输出 信号与输入信号之间是否保持
线性关系的特性。
对于有源微波电路,稳定性是 关键的性能指标,因为它直接 关系到电路的工作状态和性能 。
线性度对于避免非线性失真和 干扰也至关重要,特别是在高 功率和高频率的应用中。
微波技术基础简答题整理
对于电场线,总是垂直于理想管壁,平行于理想管壁的分量为 对于磁场线,总是平行于理想管壁,垂直于理想管壁的分量为 ( P82)
0 或不存在; 0 或不存在。
2-10. 矩形波导的功率容量与哪些因素有关? 矩形波导的功率容量与波导横截面的尺寸、模式(或波形) 导中填充介质的击穿强度等因素有关。 (P90)
工作波长 λ,即电磁波在无界媒介中传输时的波长, λ与波导的形状与尺寸无关。 截止波数为传播常数 γ等于 0 时的波数,此时对应的频率称为截止频率,对应的 波长则称为截止波长。它们由波导横截面形状、尺寸,及一定波形等因素决定。 波长只有小于截止波长, 该模式才能在波导中以行波形式传输, 当波长大于截止 波长时,为迅衰场。
2-2. 试从多个方向定性说明为什么空心金属波导中不能传输 TEM模式。※
如果空心金属波导内存在 TEM 波,则要求磁场应完全在波导横截面内,而且是 闭合曲线。 由麦克斯韦第一方程, 闭合曲线上磁场的积分应等于与曲线相交链的 电流。由于空心金属波导中不存在沿波导轴向(即传播方向)的传到电流,所以 要求存在轴向位移电流,这就要求在轴向有电场存在,这与 TEM 波的定义相矛 盾,所以空心金属波导内不能传播 TEM 波。
按损耗特性分类: ( 1)分米波或米波传输线(双导线、同轴线) ( 2)厘米波或分米波传输线(空心金属波导管、带状线、微带线) ( 3)毫米波或亚毫米波传输线(空心金属波导管、介质波导、介质镜像线、微 带线) ( 4)光频波段传输线(介质光波导、光纤)
1-3. 什么是传输线的特性阻抗,它和哪些因素有关?阻抗匹配的物理实质是什 么?
4-5. 微波谐振器的两个主要功能是 储能 和选频 。
4-6. 无耗传输线谐振器串联谐振的条件是 Zin =0,并联谐振的条件是 Zin =∞。
习题选解微波网络基础
第4章微波网络基础习)[1] 为什么说微波网络方法是研究微波电路的重要手段微波网络与低频网络 相比较有哪些异同点 [2]表征微波网络的参量有哪几种分别说明它们的意义、特征及英相互间的关 系。
[3]二端口微波网络的主要工作特性参量有哪些它们与网络参量有何关系【4】 求图4-17所示电路的归一化转移矩阵。
其【解】同[例4-9]见教材PP95求图4-9长度为0的均匀传输线段的A 和S °ZoH --------- 0 ---------- H八T1图4-9长度为&的均匀传输线段U [=A [l U 2-A i2l271 =A 2l U 2^A 22I 2先确宦A 矩阵。
当端口(2)开路(即心=0)时,人面为电压波腹点,令则 〃严仏(舁+e 〃) =(4cos&,且此时端口⑴的输入阻抗为Z.a =-jZ o cot0.2【解1从泄义出发求参数, 立义为:图4-17 习题4图由A矩阵的立义得:n 4/.t/./z = cos0 , =— =—- U. L-0 2旦==_ 避 Z U 2 一必 cot 他 Z o cos3in当端口⑵短路(即吩。
〉时,砌为电压波节点,令宀宀 则 〃产牛(舁一不"卜"mSin 。
,且此时端口⑴的输入阻抗为Z 测=)Z (1tan^o 由A 矩阵的圧义得: 4 =£L =7 -/ =jZ (、sin 0, A^= —L也 --/ nd® y>-o '丹 也可以利用网络性质求 由网络的对称性得:A 22 =^,=005/9再由网络可逆性得:人「=月”班_]= 2、0一] = jZMA 2} jsinO/Z {} 于是长度为0的均匀传输线段的A 矩阵为cos0jZ 0 sin 0ysin^/Z 0 cos0如果两端口所接传输线的特性阻抗分别为Z 。
】和乙龙,则归一化A 矩阵为互 COS0Z ()i .JZoZo? sin &J疋-.Z o sin 0经 COS0Z°2当 Z (M = Z°2 = Z()时cos0 Jsin0jsin& cos 6 [6](返回)求图4-19所示H 型网络的转移矩阵。
微波理论和工程的基础知识
V SWR
| (z ) | 1 1
Z(z ) 1 j tan (z z) j tan (z z)
U(z )
mzx
U(z )
m in
第1章 微波理论和工程的基础知识
从表1-2-1 (1)三个工作参数的值之间是相互联系的。 (2)无耗传输线上任一点处的反射系数的模值为常数,
等于负载ZL处的反射系数ΓL(尽管线上距离负载电长度
1.1.1 麦克思韦方程组 电磁波的运动规律遵从19世纪给出的麦克思韦方程组,
是英国科学家麦克思韦对法拉第(Faraday)等前人的实 验成果的总结和发展。麦克思韦方程组是描述宏观电磁场 规律的基本方程。微分形式的麦克思韦方程组在空间中的 任何一点都成立,它由以下四个方程组成:
第1章 微波理论和工程的基础知识
第1章 微波理论和工程的基础知识
E jB
(1-1-10)
H jD J (1-1-11)
D
(1-1-12)
B 0
(1-1-13)
【注意】这里的复数量是前文瞬时值的有效值,它们
不再是时间的函数,但仍然是位置的函数。这种选择的理
由是:①在实际工程中,这些物理量通常是用有效值来标明
或测量的;②复数功率和能量的方程能同它们的瞬时值对
第1章 微波理论和工程的基础知识
一个工作在边界Γ包围的区域Ω内的实际工程问题中
(1)第一类边界条件,也称为狄利克莱(Dirichlet) 边界条件。这种边界条件直接给出变量在边界上的值:
U 1 U1
(1-1-16)
式中,Γ1为第一类边界,U1为已知函数,可以为常数或0。
第1章 微波理论和工程的基础知识
应式保持同样的比例因子。
第1章 微波理论和工程的基础知识
微波技术与天线第4章
2 zTE10
此时波导任意点处旳传播功率为
P 1 Re[U (Z )I (Z )] ab E120
2
4 ZTE10
与式(2. 2. 26)相同, 也阐明此等效电压和等效电流满足 第②条要求。
第4章 微波网络基础
2.
由前面分析可知, 不均匀性旳存在使传播系统中出现多模 传播, 因为每个模式旳功率不受其他模式旳影响, 而且各模式旳 传播常数也各不相同, 所以每一种模式可用一独立旳等效传播 线来表达。
Ze 1
e 1
Ze 2
e 2
…
ZeN
eN
(a)
(b)
图 4 – 1 多模传播线旳等效
第4章 微波网络基础
在离开不均匀处远某些旳地方, 高次模式旳场就衰减到能 够忽视旳地步, 所以在那里只有工作模式旳入射波和反射波。 一般把参照面选在这些地方, 从而将不均匀性问题化为等效网 络来处理。如图 4-2 所示是导波系统中插入了一种不均匀体及 其等效微波网络。
U1=AU2+B(-I2)
I1=CU2+D(-I2) 因为电流I2旳正方向如图 4 . 4 所示, 而网络转移矩阵要求 旳电流参照方向指向网络外部, 所以在I2前加负号。这么要求, 在实用中更为以便。 将式(4. 3 - 13)写成矩阵形式, 则有
由电磁场理论可知, 各模式旳传播功率可由下式给出:
第4章 微波网络基础
Pk
1 2
Re
EK
(
x,
y,
z
)
H
K
(
x,
y
,
z
)
ds
1 2
Re [U k
(z)I
( z )]
eK (x, y) hK (x, y) ds
电磁场、微波技术与天线图文 (6)
第6章 微波网络基础
2. 微波网络参数是在微波传输线中只存在单一传输模式下 确定的。例如,对矩形波导,是指TE10模;对微带线,是指 准TEM模;对同轴线与带状线,是指TEM模。当微波传输 线中存在多模传输时,一般按其模式等效为一个多端口网络, 如一个有n个传输模的单端口元件将等效成一个n端口网络, 一个有n个传输模的二端口元件应等效为2n端口网络,其网 络参数仍按各个传输模式分别确定。
如图6-4-1所示为双端口网络,端口参考面T1、T2上的 电压和电流的方向如图中所示。由网络理论有
U1 Z11I1 Z12 I2 U2 Z21I1 Z22 I2
(6-4-1)
第6章 微波网络基础
图6-4-1 [Z]和[Y]参量网络
第6章 微波网络基础
或简写成
U1 U 2
Z11
Z21
件还不足以将U、I唯一确定。因为,U′=kU,I′=I/k,即e′(x, y)=e(x,y)/k,h′(x,y)=kh(x,y)将同样满足式(6-2-1)的定义 和式(6-2-4)的归一化条件。因此,按上述定义的电压、电流 都只能确定到相差一个常数因子,这种不确定性实际上是反 映了传输线中阻抗的不确定性。为了消除这种不确定性,需 进一步确定基准矢量e(x,y)和h(x,y),也就是确定等效特 性阻抗的选用条件。由式(6-2-1)写出(以入射场为例)
Ui
I
* i
1 2
Ui
(6-2-11a) (6-2-11b)
由式(6-2-11)解得
Ui
ab 2 Em ,
Ii
ab Em
2
(6-2-12)
第6章 微波网络基础
将其代入式(6-2-10)解出
e ey
2 ab
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= 1 Re U + I +* 2
= 1 Re U − I −* 2
= =
1 2 1 2
U U
+ −
2 2
第5章 微波网络
v 5.2 波导等效为平行双导线
同轴线等效为平行双导线
Zin
=
Zin Zc
= Uz / Iz Zc
= Uz / Iz
Zc Zc
U=
U
Zc
矩形波导等效为平行双导线:
x
e
−
jβz
I (z)
U U
=I+
+= =U
+I− =U
I+ + +U −
L
+ ZcIL 2Zc
U−
e
=
jβz
−I
−
−
UL − ZcIL 2Zc
e−
jβz
Ex = H y = 0
Z = TE10
120π 1 − λ 2
2a
I =U + −U −
( ) P+ ( ) P−
线性电路中,若干个独立源同时作用
(3)把参考面以外的单模均匀传 时,在任一支路中的电压或电流响应
输线等效为双线传输线
等于各独立源分别单独作用时在该支
2、微波网络分类 按照端口数量
I2 =
I1
路中的电压或电流的代数和。
U S1
U S 2 (2)互易定理
不含有独立源和受控源的线性网络, 一端口施加激励,另一端口产生响 应,不论哪一端口作为激励,哪一端 口作为响应,其响应与激励的比值相 同。
= 10 lg
1 S21 2
6 PDF 文件使用 "pdfFactory Pro" 试用版本创建
5.6 双端口网络的工作特性参量 a1
衰减、插入驻波比、电压传输系数、插入相移
Zc1
ZL=ZC2 Zc2
v 5.6.1 传输系数
2、插入衰减
b1 S
a1
S
b1
T
= b2 a1
U 2 U 1=0 Y 21 = I 2
2口短路,1口到2口转移导纳
U 1 U 2=0
Y 11 = Y11 Yc1
Y 12 = Y12 Yc1Yc2
Y 22 = I 2
1口短路,2口归一化输入导纳
U 2 U1=0
Y 21 = Y21 Yc1Yc2
Y 22 = Y 22 Yc 2
互易网络: Y12= Y21 对称网络: Y11= Y22 无耗网络: Re[Y12]= Re[Y21]= 0
a2
= S21
=0
v 5.6.2 衰减
b2 a2=0
Li
= 10lg
PL0 PL
网络插入前负载吸收 的功率与网络插入后负载 吸收的功率之比的分贝数.
PLo
=
1 2
a1
2
−1 2
b1
2
=
1 2
a1
2 (1− Γ
2)
=
1 2
a1
2
4Z c1Z c 2 (Zc1 + Zc2 )2
1、工作衰减
LA
=
10 lg
I 1 I2=0
Z 22 = U 2 1口开路,2口归一化输入阻抗
Z 21 = Z 21 Z c1Z c2
Z 22 = Z 22 Z c2
I 2 I1=0
互易网络: Z12= Z21
对称网络: Z11= Z22
无耗网络: Re[Z12]= Re[Z21]= 0
5.3 微波网络参量
v 5.3.1 阻抗参量与导纳参量
= U ( z + l ) = e − jβl = e − jθ U (z)
θ = βl
5 PDF 文件使用 "pdfFactory Pro" 试用版本创建
5.5 基本电路单元的网络参量(S参量)
v 2、串联电阻的S参量
Z
Zc
Zc
a1
Z
a2
b1
b2
b1 =S11a1+S12a2 b2 =S21a1 +S22a2
... ... ...
S
2
n
a
2
... ...
S
nn
a
n
[b ] = [S ][a ]
1、多端口网络散射参量 a2
b2
S jj
= bj aj
其它端口匹配时,端口j的反射系数
a1 =a2 =L=0,a j ≠ 0
a1 b1
[S]
ai bi
bi
S = a ij
U1 Zc1
Zc2 U2
Y 11 = I 1
2口短路,1口归一化输入导纳
I1 = Y11U1 + Y12U 2 I 2 = Y21U1 + Y22U 2
U 1 U 2=0
Y 12 = I 1
1口短路,2口到1口转移导纳
I1 = Y11 U1 Yc1 + Y12 U 2 Yc2
Yc1
Yc1 Yc1
Yc1 Yc2
[ ]S
=
S11 S 21
S12
S
22
互易网络: S12= S21
对称网络: S11= S22 无耗互易网络: S具有幺正性
[ ] [S] S* T = [I ]
S12 = S21
S11 2 + S21 2 = 1
2
2
b1 + b 2 = 1
a1
a1
a1 2 = b1 2 + b2 2
1 PDF 文件使用 "pdfFactory Pro" 试用版本创建
第5章 微波网络
v 5.2 波导等效为平行双导线
同轴线等效为平行双导线
Zin
=
Zin Zc
= Uz / Iz Zc
= Uz / Iz
Zc Zc
U=
U
Zc
矩形波导等效为平行双导线:
I=I
Z
c
1、工作衰减
LA
=
10 lg
Pa PL
a2
=0
无耗互易网络:
S11 2 + S12 2 = S11 2 + S21 2 = 1
在输出端接匹配负载时,其输 入端入射波功率与输出端出射波功
S21 2 = 1 − S11 2
率之比的分贝值
LA
= 10 lg Pa PL
= 10lg
a1 b2
2 /2 2 /2
I1 I2=0
U 2 = Z21I1 + Z22 I 2
Z12 = U1 1口开路,2口到1口转移阻抗
U1 = Z11 I1 Zc1 + Z12 I 2 Zc2
Z c1
Z c1 Z c1
Z c1 Z c2
I 2 I1=0
Z 21 = U 2 2口开路,1口到2口转移阻抗
Z11 = Z11 Z c1
Z12 = Z12 Z c1Z c2
v 5.6.1 传输系数
a1
S
b1Leabharlann T= b2 a1a2
= S21
=0
v 5.6.2 衰减
b2 a2=0
LA
= 10lg
1 S21
2
= 10lg
1 − S11 2 S21 2 ⋅ (1 − S11
2)
进入网络的 网络传输的
=
10
lg
1
− S
S11
2 21
2
+ 10 lg 1−
1 S11
2
网络吸收的 反射损耗
I=I
Z
c
1、归一化电压与电流
U (z) = U + + U − = U L + Z c I L e jβz + U L − Z c I L e− jβz
2
2
2、矩形波导(TE10)等效为平行双导线
Ey
=
E
0
sin
π a
x e − jβz
Hx
=
−
E0 Z TE10
sin π a
j a1 = a 2 =L = 0 ,a j ≠ 0
其它端口匹配时,j端口 到第i端口的传输系数
anbn
5.3 微波网络参量
v 5.3.2 散射参量
2、双端口网络散射参量
S11
S21
S12 S22
S S
*
11
*
12
S* 21
S* 22
=
1 0
0 1
I =U + −U − I = a − b
b1 S11 S12 ... S1n a1
a 微波 b 网络
a= b=
1 (U
2
1 (U
2
+ I ) − I )
b2
...
=
S
21
...
b
n
S
n1
S 22 ... S n2
x
e
−
jβz
I (z)
U U
=I+
+= =U
+I− =U
I+ + +U −